
Crowd Aided Web Search: Concept and Implementation 1

Crowd Aided Web Search: Concept and
Implementation

Chun-Hsiung Tseng1 , Non-member

ABSTRACT

Although keyword-based search algorithms usually
do their jobs well, they may sometimes yield weird
results. Despite of the fact that the Web is the largest
database, comparing to relational databases, the set
of search operations for the Web is still primitive.
This paper proposes two ways to remedy this: first,
advanced information sources should be created. The
role of advanced information sources of the Web is
analogous to views of relational databases. Second,
we propose several data processing tools based on the
concept of advanced information sources. With these
two mechanisms, the researcher tries to distinguish
the data-centric view from the presentation view of
the Web. In the paper, both the concept and an
implementation are proposed.

Keywords: CrowdIntelligence, CrowdSources, In-
formation Extractionn

1. INTRODUCTION

The objective of existing search engines is to help
Web users locate their needed information accu-
rately and efficiently. The Web is an extremely huge
database flooded with information. To locate a spe-
cific piece of information in the Web is probably more
difficult than to locate a needle in a haystack. Today,
people usually rely on keyword-based search mecha-
nisms. For keyword-based searches to perform well,
both computation power of machines and carefully
designed algorithms are needed to process such huge
amount of information. For example, one of them
utilize the combination of map-reduce, page rank,
inverted-index, and cloud-based infrastructure and
achieve pretty good results in most general cases.

However, keyword-based search algorithms may
sometimes yield weird results despite the fact that
they usually do their jobs well. Why? A possi-
ble cause is that modern Web search engines focus
on syntactic part rather than semantic part of Web
pages. They have no idea about the semantic and
context of a submitted query. Generally speaking,
what keyword-based search algorithms do is recording

Manuscript received on May 6, 2014 ; revised on October 4,
2014.

Final manuscript received October 29, 2014.
1 The author is with Department of Information

Management, Nanhua University, Taiwan, E-mail:
lendle tseng@seed.net.tw

the relationships between keywords and documents
and simply return lists of relevant documents when
related keywords are submitted. In some circum-
stances, people are not satisfied with simple keyword-
based searches, and some questions can only be an-
swered by human beings. For example, the question
“where is the best place to go on vacation”, may be
overly complex for most modern Web search engines
but pretty simple for human beings. Although there
are semantic Web related technologies, wide adop-
tion is still lacked. Furthermore, instead of simple
page lists, sometimes aggregated results are preferred.
An example is: people may ask “what is the average
housing price in a specific area?” Such questions are
also difficult for ordinary Web search engines.

The above scenarios show that, in many circum-
stances, people expect more from search engines.
Simple page lists, the most common type of re-
sults produced by modern search engines, are some-
times not sufficient. Considering the Web as a huge
database, Web pages are actually raw data within the
database. The straightforward simple page lists are
just unprocessed data. Compared with query tech-
nologies for relational database, operators provided
by modern Web search engines are very primitive.
Powerful query operators can be demanded to solve
certain problems. However, complex operators are
double-edged swords since they can complicate the
search operation. Simplicity is also an important fac-
tor of the wide adoption of Web search engine tech-
nologies. Is it possible to find a solution to enhance
the functionality and still keep simplicity? A pos-
sible solution is to keep operators simple but allow
data sources to contain richer information. An exam-
ple is views of relational databases, which allow pre-
processing (or pre-configuration) of the original data
but provide the same operators as normal relational
tables. With similar concepts, it appears reasonable
to improve Web search results with advanced infor-
mation sources providing simple operators, that is, we
can keep keyword-based interfaces but provide mech-
anisms to construct powerful information sources.

Definitely, the approach has drawbacks. First,
skills and efforts are needed to construct these power-
ful information sources. Second, it will be difficult to
evaluate the quality of an information source. Third,
the performance of Web searches can degrade due to
the increased complexity. And last but not the least,
frauds can happen since ordinary users may not be
able to distinguish between original Web pages and

2 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

modified information sources. To remedy these, in
this research, a crowd-based approach is proposed.
We leverage the power of crowds in several aspects:

1. sometimes, it can be difficult for inexperienced
Web users to identify valuable information from
Web pages; with a good annotation mechanism,
the intelligence of crowds can help point out valu-
able parts from Web pages and thus can help or-
dinary users to acquire the information

2. different users can take different views for even the
same set of Web resources due to their different
backgrounds; in many situations, these points of
views can be so diverse and rich that they can be
adopted to construct different information sources
and other users can benefit from them

3. if used adequately, feedbacks generated from
crowd intelligence can be good tools to against
frauds

In this paper, at first, the concept of crowd aided
Web search is presented. Required components are
shown along with their definitions and usages. Fur-
thermore, implementations of these components are
also included. To prove the concept is practical, a
working example is provided.

2. RELATED WORKS

Although Web search engines today are usually
considered efficient, in some circumstances, they are
not, especially when semantics and human intelli-
gence are of concern. Some queries simply cannot be
answered by machines alone. In such cases, human
input is required [1]. The research field is typically
named as crowd search or crowd searching. It is not
an easy task to mediate between responses from hu-
man beings and search engines, and thus the research
field is very challenging.

Crowd search is highly related with social network-
ing [2]. The opinions collected within friends and ex-
pert/local communities can be ultimately helpful for
the search task. For example, the question “find all
images that satisfy a given set of properties” can be
difficult for machines to proceed, but with the help of
human intelligence, answering the question becomes
simpler [3]. A special query interface that let users
pose questions and explore results spanning over mul-
tiple sources was proposed in [4]. Another type of
crowd search and crowd sourcing is social bookmark-
ing. As shown in Heymanns research work [5], social
bookmarking is a recent phenomenon which has the
potential to give us a great deal of data about pages
on the web.

Various crowd search and crowd sourcing systems
have been proposed. For example, the research of
Parameswaran proposed a human intelligence-based
methodology for solving the human-assisted graph
search problem [6]. Amazons Amazon Mechanical
Turk is a commercial product that enables computer
programmers (known as Requesters) to co-ordinate

the use of human intelligence to perform tasks that
computers are currently unable to do [7].

Considering the Web as a huge database with
plenty of information, existing query techniques are
far from perfect. Today, the most widely adopted
query technique is the keyword-based search. The re-
search of Konopnicki and Shmueli [8] examined some
trends in the domain of search, namely the emergence
of system-level search services and of the semantic
web. In the research, a SQLlike solution was sur-
veyed. In [4], a YQL (Yahoo! Query Language [9]) is
implemented. The framework consists of some inter-
action primitives and is aimed at supporting users in
finding responses to multi-domain queries.

In additional to advanced Web query languages,
some semantic-based techniques have been proposed.
Trillo proposed a set of semantics techniques to group
the results provided by a traditional search engine
into categories defined by the different meanings of
the input keywords [10]. In the research, knowledge
provided by ontologies available on the web was used
to dynamically define the possible categories. To in-
fer semantic from Web pages, a frequently used tech-
nique is annotations. Chun and Warner proposed se-
mantic metadata and annotation of Deep Web Ser-
vices (DWS), a reasoning component to assess the
relevance of DWS for searching the Deep Web con-
tents, using likelihood of occurrence of data sources
that contain the query terms, and present a method
of ranking the DWSs [11]. Sarkas, Paparizos, and
Tsaparas propsed an unsupervised mechanism for as-
sessing the likelihood of a structured annotation [12].
Sometimes, information sources with semantic infor-
mation attached will be regarded to as structured in-
formation. The research of Paparizos presented a sys-
tem called HELIX for such information sources [13].

3. CROWD AIDED WEB SEARCH

Recall how people look for answers before the In-
ternet age. Besides searching in books, newspapers,
and magazines, etc., they may consult other people
for suggestions and solutions. Usually, the people
who are consulted are considered as possessing more
knowledge or experiences about the questions. Of
course, the quality of such processed information can
vary greatly, but acquiring information in this way is
typically efficient if the information sources (the do-
main experts and the mediums to carry the informa-
tion) are reliable. Today, the amount of information
presented to users today is much more than the last
decade. We have search engines, which are good at
locating the (possibly) desired pieces of information
among Web resources. Standing in front of the in-
formation flood, most Web users will at first look to
search engines for help. Do search engines really rem-
edy all the symptoms caused by the explosive amount
of information?

Taking a deeper look into how search engines work,

Crowd Aided Web Search: Concept and Implementation 3

one will find that the answer is probably no. By ex-
tracting keywords from Web resources, building in-
dexes of keywords, and tracking links between Web
resources, search engines are good at handling the
syntactic part and they can locate Web resources
containing the given keywords efficiently. However,
search engines employing keyword-based approaches
actually have no idea about the semantics of the
knowledge they present. A common weakness of
generic Web search engines is that, with no priori un-
derstanding of the materials they processed, they per-
form generic search within all Web resources. Hence,
Web users without sufficient domain knowledge may
not be able to leverage the full power of search en-
gines when they need domain-specific information.
For example, for users with little or no IT knowl-
edge, distinguishing “apple” that can be eaten from
the brand “apple” may sometime not be easy. In
such cases, domain-specific searches, i.e., searches tar-
geting information sources of a specific domain, will
give better results than generic searches. Where do
these domain-specific information sources come from?
Who is responsible for constructing such information
sources? Apparently, relying on few domain experts
will not work because of the huge amount of existing
Web resources. Utilizing crowd intelligence is a possi-
ble cure; however, there may not be sufficient tools for
the adoption of crowd intelligence in the Web search
field today.

Where do these domain-specific information
sources come from? Who is responsible for construct-
ing such information sources? Apparently, relying on
few domain experts will not work because of the huge
amount of existing Web resources. Utilizing crowd in-
telligence is a possible cure; however, there may not
be sufficient tools for the adoption of crowd intelli-
gence in the Web search field today.

The goal of this research is to propose a platform
which can simplify the tasks of aggregating the wis-
dom of crowds to improve Web search results. From
the researchers point of view, there are several key
components to complete the platform:

1. data processing tools to be used by users who want
to contribute to the construction of information
sources

2. a specially designed search tool set that redirects
user queries to suitable information sources built
by other Web users

3. a feedback and analytic system that collects user
feedbacks to adjust the ranking of information
sources

The following figure depicts the usage of the proposed
platform:

Fig.1: Overview of the platform.

In the following sub sections, these components will
be explained in detail.

3.1 Data Processing Tools

An information source stores a set of Web re-
sources that are considered to be related to each
other. The framework introduced in this paper will
be usable only if there are information sources. Data
processing tools are designed for building user-defined
information sources. Two types of data processing
tools are included in the platform: annotation tools
and aggregating tools. Annotation tools are used for
adding meta-information to existing Web resources.
Meta-information associates grammars or meaning to
Web resources. As a result, these Web resources can
be further processed by other components. On the
other hand, aggregating tools aggregate information
extracted from Web resources. These two types of
data processing tools will be explained in detail in sub
sections below. Annotation tools consist of schema
sub components, annotation sub components, and ag-
gregating tools. They will be described in detail in
the following sub sections:

3.1.1 Schema sub components
Extracting information from relational databases

is usually much easier than extracting information
from Web pages since the formers are structured in-
formation sources while the latters are not. There
are various information extraction technologies that
are designed for the Web. However, most of them
suffered from unstability and limited-adoption issues.
To ease the data processing task, the proposed plat-
form provides schema sub components that are used
for designing and maintaining schemas. Here, the
researcher would like to avoid complex schema struc-
tures such as XML schema and DTD files. Instead,
the researcher proposes an Object-Oriented Schema
Model (OOSM). An OOSM is defined as the follow-
ing:

(ROOT ELEMENT, (RULE)*)

That is, an OOSM consists of a root element and
a list of rules. A ROOT ELEMENT is represented
as a namespace URI and a local element name pair

4 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

and is used to group OOSM instances into categories.
Furthermore, a RULE is represented as the following:

(ELEMENT, CONSTRUCT1, CONSTRUCT
2, , CONSTRUCT n

That is, a RULE consists of a root ELEMENT and a
set of unordered schema CONSTRUCTs. Again, an
ELEMENT is represented by a namespace URI and
a local element name. A schema CONSTRUCT is
further defined as the following:

CONSTRUCT ::= ARRAY(ELEMENT) |
ELEMENT

That is, a schema CONSTRUCT is either an array of
instances of an ELEMENT or an ELEMENT alone.

Keeping simple is essential for OOSM to work.
Note that the order of child COSTRUCTs of an EL-
EMENT is not strictly enforced. They are just re-
garded to as properties of an object according to
the convention of the object-oriented paradigm. Fur-
thermore, there is no complex structure defined in
OOSM. Different from complex standard such as
XML schema, which defines quite a few structures:
sequence, choice, and all, etc., there are only two
types of CONSTRUCTs defined in OOSM: array of
ELEMENTs and a single ELEMENT. The reason of
sticking to simplicity is that most Web users are not
domain experts of the grammar-definition field, thus
complex grammar model may become an obstacle of
wide adoption.

Additionally, in OOSM, the content of an ELE-
MENT is not strictly typed. An ELEMENT simply
attaches some form of meaning to the content sur-
rounded by it. That is, it is simply a tag. Because of
the diversity of Web contents, the researcher would
like to claim that a strictly typed grammar model
can be difficult to adopt. On the other hand, an EL-
EMENT itself, that is, the namespace URI and local
name pair, already provides a good amount of infor-
mation for the content associated with it. There are
drawbacks, of course, since post-processing will be
needed to extract information from an ELEMENT.
However, an OOSM is just like a relation definition in
a relational database and performing post-processing
to extract information from a relation definition (for
example, issue a sql query and then post-process re-
sults returned from the sql query) is not uncommon.

3.1.2 Annotation sub components
Schemas must be associated with data to work.

Annotation sub components are designed for specify-
ing such associations. As shown above, in OOSM, an
ELEMENT annotates a portion of a Web page. For
Web users, the steps of annotating a Web page are
thus:

1. choose a ROOT ELEMENT from the schema cate-
gory; the ROOT ELEMENT thus identifies a spe-
cific schema and represents a specific concept

2. annotate the Web page with ELEMENTs defined
in the selected schema according to rules included
in the schema; it is not required to fully anno-
tate a Web page, that is, some ELEMENTs can
be skipped, and values of these ELEMENTs are
simply null

3. note that chained annotations can be achieved
if an ELEMENT defined in a schema is the
ROOT ELEMENT of another schema

Compared with existing tagging systems, it seems
as if the proposed annotating mechanism restricts
Web users freedom of choosing annotations for Web
resources. However, the design makes annotation in-
formation more usable. By adhering to rules specified
in the selected schema, annotated Web resources can
be further processed by software modules or domain
experts. Furthermore, despite of the additional con-
straints, the simplicity in the schema structure mini-
mizes the inconveniences.

The proposed annotation system should perform
well if only presentational or nominal information is
needed. However, the system may be insufficient for
extraction detailed information. For example, prob-
lems can occur if an application has to extract nu-
meric information for performing calculation since the
contents of ELEMENTs are not strongly typed. To
remedy this, further postprocessing can be needed.
Therefore, aggregating tools are also included in the
proposed platform.

3.1.3 Aggregating Tools
Aggregating tools support the following opera-

tions: data extraction/normalization, aggregation,
join, and projection. Data extraction operations con-
struct datacentric views for sets of Web resources.
Here, the researcher would like to distinguish be-
tween presentation-centric and data-centric view of
Web resources. Presentation technologies, such as
HTML and CSS constitute the presentation-centric
view. For ordinary Web users, this is the only view
in their daily Web usages. Presentation-centric view
is appealing to human beings but difficult to process
for software agents. On the other hand, data-centric
view is more valuable to software agents since it con-
sists of meaningful information extracted from Web
pages. In the proposed system, annotation informa-
tion contributed by Web users is utilized. Annotation
information along with the annotated data and the
associated OOSM forms the datacentric view of the
specified set of Web resources.

Data extraction cannot be done without data nor-
malization. Data on Web pages can be incomplete,
inconsistent, and noisy. For example, to demonstrate
the same piece of information, different Web pages
can use different formats or different units of mea-

Crowd Aided Web Search: Concept and Implementation 5

surement. Even with grammar information, such is-
sues can still exist. One solution is to define very
detailed grammar rules. With such rules, users can
specify very detailed information such as formats or
units and thus no ambiguity can happen. However,
such type of grammar model will be too complicated
to be used by ordinary Web users, not to mention
wide adoption. To keep the grammar model lean and
to prevent ambiguity, using data normalization mech-
anisms to fix issues within data on Web pages may
be preferred.

In the proposed project, in addition to the data
extraction layer, a data normalization layer is also in-
cluded in the aggregation tool. Web users specify nor-
malization rules by writing or reusing simple scripts.
Several types of script functions are pre-built includ-
ing: object graph traversing functions, tag cleaning
functions, type conversion functions, and primitive
data manipulation functions.

After data extraction, the original html page will
be converted to a JSON-like object graph. Hence,
object graph traversing functions are designed for ac-
cessing properties on the graph. A property may
store a DOM node. If only the text portion of DOM
node is needed, tag cleaning functions can be used
to remove all non-text nodes. Type conversion func-
tions convert texts to other primitive-typed data. Af-
ter that, the data can be processed by primitive data
manipulation functions.

Aggregation operations definitely play an impor-
tant role in data processing. These operations be-
come available only after data being extracted and
normalized, that is, they can only be applied to data-
centric views of Web resources. In the proposed
project, several aggregation operations such as min(),
max(), sum(), and avg(), etc. are defined. With these
aggregation functions, Web users can define a set of
related Web resources and get further information
from them.

Regarding to data-centric views of Web resources
as tables in relational models, the join operation
should also be available. With the join operation,
cross cut analysis among Web resources can be per-
formed. Such analysis is valuable if joined informa-
tion across Web resources associated with different
grammars is desired. For example, with the oper-
ation, information from news sites and travel agent
sites can be integrated together. The join operator
introduces new grammar models by merging partici-
pating models.

Here, the projection operation refers to the action
the selects a partial set of ELEMENTs defined in the
same schema from different Web resources. The op-
eration is required since in some information sources,
only part of information defined in the included Web
pages will be needed.

3.2 Search Tool

It is without doubt that how to integrate the pro-
posed platform with existing search engines can be
an issue. In this research, a set of prototyping search
tools are implemented. The tool set includes a search
engine core and a front-end tool. Instead of build-
ing a generic Web search engine on our own, we uti-
lize the functionalities provided by modern search en-
gines. The proposed system works in the following
way:

1. users define advanced information sources and
publish them to the Web; a published advanced
information source has to declare Web resources
that can be processed by it

2. search request redirected to integrated generic
Web search engine; the query will be executed and
a list of returned Web pages will be intercepted by
our tool

3. urls of returned Web pages will be used to deter-
mine the set of advanced information sources that
can be used; only applicable advanced information
sources should be contacted

4. use user-preference and accumulated scores given
by the crowd to determine the target set of ad-
vanced information sources

5. search engine users then have two sets of re-
turned results: one from the integrated generic
Web search engine and the other from the ad-
vanced information sources selected

6. users utilize the front-end tool to navigate within
the returned set of results and provide feedback to
the search engine core

The functionalities provided by the search engine
core and the front-end tool will be explained in the
following sub sections respectively.

The search engine core handles queries. Due to the
specialty of the proposed platform, the search engine
core has to touch two different sets of information
sources. One is the generic Web and the other is ad-
vanced information sources built by crowds. There-
fore, for a single query, the search engine core gener-
ates two sets of results: generic results and aggregated
results. The success of existing Web search engines in
processing generic Web pages makes it unreasonable
to re-invent the wheel. As a result, we focus on ag-
gregated results while leave generic results to generic
Web search engines, i.e., for the generic part, we sim-
ply use the application interfaces provided by generic
Web search engines. In addition to querying against
crowd-made information sources, the search engine
core should cache the results generated by them for
maximizing performance. Aggregated results are or-
dered according to the scores recorded in the feed-
back system. The order of generic results is basically
preserved except that Web pages referenced by ag-
gregated results will be prioritized and thus will have
higher ranks.

6 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

The front-end tool provides several important op-
erations. First, users use its user interface to issue
queries. Once query results are returned, besides nav-
igating among them, users can change query criterion
by modifying keywords or adjusting categories. Once
different keywords are issued, a new query session will
be started. On the other hand, adjusting categories
results in re-querying matched user-defined informa-
tion sources. Since the search engine core prioritizes
generic search results referenced by results from user-
defined information sources, adjusting categories re-
sults in reordering of generic results, too. One thing
to be noted is that this step will not result in issu-
ing queries to integrated generic Web search engine
again. Furthermore, the front-end tool is also used for
giving feedbacks. There are three types of feedbacks:
tagging, category selection, and giving scores. Feed-
backs will be used for ordering results returned from
querying advanced information sources and will indi-
rectly affects the order of results from the integrated
generic Web search engine. The feedback system will
be explained in detail in the next section.

4. SYSTEM DESIGN AND EXAMPLE

For proof of concept, a set of tools has been imple-
mented. They can be roughly divided into two cate-
gories: the data processing tools and the search tools.
The former contains a schema construction tool, the
OOSM Builder, and an annotation tool, the OOSM
Mapper. The latter is mainly a database. In this sec-
tion, these tools along with a working example will
be presented.

4.1 Design of Data Processing Tools

The figure below demonstrates our OOSM builder
application:

Fig.2: OOSM Builder Application.

OOSM Builder is used for designing schemas. As
shown above, the schema in design is organized as a
list of rules. In the demonstrated schema, the root
element, {test}test1, consists of two named rules:
{test}root and {test}a. Each rule is then presented
as a list of element/element lists. For example, rule
{test}a illustrated in figure 2 contains an element list

that is named as {test}lists1. Note that in OOSM,
a list is actually a repeatable, optional group of el-
ements. The result schema listed below is stored in
the JSON format:

{
“rootElement” : {
“name” : {
“namespaceURI” : “test”,
“localPart” : “root”,
“prefix” : “”

}
},
“rules” : [
{
“headingElement” : {
“name” : {
“namespaceURI” : “test”,
“localPart” : “root”,
“prefix” : “”

}
},
“constructs” : [
{
“name” : {
“namespaceURI” : “test”,
“localPart” : “a”,
“prefix” : “”

}
}
]

},
{
“headingElement” : {
“name” : {
“namespaceURI” : “test”,
“localPart” : “a”,
“prefix” : “”

}
},
“constructs” : [
{
“name” : {
“namespaceURI” : “test”,
“localPart” : “b”,
“prefix” : “”
}

},
{
“name” : {
“namespaceURI” : “test”,
“localPart” : “c”,
“prefix” : “”
}

},
{
“elements” : [
{
“name” : {

Crowd Aided Web Search: Concept and Implementation 7

“namespaceURI” : “test”,
“localPart” : “d”,
“prefix” : “”
}

},
{
“name” : {
“namespaceURI” : “test”,
“localPart” : “e”,
“prefix” : “”

}
}
],
“name” : {
“namespaceURI” : “test”,
“localPart” : “list1”,
“prefix” : “”

}
}
]

}
],
“name” : {
“namespaceURI” : “test”,
“localPart” : “test1”,
“prefix” : “”
},
“description” : “description”

}

OOSM Mapper is used for annotating a HTML
source against a selected schema. The figure below
shows the user interface of OOSM Mapper:

Fig.3: OOSM Mapper Application.

OOSMMapper is designed around the project-centric
concept. A project contains an OOSM file and a
HTML document. Users either specify the file path
or the URL of the HTML documents to be anno-
tated. If a URL is specified, OOSM Mapper will
automatically fetch the document from the specified
URL. Note that, a normalization process will be per-
formed against the retrieved document to avoid com-
mon HTML errors.

To annotate the target HTML document, one sim-
ply selects a schema node from the left panel and a
HTML node from the right panel, and then trigger
the binding dialog shown in figure 4. In the binding
dialog, there are three input fields: ID, Definition,
and Target. The ID field shows the id of the cur-
rent binding, which is managed by OOSM Mapper
automatically. The Definition field shows the schema
node used for annotating the selected HTML node.
The Target field shows the specification of the anno-
tated target node. By default, the Target field shows
the xpath of the selected HTML node. However, users
can enter any valid xpath expression here, including
xpath functions. The design will be useful when it is
inadequate to annotate a whole node. For example,
users may want to annotate a schema node to only a
sub string of the selected HTML node.

Fig.4: The Binding Dialog.

Finally, to view the extracted results, one simply
opens the show result dialog.

4.2 Design of Search Tool

A näıve approach to design a search tool will
be simply inserting the extracted data into a rela-
tional database. Then, plain SQL queries can be
used for searching. However, the dynamic nature of
the Web makes the design of schemas of relational
databases difficult. Additionally, the possibly huge
amount of extracted information can make relational
databases too slow to be usable. Furthermore, the
extracted result is wrapped into an instance of the
elaborate.tag analysis.oosm.instance.binding. Evalu-
atedObject class, which in fact contains a map of (key,
value) pairs. The EvaluatedObject can in turn gener-
ate results in either HTML or JSON format. Hence, a
more natural way is to put extracted information into
a NoSQL database and rely on the search capabilities
provided by the database. In this research, the Mon-
goDB database is chosen as the underlying database.
MongoDB accepts JSON-style documents and pro-
vides a rich set of query functionalities that can fit
our requirements. Last but not the least, the perfor-

8 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

mance of MongoDB is good and it supports replicas,
which is essential for dealing with a very large amount
of data.

4.3 Example

Here, a working example is used to fur-
ther clarify our concept. The example is
based on the smartphone ontology obtained from
http://www.productontology.org/. The originally
schema is in RDF format, which is more complex
than OOSM, so we simplified the schema by removing
the relation information in the schema and converted
it into OOSM format. Then, the Wikipedia page for
iphone is chosen as the target document. The schema
is shown below:

Fig.5: The (Modified) SmartPhone Schema.

As shown above, reviews and features are designed
as element lists since there can be more than one of
them. Then, we designed the bindings. Since the text
nodes of the Wikipedia page are usually long para-
graphs, we have to use the substring xpath function
to extract needed information from the page.

4.4 Search Example

For concept-proof, a sample search engine that
is shipped with the smartphone schema presented
above has been built. In the current stage, the
functionality of selecting the desired information
source is not implemented, so users have to select
their target information sources manually. The cur-
rent implementation supports both full-text queries
and attribute-oriented queries. The search engine
is hosted by our own Web server and the url is
“http://ilab1.twgogo.org:8080/OOSMWebSearchCli-
ent/s martphone/index.jsp. The figure below shows
the homepage:

When a full-text query like “iphone is received,
our search engine simply looks into the “description
element of the smartphone schema. On the other
hand, we rely on the underlying mongo database for
attribute queries. With schema information, users
can issue powerful queries such as:

Fig.6: The OOSM Smartphone Search Page.

{
“{oosmtest}weight” : {$lt : 130}
}

The above query can be used for looking for a
smart phone with weight less than 130 gram. The
result is shown below:

Fig.7: Result of the Sample Query.

Furthermore, clicking the “See Detail link will dis-
play the original JSON document of the selected en-
try. Compared with the google search engine, ben-
efiting from the schema information, the proposed
method not only provides richer query functional-
ities through attributeoriented queries but also re-
turns more precise information when the target do-
main is known in advance.

5. DISCUSSIONS

5.1 Integration with Existing Search Engines

Today, there are already several big companies
dominating the search engine market. Re-inventing
the wheel, that is, building our own search engines
is not practical. Instead, the goal of this research
is to complement existing search engines. The core
concept of this research is that advanced informa-
tion sources, information sources made by domain ex-
perts, are helpful for domain-specific search. The pro-
vided tools simplify the construction of advanced in-
formation sources. When the target domain is known
clearly, users simply point to the desired information
sources managed by our system for querying. The
next goal is to build a recommendation system for
appropriate information sources. When users submit

Crowd Aided Web Search: Concept and Implementation 9

queries, the recommendation system extracts labels
from result lists returned by search engines and use
labels for suggesting suitable information sources.

5.2 Feedback and Analytic System

Feedbacks from users are used for determining the
ordering of search results. The current implementa-
tion provides three types of feedbacks to interact with
end users: tagging, category-re-selection, and scor-
ing. Tagging reflects what users think an aggregate
or generic result is about. By collecting tags provided
by users and performing analysis, possible categoriza-
tions of Web resources can be inferred. Tagging has
two different types of effects: direct and indirect. For
ordinary users, assigning tags to plain Web pages is
the natural behavior. The direct effect of tag assign-
ing is to determine which categories a Web page be-
longs to. However, since assigning new tags to a Web
page may change the current categorization results,
tag assigning also has indirect effect on information
sources containing the Web page.

A problem of the auto-categorizing system men-
tioned above is that it is very difficult if not impossi-
ble to make the result accurate. As a result, allowing
evolving of categorizes becomes an important factor
of success of categorization systems. The indirect ef-
fect mentioned above forms the category-re-selection
process and can be viewed as a complementary mech-
anism. Once a user decides to switch to a different
category, the action reveals that the user does not
agree with the keyword-category association recorded
in the system. Hence, the information should be
used to adjust the automatically generated catego-
rizations. This complementary system will be benefi-
cial to the categorization accuracy, but the adoption
of the information should be conservative since be-
haviors of Web users can be very diverse.

Additionally, a straightforward scoring system is also
implemented. The scoring system is only applied to
userdefined advanced information sources since we
have no intention to mess up with generic Web search
mechanisms. However, as stated in former sections,
the ordering of aggregated results will affect the or-
dering of generic results, only that such ordering is
just presentational and the internal ordering recorded
by the integrated Web search engine will be kept un-
touched.

5.3 DOM Modification Problem

We can roughly categorize annotation systems into
two types: internal annotation system and external
annotation system. The former requires annotations
to be directly embedded into Web pages. Such an-
notation systems are more stable since whenever a
Web page is modified, annotations associated with
it can also be adjusted to fit the modification. How-
ever, internal annotation system can be inconvenient.

The major problem is it affects the way ordinary Web
users authoring Web pages. On the other hand, the
latter approach is usually more adoptable. With ex-
ternal annotation systems, Web pages themselves are
kept untouched. Besides, another benefit of exter-
nal annotation systems is they allow multiple sets of
annotations to be attached to the same Web page.

However, such annotation systems typically suffer
from the DOM modification problem. That is, once
the structure of a Web page is changed, the applied
annotations can become invalid since usually a DOM
path is used for associating an annotation to a piece of
the Web page. Web pages are modified frequently es-
pecially for those dynamically generated pages. The
situation makes it really difficult to develop and main-
tain external annotation systems.

In the proposed mechanism, a special schema sys-
tem named as OOSM is adopted. By creating map-
pings between an OOSM and a Web page, the an-
notation process is accomplished. The mapping pro-
cess does not require positioning annotations accu-
rately. The nature of OOSM makes it easier to deal
with DOM modification since it allows annotating
a sub tree in a DOM. The design can cause prob-
lems since it produces weaklytyped results. Hence,
to make OOSM effective, data processing tools men-
tioned above is required. Compared with the DOM
modification problem, the researchers would like to
claim that OOSM is still valuable since the weakly-
types issue can be remedied with scripting function-
alities.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a Web search mechanism elaborat-
ing crowd wisdom is proposed. Our approach pro-
vides a way for users to define advanced informa-
tion sources, which are just like views of relational
databases. Based on advanced information sources,
some more feature-rich search operations are also pro-
vided. The researcher claims that the proposed mech-
anism is more efficient and powerful than ordinary
keyword-based search. The current implementations
are mostly desktop-based GUI applications. In the
future, it is planned to port the current implemen-
tations to be Web-based for easier integration and
adoption.

ACKNOWLEDGEMENT

First, I have to acknowledge NSCs support for the
completion of this research. Furthermore, the paper
was prepared in collaboration with my lab members
in Department of Information Management, Nanhua
University, Taiwan. I would like to acknowledge the
following persons who have made the completion of
this research possible: Chu-Chun Chuang, Jia-Hua
Wu, Han-Ci Syu, and Yan-Ru Jiang.

10 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

References

[1] J. Franklin, D. Kossmann, T. Kraska, S. Ramesh
and R. Xin, “CrowdDB: answering queries with
crowdsourcing,” In Proceedings of the 2011 ACM
SIGMOD International Conference on Manage-
ment of data,pp. 61-72, 2011.

[2] A. Bozzon, M. Brambilla and S. Ceri, “Answer-
ing search queries with CrowdSearcher,” In Pro-
ceedings of the 21st international conference on
World Wide Web, pp. 1009-1018, 2012.

[3] A. Parameswaran, H. Garcia-Molina, H. Park,
N. Polyzotis, A. Ramesh and J. Widom, “Crowd-
Screen: algorithms for filtering data with hu-
mans,” In Proceedings of the 2012 ACM SIG-
MOD International Conference on Management
of Data, pp. 361-372, 2012.

[4] A. Bozzon, M. Brambilla, S. Ceri and P. Frater-
nali, “Liquid query: multi-domain exploratory
search on the web,” Proceedings of the 19th in-
ternational conference on World wide web, pp.
161-170, 2010.

[5] P. Heymann, G. Koutrika and H. Garcia, “Can
social bookmarking improve web search?,” In
Proceedings of the 2008 International Conference
on Web Search and Data Mining, pp. 195-206,
2008.

[6] A. Parameswaran, A. Sarma, H. Garcia-Molina,
N. Polyzotis, and J. Widom, “Human-assisted
graph search: it’s okay to ask questions,” The
Proceedings of the VLDB Endowment,vol.4, pp.
267-278, 2011.

[7] Amazon, https://www.mturk.com/mturk/
welcome

[8] D. Konopnicki and O. Shmueli, “Database-
inspired search,” In Proceedings of the 31st in-
ternational conference on Very large data bases,
pp. 2-12, 2005.

[9] Yahoo, Yahoo! Query Language,
http://developer.yahoo.com/yql/

[10] R. Trillo, L. Po, S. Ilarri, S. Bergamaschi and
E. Mena, “Using semantic techniques to access
web data,” Information Systems 36, pp. 117-133,
2011.

[11] S. Chun and J. Warner, “Semantic Annotation
and Search for Deep Web Services,” In Proceed-
ings of the 2008 10th IEEE Conference on E-
Commerce Technology and the Fifth IEEE Con-
ference on Enterprise Computing, E-Commerce
and EServices, pp. 389-395, 2008.

[12] N. Sarkas, S. Paparizos and P. Tsaparas, “Struc-
tured annotations of web queries,” In Proceed-
ings of the 2010 ACM SIGMOD International
Conference on Management of data, pp. 771-782,
2010.

[13] S. Paparizos, A. Ntoulas, J. Shafer and R.
Agrawal, “Answering web queries using struc-
tured data sources,” In Proceedings of the 2009

ACM SIGMOD International Conference on
Management of data, pp. 1127-1130, 2009.

Chun-Hsiung Tseng received his B.S.
in computer science from National Na-
tional ChengChi University, and re-
ceived both M.S. and Ph.D. in computer
science from National Taiwan Univer-
sity. He was a research assistant of Insti-
tute of Information Science, Academia
Sinica in 2003-2010. He was a fac-
ulty member of Department of Com-
puter Information and Network Engi-
neering, Lunghwa University of Science

and Technology in 2010-2013. His current position is a faculty
member of Department of Information Management, Nanhua
University. His research interests include big data analysis,
crowd intelligence, e-learning systems, and Web information
extraction.

