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Abstract

Crowd counting has recently attracted increasing inter-

est in computer vision but remains a challenging problem.

In this paper, we propose a trellis encoder-decoder network

(TEDnet) for crowd counting, which focuses on generating

high-quality density estimation maps. The major contribu-

tions are four-fold. First, we develop a new trellis architec-

ture that incorporates multiple decoding paths to hierarchi-

cally aggregate features at different encoding stages, which

improves the representative capability of convolutional fea-

tures for large variations in objects. Second, we employ

dense skip connections interleaved across paths to facili-

tate sufficient multi-scale feature fusions, which also helps

TEDnet to absorb the supervision information. Third, we

propose a new combinatorial loss to enforce similarities in

local coherence and spatial correlation between maps. By

distributedly imposing this combinatorial loss on intermedi-

ate outputs, TEDnet can improve the back-propagation pro-

cess and alleviate the gradient vanishing problem. Finally,

on four widely-used benchmarks, our TEDnet achieves the

best overall performance in terms of both density map qual-

ity and counting accuracy, with an improvement up to 14%
in MAE metric. These results validate the effectiveness of

TEDnet for crowd counting.

1. Introduction

With the rapid pace of urbanization, crowds tend to

gather more frequently, increasing requirements for effec-

tive safety monitoring, disaster relief, urban planning, and

∗These authors contribute equally.
†This author is the corresponding author.
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Figure 1. An illustration of the Trellis Encoder-Decoder network

(TEDnet) with distributed combinatorial losses. The horizontal

and vertical axes indicate the spatial-semantic-spatial feature hi-

erarchy established within TEDnet. We instantiate this hierarchy

into a feature grid, whose rows and columns are indexed on the

margin. The spatial and channel dimensions of each feature map

is denoted by its side.

crowd management. As a fundamental technique to sup-

port these applications, crowd counting has been investi-

gated and has resulted in advanced solutions. Most crowd

counting methods are based on detection [18, 9, 45], re-

gression [28, 4, 10], and density estimation [17, 53, 2, 11].

6133



Est Count:1074Gt Count:1068

Gt Count:271 Est Count:269

Figure 2. An illustration of estimated density maps and crowd counts generated by the proposed approach and other state-of-the-arts. The

first column shows two samples drawn from ShanghaiTech Part A. The second column shows corresponding ground truth maps with fixed

Gaussian kernels. From the third to the last column we show the density maps estimated by MCNN [53], SANet [2], and the proposed

TEDNet, respectively. TEDnet generates density maps closer to the ground truth, and more accurate crowd counts.

Density estimation based methods, in particular, have re-

ceived increasing research focus. These techniques have the

ability to localize the crowd by generating a density estima-

tion map using pixel-wise regression. The crowd count is

then calculated as the integral of the density map. To gen-

erate maps with a retained spatial size as the inputs, deep

encoder-decoder convolutional neural network (CNN) ar-

chitectures are widely applied [6, 42, 54, 33, 8, 20, 25, 12].

In particular, encoder-decoder methods also play an impor-

tant role in localization-oriented tasks to facilitate accurate

pixel-wise regression [19, 31, 43, 30, 24], given that the

convolution itself is essentially a pixel-wise feature local-

ization using traversal template matching. Thus motivated,

we propose the trellis encoder-decoder network (TEDnet)

for density estimation to address the crowd counting prob-

lem. Our approach improves both the encoding and decod-

ing processes for more accurate pixel-wise estimations.

Feature encoding facilitates accurate pixel-wise estima-

tions by extracting features, while preserving the pixel-wise

localization precision in the feature maps. In scenes with

severe occlusions and scale variations, CNN features are

widely employed to enhance the feature encoding perfor-

mance [53, 1, 27, 40, 2, 22]. It is worth noting that most cur-

rent counting methods adopt CNNs that were originally de-

signed for classification tasks, such as VGG-16 [40, 38, 22],

Inception [2], and DenseNet [11]. Despite their previous

success, these networks build deep hierarchies to transform

low-level spatial information into high-level semantic infor-

mation. Consequentially, the resolution of feature maps is

gradually degraded due to down-sampling operations, and

thus, the localization precision is lowered. It is desirable

to maintain a favorable balance between spatial resolution

preservation and semantic feature extraction.

Feature decoding generates density maps by aggregat-

ing encoded feature maps. The pixel-wise accuracy per-

formance for an estimated map is guaranteed by sufficien-

t fusions of multi-scale decoding features that incorporate

low-level spatial precision and high-level semantic depth.

In hourglass encoder-decoder networks with a single de-

coding path [33, 54, 6, 42], features must endure excessive

down-sampling and up-sampling operations, which degrade

the pixel-wise precision. In addition, rich low-level spa-

tial and high-level semantic information residing in multi-

scale feature maps at the two ends of the hourglass are sep-

arated by the gap between the encoder and decoder. Al-

though attempts have been made to enhance the hourglass

networks with skip connections [20, 25, 8, 50], they are not

designed to generate high-quality density estimation maps

due to the lack of hierarchical fusions between multi-scale

features. From a more fundamental perspective, the widely

adopted mean square error (MSE) loss in crowd counting

assumes pixel-wise independence, while neglecting the lo-

cal coherence and spatial correlation in density maps. It is

therefore inadequate for facilitating the generation of high-

quality density maps.

To address these issues in existing encoder-decoder net-

works and improve the counting performance with an en-

hanced architecture, we propose the trellis encoder-decoder

network (TEDnet) to generate high-quality density maps.

TEDnet achieves sufficient aggregation and fusion of multi-

scale features within an established trellis-like feature hier-

archy. In the encoding process, multi-scale convolutional

kernels are used to obtain scale adaptation, where down-

sampling strides are cut to four to preserve pixel-wise spa-

tial precision. In the decoding process, multiple paths are

deployed at corresponding encoding stages, each of which

aggregates the encoded multi-scale features. Across paths,

features containing diverse spatial and semantic information

are integrated using dense skip connections, which guaran-

tees thorough multi-scale feature fusions. Our multi-path

trellis network is similar in spirit to an ensemble of multiple

hourglass networks with different feature scales, establish-

ing a feature learning hierarchy resides in a trellis structure,

as highlighted in Figure 1. Each path in TEDnet gener-

ates an intermediate output map that intrinsically enables

the deployment of distributed supervision within each path.
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This alleviates the gradient vanishing problem and boosts

the gradient flow through the network. Each distributed loss

in TEDnet is a combinatorial loss defined based on the pro-

posed spatial abstraction loss (SAL) and the spatial correla-

tion loss (SCL). SAL and SCL relieve the pixel-wise inde-

pendence assumption posed by the MSE loss, and improve

the density map quality, as well as counting performance,

by enforcing similarities in local coherence and spatial cor-

relation between maps.

TEDnet takes full images, rather than image patches, as

the input and outputs full-resolution density maps. This fur-

ther ensures the density map quality (qualitatively demon-

strated in Figure 2) by avoiding the tedious patch-wise oper-

ation, which induces boundary artifacts. The main contribu-

tions of the proposed approach are summarized as follows:

• We propose a new deep learning architecture for ac-

curate density estimation and crowd counting, called

trellis encoder-decoder network (TEDnet), which as-

sembles multiple encoding-decoding paths hierarchi-

cally to generate high-quality density map for accurate

crowd counting.

• We establish a multi-path decoder that pervasively ag-

gregates the spatially-endowed features within a de-

coding feature hierarchy and progressively fuses multi-

scale features with dense skip connections interleaved

in the hierarchy.

• We introduce a combinatorial loss comprising of the

newly designed SAL and SCL to supervise local coher-

ence and spatial correlation in density maps. Distribut-

ed supervision, in conjunction with the combinatorial

loss, is deployed on intermediate multi-path outputs to

improve the optimization of the network.

• We achieve the best overall performance on four

commonly-used benchmark datasets, largely surpass-

ing the state-of-the-art methods by up to 14% for the

MAE metric. We obtain the best quality of estimated

density maps, in terms of both PSNR and SSIM mea-

sures.

2. Related Work

In this section, we provide a brief review of the most

related work and refer to comprehensive surveys for crowd

counting [35, 36, 41, 13].

2.1. Detection and Regression based Methods

Detection-based counting methods deploy a detector to

traverse the image, which localizes and counts the tar-

gets along the way [5, 9, 18, 45]. These methods are

surpassed by the regression-based alternatives, as the de-

tection performance is affected in the presence of over-

crowded scenes. The successes of regression-based meth-

ods [3, 34, 10, 51, 15] can thus be attributed to their abili-

ty of circumventing explicit detection and directly mapping

the input images to scalar values. Nevertheless, regression-

based methods forfeit localization capability such that they

cannot perceive crowd distributions. To recover the lost

localization capability, crowd counting methods based on

density estimation are therefore developed by conducting

pixel-wise regressions.

2.2. Density Estimation based Methods

Initially introduced in [17], density estimation based

methods avoid explicitly detecting each individual and re-

tain the ability to localize the crowd. Earlier approaches

strove to compute density maps with hand-crafted features

[17, 7] and random forest regressions [7, 29, 49]. More

recent methods appeal to CNN based feature extraction to

supply scale and perspective invariant features. In partic-

ular, MCNN [53], Crowdnet [1], Hydra CNN [27], CNN-

boost [44], CP-CNN[40], and Switching CNN [37] all con-

form to an ensemble design approach to enable multi-scale

adaptation, where multiple CNN branches with different re-

ceptive fields are jointly maintained. The extra computa-

tional expense introduced by these methods is to some de-

gree wasted on inefficient and un-flexible branching [19].

As a remedy, single-branch counting networks with scale

adaptations were proposed in [2, 11, 47]. Notably, most

of these methods follow a patch-based counting mechanism

[52, 44, 27, 1, 37, 21, 11, 2], where the full density map is

obtained by concatenating discrete density patches. More

importantly, methods such as MCNN, Hydra CNN, and

CNN-boost output density maps with reduced resolution

due to excessive down-sampling strides. This inevitably

sacrifices pixel-wise details and damages the density map

quality. Comparatively, CP-CNN [40] focuses on generat-

ing high-quality full-resolution maps with the help of global

and local semantic information. In [2], researchers comput-

ed high-quality full-resolution maps with a new encoder-

decoder network, as well as a SSIM local pattern consistent

loss. In order to limit the down-sampling stride in the en-

coding process, CSRNet [19] adopts dilated convolutional

layers to substitute pooling layers.

Unlike other approaches, the proposed trellis encoder-

decoder architecture attempts to generate high-quality den-

sity estimation maps by preserving the spatial information

in the encoding feature hierarchy. More importantly, it in-

corporates a multi-path decoder to enhance the aggrega-

tion and fusion of multi-scale features with rich spatial and

semantic information. As a result, pixel-wise regression

accuracy in the estimated map is enhanced. In a broad-

er view, density estimation is similar to other localization-

oriented tasks, such as tracking [32, 30, 23] and detec-

tion [24], which also generate localization estimation map-

s as outputs. These tasks are inter-correlated with den-

sity estimations such that the resulting localization maps
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can be fused to integrate task-specific localization response

[13, 11]. Moreover, semantic segmentation also relies on

powerful encoder-decoder architecture to integrate multi-

scale features and to improve localization precision. Con-

sequently, efforts have been made to enhance the hourglass

architecture. In [8], SDN stacks multiple single-path hour-

glass networks into a deeper sequence to improve the fea-

ture fusion and guarantee fine recovery of localization in-

formation. In [20, 25], the single-path hourglass network

is extended by adding residual units inside the skip connec-

tions.

3. Trellis Encoder-Decoder Networks

As shown in Figure 1, the goal of TEDnet is to achieve

improved counting performance by generating density map-

s with high pixel-wise density estimations. In the encoder,

the localization property of a density estimation conforms

to the nature of a convolutional layer operation. Here, the

convolutional kernels are the feature templates that are lo-

calized in the feature maps via template-matching. In the

decoder, encoded feature maps are aggregated to represent

the locality of crowded objects. Our TEDnet can establish

a feature hierarchy within the trellis architecture, where re-

liable multi-scale features are encoded with well-preserved

spatial information. These are then decoded into accurate

density maps, with a great capacity for precise localization.

In what follows, we explain in detail the multi-scale en-

coder, the multi-path decoder, and the distributed supervi-

sion with combinatorial loss in TEDnet.

3.1. Multi­Scale Encoder

We design the multi-scale encoder to extract reliable fea-

tures relevant to crowded human objects, while being able

to localize these features with pixel-wise precision. The

multi-scale encoding block is capable of overcoming occlu-

sions and scale variations present in crowd counting scenes,

as elaborated below.

As shown in Figure 3, a multi-scale encoding block is

implemented with kernels of different sizes, which enables

the encoder to extract multi-scale features. As indicated in

Figure 1, a total of nine encoding blocks are implement-

ed and grouped into five encoding stages. To preserve fea-

ture localization precision, we limit the application of pool-

ing operations. Consequently, only two 2 × 2 max pooling

layers are inserted at the first two encoding stages, each of

which has a down-sampling stride of 2. To further enlarge

the receptive fields, dilated convolutional kernels with dila-

tion rates of 2 and 4 are employed in the last two encoding

blocks [19].

3.2. Multi­Path Decoder

We design a new multi-path decoder to hierarchically ag-

gregate the spatially-preserved features and restore the spa-

tial resolution in the density map. As the component that
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Figure 3. An illustration of the multi-scale encoding block. Circled

C in the figure represents channel-wise concatenation.

directly generates the density maps, the decoder has a vi-

tal influence on the density map quality. Unfortunately, less

emphasis had been placed on the decoder in the literature

for crowd counting and density estimation. In CSRNet [19],

the density maps are simply generated by applying bilinear

interpolation to up-sample the encoded feature maps.

In Crowdnet [1], a 1 × 1 convolutional layer is imple-

mented as the decoder. SANet [2] advocates the idea of

refinement in a single-path hourglass decoder. To the best

of our knowledge, it is by far the most sophisticated design

in the context of density estimation. Alternatively, efforts

have been made in other tasks using the hourglass architec-

ture, such as image segmentation [33, 54, 8, 20] and super-

resolution [6, 42]. Nevertheless, as explained in Section 1,

these architectures are not optimal for density estimation.

They suffer from prolonged single-path feature transforma-

tion hierarchy with heavy parameterization, as well as in-

sufficient feature aggregations and fusions.

To remedy the defects of the existing decoder, we pro-

pose a multi-path decoder in TEDnet, which assembles a

set of single-path hourglass architectures with multi-scale

features. As depicted in Figure 1, three decoding paths are

exploited on the feature maps, computed from the last three

encoding stages. Within each path, a decoding feature hi-

erarchy is established to aggregate feature representations

at the same semantic level, in a progressive way. Among

different paths, feature maps from different levels are fused

with dense skip connections. Both aggregation and fusion

for features are implemented in densely interleaved decod-

ing blocks. The decoder implementation is realized by s-

tacking decoding blocks into the trellis structure, such that a

feature hierarchy is established. As shown in Figure 1, such

a feature hierarchy is pinpointed into the trellis architecture

with a grid representation, where each column indicates one

decoding path and each row presents the depth within each

path.

Decoding Block. As shown in Figure 4(a), each decoding

block takes two inputs. The right input feature is passed

from the same decoding path and it possesses deeper se-

mantic information whose channels doubles those of the

left input feature. It is aggregated via a deconvolutional

layer F 2

i,j with 3 × 3 kernels, which halves the channels.
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Figure 4. An illustration of the decoding block (a) and the up-

sampling block (b). Circled C in the figure represents channel-

wise concatenation.

The left input feature is aggregated by a convolutional lay-

er F 1

i,j deploying 1 × 1 kernels, with its depth unchanged.

These two aggregated features are fused through channel-

wise concatenation, followed by a convolutional layer F 3

i,j

with 1× 1 filters.

In (1), Zi,j denotes the decoded feature at the i-th row

and j-th column within the feature grid, computed by the

decoding block Di,j , as follows:

Zi,j = Di,j(Zi−1,j−1, Zi−1,j)

= F 3

i,j([F
1

i,j(Zi−1,j−1), F
2

i,j(Zi−1,j)]),
(1)

where F (·) indicates a convolutional operations, and [·] de-

notes a channel-wise concatenation.

Within the established feature hierarchy as shown in Fig-

ure 1, the decoded features enable the aggregation and fu-

sion of multi-scale features. As a result, the decoded feature

map Z4,4, at the end of the rightmost decoding path, con-

tains the richest spatial and semantic information. Thus,

the final output density map Z is generated from these fea-

ture maps by restoring the spatial dimension through the

up-sampling block.

Up-sampling Block. As illustrated in Figure 4(b), the

design of the up-sampling block is inspired by a super-

resolution technique [26], where the nearest neighbor in-

terpolation is followed by a 3×3 convolutional layer with a

stride of 1. The overall down-sampling stride of TEDnet is

4. We restore the spatial size of the density map by repeat-

ing the up-sampling operations twice in the up-sampling

block.

Overall, a spatial-semantic-spatial feature hierarchy is

fully exploited in TEDnet. In Figure 1, the proposed ar-

chitecture is established to host the feature hierarchy. As

indicated by the horizontal axis, the feature maps on the

right in the hierarchy have more semantic information than

the ones on the left. Those on the left, however, contain

richer spatial details. Vertically, spatial information is grad-

ually recovered through skip connections, which transmit

low-level spatial features from left to right, top to bottom.

It is worth noting that, for a simple single-path hourglass
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Figure 5. An illustration of the combinatorial loss L. Z indi-

cates one of the distributed outputs, while Y is the corresponding

ground truth map, resized to be the same as Z.

encoder-decoder, spatial information cannot be recovered

in the decoder as indicated vertically in Figure 1. Although

sparsely linked skip connections can alleviate inadequate

feature fusion to a certain extent in single-path hourglass

encoder-decoders, the pervasive feature fusions as realized

in TEDnet can still not be reached.

3.3. Distributed Supervision

The multi-path architecture of TEDNet produces inter-

mediate output estimation maps, i.e., Z2,D, Z3,D, Z4,D,

Z, at the ends of decoding paths as illustrated in Figure 1.

This design naturally enables distributed supervision, such

that multiple losses can be applied at each intermediate out-

put. Previous attempts have been made to provide multi-

supervision, where losses are computed between interme-

diate feature maps and the ground truths [48, 16, 8]. In

contrast, the proposed distributed supervision implemented

in TEDnet computes multiple losses between intermediate

density estimation maps and ground truth maps. From the

ensemble point of view, each distributed loss is calculated

to supervise the corresponding path representing a single-

path hourglass network. In particular, to compute the losses

at Z2,D, Z3,D, Z4,D, each of them is aggregated from its

previous feature map using a convolutional layer with 1× 1
filter size. The ground truth density map is down-sampled

to 128 × 128 with average pooling operations. Each of

these intermediate outputs is separately decoded on differ-

ent feature levels along its own path. Meanwhile, informa-

tion from different paths are integrated through dense skip

connections. As a result, the supervision at each output is

meaningful and can help better optimize the network.

Due to the distributed supervision, in conjunction with

the dense skip connections, the gradient vanishing phe-

nomenon, which indicates weaker gradients at the earlier

stage of the network, is substantially alleviated. Consider

the convolutional block 1 for instance. During the back-

propagation process, the gradients flow is a summation of

propagated flows, starting at each distributed supervision,

such that the gradient is boosted. Moreover, for each flow o-

riginating at its corresponding supervision, instead of flow-

ing backward along just one decoding path, the interleaved

dense skip connections provide more diffused flow paths at
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Figure 6. From left to right, we display the density maps generated by TEDnet on ShanghaiTech Part A, ShanghaiTech Part B, UCF-QNRF,

UCF CC 50, and WorldExpo’10 datasets. The second row shows ground truth density map, the third row depicts our estimated maps.

each fork junctions, thus further boosting the gradient flow.

3.4. Combinatorial Loss
As shown in Figure 5, the loss function distributed at

each decoding output is a combination of two losses. In

general, the pixel-wise mean square error (MSE) loss has

dominated the training of density estimation based crowd

counting approaches [53, 1, 11]. As advocated in [2, 19],

the MSE loss assumes pixel-wise isolation and indepen-

dence. As a result, it is incapable of enforcing spatial cor-

relation and coherence among pixels in the estimated maps,

which, however, plays an important role in influencing the

quality of the density map. To compensate the limited MSE

loss, we define a spatial abstraction loss (SAL) and a spatial

correlation loss (SCL), resulting in a combinatorial loss.
Spatial Abstraction Loss. SAL progressively computes

the MSE losses on multiple abstraction levels between the

predicted map and the ground truth. These spatial abstrac-

tions are instantiated by cascading max pooling layers with

down-sampling strides, leading to a gradually enlarged re-

ceptive field on each level. At each level, the pixel value in

an abstracted map is non-linearly sampled from a receptive

field at the corresponding location in the preceding abstrac-

tion level. By computing MSE on each abstraction level,

SAL can supplement the pixel-wise MSE loss with patch-

wise supervision. In our experiments, after a normal MSE

loss, we implement three levels of abstraction (K = 3 in

the following equation) with 2×2 max pooling layers, each

with a stride of 2. The computation of SAL is formalized

as:

LSA =

K
∑

k=1

1

Nk

‖ϕk(Z)− ϕk(Y )‖
2

2
, (2)

where ϕk(·) denotes the abstraction computation on the k-

th abstraction level. Nk is the number of pixels within a

map on the k-th abstraction level.
Spatial Correlation Loss. Beyond the patch-wise super-

vision enforced by SAL, SCL further complements the

pixel-wise MSE loss with map-wise computation. SCL

represents the difference between two density maps based

on normalized cross correlation (NCC) similarity. This is

less sensitive to linear changes in the density map intensity.

In addition, SCL is easier to compute and experimentally

friendly compared to the MSE loss. The computation of

SCL defined on two maps is:

LSC = 1−

P
∑

p

Q
∑

q

(Zpq · Ypq)

√

P
∑

p

Q
∑

q

Zpq
2 ·

P
∑

p

Q
∑

q

Ypq
2

, (3)

where Ypq and Zpq represent the pixels in the ground truth

density map and the predicted density map, respectively. p

and q are the row and column indexes in the map, and P×Q

denotes the total number of pixels. The final combinatorial

loss L is formulated as a weighted sum of SAL and SCL as:

L = LSA + λLSC , (4)

where λ is a factor to balance the contributions of SAL and

SCL. The selection of λ is explained in Section 4.2.

4. Experiments and Results

4.1. Implementation details
Following [47], we generate our ground truth maps by

fixed size Gaussian kernels and augment the training data

with an online sampling strategy (more details can be found

in [47]). We train our TEDnet in an end-to-end manner from

scratch, and optimize the network parameters based on the

Adam optimizer [14]. We use batch size of 8, Xavier initial-

ization, and an initial learning rate of 1e − 3. The learning

rate is step-wise and decreased by a factor of 0.8 every 10K

iterations. In regard to the efficiency performance of TED-

net, it takes 2500 epochs for training to convergence, and

0.027s for testing each image on ShanghaiTech Part A.

Image-wise Operation. To generate high-quality full-

resolution density maps, TEDnet takes full-size images as
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λ
Figure 7. Illustration of convergence performance for different net-

work structures and supervision losses.

inputs and outputs the same size density maps. Our ap-

proach differs from methods that adopt patch-wise opera-

tions [52, 44, 27, 1, 37, 21, 11, 2]. Notably, patch-wise op-

erations induce boundary artifacts that negatively affect the

localization precision. Moreover, the patch-wise counting

accuracy suffers from statistical shifts across patches [2].

Counting Accuracy. To evaluate the counting accuracy,

we adopt the mean average error (MAE) and the mean

squared error (MSE) metrics, which are defined as:

MAE =
1

M

M
∑

i=1

|Ci − C
gt
i |, MSE =

√

√

√

√

1

M

M
∑

i=1

|Ci − C
gt
i |2 (5)

where M is the number of images in the test set, and C
gt
i

and Ci represent the ground truth and the predicted count

of the i-th image, computed as the integral of the density

maps.

Density Map Quality. To evaluate the quality of the es-

timated density maps, we also calculate the PSNR (Peak

Signal-to-Noise Ratio) and SSIM (Structural Similarity in

Image) indices, as described in [40]. In particular, the SSIM

index is normally adopted in image quality assessment [46],

and it computes the similarity between two images from the

mean, variance and covariance statistics.

4.2. Ablation Study

The ablation study results are shown in Table 1. The

table is partitioned row-wise into three groups, with five

configurations. Each group contains the indexed configu-

rations corresponding to one main contribution of TEDnet.

These include the trellis network with multi-path decoding,

the distributed supervision, and the combinatorial loss with

SAL and SCL. In different columns, we report the count-

ing accuracy of each configuration, using the MAE met-

ric. We also illustrate the quality of the density map using

the PSNR metrics. In Figure 7, the left picture illustrates

the convergence performance of configurations 1, 2, and 3,

demonstrating the benefits for convergence introduced by

the dense skip connections and the distributed supervision.

The right picture in Figure 7 shows that when λ = 1, i.e.

the SAL and SCL are equally weighted in the combinatori-

al loss, the best counting accuracy is reported.

The first group of configurations shown in Table 1 com-

pare the performance of the multi-path trellis decoder and

single-path hourglass decoder. Two configurations in this

Table 1. Ablation study results on ShanghaiTech Part A dataset.

Best performance is bolded. Arrows in all tables indicate the fa-

vorable directions of the metric values.

Configurations MAE↓ PSNR↑

Network

Structure

1
Trellis Encoder +

73.1 22.51
Single path Decoder

2
Trellis Encoder + Multi-

71.2 24.24
path Trellis Decoder

Supervision

Methodology

2
Single

71.2 24.24
Supervision

3
Distributed

69.2 24.71
Supervision

Loss Function

3 Normal MSE 69.2 24.71

4 SAL 67.8 24.94

5 SAL + SCL 64.2 25.88

group adopt the same trellis encoder, and single supervi-

sion is applied on density map Z with the normal MSE

loss. The results in this group show that the multi-path de-

coder improves the counting accuracy by 2.6% in terms of

MAE metric, and enhance the density map quality by 7.1%

in PSNR metric. Furthermore, the yellow curve in Figure

7 demonstrates faster convergence thanks to the dense skip

connections implemented in the multi-path decoder. The

second group of configurations are all set up with TED-

net, using the normal MSE loss. The results show that

distributed supervision improves the MAE by 2.8% and P-

SNR by 1.9%, and the green curve shows further improved

convergence speed and performance. In the last group, we

compare the performance of distributedly deploying differ-

ent losses. The combinatorial loss with both SAL and S-

CL (λ = 1) stands out, with 7.2% improvements in MAE

and 4.5% in PSNR, which confirms that higher density map

quality can improve the counting accuracy. Overall, the best

result is reported by configuration 5, which incorporates all

three contributions.

4.3. Performance and Comparison

We compare the performance of our TEDnet with eight

state-of-the-art approaches, on four challenging dataset-

s, including the ShanghaiTech [53], the UCF CC 50 [10],

WorldExpo’10 [52] and the UCF-QNRF [11]. We explain

the superior performance of TEDnet in terms of both count-

ing accuracy (MAE and MSE as shown in Table 2 and

3) and density map quality measures (SSIM and PSNR as

shown in Table 4).

4.3.1 Counting Accuracy

ShanghaiTech. The ShanghaiTech dataset is one of the

largest datasets which includes Part A and Part B subsets.

As shown in Table 2, on Part A, our method achieves the

lowest MAE and a competitive MSE. In terms of MAE, we

lead the second best by 4.2%. On Part B, we report the best

performance in terms of both two metrics, where MSE is

improved by 5.9%. The significant improvements on this

dataset validate the effectiveness of TEDnet.

UCF CC 50. The UCF CC 50 dataset introduced by Idrees
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Table 2. Estimation errors on the ShanghaiTech dataset, the UCF CC 50 and the UCF-QNRF dataset

ShanghaiTech Part A ShanghaiTech Part B UCF CC 50 UCF-QNRF

Method MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓

Zhang et al.[52] 181.8 277.7 32.0 49.8 467.0 498.5 - -

MCNN [53] 110.2 173.2 26.4 41.3 377.6 509.1 277 426

Cascaded-MTL [39] 101.3 152.4 20.0 31.1 322.8 397.9 252 514

Switching-CNN [37] 90.4 135.0 21.6 33.4 318.1 439.2 228 445

CP-CNN [40] 73.6 106.4 20.1 30.1 295.8 320.9 - -

CSRNet [19] 68.2 115.0 10.6 16.0 266.1 397.5 - -

SANet [2] 67.0 104.5 8.4 13.6 258.4 334.9 - -

Idrees et al. [11] - - - - - - 132 191

Ours 64.2 109.1 8.2 12.8 249.4 354.5 113 188

Table 3. The MAE of the WorldExpo’10 dataset, S is short for

Scene.

Method S1 S2 S3 S4 S5 Ave.

Zhang et al. [52] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [53] 3.4 20.6 12.9 13.0 8.1 11.6

Switching-CNN [37] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [40] 2.9 14.7 10.5 10.4 5.8 8.9

CRSNet [19] 2.9 11.5 8.6 16.6 3.4 8.6

SANet [2] 2.6 13.2 9.0 13.3 3.0 8.2

Ours 2.3 10.1 11.3 13.8 2.6 8.0

et al.[10] contains 50 images of varying resolutions, with a

wide range of densities. To settle the sample scarcity prob-

lem, we perform a 5-fold cross-validation, following the s-

tandard setting in [10]. As shown in Table 2, we achieve an

improvement of 3.5% in terms of the MAE metric.

UCF-QNRF. The UCF-QNRF is a new dataset with one

of the highest number of high-count crowd images and an-

notations. We compare our result with four state-of-the-

art methods and our method achieves the best performance

in terms of both MAE and MSE. We beat the second best

approach by a 14.4% improvement in MAE and 1.6% im-

provement in MSE, as shown in Table 2.

WorldExpo10. The WorldExpo10 dataset was introduced

by Zhang et al. [52], containing 3980 frames from 108 dif-

ferent scenes from the Shanghai 2010 WorldExpo. Table 3

shows that TEDnet delivers the lowest MAE in 3 out of 5

test scenes, and reports up to 13.3% improvement in Scene

5 over others. Overall, we achieve the best average MAE

performance, outperforming the second best by 2.4%.

4.3.2 Density Map Quality

As mentioned in Section 2, CP-CNN [40] and CSRnet [19]

also emphasize generating high-quality density maps. MC-

NN [53] is one of the most representative methods in densi-

ty estimation based crowd counting. We compare the qual-

ity of density maps estimated by TEDnet and these three

state-of-the-art systems. Quantitatively, as demonstrated

in Table 4, our method outperforms the other methods in

both PSNR and SSIM metrics on the ShanghaiTech Part A

dataset. Particularly, we obtain 8.1% and 8.4% improve-

ments over the second best method, in terms of PSNR and

SSIM metrics. Qualitatively, we visualize the maps gener-

ated by MCNN, SANet, and TEDnet on the ShanghaiTech

Table 4. Quality of density map on ShanghaiTech Part A dataset

and parameter studies, M stands for millions.

Method PSNR↑ SSIM↑ Parameters

MCNN [53] 21.4 0.52 0.13M

CP-CNN [40] 21.72 0.72 68.4M

CRSNet [19] 23.79 0.76 16.26M

Ours 25.88 0.83 1.63M

Part A in Figure 2. In addition, we also display the density

maps generated by TEDnet on other datasets in Figure 6.

Our TEDnet introduces an enhanced multi-path decoder

architecture, which, however, is still lightweight compared

to other state-of-the-art methods, which also strives to gen-

erate high-quality density maps. As shown in Table 4, the

number of parameters in TEDnet is only equal to 10% of

those in CRSNet and 2.4% of CP-CNN. More important-

ly, we demonstrate the best overall performance in density

map quality as well as counting accuracy. MCNN is most

lightweight, yet we show significant improvement in PSNR

by 17.3% and 36% in SSIM. Moreover, we also outperform

MCNN on all datasets in terms of MAE and MSE.

5. Conclusion

In this paper, we have presented a new deep learning ar-

chitecture, called the trellis encoder-decoder network (T-

EDnet) for crowd counting. It consists of a multi-scale

encoder and a multi-path decoder to generate high-quality

density estimation maps. It preserves the localization preci-

sion in the encoded feature maps, upon which a multi-path

decoder with dense skip connections is adopted to achieve

thorough aggregation and fusion of multi-scale features.

The TEDnet is trained with the distributed supervision im-

plemented with the proposed combinatorial loss. Experi-

ments on four benchmarks show that the TEDnet achieves

new state-of-the-art performance in terms of both density

map quality and crowd counting accuracy.
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[7] L. Fiaschi, U. Köthe, R. Nair, and F. A. Hamprecht. Learn-

ing to count with regression forest and structured labels. In

Pattern Recognition (ICPR), 2012 21st International Confer-

ence on, pages 2685–2688. IEEE, 2012. 3

[8] J. Fu, J. Liu, Y. Wang, and H. Lu. Stacked deconvolution-

al network for semantic segmentation. arXiv preprint arX-

iv:1708.04943, 2017. 2, 4, 5

[9] W. Ge and R. T. Collins. Marked point processes for crowd

counting. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 2913–2920.

IEEE, 2009. 1, 3

[10] H. Idrees, I. Saleemi, C. Seibert, and M. Shah. Multi-source

multi-scale counting in extremely dense crowd images. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2547–2554, 2013. 1, 3, 7, 8

[11] H. Idrees, M. Tayyab, K. Athrey, D. Zhang, S. Al-Maadeed,

N. Rajpoot, and M. Shah. Composition loss for counting,

density map estimation and localization in dense crowds.

arXiv preprint arXiv:1808.01050, 2018. 1, 2, 3, 4, 6, 7, 8

[12] X. Jiang, P. Li, X. Zhen, and X. Cao. Model-free tracking

with deep appearance and motion features integration. In

2019 IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 101–110. IEEE, 2019. 2

[13] D. Kang, Z. Ma, and A. B. Chan. Beyond counting: com-

parisons of density maps for crowd analysis tasks-counting,

detection, and tracking. IEEE Transactions on Circuits and

Systems for Video Technology, 2018. 3, 4

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 6

[15] S. Kumagai, K. Hotta, and T. Kurita. Mixture of count-

ing cnns: Adaptive integration of cnns specialized to spe-

cific appearance for crowd counting. arXiv preprint arX-

iv:1703.09393, 2017. 3

[16] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets. In Artificial Intelligence and Statistics,

pages 562–570, 2015. 5

[17] V. Lempitsky and A. Zisserman. Learning to count objects

in images. In Advances in neural information processing

systems, pages 1324–1332, 2010. 1, 3

[18] M. Li, Z. Zhang, K. Huang, and T. Tan. Estimating the num-

ber of people in crowded scenes by mid based foreground

segmentation and head-shoulder detection. In Pattern Recog-

nition, 2008. ICPR 2008. 19th International Conference on,

pages 1–4. IEEE, 2008. 1, 3

[19] Y. Li, X. Zhang, and D. Chen. Csrnet: Dilated convolution-

al neural networks for understanding the highly congested

scenes. In Proceedings of the IEEE Conference on Comput-

er Vision and Pattern Recognition, pages 1091–1100, 2018.

2, 3, 4, 6, 8

[20] G. Lin, A. Milan, C. Shen, and I. D. Reid. Refinenet: Multi-

path refinement networks for high-resolution semantic seg-

mentation. In Cvpr, volume 1, page 5, 2017. 2, 4

[21] J. Liu, C. Gao, D. Meng, and A. G. Hauptmann. Decidenet:

Counting varying density crowds through attention guided

detection and density estimation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 5197–5206, 2018. 3, 7

[22] X. Liu, J. van de Weijer, and A. D. Bagdanov. Leveraging

unlabeled data for crowd counting by learning to rank. arXiv

preprint arXiv:1803.03095, 2018. 2

[23] E. Lu, W. Xie, and A. Zisserman. Class-agnostic counting.

arXiv preprint arXiv:1811.00472, 2018. 3

[24] Z. Ma, L. Yu, and A. B. Chan. Small instance detection by

integer programming on object density maps. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3689–3697, 2015. 2, 3

[25] V. Nekrasov, C. Shen, and I. Reid. Light-weight refinenet

for real-time semantic segmentation. arXiv preprint arX-

iv:1810.03272, 2018. 2, 4

[26] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and

checkerboard artifacts. Distill, 2016. 5

[27] D. Onoro-Rubio and R. J. López-Sastre. Towards
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