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Abstract Video imagery based crowd analysis for population profiling and density

estimation in public spaces can be a highly effective tool for establishing global sit-

uational awareness. Different strategies such as counting by detection and counting

by clustering have been proposed, and more recently counting by regression has

also gained considerable interest due to its feasibility in handling relatively more

crowded environments. However, the scenarios studied by existing regression-based

techniques are rather diverse in terms of both evaluation data and experimental set-

tings. It can be difficult to compare them in order to draw general conclusions on

their effectiveness. In addition, contributions of individual components in the pro-

cessing pipeline such as feature extraction and perspective normalisation remain

unclear and less well studied. This study describes and compares the state-of-the-art

methods for video imagery based crowd counting, and provides a systematic evalu-

ation of different methods using the same protocol. Moreover, we evaluate critically

each processing component to identify potential bottlenecks encountered by exist-

ing techniques. Extensive evaluation is conducted on three public scene datasets,

including a new shopping centre environment with labelled ground truth for valida-

tion. Our study reveals new insights into solving the problem of crowd analysis for

population profiling and density estimation, and considers open questions for future

studies.
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1 Introduction

The analysis of crowd dynamics and behaviours is a topic of great interest in soci-

ology, psychology, safety, and computer vision. In the context of computer vision,

many interesting analyses can be achieved [91], e.g.to learn the crowd flow evolve-

ment and floor fields [3], to track an individual in a crowd [65], to segment a crowd

into semantic regions [51, 93], to detect salient regions in a crowd [53], or to recog-

nise anomalous crowd patterns [41, 60]. A fundamental task in crowd analysis that

enjoys wide spectrum of applications is to automatically count the number of people

in crowd and profile their behaviours over time in a given region.

One of the key application areas of crowd counting is public safety and security.

Tragedies involving large crowds often occur, especially during religious, politi-

cal, and musical events [35]. For instance, a crowd crush at the 2010 Love Parade

music festival in Germany, caused a death of 21 people and many more injured

(see Fig. 1). And more recently a stampede happened near the Sabarimala Tem-

ple, India with death toll crosses hundred. These tragedies could be avoided, if a

safer site design took place and a more effective crowd control was enforced. Video

imagery based crowd counting can be a highly beneficial tool for early detection

of over-crowded situations to facilitate more effective crowd control. It also helps

in profiling the population movement over time and across spaces for establishing

global situational awareness, developing long-term crowd management strategies,

and designing evacuation routes of public spaces.

In retail sectors, crowd counting can be an intelligence gathering tool [76] to

provide valuable indication about the interest of customers through quantifying the

number of individuals browsing a product, the queue lengths, or the percentage of

store’s visitors at different times of the day. The information gathered can then be

used to optimise the staffing need, floor plan, and product display.

Video imagery based crowd counting for population profiling remains a non-

trivial problem in crowded scenes. Specifically, frequent occlusion between pedes-

trians and background clutter render a direct implementation of standard object

segmentation and tracking infeasible. The problem is further compounded by vi-

sual ambiguities caused by varying individual appearances and body articulations,

and group dynamics. External factors such as camera viewing angle, illumination

changes, and distance from the region of interest also pose great challenges to the

counting problem.

Fig. 1 Example of surveillance footage frames captured during the Love Parade music festival in

Germany, 2010, before the fatalities occurred. Images from www.dokumentation-loveparade.com/.
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Various approaches for crowd counting have been proposed. A popular method is

counting by detection [24], which detects instances of pedestrian through scanning

the image space using a detector trained with local image features. An alternative

approach is counting by clustering [7, 63], which assumes a crowd to be composed

of individual entities, each of which has unique yet coherent motion patterns that

can be clustered to approximate the number of people. Another method is inspired

by the capability of human beings, in determining density at a glance without nu-

merating the number of pedestrians in it. This approach is known as counting by

regression [12, 22], which counts people in crowd by learning a direct mapping

from low-level imagery features to crowd density.

In this study, we provide a comprehensive review, comparative evaluation, and

critical analysis on computer vision techniques for crowd counting, also known

as crowd density estimation, and discuss crowding counting as a tool for popula-

tion profiling. We first present a structured critical overview of different approaches

to crowd counting reported in the literature, including pedestrian detection, coher-

ent motion clustering, and regression-based learning. In particular, we focus on the

regression-based techniques that have gain considerable interest lately due to their

effectiveness in handling more crowded scenes. We then provide analysis of differ-

ent regression-based approaches to crowd counting by systematic comparative eval-

uation, which gives new insights into contributions of key constituent components

and potential bottlenecks in algorithm design. To facilitate our experiments, we also

introduce a new shopping mall dataset of over 60,000 pedestrians labelled in 2000

video frames, i.e.the largest dataset to date in terms of the number of pedestrian in-

stances captured in realistic crowded public space scenario for crowd counting and

profiling research.

2 Survey of the State of the Art

The taxonomy of crowd counting algorithms can be generally grouped into three

paradigms, namely counting by detection, clustering, and regression. In this section,

we provide an overview on each of the paradigms, with a particular focus on the

counting by regression strategy that has shown to be effective on more crowded

environments.

2.1 Counting by Detection

The following is a concise account of pedestrian detection with emphasise on count-

ing application. A more detailed treatment on this topic can be found in [24].

Monolithic detection: The most intuitive and direct approach to numerate the num-

ber of people in a scene is through detection. A typical pedestrian detection ap-
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Fig. 2 Pedestrian detection results obtained using (a) monolithic detection, (b) part-based detec-

tion, and (c) shape matching. Images from [43, 47, 92].

proach is based on monolithic detection [21, 43, 78], which trains a classifier us-

ing the full-body appearance of a set of pedestrian training images (see Fig. 2(a)).

Common features to represent the full-body appearance include Haar wavelets [80],

gradient-based features such as histogram of oriented gradient (HOG) feature [21],

edgelet [85], and shapelets [68]. The choice of classifier imposes significant impact

on the speed and quality of detection, often requiring a trade-off between these two.

Non-linear classifiers such as RBF Support Vector Machines (SVMs) offer good

quality but suffer from low detection speed. Consequently, linear classifiers such as

boosting [81], linear SVMs, or Random/Hough Forests [28] are more commonly

used. A trained classifier is then applied in a sliding window fashion across the

whole image space to detect pedestrian candidates. Less confident candidates are

normally discarded using non-maximum suppression, which leads to final detec-

tions that suggest the total number of people in a given scene. Whole body mono-

lithic detector can generates reasonable detections in sparse scenes. However, it suf-

fers in crowded scenes where occlusion and scene clutter are inevitable [24].

Part-based detection: A plausible way to get around the partial occlusion problem

to some extent is by adopting a part-based detection method [26, 48, 86]. For in-

stance, one can construct boosted classifiers for specific body parts such as the head

and shoulder to estimate the people counts in a monitored area [47] (see Fig. 2(b)).

It is found that head region alone is not sufficient for reliable detection due to its

shape and appearance variations. Including the shoulder region to form an omega-

like shape pattern tends to give better performance in real-world scenarios [47]. The

detection performance can be further improved by tracking validation, i.e. associ-

ating detections over time and rejecting spurious detections that exhibit coherent

motion with the head candidates [62]. In comparison to monolithic detection, part-

based detection relaxes the stringent assumption about the visibility of the whole

body, it is thus more robust in crowded scenes.

Shape matching: Zhao et al. [92] define a set of parameterised body shapes com-

posed of ellipses, and employ a stochastic process to estimate the number and

shape configuration that best explains a given foreground mask in a scene. Ge and

Collins [29] extend the idea by allowing more flexible and realistic shape proto-

types than just simple geometric shapes proposed in [92]. In particular, they learn
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a mixture model of Bernoulli shapes from a set of training images, which is then

employed to search for maximum a posteriori shape configuration of foreground

objects, revealing not only the count and location, but also the pose of each person

in a scene.

Multi-sensor detection: If multiple cameras are available, one can further incor-

porate multi-view information to resolve visual ambiguities caused by inter-object

occlusion. For example, Yang et al. [88] extracted the foreground human silhou-

ettes from a network of cameras to establish bounds on the number and possible

locations of people. In the same vein, Ge and Collins [30] estimate the number of

people and their spatial locations by leveraging multi-view geometric constraints.

The aforementioned methods [30,88] are restricted since a multi-camera setup with

overlapping views is not always available in many cases. Apart from detection accu-

racy improvement, the speed of detection can benefit from the use of multi-sensors,

e.g.the exploitation of geometric context extracted from stereo images [5].

Transfer learning: Applying a generic pedestrian detector to a new scene can-

not guarantee satisfactory cross-dataset generalisation [24], whilst training a scene-

specific detector for counting is often laborious. Recent studies have been exploring

the transfer of generic pedestrian detectors to a new scene without human supervi-

sion. The key challenges include the variations of viewpoints, resolutions, illumina-

tions, and backgrounds in the new environment. A solution to the problem is pro-

posed in [82, 83] to exploit multiple cues such as scene structures, spatio-temporal

occurrences, and object sizes to select confident positive and negative examples

from the target scene to adapt a generic detector iteratively.

2.2 Counting by Clustering

The counting by clustering approach relies on the assumption that individual motion

field or visual features are relatively uniform, hence coherent feature trajectories can

be grouped together to represent independently moving entities. Studies that follow

this paradigm include [63], which uses a Kanade-Lucas-Tomasi (KLT) tracker to

obtain a rich set of low-level tracked features, and clusters the trajectory to infer the

number of people in the scene (see Fig. 3(a)); and [7], which tracks local features

and groups them into clusters using Bayesian clustering (see Fig. 3(b)). Another

closely related method is [77], which incorporates the idea of feature constancy

into a counting by detection framework. The method first generates a set of person

hypotheses of a crowd based on head detections. The hypotheses are then refined

iteratively by assigning small patches of the crowd to the hypotheses based on the

constancy of motion fields and intra-garment colour (see Fig. 3(c)).

The aforementioned methods [7, 63] avoid supervised learning or explicit mod-

elling of appearance features as in the counting by detection paradigm. Nevertheless,

the paradigm assumes motion coherency, hence false estimation may arise when

people remaining static in a scene, exhibiting sustained articulations, or two objects
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Fig. 3 (a) and (b) show the results of clustering coherent motions using methods proposed in [63]

and [7] respectively. (c) shows the pairwise affinity of patches (strong affinity = magenta, weak

affinity = blue) in terms of motion and colour constancy; the affinity is used to determine the

assignment of patches to person hypotheses [77]. Images from [7, 63, 77].

sharing common feature trajectories over time. Note that counting by clustering

only works with continuous image frames, not static images whilst the counting by

detection and regression do not have this restriction.

2.3 Counting by Regression

Despite the substantial progress being made in object detection [24] and track-

ing [90] in recent years, performing either in isolation or both reliably in a crowded

environment remains a non-trivial problem. Counting by regression deliberately

avoids actual segregation of individual or tracking of features but estimate the crowd

density based on holistic and collective description of crowd patterns. Since neither

explicit segmentation nor tracking of individual are involved, counting by regression

becomes a feasible method for crowded environments where detection and tracking

are severely limited intrinsically.

One of the earliest attempts in exploring the use of regression method for crowd

density estimation is by Davies et al.[22]. They first extract low-level features such

as foreground pixels and edge features from each video frame. Holistic properties

such as foreground area and total edge count are then derived from the raw fea-

tures. Consequently, a linear regression model is used to establish a direct mapping

between the holistic patterns and the actual people counts. Specifically, a function

is used to model how the input variable (i.e. the crowd density) changes when the

target variables (i.e.holistic patterns) are varied. Given an unseen video frame, con-

ditional expectation of the crowd density can then be predicted given the extracted

features from that particular frame. Since the work of Davies et al. [22], various

methods have been proposed following the same idea with improved feature sets or

more sophisticated regression models, but still sharing a similar processing pipeline

as in [22] (see Fig. 4). A summary of some of the notable methods is given in Ta-

ble 1. In the following subsections, we are going to have detailed discussion on the

main components that constitute the counting by regression pipeline, namely feature

representation, geometric correction, and regression modelling.
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Fig. 4 A typical pipeline of counting by regression: first defining the region of interest and find-

ing the perspective normalisation map of a scene, then extracting holistic features and training a

regressor using the perspective normalised features.

2.3.1 Feature Representation

The question of crowd representation or abstraction must be addressed before a re-

gression function can be established. Feature representation concerns the extrac-

tion, selection, and transformation of low-level visual properties in an image or

video to construct intermediate input to a regression model. A popular approach

is to combine several features with complementary nature to form a large bank of

features [13].

Foreground segment features: The most common or arguably the most descrip-

tive representation for crowd density estimation is foreground segment, which can

be obtained through background subtraction, such as mixture of Gaussians-based

technique [73] or mixture of dynamic textures-based method [10]. Various holistic

features can be derived from the extracted foreground segment, for example:

• Area – total number of pixels in the segment.

• Perimeter – total number of pixels on the segment perimeter.

• Perimeter-area ratio – ratio between the segment perimeter and area, which mea-

sures the complexity of the segment shape.

• Perimeter edge orientation – orientation histogram of the segment perimeter.

• Blob count – the number of connected components with area larger than a pre-

defined threshold, e.g.20 pixels in size.

Various studies [13, 22, 54] have demonstrated encouraging results using the

segment-based features despite its simplicity. Several considerations, however, has

to be taken into account during the implementation. Firstly, to reduce spurious fore-

ground segments from other regions, one can confine the analysis within a region of

interest (ROI), which can be determined manually or following a foreground accu-

mulation approach [54]. Secondly, different scenarios may demand different back-

ground extraction strategies. Specifically, dynamic background subtraction [73] can

cope with gradual illumination change but have difficulty in isolating people that
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regression method level

Davies et al.[22] 1995 X X – – – – – – Linear regression global –

Marana et al.[59] 1997 – – X – – – – – Self-organising map

neural network

global –

Cho et al.[16] 1997 X X – – – – – – Feedforward neural

network

global –

Kong et al.[38, 39] 2005

2006

X X – – – – – – Feedforward neural

network

global –

Dong et al.[25] 2007 – – – X – – – – Shape matching +

locally-weighted re-

gression

segment USC Campus Plaza

Chan et al.[12–14] 2008

2009

X X X – – – – – Gaussian processes global UCSD Pedestrian,

PETS 2009

Chan et al.[11] 2009 X X X – – – – – Bayesian Poisson

regression

global UCSD Pedestrian

Ryan et al.[67] 2009 X X – – – – – – Feedforward neural

network

segment UCSD Pedestrian

Cong et al.[18] 2009 X X – – – – – – Polynomial regres-

sion

segment –

Lempitsky et al.[44] 2010 X – – – X X – – Density function

minimisation based

on Maximum Ex-

cess over Subarrays

distance

pixel UCSD Pedestrian

Conte et al.[19] 2010 – – – – – – – number

of SURF

points

Support vector re-

gression

segment PETS 2009

Benabbas et al.[4] 2010 X – – – – – X – Linear regression segment PETS 2009

Li et al.[46] 2011 X X – – – – – – Pedestrian detector

+ Linear regression

segment CASIA Pedes-

trian [45]

Lin et al.[49] 2011 X X – – – X – – Gaussian processes segment UCSD Pedestrian,

PETS 2009

Ke et al.[15] 2012 X X X – – – – – Kernel ridge regres-

sion

segment UCSD Pedestrian,

PETS 2009, Mall

Table 1 A table summarising existing counting by regression methods. Note that only publicly

available datasets are listed in the datasets column.

are stagnant for a long period of time; static background subtraction [51, 66] is able

to segment static objects from the background but is susceptible to lighting change.

Finally, poor estimation is expected if one employs only foreground area due to

inter-object occlusion, as it is possible to insert another person into the mixture and

end up with the same foreground area. Enriching the representation with other de-

scriptors may solve this problem to certain extent.

Edge features: While foreground features capture the global properties of the seg-

ment, edge features inside the segment carries complementary information about

the local and internal patterns [13, 22, 38]. Intuitively, low-density crowds tend to

present coarse edges, while segments with dense crowds tend to present complex

edges. Edges can be detected using an edge detector such as the Canny edge detec-

tor [8]. Note that an edge image is often masked using the foreground segment to

discard irrelevant edges. Some common edge-based features are listed as follows

• Total edge pixels – total number of edge pixels.
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• Edge orientation – histogram of the edge orientations in the segment.

• Minkowski dimension – the Minkowski fractal dimension or box-counting di-

mension of the edges [58], which counts how many pre-defined structuring ele-

ments are required to fill the edges.

Texture and gradient features: Crowd texture and gradient patterns carry strong

cues about the number of people in a scene. In particular, high-density crowd region

tends to exhibit stronger texture response [54] with distinctive local structure in

comparison to low-density region; whilst local intensity gradient map could reveal

local object appearance and shape such as human shoulder and head, which are in-

formative for density estimation. Example of texture and gradient features employed

for crowd counting include gray-level co-occurrence matrix (GLCM) [34], local bi-

nary pattern (LBP) [61], HOG feature [56], and gradient orientation co-occurrence

matrix (GOCM) [56]. A comparative studies among the aforementioned texture and

gradient features can be found in [56]. Here we provide a brief description on GLCM

and LBP, which are used in our evaluation.

Gray-level co-occurrence matrix (GLCM) [34] is widely used in various crowd

counting studies [13, 56, 57, 87]. For instance, Marana et al. [57] uses GLCM to

distinguish five different density levels (very low, low, moderate, high, and very

high), and Chan and Vasconcelos [12] employ it as holistic property for Bayesian

density regression. To obtain GLCM, a typical process is to first quantise the image

into 8 gray-levels and masked by the foreground segment. The joint probability or

co-occurrence of neighbouring pixel values, p(i, j | θ) is then estimated for four

orientations, θ ∈ {0◦,45◦,90◦,135◦}. After extracting the co-occurrence matrix, a

set of features such as homogeneity, energy, and entropy can be derived for each θ

• Homogeneity – texture smoothness, gθ = ∑i, j
p(i, j | θ)
1+|i− j|

• Energy – total sum-squared energy, eθ = ∑i, j p(i, j | θ)2

• Entropy – texture randomness, hθ = ∑i, j p(i, j | θ) log p(i, j | θ)

4	   5	   6	   3	   5	   4	  

4	   5	   4	   8	   5	   3	  

4	   7	   7	   7	   2	   7	  

3	   7	   5	   5	   3	   2	  

1	   2	   3	   4	   5	   6	   7	   8	  

1	   0	   0	   0	   0	   0	   0	   0	   0	  

2	   0	   0	   0	   0	   0	   0	   1	   0	  

3	   0	   1	   0	   0	   1	   0	   1	   0	  

4	   0	   0	   0	   0	   2	   0	   1	   1	  

5	   0	   0	   2	   2	   1	   1	   0	   0	  

6	   0	   0	   1	   0	   0	   0	   0	   0	  

7	   0	   1	   0	   0	   1	   0	   2	   0	  

8	   0	   0	   0	   0	   1	   0	   0	   0	  Gray-level co-occurrence matrix 

Image with 
quantised levels 

0° 

45° 

90° 

135° 

Value of θ 

Pixel of 
interest 

Fig. 5 Gray-level co-occurrence matrix, with θ = 0◦ of a 4-by-6 image. Element (7,2) in the

GLCM contains the value 1 because there is only one instance in the image where two, horizontally

adjacent pixels have the values 7 and 2. Element (4,5) in the GLCM contains the value 2 because

there are two instances in the image where two, horizontally adjacent pixels have the values 4 and

5. The value of θ specifies the angle between the pixel of interest and its neighbour.
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Fig. 6 A basic local binary pattern operator [61] and a circular (8,1) neighbourhood.

An alternative texture descriptor for crowd density estimation [55] is the local

binary pattern (LBP) [61]. Local binary pattern has been widely adopted in vari-

ous applications such as face recognition [2] and expression analysis [70], due to

its high discriminative power, invariance to monotonic gray-level changes, and its

computational efficiency.

An illustration of a basic LBP operator is depicted in Fig. 6. The LBP operation

is governed by a definition of local neighbourhood, i.e.the number of sampling point

and radius centering the pixel of interest. An example of a circular (8,1) neighbour-

hood is shown in Fig. 6. Following the definition of neighbourhood, we sample 8

points at a distance of radius 1 from the pixel of interest and threshold them using

the value of the centering pixel. The results are concatenated to form a binary code

as the label of the pixel of interest. These steps are repeated over the whole image

space and a histogram of labels is constructed as a texture descriptor.

In this study, we employed an extension of the original LBP operator known as

uniform patterns [61], which frequently correspond to primitive micro-features such

as edges and corners. A uniform LBP pattern is binary code with at most two bitwise

transitions, e.g. 11110000 (1 transition) and 11100111 (2 transitions) are uniform,

whilst 11001001 (4 transitions) is not. In the construction of LBP histogram, we

assign a separate bin for every uniform pattern and keep all nonuniform patterns in

a single bin, so we have a 58+1-dimension texture descriptor.

2.3.2 Geometric Correction

A problem commonly encountered in counting by regression framework is perspec-

tive distortion, in which far objects appear smaller than those closer to the camera

view. As a consequence, features (e.g.segment area) extracted from the same object

at different depths of the scene would have huge difference in values. The influ-

ence is less critical if one divides the image space into different cells, each of which

modelled by a regression function; erroneous results are expected if one only uses a

single regression function for the whole image space.

To address this problem geometric correction or perspective normalisation is per-

formed to bring perceived size of objects at different depths to the same scale. Ma et

al. [54] investigate the influence of perspective distortion to people counting and

propose a principled way to integrate geometric correction in pixel counting, i.e. to

scale each pixel by a weight, with larger weights given to further objects.
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Fig. 7 (a) and (b) show a reference person at two extremes of a predefined quadrilateral; (c) a

perspective map to scale pixels by their relative size in the three-dimensional scene.

A simple and widely adopted perspective normalisation method [44, 49, 67] is

described in [13]. The method first determines four points in a scene to form a

quadrilateral that corresponds to a rectangle (see Fig. 7). The lengths of the two hor-

izontal lines of the quadrilateral, ab and cd, are measured as w1 and w2 respectively.

When a reference pedestrian passes the two extremes, i.e. its bounding box’s centre

touches the ab and cd, its heights are recorded as h1 and h2. The weights at ab and

cd are then assigned as 1 and
h1w1
h2w2

respectively. To determine the remaining weights

of the scene, linear interpolation is first performed on the width of the rectangle,

and the height of the reference person. A weight at arbitrary image coordinate can

then be calculated as
h1w1
h′w′ , where h′ and w′ representing the interpolants. Here we

make an assumption that the horizontal vanishing line to be parallel to the image

horizontal scan lines.

When applying the weights to features, it is assumed that the size of foreground

segment changes quadratically, whilst the total edge pixels changes linearly with

respect to the perspective. Consequently, each foreground segment pixel is weighted

using the original weight and the edge features are weighted by square-roots of the

weights. Features based on the GLCM are normalised by weighting the occurrence

of each pixel pair when accumulating the co-occurrence matrix shown in Fig. 5. To

obtain perspective-normalised LBP-based features, we multiply the weights to the

occurrence of individual LBP labels in the image space prior to the construction of

the LBP label histogram.

The aforementioned method [13] requires manual measurement which could be

error-prone. There exist approaches to compute camera calibration parameters based

on accumulative visual evidence in a scene. For example, a method is proposed

in [40] to find the camera parameters by exploiting foot and head location measure-

ments of people trajectories over time. Another more recent method [50] relaxes the

requirement of accurate detection and tracking. This method takes noisy foreground

segments as input to obtain the calibration data by leveraging the prior knowledge of

the height distribution. With a calibrated 3D model, one can also obtain the perspec-

tive map as in [14], which moves a virtual person within the 3D world and measures

the number of pixels projected onto the 2D image space.
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2.3.3 Regression Models

After feature extraction and perspective normalisation, a regression model is trained

to predict the count given the normalised features. A regression model may have a

broad class of functional forms. In this section we discuss a few popular regression

models for crowd density estimation.

Linear regression: Given a training data comprising N observations {xn}, where

n = 1, . . . ,N together with corresponding continuous target values {yn}, the goal

of regression is to predict the value of y given a new value of x [6]. The simplest

approach is to form of linear regression function f (x,w) that involves a linear com-

bination of the input variables, i.e.

f (x,w) = w0 +w1x1 + · · ·+wDxD, (1)

where D is the dimension of features, x = (x1, . . . ,xD)
T

, and w = (w0, . . . ,wD)
T

are

the parameters of the model. This model is often known as linear regression (LR),

which is a linear function of the parameters w. In addition it is also linear with

respect to the input variables x.

In a sparse scene where smaller crowd size and fewer inter-object occlusions

are observed, the aforementioned linear regressor [4, 22, 46] may suffice since the

mapping between the observations and people count typically presents a linear rela-

tionship. Nevertheless, given a more crowded environment with severe inter-object

occlusion, one may have to employ a nonlinear regressor to adequately capture the

nonlinear trend in the feature space [9].

To relax the linearity assumption, one can take a linear combination of a fixed set

of nonlinear functions of the input variables, also known as basis functions φ(x), to

obtain a more expressive class of function. It has the form of

f (x,w) =
M−1

∑
j=0

w jφ j(x) = wTφφφ(x), (2)

where M is the total number of parameters in this model, w = (w0, . . . ,wM−1)
T

, and

φφφ = (φ0, . . . ,φM−1)
T

. The functional form in (2) is still known as linear model since

it is linear in w, despite the function f (x,w) is nonlinear with respect to input vector

x. A polynomial regression function considered in [18] (see Table 1) is a specific

example of this model, with the basis functions taking a form of powers of x, that is

φ j(x) = x j. Gaussian basis function and sigmoidal basis function are other possible

choices of basis functions.

Parameters in the aforementioned linear model is typically obtained by minimis-

ing the sum of squared errors

E(w) =
1

2

N

∑
n=1

{

yn −wTφφφ(xn)
}2

. (3)
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One of the key limitation of linear model is that the model can get unnecessarily

complex give high-dimensional observed data x. Particularly in counting by regres-

sion, it is a common practice to exploit high-dimensional features [13]. Some of

the elements are not useful for predicting the count. In addition, some of them may

be highly co-linear, unstable estimate of parameters may occurs [6], leading to very

large magnitude in the parameters and therefore a clear danger of severe over-fitting.

Partial least squares regression: A way of addressing the multicollinearity prob-

lem is by partial least squares regression (PLSR) [31], which projects both input

X = {xn} and target variables Y = {yn} to a latent space, with a constraint such that

the lower-dimensional latent variables explain as much as possible the covariance

between X and Y. Formally, the PLSR decomposes the input and target variables as

X = TPT+ εx (4)

Y = UQT+ εy, (5)

where T and U are known as score matrices, with the column of T being the latent

variables; P and Q are known as loading matrices [1]; and ε are the error terms. The

decomposition are made so to maximise the covariance of T and U. There are two

typical ways in estimating the score matrices and loading matrices, namely NIPALS

and SIMPLS algorithms [1, 89].

Kernel ridge regression: Another method of mitigating the multicollinearity prob-

lem is through adding a regularisation term to the error function in Equation (3). A

simple regularisation term is given by the sum-of-squares of the parameter vector

elements, 1
2
wTw. The error function becomes

ER(w) =
1

2

N

∑
n=1

{

yn −wTφφφ(xn)
}2

+
λ

2
wTw, (6)

with λ to control the trade-off between the penalty and the fit. A common way of

determining λ is via cross-validation. Using this particular choice of regularisation

term with φ(xn) = xn, we will have error function of ridge regression [36].

A non-linear version of the ridge regression, known as kernel ridge regression

(KRR) [69], can be achieved via kernel trick [71], whereby a linear ridge regres-

sion model is constructed in higher dimensional feature space induced by a kernel

function defining the inner product

k(x,x′) = φ(x)Tφ(x′). (7)

For the kernel function, one has typical choices of linear, polynomial, and radial

basis function (RBF) kernels. The regression function of KRR is given by

f (x,ααα) =
N

∑
n=1

αnk(x,xn), (8)
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where ααα = {α1, . . . ,αn}
T

are Lagrange multipliers. This solution is not sparse in

the variables α , that is αn 6= 0, ∀n ∈ {1, . . .N}.

Support vector regression: Support vector regression (SVR) [42,72] has been used

for crowd counting in [87]. In contrast to KRR, the SVR achieves sparseness in α
(see Equation (8)) by using the concept of support vectors to determine the solution,

which can result in faster testing speed than KRR that sums over the entire training-

set [84]. Specifically, the regression function of SVR can be written as

f (x,ααα) = ∑
SVs

(αn −α∗
n )k(x,xn)+b, (9)

where αn and α∗
n represents the Lagrange multipliers, k(x,xn) denotes the kernel,

and b ∈ R. A popular error function for SVR training is ε-insensitive error func-

tion [79], which assigns zero error if the absolute difference between the prediction

f (x,ααα) and the target y is less than ε > 0. Least-squares support vector regression

(LSSVR) [74] is least squares version of SVR. In LSSVR one finds the solution by

solving a set of linear equations instead of a convex quadratic error function as in

conventional SVR.

Gaussian processes regression: One of the most popular nonlinear methods for

crowd counting is Gaussian processes regression (GPR) [64]. It has a number of

pivotal properties – it allows possibly infinite number of basis functions driven by

the data complexity, and it models uncertainty in regression problems elegantly1.

Formally, we write the regression function as

f (x)∼ GP(m(x),k(x,x′)), (10)

where Gaussian processes, GP(m(x),k(x,x′)) is specified by its mean function m(x)
and covariance function or kernel k(x,x′)

m(x) = E[ f (x)], (11)

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))], (12)

where E denotes the expectation value.

Apart from the conventional GPR, various extensions of it have been proposed.

For instance, Chan et al. [9] propose a generalised Gaussian process model, which

allows different parameterisation of the likelihood function, including a Poisson

distribution for predicting discrete counting numbers [11]. Lin et al. [49] employ

two GPR in their framework, one for learning the observation-to-count mapping,

and another one for reasoning the mismatch between predicted count and actual

count due to occlusion.

The key weakness of GPR is its poor tractability to large training sets. Various

approximation paradigms have been developed to improve its scalability [64].

1 One can also estimate the predictive interval in other kernel methods such as KRR [23].
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It is worth pointing out that one of the attractive properties of kernel methods

such as KRR, SVR, and GPR is the flexibility of encoding different assumptions

about the function we wish to learn. For instance, by combining different covariance

functions k(x,x′), such as linear, Matérn, rational quadratic, and neural network, one

has the flexibility to encode different assumptions on the continuity and smoothness

of the GP function f (x). This property is exploited in [13], in which linear and a

squared-exponential (RBF) covariance functions are combined to capture both the

linear trend and local non-linearities in the crowd feature space.

Random forest regression: Scalable nonlinear regression modelling can be achieved

using random forest regression (RFR). A random forest comprises of a collection

of randomly trained regression trees, which can achieve better generalisation than a

single over-trained tree [20]. Each tree in a forest splits a complex nonlinear regres-

sion problem into a set of subproblems, which can be more easily handled by weak

learners such as a linear model2. To train a forest, one optimises an energy over a

given training set and associated values of target variable. Specifically, parameters

θθθ j of the weak learner at each split node j are optimised via

θθθ ∗
j = argmax

θθθ j∈T j

I j, (13)

where T j ⊂ T is a subset of parameters made available to the j-th node, and I is

an objective function that often takes the form of information gain. Given a new

observation x, the predictive function is computed by averaging individual posterior

distributions of all the trees, i.e.

f (x) =
1

T
∑ pt(y|x), (14)

where T is the total number of trees in the forest, pt(y|x) is the posterior of t-th tree.

The hallmark of random forest is its good performance comparable to state-of-

the-art kernel methods (e.g.GPR) but with the advantage of being scalable to large

dataset and less sensitive to parameters. In addition, it has the ability of generating

variable importance and information about outliers automatically. It is also reported

in [20] that forest can yield a more realistic uncertainty in the ambiguous feature

region, in comparison to GPR that tends to return largely over-confident prediction.

The weakness of RFR is that it is poor in extrapolating points beyond the value

range of target variable within the training data, as we shall explain in more detail

in Section 4.1.

2 There are other weak learners that define the split functions, such as general oriented hyperplane

or quadratic function. A more complex splitting function would lead to higher computational com-

plexity.
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2.3.4 Additional Considerations

We have discussed various linear and nonlinear functions for performing crowd den-

sity regression. Note that the functional form becomes more critical when one does

not have sufficient training set that encompasses all the anticipated densities in a

scene. If that is the case, extrapolation outside the training range has to be per-

formed, with increasing room of failure when the extrapolation goes further beyond

the existing data range, due to the mismatch between the regression assumption and

the actual feature to count mapping.

A closely related consideration is at what level the learning should be performed.

Most existing methods (see the ‘level’ column in Table 1) take a global approach by

applying a single regression function over the whole image space with input vari-

ables being the holistic features of a frame (e.g. total area of foreground segment),

and target variable being the total people count in that frame. An obvious limitation

of this global approach is that it applies a global regression function over the whole

image space, ignoring specific crowd structure in different regions. This can be re-

solved by dividing the image space up into regions and fitting separate function in

each region [56,87]. The regions can be cells having regular size, or having different

resolutions driven by the scene perspective to compensate the distortion [56].

One can also approximate the people count at blob-level [46], i.e. estimates the

number of people in each foreground blob and obtains the total people count by

summing the blob-level counts. Lempitsky et al. [44] go one step further to model

the density at each pixel, casting the problem as that of estimating an image density

whose integral over any image region gives the count of objects within that region.

The aforementioned segment-and-model strategies facilitate counting at arbitrary

locations, which is impossible using a holistic approach. In addition, a potential

gain in estimation accuracy may be obtained [44]. This however comes at a price of

increased annotation effort. e.g. requiring a large amount of dotted annotations on

head or pedestrian positions in all training images [44].

3 Evaluation Settings

Previous work [12, 44, 54, 56] have independently performed analyses on different

components in the crowd counting pipeline such as feature extraction, perspective

normalisation, and regression modelling. The scenarios studied, however, are rather

diverse in terms of both evaluation data and experimental settings. It can be hard

to compare them in order to draw general conclusions on their effectiveness. In

this study we aim to provide a more exhaustive comparative evaluation to factor

out the contributions of different components and identify potential bottlenecks in

algorithm design for crowd counting and profile analysis.
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3.1 Datasets

Two benchmark datasets were used for comparative algorithm evaluation, namely

UCSD pedestrian dataset (ucsd) and PETS 2009 dataset (pets). Example frames are

shown in Fig. 8. Apart from the two established benchmark datasets, a new and more

realistic shopping mall dataset is also introduced in this study. This mall dataset was

collected from a publicly accessible webcam in the course of two months from Feb

2011 to Apr 2011. A portion of 2000 frames recorded during peak hours were se-

lected for the comparative algorithm evaluation. As can be seen from the sample im-

ages in Fig. 9, this new dataset is challenging in that it covers crowd densities from

sparse to crowded, as well as diverse activity patterns (static and moving crowds),

under large range of illumination conditions at different time of the day. Also note

that the perspective distortion is more severe than the ucsd and pets datasets, thus

individual objects may experience larger change in size and appearance at different

depths of the scene. The details of the three datasets are given in Table 2.

For evaluation purpose, we resized the images from the pets dataset to 384 ×
288, and the images from the mall dataset to 320 × 240. All colour images were

converted to grayscale images prior to feature extraction. We annotated the data

exhaustively by labelling the head position of every pedestrian in all frames. An ex-

ample of annotated frame is shown in Fig. 9. The ground truth, together with the raw

video sequence, extracted features, and the train/test partitions can be downloaded

at http://www.eecs.qmul.ac.uk/∼ccloy/.

(a) (b)

Fig. 8 (a) UCSD Pedestrian Dataset (ucsd), (b) PETS 2009 Benchmark Dataset (pets).

Data Nf R FPS D Tp

ucsd [13] 2000 238 × 158 10 11–46 49885

pets [27] 1076 384 × 288 7 0–43 18289

mall 2000 320 × 240 <2 13–53 62325

Table 2 Dataset properties: N f = number of frames, R = Resolution, FPS = frame per second,

D = Density (minimum and maximum number of people in the ROI), and T p = total number of

pedestrian instances.
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Fig. 9 The new shopping mall dataset. The top-left figure shows an example of annotated frame.

3.2 Features and Regression Models

We selected features and regression methods that are both representative and promis-

ing in terms of originally reported performance. While we could not evaluate all the

available features or methods exhaustively due to unavailability of original codes

and practical time and space constraints, we consider that these evaluations giving

an accurate portrait of the state-of-the-art.

We extracted segment, edge, GLCM, and LBP features following the methods

described in Section 2.3.1. For both ucsd and pets datasets, scene lighting were

stable so we employed a static background subtraction method based on minimum

cuts [17]3 to extract the foreground segments. For the mall dataset, gradual illumina-

tion change was observed, we therefore adopted a dynamic background modelling

method [95].

All features were perspective normalised (see Section 2.3.2) and a feature vector

was formed by concatenating the features, into x ∈R
D, which was used as the input

for the regression models. Prior to feeding the features into the regression models,

all features were scaled to the [0 1] interval. A list of the regression models and their

associated settings is given below

• Linear regression (LR)

• Partial least-squares regression (PLSR) – 10 latent components

• Kernel ridge regression (KRR) – linear kernel with four-fold cross-validation for

parameter optimisation

3 Codes available at http://www.eecs.qmul.ac.uk/∼ccloy/.
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• Least-squares support vector regression (LSSVR) – linear kernel with four-fold

cross-validation for parameter optimisation

• Gaussian processes regression (GPR) – linear kernel + RBF kernel as in [13]4.

The parameters are first initialised to random values and optimised using conju-

gate gradient optimiser.

• Random forest regression (RFR) – 500 trees, the number of parameters made

available for node splitting was fixed to square-root of the feature dimension,

and the minimum size of terminal nodes was set to 5.

3.3 Evaluation Metrics

We employed three metrics in performance evaluation. Two of the metrics are

widely used as performance indicators for crowd counting, namely mean absolute

error and mean squared error. Mean absolute error is defined as

εabs =
1

N

N

∑
n=1

|yn − ŷn|. (15)

Mean squared error is given as

εsqr =
1

N

N

∑
n=1

(yn − ŷn)
2, (16)

where N is the total number of test frames, yn is the actual count, and ŷn is the

estimated count of nth frame. Note that as a result of the squaring of each differ-

ence, εsqr effectively penalises large errors more heavily than small ones. The above

two metrics are indicative in quantifying the error of estimation of the crowd count.

However, as pointed out by [19], these metrics contain no information about the

crowdedness of the region of interest. To that end, [19] proposed another perfor-

mance metric to take the crowdedness into account – we name it as mean deviation

error, which is essentially a normalised εabs

εdev =
1

N

N

∑
n=1

|yn − ŷn|

yn

. (17)

4 Performance Comparison

In the following we report comparative evaluation results on three aspects, i.e.model

choices, feature robustness, and model sensitivity to perspective.

4 An interesting aspect not examined in our study is the effect of different kernels and their relations

with different kernel methods for crowd regression.
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4.1 Model Choices

The goals of this experiment are to (1) compare the performance of different regres-

sion models under different crowdedness levels, and (2) evaluate their generalisation

capability to unseen density. These two aspects are somewhat less explicitly studied

in existing work. However, they are essential since a regressor may behave differ-

ently under different crowdedness levels, and often, it needs to extrapolate outside

the anticipated density range in real-world scenarios.

We employed the same segment+edge+LBP features across all regression mod-

els. To simulate different crowdedness levels, we divided a dataset into two parti-

tions: one for sparse scenario and another one for crowded scenario, of which the

details are provided in Table 3.

Data Sparse scenario (no. frames) Crowded scenario (no. frames)

ucsd 1058 (≤23 people, train=400, test=658) 942 (>23 people, train=400, test=542)

pets 800 (≤10 people, train=400, test=400) 276 (>10 train=100, test=176)

mall 972 (≤30 people, train=400, test=572) 1028 (>30 people, train=400, test=628)

Table 3 Number of frames allocated for the sparse and crowded seenarios. Information inside the

brackets contain the definition of crowdedness, together with the training and test set proportions.

Model performance under different crowdedness levels: To evaluate a regressor

under the sparse scenario, we trained and tested the model using the sparse partition

of a dataset. Similar procedures were applied using the crowded partition of a dataset

to test a model under crowded scenario. Figure 10 shows the performance of the

six regression models under the sparse and crowded scenarios. Note that we only

presented the mean deviation error since other metrics exhibited similar trends in

this experiment.
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Fig. 10 Comparison of mean deviation error (lower is better) between regression models in sparse

and crowd scenarios.
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Fig. 11 Labelled ground truth vs. estimated count by Gaussian processes regression on sparse

and crowded scenarios of ucsd dataset. The estimated count is accompanied by ± two standard

deviations corresponding to a 95% confidence interval.

It is evident that models which can effectively deal with multicollinearity issue,

such as LSSVR, PLSR, and KRR, consistently performed better than other mod-

els in both the sparse and crowded partitions, as shown in Fig. 10. Specifically,

over-fitting were less an issue to the aforementioned models, which either add a

regularisation term5 into the error function or by projecting the input variables onto

a lower-dimensional space.

In contrast, LR was ill-conditioned due to highly-correlated features, thus yield-

ing poorer performance as compared to LSSVR, PLSR, and KRR. The performance

of GPR was mixed. The error rate of RFR was extremely high in the pets crowded

partition as the forest structure was too complex given the limited amount of train-

ing data. As a result, its generalisation capability was compromised due to the over-

fitting. In other datasets, RFR showed comparable results to other regression meth-

ods.

We found that existing performance metrics including the mean deviation er-

ror [19], which is normalised by the actual count (see Section 3.3), are not appropri-

ate for comparing scenarios with enormous difference in densities. Specifically, our

findings were rather counter intuitive in that all regressors performed better in the

crowded scenario than the sparse scenario. We note that the lower mean deviation

errors in a crowded scene are largely biased by the much larger actual count serv-

ing as the denominator in Equation (17). To vindicate our observation, we plotted

the performance of GPR on the ucsd dataset in Fig. 11 and found that the regressor

performance did not differ much across sparse and crowded scenarios.

5 [64] provides detailed discussion on the regularisation approach with the Gaussian process view-

point.
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Generalisation to unseen density: To evaluate the generalisation capability of a re-

gression model to unseen density, we tested it against two scenarios: (1) generalising

from crowded to sparse environment, and (2) generalising from sparse to crowded

environment. In the first scenario, we trained a regressor with the crowded partition

and tested it on the sparse partition. We switched the crowded and sparse partitions

in the second scenario. The same data partitions in Table 3 were used.

 	
 Train:Crowded - Test:Sparse	
 Train:Sparse - Test:Crowded	


 	
 Mean Abs. Error	
 Mean Sq. Error	
Mean Dev. Error	
 Mean Abs. Error	
 Mean Sq. Error	
Mean Dev. Error	


LR	
 1.7448	
 4.8034	
 0.1013	
 2.8811	
 13.0382	
 0.0860	


PLSR	
 2.0208	
 6.2892	
 0.1170	
 4.0934	
 25.4034	
 0.1184	


KRR	
 2.0284	
 6.3176	
 0.1172	
 4.1805	
 26.4459	
 0.1210	


LSSVR	
 2.0123	
 6.2202	
 0.1163	
 4.2304	
 27.2070	
 0.1225	


GPR	
 2.3081	
 7.6730	
 0.1330	
 3.8089	
 20.6921	
 0.1119	


RFR	
 6.0851	
 50.5539	
 0.3882	
 9.4671	
 134.2994	
 0.2681	


(a) ucsd	


 	
 Train:Crowded - Test:Sparse	
 Train:Sparse - Test:Crowded	


 	
 Mean Abs. Error	
 Mean Sq. Error	
Mean Dev. Error	
 Mean Abs. Error	
 Mean Sq. Error	
Mean Dev. Error	


LR	
 1.3137	
 3.1612	
 0.2765	
 2.5833	
 11.0978	
 0.1263	


PLSR	
 1.4087	
 3.6263	
 0.2835	
 2.7428	
 12.3732	
 0.1337	


KRR	
 1.2612	
 2.8237	
 0.2643	
 2.5507	
 10.7971	
 0.1248	


LSSVR	
 1.4737	
 3.8763	
 0.3083	
 2.6051	
 11.2500	
 0.1272	


GPR	
 1.4238	
 3.5463	
 0.2849	
 3.3986	
 20.1159	
 0.1631	


RFR	
 6.7138	
 56.4937	
 1.7037	
 9.3877	
 156.5036	
 0.4279	


(b) pets	


 	
 Train:Crowded - Test:Sparse	
 Train:Sparse - Test:Crowded	


 	
 Mean Abs. Error	
 Mean Sq. Error	
Mean Dev. Error	
 Mean Abs. Error	
 Mean Sq. Error	
Mean Dev. Error	


LR	
 5.4959	
 45.9012	
 0.2414	
 4.5360	
 29.5379	
 0.1225	


PLSR	
 4.9877	
 35.0432	
 0.2171	
 5.6625	
 42.8628	
 0.1499	


KRR	
 5.1070	
 36.1893	
 0.2225	
 5.8006	
 44.0924	
 0.1534	


LSSVR	
 5.0216	
 35.2623	
 0.2189	
 5.7704	
 43.6109	
 0.1526	


GPR	
 5.4969	
 39.4660	
 0.2389	
 6.9426	
 59.8687	
 0.1835	


RFR	
 7.1080	
 64.0175	
 0.3127	
 8.6994	
 95.4601	
 0.2276	


(c) mall	


Table 4 Comparison of generalisation capability of different regression models to unseen density.

Best performance is highlighted in bold.

Regression models that worked well within known crowd density may not per-

form as good given unseen density. In particular, as shown in Table 4, simple linear

regression models such as LR and PLSR returned surprisingly good performance in

both the ucsd and mall datasets, outperforming their non-linear counterparts. The

results suggest that the regression assumption of linear regression models, though

simple, could be less susceptible to unseen density and matched closer with the

feature-to-density trend in the considered scenarios. The performance of RFR was

poorest among the regression models. The results agree with our expectation about

its weakness in generalisation as discussed in Section 2.3.3.

It was observed that the generalisation performance reported in Table 4, were

much poorer than those obtained when we trained and tested a regressor using the

same density range. In particular, the regressors tend to overestimate or underesti-

mate depending on the extrapolation direction, as shown in Fig. 12. In addition, the

further the extrapolation goes outside the training range, the larger the error in the

estimation due to difference between the learned model and the actual feature-to-

density trend. Note that there was no concrete evidence to show that generalising
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from crowded to sparse environment was easier than generalising from sparse to

crowded scene.
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Fig. 12 Generalisation to unseen density: Labelled ground truth vs. estimated count by Gaussian

processes regression on mall dataset. (a) Training on crowded partition and testing on sparse parti-

tion results in over-estimation, and (b) doing the other way round results in under-estimation. The

estimated count is accompanied by ± two standard deviations corresponding to a 95% confidence

interval.

4.2 Feature Robustness

The objective of this experiment is to compare the performance on using different

types of features, e.g. segment-based features, edge-based features, texture-based

features (in particular GLCM and LBP), as well as their combination, given different

crowdedness levels in a scene. As in Section 4.1, we conducted the evaluation using

sparse and crowded partitions. The results are depicted in Fig. 13 and Fig. 14.

Robustness of individual features: It is observed that different features can be

more important given different crowdedness levels. In general, the averaged per-

formance suggests that the segment-based features were superior to other features.

This is not surprising since the foreground segment carries useful information about

the area occupied by objects of interest and it thus intrinsically correlate to the num-

ber of pedestrians in a scene. However in the ucsd and mall datasets, a decrease

in performance gap was observed between the edge or texture-based features and

the segment-based features when we switched from sparse partition to crowded par-

tition. This observation is intuitive since given a more crowded environment with

frequent inter-object occlusion, segment-based features would suffer, whilst edge

and texture that inherently encoded the inter-object boundary and internal patterns

would carry more discriminative visual cues for density mapping.
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Fig. 13 Sparse partition: the mean deviation error (lower is better) vs. different features.

Does combining features help?: From the averaged performance, it is observed

that combining different features together could lead to a better performance in gen-

eral. For instance, when the LBP-based features were used in combination with the

segment and edge-based features, the mean deviation error was reduced by 2%-

14%. This finding supports the practice of employing a combination of features (see

Table 1).

Nevertheless, when we examined the performance of individual regression mod-

els, it was found that combining all the features did not necessarily produce better

performance. For example, using the segment-based features alone in the crowded

mall partition one would get higher performance; or using the edge features alone

with RFR gained more accurate counts in the sparse ucsd partition. The results sug-

gests the need for feature selection to discover the suitable set of features given

different crowd densities and different regression models.
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Fig. 14 Crowded partition: the mean deviation error (lower is better) vs. different features.

4.3 Geometric Correction

Geometry correction is critical in crowd counting since objects at different depths

of the scene would lead to huge variation in the extracted features. To minimise the

influence of perspective distortion, correction is often conducted in existing stud-

ies but often without explicit analysis on how its sensitivity would affect the final

counting performance. In this experiment, we investigated the sensitivity of crowd

counting performance to a widely adopted perspective normalisation method de-

scribed in [13] (see Section 2.3.2). Evaluation was carried out on the ucsd dataset,

with 800 frames for training and the remaining 1200 frames held out for testing

following the partitioning scheme suggested in [13].

Effectiveness of geometric correction: It is evident from Table 5 that perspec-

tive correction is essential in achieving accurate crowd density estimation. Specif-
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ically, depending on different regression models, an improvement of around 20%

was gained in the mean absolute error by applying perspective correction.

 	
 With Perspective Normalisation	
 Without Perspective Normalisation	


 	
 Mean Abs. Error	
 Mean Sq. Error	
 Mean Dev. Error	
 Mean Abs. Error	
 Mean Sq. Error	
 Mean Dev. Error	


LR	
 2.1608	
 7.1608	
 0.1020	
 2.6308	
 10.2558	
 0.1288	


PLSR	
 2.0267	
 6.6717	
 0.1007	
 2.5792	
 10.0025	
 0.1271	


KRR	
 2.3433	
 8.4800	
 0.1166	
 2.9167	
 11.6133	
 0.1392	


LSSVR	
 2.1100	
 6.6383	
 0.1014	
 2.5825	
 9.6925	
 0.1262	


GPR	
 2.1425	
 7.1358	
 0.1055	
 2.7833	
 10.5200	
 0.1328	


RFR	
 2.3392	
 7.9708	
 0.1129	
 2.8492	
 10.8492	
 0.1332	


Average	
 2.1871	
 7.3429	
 0.1065	
 2.7236	
 10.4889	
 0.1312	


Table 5 Comparison of mean absolute error (lower is better) on ucsd dataset when crowd density

was estimated with and without perspective correction.

Sensitivity to errors in geometric correction: It is interesting to examine how a

minor error introduced by manual measurement will propagate through the counting

by regression pipeline. We manually measure the heights, denoted as h1 and h2, of

a reference pedestrian at two extremes of the ground plane rectangle of the ucsd

dataset (see Fig. 15). We varied h2, the height at the further extreme at +/− 5

pixels with a step size of 1 pixel. Given a frame with resolution of 238 × 158, this

is a reasonable error range that is likely to occur during the manual measurement.

Perspective maps within this pixel deviation range were generated, and the crowd

counting performances of different models were subsequently recorded.

A minor measurement error in h2 could result in a great change in perspective

map, as shown in Fig. 4.3. Specifically, when h2 had a smaller value, e.g.h2 −5 pix-

els, a steeper slope in the perspective normalisation weight vector was observed. On

the contrary, given h2 +5 pixels, the object size at cd was larger so the perspective

normalisation weight vector had a lower slope. Using these different perspective

maps we evaluated performances of different regression models.

It is clear from the results depicted in Fig. 16 that different perspective maps

will lead to drastic difference in estimation performance, e.g. as much as 10% of

difference from that obtained using initial measurement. The results suggest that

the initial measurement h2 may not be accurate, since more accurate counts were

obtained at h2 −5 pixels. A subsequent validation through averaging multiple mea-

surements confirmed that the initial measurement indeed deviated from the accurate

value. Hence one should not rely on a single round of measurement, but to seek

for more reliable perspective statistics by averaging measurements obtained across

multiple attempts. Note that deviation from the ‘exact’ perspective map may not

necessarily lead to a bad consequence sometimes as the steeper weight slope will

counteract the problems of poor segmentation and inter-object occlusion at the back

of the scene.
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Fig. 16 Mean absolute error on ucsd dataset as a result of varying measurement errors in h2: most

regression methods experienced drastic performance change as much as over 10% given just a

minor deviation in the manual measurement.

5 Crowd Profiling

One of the ultimate goals of crowd counting is to profile the crowd behaviours and

density patterns spatially and temporally, e.g.how many people in a region of interest

at what time and predicting the trend. The profiling statistic can serve as useful

hints for controlling crowd movements, designing evacuation routes, and improving

product display strategy to attract more crowds to a shop. An example of such a

crowd profiling application is depicted in Fig. 17, of which the local density map

was generated through learning cell-level counts using separate regressors. A more

scalable way based on a single regression model with multiple outputs can also be

employed [15].

The top row of Fig. 17 shows the footage frames of a shopping mall view overlaid

with heat maps, of which the colour codes representing the crowd density, with

larger crowd represented by red squares and smaller crowd with blue squares. An

interesting usage of the crowd density map is to study the crowd movement profile

in front of a shop, e.g.the two selected regions (blue and red) in Fig. 17. The number

of people appear in these areas over time can be profiled as shown in the two plots

at the bottom of Fig. 17. In addition, activity correlation between these two regions
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Fig. 17 One of the goals of crowd counting is to profile the crowd behaviours and density patterns

spatially and temporally, e.g. how many people in a region of interest at what time (see text for

details).

can be computed to examine their crowd flow dependency, as shown in the last plot.

Analysing these local crowd patterns over time and their correlations globally can

reveal useful information about the shop visitors, such as their interests towards

the product display, walking pace, and intention of buying, without the need for

registering individual’s identities therefore minimising privacy violation.

The crowd counting application can benefit from extensions such as functional

learning of regions [75] (e.g. sitting area, entrance of shops) to better reflect the

activity modes at different regions; or combination with cooperative multi-camera

network surveillance [32, 52] to model the density and activity correlation in the

camera network [94].
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6 Findings and Analysis

We shall summarise our main findings as follows:

Regression model choices: Our evaluation reveals that regression models that are

capable of dealing with multicollinearity among features, e.g.KRR, PLSR, LSSVR

generally give better performance than other regression models such as LR and

RFR. The aforementioned models, i.e.KRR, PLSR, and LSSVR have not been sig-

nificantly explored in existing counting by regression literature.

In general, linear model is expected to give poorer performance as its linear prop-

erty imposes a limitation on the model in capturing only the linear relationship be-

tween the people count and low-level features [4,22,46]. In most cases especially in

crowded environments, the visual observations and people count will not be linearly

related. Nonlinear methods in principle allow one to model arbitrary nonlineari-

ties between the mapping from input variables to target people count. In addition,

employing a nonlinear method would help in remedying the dimensionality prob-

lem since observations typically exhibit strong correlation in a nonlinear manifold,

whose intrinsic dimensionality is smaller than the input space [6].

However, our study suggests that the actual performance of a regression model

can be quite different from what one may anticipate, subject to the nature of data,

especially when it is applied to unseen density. Despite all the evaluated regression

techniques suffer poor extrapolation beyond the training data range, simple linear

regression models such as LR, is found to be more resistant towards the introduction

of unseen density. Its performance can be better than other nonlinear models such

as GPR and LSSVR.

We have emphasised that it is impractical to assume the access to all full den-

sity range during the training stage, thus the capability of generalising to unseen

density is critical. An unexplored approach of resolving the problem is to transfer

the knowledge from other well-annotated datasets that cover wider range of crowd

density. This is an open and challenging problem in crowd counting task given dif-

ferent environmental factors of source and target scenes, e.g. variations in lighting

conditions and camera orientations.

Features selection: Our results suggest that different features can be more use-

ful given different crowd configurations and densities. In sparse scenes, foreground

segment-based features alone can provide sufficient information required for crowd

density estimation. However, when a scene becomes crowded with frequent inter-

object occlusions, the role of edge-based features and texture-based features be-

comes increasingly critical. We also found that combining all features do not always

help, depending on the dataset and regression model of choice. These findings sug-

gest the importance of feature selection, i.e.selecting optimal feature combinations

given different crowd structures and densities, through discarding redundant and ir-

relevant features. The feature selection problem has been largely ignored in existing

crowd counting research.
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Perspective correction: The performance of counting by regression can be severely

influenced by the accuracy of perspective weight estimation. Perspective map gener-

ation based on manual measurement is simple but could be error-prone. We suggest

that multiple measurements are necessary to ensure conciseness of the estimation

normalisation weights. Robust auto-calibration methods such as [40, 50] are also

recommended as an alternative to the manual approach.

7 Further Reading

Interested readers are referred to the following further readings:

• [32] for a general discussion on applications and advances in automated analysis

of human activities for security and surveillance

• [33] for a comprehensive treatment of visual analysis of behaviour from algorithm-

design perspectives

• [37] for a survey on crowd analysis

• [12] for a detailed discussion on using Bayesian techniques for regression-based

counting
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