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ABSTRACT We propose a strategy that focuses on estimating the number of people in a crowd, one of the 

aims of crowd analysis, using static images or video images. While manual feature extraction was not 

performed with pixel and regression-based methods in the first studies on crowd analysis, recent studies use 

Convolutional Neural Networks (CNN) based models. However, it is still difficult to extract spatial 

information such as position, orientation, posture, and angular value for crowd estimation from a density map. 

This study uses capsule networks and routing by agreement algorithm as an attention module. Our proposed 

approach consists of both CNN and capsule network-based attention modules in a two-column deep neural 

network architecture. We evaluate our proposed approach compared with other state-of-the-art methods using 

three well-known datasets: UCF-QNRF, UCF_CC_50, UCSD, ShangaiTech Part A, and WorldExpo'10 . 

INDEX TERMS Capsule attention, crowd counting, density map, multi-column CNN. 

I. INTRODUCTION 

Population growth and rapid urbanization gather people 

together and require planning in order to prevent crowd 

congestion. While the management and surveillance of 

provocative events in city squares in the past years have been 

drawing attention, counting people at points such as queues 

and shopping areas and monitoring their contact situations 

have become critical for world health due to the Covid-19 

pandemic in the last year. 

Crowd management covers many topics such as flow 

analysis, urban planning, public safety management, disaster 

management, and defense to prevent congestion in events and 

open spaces. Crowd analysis is a tool for crowd management. 

It examines the number, distribution, and behavior of people 

in various scenes using images and videos. Analysis of the 

numbers and spatial distributions of people is basically 

grouped into recognition, tracking, and counting. 

Homographic, pixel and color-based approaches project 

local image features from each sensor onto a common plane to 

provide general object detection. Until the effectiveness of 

CNN-based approaches was proven in the literature, 

homographic, pixel, and color-based approaches were used for 

people recognition, tracking, and crowd counting. Such 

approaches are particularly vulnerable to variables such as 

light and size [1]-[6]. A deep neural network is used to enable 

perception by utilizing end-to-end multiview  

information. However, in the people counting problem, there 

are frontal, profile, and overlapping scenes, and therefore, 

most studies focus on solving these problems. For this, some 

studies focus on mean area variational inference, probability 

occupancy mapping (POM), and estimating the posterior 

probability distribution of people at the scene. One of the latest 

studies being discussed uses Conditional Random Fields 

(CRFs) for multi-view pedestrian detection [7] - [13]. 

However, crowd analysis remains a research area that requires 

further study. Convolutional Neural Network (CNN) based 

studies are frequently recommended because of the path and 

pattern learning ability in the field of computer vision. Every 

day, new research is undertaken to determine the number of 

people, their behaviors, and their sizes in images, and to count 

people in very dense crowds. 

In the light of these observations, our study proposes an 

attention-based model which uses the ability of the two-

column CNNs to learn useful features and also uses the spatial 

information acquisition feature of the Capsule Networks 

(CapsNet). The effect of CapsNet, which has not been widely 

investigated for crowd analysis as an attention module, is 

examined on various datasets and shows that the results are 

comparable with current studies in the literature. 

The main contributions of our research can be summarized 

as follows: 

 

 Although object recognition-based CNN approaches to 

crowd counting constitute an important approach that 

has far exceeded the success of pixel and color-based 

approaches in the past, they have unresolved problems in 
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taking on spatial information that varies according to 

scale. 

 Predictions for spatial information cannot be solved by 

the state of the art CNNs with a CapsNet-based 

approach; using the routing by agreement algorithm in 

case of position, orientation, posture, and angular value 

change, the aim is to learn the spatial features 

representing the object. In this study, estimation is made 

on the spatial values of the crowded group. The unique 

orientations, postures, and angular values of individuals 

and groups in crowded images are important in 

predicting crowd density estimation. Using these spatial 

features, crowd behavior analysis may be the subject of 

future studies. 

 Experiments on five challenging datasets demonstrate 

that the method we propose achieves the best 

performance among recent studies except for Mean 

Absolute Error on the UCF-QNRF dataset. 

 The effects of kernel selection and model architecture of 

the proposed method with ablation studies are also 

examined through experiments. Through model 

architecture ablation studies, the contribution of using 

CapsNet and CNN attention mechanisms separately and 

together has been shown. 

The remainder of the paper is organized as follows: after the 

related work in Section II, we cover the details of our proposed 

method in Section III. Section IV introduces our datasets, 

evaluation metrics, experimental results, and ablation studies. 

We conclude with a short discussion in Section V. 

II. RELATED WORK 

Image analysis and crowd counting approaches are a field of 

study that draws the attention of researchers and finds a 

counterpart in practical life. In this paper, we research CNN 

and attention-based crowd analysis and counting approaches. 

A. CNN-BASED APPROACHES 

Depending on the regression between image features and 

crowd size, regression-based approaches can be used to 

estimate the number of people in crowds. The regression 

approach is used to extract density maps from the image with 

CNN-based approaches. Zhang et al. [14] used the CNN 

regression model to estimate the number of people in a single 

image in two configurations. Zhang et al. [15] proposed a 

multi-column CNN model to prevent distortions arising from 

a perspective using the MCNN. Sam et al. [16] selected 

Switch-CNN, the crowd counting architecture with the highest 

performance, and made evaluations over a multi-column CNN 

architecture. Sindagi et al. [17] used Pyramid from Context 

with the CNN model to estimate crowd density numbers with 

a high degree of accuracy by using global and local contextual 

information.  Shi et al. [18] focused on learning a negative 

correlation to develop generalizable features. With this 

method, learning consisting of unrelated regressors with 

robust generalization abilities was achieved by managing their 

internal diversity. Zhu et al. [19] used different regression 

networks to calculate crowd density.  

Although regression-based approaches are successful in 

density estimation, they do not perform well enough in low-

density situations and when localization is required. CNN-

based approaches can successfully perform tasks such as 

classification, recognition, and segmentation in many areas. 

They are also used in crowd analysis studies such as density 

estimation, crowd counting, localization, tracking, and 

surveillance. Different CNN approaches are also included in 

current studies to overcome difficulties such as perspective 

distortions and non-uniform density changes. 

The first handling of the problem of counting people from 

crowd images and videos using CNN was realized by studies 

[20] and [21]. While the CNN regression model was used for 

the pedestrian counting task in [20], a classification process at 

five levels was carried out on the density image in [21]. [22], 

which adopts a patch-based approach over a single image for 

the person counting task, proposes an end-to-end estimation 

method. The CNN approach, in which the most suitable 

regression can be selected automatically, is among the current 

studies in an inspiring method for combining the people 

counting task with other tasks [23]. Shang et al. [24] 

emphasize the solution to the problem of decreasing accuracy 

in changing scenes with the cross-scene counting model. 

Successful results were obtained by capturing semantic 

information from the image in the CrowdNet study, which 

suggested a combination of shallow and deep CNN models 

[25]. Similarly, a cascaded CNN model has been proposed that 

can predict density mapping and classify people counted at 

different intensity levels simultaneously [26]. Mundhenk et al. 

[27] use density maps produced by the people counting model 

to carry out counting, tracking, and perception tasks together. 

A method that combines counting people to calculate the 

speed of people passing by in a higher-level cognitive task is 

proposed in [28]. Sindagi et al. [29] and [30] propose 

approaches where both people counting and density 

estimation can be classified simultaneously with the ResNet-

based model. In a context-aware scale aggregation CNN-

based crowd counting technique (CASA-Crowd) [31], the 

focus was on obtaining features that change with depth, 

changing scale, and perspective. Also, an extended 

convolution with varying filter sizes was used to obtain 

contextual information. On the other hand, due to different 

dilation ratios, a variation in receptive field size causing 

perspective distortion was overcome.  

Zhang et al. [32] used an approach called CSRNet and aimed 

to expand the feature area and create quality density maps by 

making modifications in pooling operations. Shi et al. [33] 

proposed the perspective-aware CNN model to reduce the 

most common perspective problem in crowd prediction. Wan 

et al. [34] employed a residual regression approach using 

correlation information between samples, thus aiming to learn 

more intrinsic characteristics in order to increase the 

generalization capacity. Dai et al. [35] employed a model 
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which consists of three convolution blocks to withstand 

varying expansion rates and selected smaller filter sizes than 

in other studies to capture contextual information. The pre-

trained VGG-16 network is also used as a base model in this 

study [35]. Jiang et al. [36] proposed a Multi-Level 

Convolutional Neural Network (MLCNN) architecture which 

first learns multilevel density maps adaptively and then 

combines them to estimate the number of people in crowds. 

Oñoro-Rubio et al. [37] proposed a model based on the 

MCNN [15] model, which works by extracting features in 

different resolutions and without using perspective 

information on crowd distribution and crowd number to 

overcome perspective distortions. On the other hand, MCNN, 

a multi-branched CNN approach, was recommended in [38], 

where a three-dimensional filtering approach was used to learn 

the features of the image, and thereby aimed to analyze 

different levels of information. Yang et al. [39] proposed a 

multi-column CNN architecture for variable density maps and 

suggested that they achieved more successful results in this 

way. Tian et al. [40] suggested a method using density 

mapping for counting people in scenes with varying densities. 

In this study using a feature fusion network, information on 

different intensity levels was obtained more effectively. Gao 

et al. [41] proposed a Perspective crowd counting CNN 

(PCCNet) and crowd counting method to reduce errors arising 

from high similarity and perspective changes in appearance. 

Sam et al. [42] used a multi-column CNN architecture to 

position each person in the crowd for dense crowd counting. 

This study also used the bounding box method to locate 

people’s heads in the crowd. The performance ranged from 

successful in medium crowd images to not robust in very 

dense images. Guo et al. [43] used scale collection modules 

for high-resolution density maps to solve the scale diversity 

problem. Shen et al. [44], based on the success of GAN 

models in image distortion, used adversarial cross-scale 

consistency pursuit (ACSCP) with four sub-patches on a high-

quality density map for crowd counting. Using the contrast 

loss, the distance between the main density map and the 

merged image density map was calculated to minimize the 

loss. Liu et al. [45] proposed a combined method that includes 

both regression and perceptual counting and adaptively 

decides on the appropriate counting mode for different image 

positions. Object detectors in detection-based methods can 

determine the position of each person. Thus, it enables crowd 

counting and localization [46], [47], [48]. The model proposed 

in [49] is similar to the head detector training model in [32]. 

Instead of using the general object sample into the network as 

suggested in [50], it offers scale-sensitive samples using a 

scale map. Scale maps can estimate object scales, and 

accordingly, this is a more effective approach to direct 

suggestions than is making comprehensive searches in all 

scales. 

B. ATTENTION-BASED APPROACHES 

Hu et al. [50] suggested an attention mechanism called SENet 

to focus on valuable features in the image. More successful 

results were obtained by combining channel and spatial 

attention mechanisms in [51] and [52]. Although attention 

models were first used in the field of natural language 

processing such as machine translation, they have been 

achieving significant successes for a while in studies such as 

image-based object detection, classification, segmentation, 

and face recognition [53], [54], [55], [56]. By combining the 

advantages of [59] and [50] and [57], the method proposes a 

global context module, and thus image classification is also a 

significant success. Li et al. [58] showed that an attention 

mechanism that can dynamically select target sizes of neurons 

can provide successful results on images. [60] ADCrowdNet, 

which consists of two CNN networks, first predicts crowded 

areas of the image, and this attention model then generates 

high-quality density maps. A feature fusion attention network 

(FFANet) is recommended for crowd counting [61]. FFANet 

is implemented in conjunction with the VGG16 network, and 

features extracted from crowd images are combined. 

Knowledge development operations on multi-level features 

are carried out by Feature Fusion Attention Module (FFAM), 

which is now further enhanced by Block (RB). These 

properties are processed by the Compression Module (CM) to 

create a density map. 

III. THE PROPOSED METHOD 

In crowd analysis, we propose an innovative approach to 

create a robust density map. Using CNNs and CapsNet 

together with an attention mechanism, a more efficient density 

map for crowd estimation is obtained. CNNs’ success in 

crowd analysis is quite accurate. However, there are limited 

resources available in the literature regarding the application 

of CapsNet in this field, due especially to the complexity of 

the process and the novelty of this approach. Nguyen et al. 

[62] used CapsNet in addition to CNN while determining 

types of attacks in static and video images. Algamdi et al. [63] 

used a CapsNet architecture to recognize human action using 

frames from videos without explicit motion information. 

In the proposed approach the pre-trained VGG-16 model is 

used as the base model. This model is divided into two 

columns after the 4th block of VGG-16; thus, a two-level 

feature map is obtained. In the second column, there are two 

different modules, the convolution and capsule attention 

mechanism modules. CapsNet learns to span the space of 

variation in scenes. These variations include density, 

sparseness, and direction of the crowd. Viewpoint invariant 

knowledge results from CapsNet transformation matrices that  
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FIGURE 1.  Overall architecture representation of the proposed model. The resized images are used in the base module input. Then the model is 
divided into two columns and the convolutional and capsule attention modules are cascaded in one column. The last module consists of compressing 
two columns. 

 

have learned to encode the inherent spatial relationship 

between a part and a whole, and this knowledge automatically 

generalizes to novel viewpoints. Using CapsNet, which is 

robust to affine transformations, more stable results were 

expected to be obtained for crowd density estimation. While 

the architecture proposed for this purpose benefits from CNN's 

success and speed in object recognition, CapsNet's dynamic 

routing algorithm is used as a parallel attention mechanism 

that allows each capsule of one level to participate in some 

active capsules of the following level and ignore the others 

[68]. The routing-by-agreement algorithm allows a prior view 

of the shape of a crowd to be used to support the segmentation 

of the individuals in the scene, and it eliminates the need to 

make higher-level decisions in the pixel domain. This should 

allow the proposed model to recognize multiple people in the 

crowd image even if people mostly overlap.  By combining 

CNNs and the CapsNet attention approach, we avoid the 

inefficiency of the CNN model. This inefficiency is expected 

to increase exponentially due to overlap. In the last stage, a 

density map is created using the feature maps obtained by 

compressing the base model and both attention modules. It is 

suggested that the CapsNet attention mechanism, which can 

keep spatial and temporal information, should be applied 

together with CNNs and used for crowd analysis by going 

beyond its original purposes. 

A. BASE MODULE 

The first 4 convolutions comprise a pre-trained VGG-16 

network in which blocks have been used and fully connected 

layers have been removed [64]. A BN layer has been added 

behind all convolutional layers in the VGG-16 network. The 

base model consists of 10 convolutional layers. Except for the 

first convolution block, the max-pooling operation has been 

used in the others. The input images have been resized to 

224×224×3. The simple feature map of 28×28×512 size 

obtained as a result of convolution processes continues to be 

processed in two columns. It is used directly in the 

compression module of a column. The other column is used as 

the input of the convolution attention module. The proposed 

model architecture is shown in Figure 1. 

B. CAPSULE NETWORK 

The basic concept is presented in experiments by Hubel and 

Wiesel [65], and modeled by Fukushima [66], and Lecun et al. 

CNNs, the first successful application of which was developed 

by [67], are frequently preferred in computer vision 

applications due to their accurate results. 

Feature maps of the image are obtained at the outputs of the 

convolution layers in the CNNs. The dimension reduction 

performed by average-pooling also causes information loss. 

Besides, the overlapping of the objects causes the CNNs to 

have difficulties in object recognition, classification, and 

segmentation [68]. CapsNet and dynamic routing algorithm 

[68], [69] have been proposed as a solution to the problems for 

which CNNs are insufficient. It shows the decoding structure 

with a layer called DigitCaps. DigitCaps consists of two full 

connectivity layers controlled by ReLU and tanh. The 

Euclidean distance between the images used in training and 

the output of the sigmoid layer is minimized. DigitCaps has a 

strategy based on using the correct label as a reconstruction 

target in training. 

CapsNet’in 𝑠𝑗 input is shown in equation (1): 𝑠𝑗 = ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖𝑖  (1) 
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The total value of the in a capsule 𝑠𝑗 input is a weighted sum 

of all prediction vectors �̂�𝑗|𝑖from the capsule of the previous 

layer. Here �̂�𝑖  is the output of the previous layer multiplied by 

the weight matrix 𝑊𝑖𝑗 and is calculated as in equation (2). �̂�𝑗|𝑖 =  𝑊𝑖𝑗 . �̂�𝑖  (2) 

Where 𝑣𝑗, 𝑗𝑡ℎ is the output vector of the capsule, 𝑠𝑗, 𝑗𝑡ℎ is 

the input vector of the capsule, ‖𝑠𝑗‖  is the module of the 

vector length 𝑠𝑗. The length of the output vector of the capsule 

layer represents the probability that the entity represented by 

the capsule is present in the input. For this reason, a nonlinear 

activation function is used to compress the short vector to a 

length close to 0 and the long vector to a length less than 1 and 

close to 1. It is scaled to 0.5 in this study instead of 1 for the 

squash function. Therefore, the squashing equation is changed 

as in (3). With this approach, it has been shown that the 

accuracy of CapsNet increases by between 0.5-1.59% [70]. 

           𝑣𝑗 = 𝑆𝑞𝑢𝑎𝑠ℎ(𝑠𝑗) =  ‖𝑠𝑗‖21+ ‖𝑠𝑗‖2  ⟹  ‖𝑠𝑗‖20.5+ ‖𝑠𝑗‖2   (3) 

For the PrimaryCaps layer, the initial value of 𝑏𝑖𝑗  selected as 

0 should be calculated as in equation (4). In PrimaryCaps layer 

output 𝑐𝑖𝑗  the coupling coefficient is defined as equation (5) 

and an iterative dynamic routing process is performed. 𝑏𝑖𝑗 + �̂�𝑗|𝑖. 𝑣𝑗 ⟹ 𝑏𝑖𝑗  (4) 

  𝑐𝑖𝑗 = 𝑒𝑥𝑝 (𝑏𝑖𝑗)∑ 𝑒𝑥𝑝𝑘 (𝑏𝑖𝑘) (5) 

Although difficult to solve by classical CNNs with CapsNet, 

the thickness, scale, shift, etc. representing the object can be 

used to successfully recognize the object through capsules 

consisting of a group of neurons, even when the position, 

orientation, posture, and angular value change. It has been 

suggested that the characteristics be learned by routing-by-

agreement [68]. 

C. ATTENTION MODULES 

CNNs, recurrent neural networks, and attention models are 

successful applications for image and natural language 

processing. In this study, the attention module is used in both 

the CNNs and the CapsNet. Thus, the desire is to benefit from 

the robustness and the spatial information of the CapsNet used 

for this purpose for the first time in crowd analysis. 

1) CONVOLUTIONAL ATTENTION MODULE 

The input of the convolution attention module is taken as 

28×28×512 from the 10th convolution layer of VGG-16, 

which was previously used as the base model. Feature map 

convolution is obtained by averaging a fully connected 

network that sums ReLU and plane information into point 

information and then uses the ReLU and tanh activation 

functions respectively. In the last step, the attention 

convolution is multiplied. The detail of the convolution 

attention module is shown in Figure 2. Here, the convolution 

input dimensioning equation 𝑝𝑠𝑐 is represented by the length 

M, the width N, and the number of channels Q. The adjustment 

value used after the average pooling is calculated as in 𝑝𝑎 

equation (6). Its size is obtained as 1×1×Q. The aim here is to 

improve the learning ability of the model by using nonlinear 

functions. Two fully connected layers are applied to 𝑝𝑎, one 

with the activation function ReLU (𝑝1) and the other with tanh (𝑝2). The weight matrices corresponding to the fully 

connected layers are shown as 𝑊1 and 𝑊2, while the offset is 𝑏1 and 𝑏2. The size of 𝑝2 obtained as a result of these two fully 

connected layers is 1×1×Q and is shown in equations (7) and 

(8). The 𝑝3 equation (9) is obtained from the product of 𝑝2 

obtained from the input and 𝑝𝑠𝑐. In the next step, the 

convolution attention 𝑝𝑐𝑜𝑛𝑣−𝑎𝑡𝑡 equation (10) is calculated by 

summing 𝑝3 and 𝑝2. 

 𝑝𝑎𝑞𝑘 = 1|𝑀𝑁| ∑ ∑ 𝑞𝑘𝑖𝑗𝑁𝑗=0𝑀𝑖=0  (6) 

 𝑝1 = 𝑅𝑒𝐿𝑈(𝑊1𝑝𝑎 + 𝑏1) (7) 

 𝑝2 = 𝑡𝑎𝑛ℎ(𝑊2𝑝1 + 𝑏2) (8) 

 𝑝3 = 𝑝𝑠𝑐 ∗  𝑝2 (9) 

 𝑝𝑐𝑜𝑛𝑣−𝑎𝑡𝑡 = 𝑝𝑠𝑐 +  𝑝3  (10) 

 

 

FIGURE 2.  Convolutional attention module. 

 

2) CAPSULE ATTENTION MODULE 

In order to create the Capsule attention map, it is necessary to 

calculate high-level DigitCaps using PrimaryCaps. The major 

disadvantage of CapsNet is the need for processing power. To 

avoid this problem, one-dimensional convolution and linear 

activation functions are applied in fully connected layers [70]. 

Thus, the PrimaryCaps size is obtained as 100×(10×16). 

PrimaryCaps are reshaped and vectorized. Thus, using the 

ReLU and tanh activation functions, it is simulated to a fully 

connected neural network and calculated as in equations (11) 

and (12).   
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TABLE 1. Descriptions of the crowd datasets [71]. 

Datasets Description 
#of 

Images 
Resolution Min Ave Max 

Overall 

Count 
Accessibility 

UCF-QNRF [72] 
Crowd Counting and 

Localization 
716 

400×300 

9000×6000 
9 123 578 88488 Yes 

MALL [73] People counting 
2000 320 × 240 13 - 53 62325 Yes 

UCF_CC_50 [74] Density Estimation 
50 

Variable 94 1279 4543 63974 Yes 

UCSD [75] People counting 
2000 238 × 158 11 25 46 49885 

Yes 

Shanghai Tech Part A, Part B [76] Crowd Counting 
482 768×1024 33 501 3139 241677 Yes 

WorldExpo’10 [77] Cross Scene Crowd Counting 
3980 576 × 720 1 50 253 199923 Yes 

CUHK [78] Crowd Behavior 
1535 

Variable 49 815 12865 - Yes 

Here 𝑝𝑠1 and 𝑝𝑠2 are the results of two fully connected 

layers, 𝑊3 and 𝑊4 are the weight matrices of these layers, and 𝑏3 and 𝑏4 offset values. For the last step of this module, 𝑝𝑠3 is 

calculated from the products of 𝑝𝑠 and 𝑝𝑠2 as in equation (13). 

Here, by summing 𝑝𝑠 and 𝑝𝑠3, the M×N×Q dimensional 

capsule attention map called 𝑝𝑐𝑎𝑝𝑠−𝑎𝑡𝑡 is obtained as shown in 

equation (14). The detail of the capsule attention module is 

shown in Figure 3. 

 𝑝𝑠1 = 𝑅𝑒𝐿𝑈(𝑊3𝑝𝑠𝑟 +  𝑏3) (11) 

 𝑝𝑠2 = 𝑡𝑎𝑛ℎ(𝑊4𝑝𝑠1 +  𝑏4) (12) 

 𝑝𝑠3 = 𝑝𝑠 ∗  𝑝𝑠2  (13) 

 𝑝𝑐𝑎𝑝𝑠−𝑎𝑡𝑡 = 𝑝𝑠 +  𝑝𝑠3 (14) 

 

FIGURE 3.  Capsule attention module. 

 

3) COMPRESSION MODULE 

After obtaining the spatial and temporal information among 

multi-level features with two different attention modules, the 

two attention maps as CM are compressed into a single 

channel crowd density map, as shown in equation (15). 

 𝐶𝑀 = [𝑝𝑐𝑜𝑛𝑣−𝑎𝑡𝑡 , 𝑝𝑐𝑎𝑝𝑠−𝑎𝑡𝑡]  (15) 

IV. EXPERIMENT and ABLATION STUDIES 

In this study, the datasets used for crowd analysis in the 

literature are summarized and the model we propose with three 

different datasets is compared with the recent studies in the 

literature. Evaluation metrics for performance analysis and 

ablation studies for the proposed model are also included. 

A. DATASETS 

Video and static images collected for various purposes and 

from different areas for crowd analysis are shared as open 

datasets. These images are used to test the performance of 

implementations for tasks such as estimating the number of 

people, density estimation, localization, and behavior analysis, 

and to compare them with other studies in the literature. 

Datasets used for crowd analysis studies are shown in Table I. 

The UCF-QNRF dataset is a more recent dataset prepared 

for crowd counting and localization. It is challenging due to 

the high-density variation and resolution change [72]. The 

MALL dataset consists of images collected from a security 

camera in a shopping mall. Generally, it is used indoors for 

counting people [73]. UCF_CC_50 is a challenging dataset 

used for density mapping, containing information on real 

organization moments in stadiums, squares, and concert 

venues, and the gathering and dispersal times of crowds of 

different densities [74]. The UCSD dataset is collected from 

images taken from streets that are public environments for the 

people counting problem [75]. The ShanghaiTech dataset 

consists of two parts, named A and B. Part A consists of 

images taken randomly from the internet, and Part B consists 

of images collected from a metropolitan street in Shanghai 

[76]. WorldExpo'10 is a dataset prepared for inter-scene crowd 

counting but its use for accuracy assessment is insufficient due 

to its low density [77]. CUHK is a published dataset for 

behavioral analysis obtained from airports, shopping malls, 

parks, and streets [78].  

The UCF-QNRF, UCF_CC_50, UCSD, ShangaiTech Part 

A, and WorldExpo'10 datasets were used for this study. These 

datasets were resized and adapted to base model input in order 

not to be adversely affected by inputs with different 

resolutions. The MALL and CUHK datasets in Table 1 were  
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FIGURE 4. Qualitative results of the ground truth and estimated crowd count are shown respectively column from left to right on the datasets UCF-
QNRF, UCF_CC_50, UCSD, ShangaiTech Part A, and WorldExpo’10.  

 

not used in the study because the MALL consists only of 

images indoors and the CUHK relates to crowd behavior. 

B. EVALUATION METRICS 

By using the proposed model, the number of people is 

estimated more effectively from the density map. For this 

purpose, alpha (𝜎) and delta (𝛿) parameters of Gaussian cores 

are used as in equation (16) to calculate the ground truth of the 

density map. 

        𝑌 =  𝛿(𝑐 − 𝑐𝑖) ∗ 𝐺𝜎 , (𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑘𝑒𝑟𝑛𝑒𝑙 𝜎 = 4) (16) 

For pre-trained base model training, batch size 16, 

momentum 0.9, weight decay L2 penalty 5e-4, optimization 

algorithm Adam, and learning rate 1e-4 are selected. 

Model performance is evaluated by two metrics, Mean 

Absolute Error (MAE) and Mean Square Error (MSE), and 

compared with similar studies in the literature.  

The MAE reflects the accuracy of the results predicted by 

the model, and the MSE is used to measure the robustness of 

the model. It is defined as equations (17) and (18) below, 

where 𝑁 is the number of images in the test set, 𝑖 is the index 

of the image, 𝑦𝑖 is the estimated number calculated for the 

image, and 𝑦𝑖𝐺𝑇  is the number of ground truth in the image. 

 𝑀𝐴𝐸 = 1𝑁 ∑ |𝑦𝑖 − 𝑦𝑖𝐺𝑇|𝑁𝑖=0   (17) 

 𝑀𝑆𝐸 = 1𝑁 ∑ |𝑦𝑖 − 𝑦𝑖𝐺𝑇|2𝑁𝑖=0   (18) 

A Structural Similarity Index (SSIM) comparison is also 

made for the ShangaiTech Part A dataset. Thus, the quality of 

the density map is also measured and defined as in equation 

(19). 

 

𝑆𝑆𝐼𝑀 = 1𝑁 ∑ ((2𝜇𝑃𝑦𝑖.𝜇𝐺𝑦𝑖𝐺𝑇+𝑦1)𝜇𝑃𝑦𝑖2 + 𝜇𝐺𝑦𝑖2 +𝑦1 ∙ (2𝜎𝑃𝑦𝑖.𝜎𝐺𝑦𝑖𝐺𝑇+𝑦2)𝜎𝑃𝑦𝑖2 + 𝜎𝐺𝑦𝑖2 +𝑦2 )𝑁𝑖=0  (19) 

Where, 𝜇𝑃𝑦𝑖  and 𝜇𝐺𝑦𝑖mean, 𝜎𝑃𝑦𝑖, 𝜎𝐺𝑦𝑖 , and 𝜎𝑃𝑦𝑖 . 𝜎𝐺𝑦𝑖𝐺𝑇 

standard deviation values are used for SSIM loss calculation. 

C. EXPERIMENTAL RESULTS 

Evaluation metrics are compared with recent studies in order 

to comprehensively evaluate the performance of the proposed 

approach. For this, experiments are carried out on five 

datasets.  

 In the UCF-QNRF [72] dataset, the proposed method 

yielded a 2.18% increase in accuracy over the next best 

result for MSE [80].  

 In the UCF_CC_50 [74] dataset, a 2.33% more accurate 

MAE result is obtained than in [84] and a 1.68% more 

exact MSE result is obtained compared with [80].  

 In the UCSD [75] dataset, improved accuracy of 8.46% 

for MAE result compared with [36] and a 7.03% more 

competitive MSE result is obtained compared with [49].  

 In the ShanghaiTech Part A [76] dataset, more 

competitive results are obtained compared to [29], with 

improved accuracy of 4.69% MAE and 3.94% MSE.  

 In the WorldExpo'10 [77] dataset, MAE is 6.94% better 

than the closest result [80]. 

Experimental results for these five datasets are compared in 

Tables 2 to 7, and Figure 4 shows the comparison of estimates 

obtained from density maps of the UCF-QNRF, UCF_CC_50, 

UCSD, ShanghaiTech Part A, and WorldExpo'10 datasets. 

Table 6 compares the quality of the density map estimated for 

the ShangaiTech Part A dataset. 
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TABLE 2. Comparison results on the UCF-QNRF. 

Method 
Estimation Error of Crowd Count 

MAE MSE 

Sam et al. [16] 252  514 

Idrees et al. [74] 277  426 

Badrinarayanan et al. [82] 228  445 

He et al. [23] 190 277 

Huang et al. [83] 163 226 

Idrees et al. [81] 132  191 

Liu et al. [80] 107  183 

Proposed Method 109 179 

TABLE 3. Comparison results on the UCF_CC_50. 

Method 
Estimation Error of Crowd Count 

MAE MSE 

Kang et al. [30] 406.2 404 

Zhang et al. [15] 377.6 509.1 

Sam et al. [16] 318.1 439.2 

Zhu et al. [19] 302.3 411.6 

Shi et al. [18] 288.4 404.7 

Li et al. [32] 266.1 397.5 

Basalamah et al. [49] 235.74 345.6 

Liu et al. [80] 212.2 243.7 

Xu et al. [84] 188.4 315.3 

Proposed Method 184 239.6 

TABLE 4. Comparison results on the UCSD. 

Method 
Estimation Error of Crowd Count 

MAE MSE 

Zhang et al. [15] 1.60 3.31 

Sam et al. [16] 1.62 2.10 

Kang et al. [30] 1.17 2.15 

Li et al. [32] 1.16 1.47 

Liu et al. [80] 1.03 1.32 

Basalamah et al. [49] 1.01 1.28 

Jiang et al. [36] 0.97 1.30 

Proposed Method 0.89 1.19 

TABLE 5. Comparison results on the ShangaiTech Part A. 

Method 
Estimation Error of Crowd Count 

MAE MSE 

Zhang et al. [14] 181.8 277.7 

Marsden et al. [79]  126.5 173.5 

Zhang et al. [15] 110.2 173.2 

Sam et al. [16]  90.4 135.0 

Chen et al. [73] 73.6 106.4 

Gao et al. [41] 73.5 124.0 

Li et al. [32] 68.2 115.0 

Shi et al. [33] 66.3 106.4 

Jiang et al. [36] 62.4 102.6 

Liu et al. [80] 62.0 100.0 

Sindagi et al. [29] 46.9 71.0 

Proposed Method 44.7 68.2 

TABLE 6. Comparison results for quality of density map on the 
ShangaiTech Part A. 

Method 
Quality of Density Map 

SSIM 

Zhang et al. [15] 0.52 

Chen et al. [73] 0.72 

Li et al [32] 0.76 

Proposed Method 0.43 

 

TABLE 7. Comparison results on the WorldExpo’10. 

Method 
Estimation Error of Crowd Count 

MAE 

Zhang et al. [14] 12.9 

Zhang et al. [15] 11.6 

Sam et al. [16] 9.4 

Shi et al. [18] 9.1 

Sindagi et al. [17] 8.86 

Li et al. [32] 8.6 

Shen et al. [44] 7.5 

Basalamah et al. [49] 7.42 

Liu et al. [80] 7.2 

Proposed Method 6.7  

 

1) ABLATION EXPERIMENTS ON DENSITY MAP 
PARAMETERS 

In this section, Gaussian core value σ = 4 is chosen when 
creating density maps in crowd counting tasks. In this 

experiment, when σ value 16 is selected, the results are 
compared in all datasets. It is shown that the best result is 

achieved with the proposed method. Results of the value of the 

Gauss kernel ablation experiment for these three datasets are 

compared in Table 8. 

TABLE 8. Results of the value of Gauss kernel ablation for density map 
generation. 

Datasets Value of Gauss 

Kernel 

MAE MSE 

UCF-QNRF [72] 
σ =4 109 179 

σ =16 112.2 187.1 

UCF_CC_50 [74] 
σ =4 184 239.6 

σ =16 187.2 242 

UCSD [75] 
σ =4 0.89 1.19 

σ =16 0.93 1.32 

ShangaiTech Part A [76] 
σ =4 44.7 68.2 

σ =16 47.2 71.0 

WorldExpo’10 [77] σ =4 6.7 - 

σ =16 7.2 - 

 

2) ABLATION EXPERIMENTS ON THE STRUCTURE OF 

THE PROPOSED METHOD  

In this section, ablation studies are performed to validate the 

multi-level spatial information of the CNNs and CapsNet 

attention modules. For the datasets used, the experiments are 

repeated with the convolution attention module only and the 

CapsNet attention module only. Results are compared in Table 

9. In the crowd analysis of this model architecture, it is shown 

that it predicts the number of people successfully with more 

robust and better density map quality than in many recent 

studies. 
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TABLE 9. Results of the ablation model structures on the datasets UCF-
QNRF, UCF_CC_50, UCSD, ShangaiTech Part A and WorldExpo’10. 

 Modules 

Datasets Method 

Base 

+ 

Convolution 

Attention  

+  

Compress.  

Base  

+  

Capsule 

Attention  

+  

Compress.  

Proposed 

Method 

UCF-QNRF [72] 
MAE 143 110 109 

MSE 198 182 179 

UCF_CC_50 [74] 
MAE 225.6 206 184 

MSE 287 244.3 239.6 

UCSD [75] 
MAE 1.23 1.03 0.89 

MSE 1.55 1.20 1.19 

ShangaiTech Part 

A [76] 

MAE 65.6 59.6 44.7 

MSE 102.8 98.1 68.2 

WorldExpo’10 
[77] 

MAE 8.8 7.6 6.7 

V. CONCLUSION AND DISCUSSION 

In this paper, we use the spatial information learning feature 

of Capsule networks to estimate the number of people, 

especially in crowded images. The VGG-16 network was used 

to extract basic-level features. We put forward the first crowd 

analysis study using a two-column cascade and CNN and 

CapsNet as an attention module. The positive effect of the 

Capsule attention module in this study is emphasized in the 

ablation study for structure. In order to determine the number 

of people in dense crowd images, features such as posture and 

angular value have achieved more robust results with the 

capsule attention mechanism. This propounded strategy has 

been tested on the UCF-QNRF, UCF_CC_50, UCSD, 

ShanghaiTech Part A, and WorldExpo'10 datasets. The 

performance of the proposed approach is shown to be effective 

for this problem when compared to state-of-the-art 

approaches. 

The method we propose is still not good in terms of 

computational complexity. In the near future, we plan to 

improve computational complexity by using model 

lightweight technology and present results in comparison with 

those of state-of-the-art products. We anticipate that CapsNet's 

position and orientation information can also be used for 

crowd behavior analysis without using motion information 

such as optical flow in future studies. 
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