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Abstract: The Internet based cyber-physical world has profoundly changed the information environment for the

development of artificial intelligence (AI), bringing a new wave of AI research and promoting it into the new era

of AI 2.0. As one of the most prominent characteristics of research in AI 2.0 era, crowd intelligence has attracted

much attention from both industry and research communities. Specifically, crowd intelligence provides a novel

problem-solving paradigm through gathering the intelligence of crowds to address challenges. In particular, due

to the rapid development of the sharing economy, crowd intelligence not only becomes a new approach to solving

scientific challenges, but has also been integrated into all kinds of application scenarios in daily life, e.g., online-to-

offline (O2O) application, real-time traffic monitoring, and logistics management. In this paper, we survey existing

studies of crowd intelligence. First, we describe the concept of crowd intelligence, and explain its relationship to

the existing related concepts, e.g., crowdsourcing and human computation. Then, we introduce four categories of

representative crowd intelligence platforms. We summarize three core research problems and the state-of-the-art

techniques of crowd intelligence. Finally, we discuss promising future research directions of crowd intelligence.
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1 Introduction

The Internet based cyber-physical world has

profoundly changed the information environment for

the development of artificial intelligence (AI), thus

bringing a new wave of AI research and promoting

it into the new era of AI 2.0 (Pan, 2016). It em-

powers human intelligence to play an increasingly

important role, and reshapes the landscape of AI

research. As one of the major features of AI 2.0,

crowd intelligence emerges from the collaborative
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efforts of many autonomous individuals, showing

higher intelligence than the capability of each in-

dividual. Many Internet applications, such as open

source software development, Wikipedia, Web Q&A,

crowdsourcing, and the sharing economy, have suc-

cessfully tapped into talent pools of crowds, and

demonstrate significant progress beyond the tradi-

tional paradigms. The success of these applications

inspires many researchers from interdisciplinary ar-

eas such as AI, human–computer interaction, cog-

nitive science, management science, economy, and

auction theory, to investigate the research problems

of crowd intelligence. Over the past decade, they

have proposed a number of frameworks, models, and
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algorithms to achieve further theoretical understand-

ing of crowd intelligence in areas including social

computing, crowdsourcing, and human computation.

To summarize research efforts and practical expe-

rience in these diversified areas from a consistent

perspective, we present a comprehensive survey of

the theoretical research and industrial applications

in this emerging field.

The rest of the paper is organized as follows.

Section 2 introduces the definition of crowd intelli-

gence, and elaborates the scope of the field in com-

parison with other related concepts. Section 3 pro-

poses a taxonomy of crowd intelligence platforms.

Section 4 describes the core research issues and the

state-of-the-art.

2 Definition of crowd intelligence

2.1 What is crowd intelligence?

Before we can give a clear definition of crowd in-

telligence, it is necessary to explain these important

concepts that are closely related to the topic of our

paper, and elaborate the differences and similarities

among them. The most important concept is collec-

tive intelligence. This has been widely adopted by

researchers, in cognitive science, social psychology,

and management science since the 1990s. Note

that there have been many definitions of collective

intelligence. Many researchers attempt to describe

the meaning of collective intelligence from their own

perspective. For instance, according to Wikipedia,

collective intelligence is defined as “shared or group

intelligence that emerges from the collaboration,

collective efforts, and competition of many indi-

viduals and appears in consensus decision making”

(http://en.wikipedia.org/wiki/Collective_intelligen

ce). This definition emphasizes the collective

capability from the aspect of decision augmenta-

tion, which can elevate the decision capability of

individuals (Bonabeau, 2009). Smith (1994) defined

it as “a group of human beings carrying out a task

as if the group, itself, were a coherent, intelligent

organism working with one mind, rather than a

collection of independent agents”. This definition

again highlights the nature of a group intelligent

mind. Pierre (1997) described collective intelligence

as “a form of universally distributed intelligence,

constantly enhanced, coordinated in real time,

and resulting in the effective mobilization of skills”.

Every version of the above definitions intends to

express its understanding about what intelligence

means and how a human group works together to

achieve the intelligent outcomes.

The latest definition of collective intelligence

can be found in the online ‘Collective Intelligence

Handbook’ (Malone et al., 2009). The authors de-

fined collective intelligence as “groups of individu-

als acting collectively in ways that seem intelligent”.

This is a very general definition that requires collec-

tive intelligence to be manifested as intelligent group

activities and behaviors. Apparently, any kind of

human group activity can fall into the scope of col-

lective intelligence, as long as the interactions among

the group members demonstrate intelligent features,

such as generation of new knowledge, consensus deci-

sions, and the emergence of smart behavior patterns.

From the formal definitions of collective intel-

ligence, one can see that it is a term coined in the

context of social psychology science. How can we re-

fine the concept of collective intelligence in the field

of computer science, and more specifically, AI? In

this paper, we give the following definition of crowd

intelligence:

Definition 1 (Crowd intelligence) Beyond the lim-

itation of individual intelligence, crowd intelligence

emerges from the collective intelligent efforts of mas-

sive numbers of autonomous individuals, who are

motivated to carry out the challenging computa-

tional tasks under a certain Internet-based organi-

zational structure.

The above definition shows that crowd intel-

ligence is an essentially Internet-based collective

intelligence that has the following distinguishing

properties:

First, Internet-based crowd intelligence emerges

from massive numbers of individuals in online or-

ganizations and communities on online platforms.

None of the definitions of collective intelligence speci-

fies the platform supporting group collaboration and

coordination. Historically, any social organization

from a cyber infrastructure can foster the gener-

ation of collective intelligence. For instance, con-

ventional academic groups or lab teams are effective

channels to organize scientists to work together in re-

search projects. Pervasive Internet access further ex-

tends the forms of collective intelligence, and enables

explosive growth in online communities and virtual
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organizations towards a variety of collective endeav-

ors in areas of science discovery, crowd innovation,

software development, and even service markets.

Our definition introduces an explicit statement on

this trend, and emphasizes the importance of the

Internet in the emergence of crowd intelligence.

Second, a crowd intelligence system interweaves

crowd and machine capabilities seamlessly to address

challenging computational problems. The origin of

the term ‘collective intelligence’ does not narrow the

definition within the scope of computer science and

AI. Our definition attempts to give a clear descrip-

tion about the computational context of crowd intel-

ligence. From the aspect of computing, the rise of

crowd intelligence allows novel possibilities of seam-

lessly integrating machine and human intelligence

at a large scale, which can be regarded as mixed-

initiative intelligent systems. In such a system, AI

machines and crowds can complement the capability

of each other to function as enhanced AI systems.

Many computational tasks, such as image recog-

nition and classification, are very trivial for human

intelligence, but pose grand challenges to current AI

algorithms. AI researchers developed a new compu-

tational paradigm called human computation (Law

and Ahn, 2011), where people act as computational

components, and perform the work that AI systems

lack the skills to complete. The outcomes of crowd

intelligent tasks, including data collection and se-

mantic annotation, can be used to help train, super-

vise, and supplement their algorithms and models.

In addition to the support from data annotation and

enrichment, crowd intelligence enables the develop-

ment of AI software systems. AI software compo-

nents can be developed in an open and distributed

way, in which crowd members in open source soft-

ware communities can actively get engaged.

With the increase in the scale of crowd systems,

it is challenging to coordinate the work process of

massive crowds to handle complex tasks. AI can

work as enablers to help the crowd act in a more effi-

cient, skilled, and accurate way. Machine intelligence

plays the role of ‘crowd organizer and mediator’ to

stimulate the activities of individuals, assess their

skill levels, assign subtasks to them, and aggregate

the outcomes of their tasks. On the platforms of

online communities, AI can implement knowledge

sharing and management among individuals for

large-scale collaborations.

2.2 Other related concepts

There are many concepts such as social comput-

ing, crowdsourcing, and human computation, which

are similar to crowd intelligence. These notions over-

lap more or less with crowd intelligence in their re-

search areas. To clarify these concepts, Fig. 1 illus-

trates their scopes as overlapping circles.

Social

computing

Collective intelligence

Crowd

intelligence

Crowdsoucing

Human

computation

Fig. 1 Crowd intelligence and related areas

2.2.1 Social computing

The term ‘social computing’ is a broad concept

that covers everything to do with social behavior and

computing. The central idea of social computing is

the use of social software to support social interac-

tion and communication. Research topics in social

computing include social network analysis, online so-

cial dynamic modeling, and design of social software.

Social computing is closely related to the notion

of collective intelligence, because both terms have

their roots in the area of social science. From the

aspect of group collaboration, social computing is

considered as a sort of collective intelligence, which

provides users a way to gain knowledge through col-

lective efforts in a social interactive environment.

2.2.2 Crowdsourcing

The term ‘crowdsourcing’ was defined as “out-

sourcing a job traditionally performed by an em-

ployee to an undefined, generally large group of peo-

ple via open call” (Li et al., 2016; Tong et al., 2017).

Numerous tasks or designs conventionally carried

out by professionals are now being crowdsourced

to the general public, who may not know each

other, to perform in a collaborative manner. Specif-

ically, crowdsourcing has been widely used for data
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cleaning, identifying chemical structure, image

recognition, logo design, medical drug development,

taxonomy construction, topic discovery, social net-

work analysis, and even software design and develop-

ment (Cao et al., 2012; 2013; Wang JN et al., 2013;

Tong et al., 2014b; 2014a; Zhang CJ et al., 2014a;

Meng et al., 2015; Zhang et al., 2015).

Crowdsourcing activities involve accessing a

large crowd of workers, who can either collaborate

or compete to accomplish intelligent tasks that are

typically performed by a single individual or group.

These organizing crowdsourcing projects need to run

their processes on Web platforms. Machine intelli-

gence has been extensively integrated into crowd-

sourcing platforms to accurately rank the skills of

crowdsourcing workers, and effectively ensure the

quality of their work. Thus, the area of crowdsourc-

ing should fall into the scope of crowd intelligence.

2.2.3 Human computation

Human computation refers to “a paradigm for

using human processing power to solve problems that

computers cannot yet solve” (Law and Ahn, 2011).

It centers around harnessing human intelligence to

solve computational problems that are beyond the

scope of existing AI algorithms.

The central element in human computation is

the microtask or human intelligent task. Human

computation often breaks a large computational

project into tiny and well-defined tasks for a crowd

to work on. The majority of microtasks are designed

as short-time work without time-consuming effort,

such as image tagging, translating sentences or para-

graphs, filling survey forms in social experiments,

and adding transcripts segments.

Although human computation has different re-

search goals and subjects from social computing, the

two areas do have some intersections, because human

computation systems require social behavior and in-

teraction among a group of people. In essence, hu-

man computation is more similar to crowdsourcing

because it often requires open calls for work to at-

tract crowd workers to undertake microtasks. How-

ever, with the different focuses on crowdsourcing,

human computation places more emphasis on the

computational microtasks that can be assigned to a

group of individuals in a crowdsourcing way. Similar

to crowdsourcing, human computation needs to be

orchestrated through online platforms such as online

microtask markets where a variety of human intel-

ligent tasks can be posted and processed by crowd

workers.

3 Typical crowd intelligence platforms

Currently, crowd intelligence has been widely

applied in massive data processing, scientific re-

search, open innovation, software development, and

the sharing economy. Every application area of

crowd intelligence has customized requirements for

crowd tasks, organization styles, and workflows. To

support such specific requirements, practitioners of

crowd intelligence need to set up an online plat-

form that connects many individuals, and coordi-

nates their work through a specific organizational

mechanism. In this section, we introduce a taxon-

omy of crowd intelligence platforms based on the

following properties of the platform:

Crowd task: What kinds of tasks are available

for a crowd worker? What is the nature of these

tasks? Is it a tiny and light-weight microtask or a

time-consuming product-design task?

Organizational mechanism: How can the plat-

form motivate potential workers to actively get in-

volved in crowd tasks? Can the platform rank work-

ers based on their skills and perform adaptive task

allocation for these workers? What kind of payment

or reward can the platform give to the workers after

they deliver high-quality outcomes?

Problem solving workflow: How can a chal-

lenging problem be divided into smaller tasks for

the crowd? What’s the right pipeline for orches-

trating crowd workers to collaborate on a complex

task? What’s the appropriate quality assurance

method to overcome the inherent variability in crowd

productions?

3.1 Human computation and microtasking

Human computation platforms can organize hu-

mans to carry out the process of computation,

whether it be performing the basic operations, or-

chestrating the human computation workflows (e.g.,

deciding what operations to execute next, or when

to halt the execution of the workflow), or even

synthesizing the workflows on the fly (e.g., by

creating composite operations from basic opera-

tions and specifying the dependence among the

operations).
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3.1.1 Crowd tasks in human computation

We introduce crowd tasks in human computa-

tion through two well-known platforms.

Amazon Mechanical Turk (AMT) (http://

www.mturk.com) is the most famous human com-

putation platform that coordinates the supply and

demand of micro computational tasks that require

human intelligence to complete. It is an online la-

bor market where crowd workers are recruited by

requesters for the execution of human intelligent

tasks (HITs) in exchange for a small-amount reward.

Tasks are typically simple enough to require only a

few minutes to be completed such as image tagging,

audio transcriptions, and survey completion.

reCAPTCHA (von Ahn et al., 2008) is a human

computation system for transcribing old books and

newspapers for which optical character recognition

(OCR) is not very effective. It takes advantage of

the preexisting need for reCAPTCHA, the distorted

images of text that are used by websites to prevent

access by automated programs. When a user goes

to a website, instead of seeing computer generated

distorted text, they see an image of a word from an

old book or newspaper, whose content could not be

identified by the OCR software. By typing the letters

in the course of visiting the website, the user provides

computational power to help with the transcription

effort.

3.1.2 Organizational mechanism of human compu-

tation

According to the survey of Quinn and Bederson

(2011), there are four major kinds of incentive mech-

anisms that motivate human computation workers:

payment, altruism, enjoyment, and reputation.

Financial rewards are probably the easiest way

to recruit workers. However, as soon as money is

involved, people have more incentive to cheat the

system to increase their overall rate of pay. Also, be-

cause participants are usually anonymous, they may

be more likely to do something dishonest than they

would when identified. Commercial human compu-

tation platforms, such as AMT, adopt the monetary

mechanism to attract an online workforce. Once a

microtask worker has completed a task, the task re-

quester needs to pay him at a very low rate, which

can be as low as $0.01, and rarely exceeds $1.

All of the other three mechanisms are non-

monetary and rely on people’s inner motivations to

participate as crowd workers. Note that all these

incentives are mostly applicable in the context of

collaboration and communities. For example, in Sec-

tion 3.3, citizen science platforms often aim at pro-

moting people’s curiosity, altruism, and desire for

reputation to undertake human computation tasks

for scientific data collection and analysis. For al-

truism and enjoyment, the crowd tasks must be ei-

ther interesting or important to attract Web users to

participate. Reputation is often employed by online

communities to motivate crowd workers to actively

undertake tasks to receive public recognition for their

efforts.

3.1.3 Problem-solving workflow in human compu-

tation

In AMT, both workers and requesters are

anonymous although responses by a unique worker

can be linked through an ID provided by Amazon.

Requesters post HITs that are visible only to work-

ers who meet the predefined criteria (e.g., country of

residence or accuracy in previously completed tasks).

When the workers access the website, they find a

list of tasks sortable according to various criteria,

including the size of the reward and the maximum

time allotted for the completion. Workers can read

brief descriptions and see previews of the tasks be-

fore accepting to work on them. Fig. 2 illustrates

the human computation workflow of AMT.

One of the distinguishing properties of hu-

man computation is in the way that explicit con-

trol is exercised. Although most tasks on human
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computation markets are simple and self-contained

with no challenging coordination dependencies, they

can support programmable application program in-

terfaces (APIs) to implement explicit decomposition

or assignment of tasks, and allow the developers to

design quality mechanisms to ensure that the human

computers tell the truth.

In a lot of human computation applications us-

ing AMT’s APIs, more complicated tasks are typi-

cally decomposed into a series of smaller tasks, in-

cluding the checking and validation of other workers’

HITs. AMT can be viewed as large distributed com-

puting systems in which each work is analogous to

a computer processor that can solve a task requir-

ing human intelligence. Based on this, researchers

on human computation (Kittur et al., 2011) intro-

duced a map-reduce based approach to design prob-

lem solving workflows, in which a complex problem

is decomposed into a sequence of simpler map and

reduce subtasks. They define three types of subtask:

the partition task, in which a larger task is broken

down into discrete subtasks; the map task, in which

a specified task is processed by one or more work-

ers; the reduce task, in which the results of multiple

workers’ tasks are merged into a single output.

3.2 Mobile crowdsourcing platforms and

sharing economy

Mobile crowdsourcing is an extension of human

computation from the virtual digital world to the

physical world. The 2009 Defense Advanced Re-

search Projects Agency (DARPA) Red Balloon Chal-

lenge (Tang et al., 2011) is a well-known exemplar

test for the effectiveness of mobile crowdsourcing ef-

forts. It intentionally explored how mobile crowd-

sourcing can be used to solve a distributed, time-

critical geo-location problem. Ten red balloons were

deployed at undisclosed locations across the con-

tinental USA, and a prize would be awarded to

the winning team for correctly identifying the lo-

cations of all 10 balloons first. A team from the

Massachusetts Institute of Technology (MIT), which

used the geometric reward mechanism (recursive in-

centive mechanism), won in less than nine hours.

3.2.1 Crowd tasks in mobile crowdsourcing

Participatory sensing proposed by Burke et al.

(2006) intends to organize mobile devices to form

interactive and participatory sensor networks, which

enable public and professional users to gather, ana-

lyze, and share local knowledge. It can be further

extended into mobile crowd sensing, which leverages

both sensed data from mobile devices (from the phys-

ical community) and user-contributed data from mo-

bile social network services. Mobile crowd sensing

greatly extends the capability of group perception

and awareness in many areas, such as health care,

urban planning and construction, as well as environ-

mental protection. Fig. 3 illustrates the major tasks

and applications in both participatory sensing and

mobile crowdsourcing.

Post 

task

Mobile data 

collection

Crowd sensing 

data processing

Decision 

making

Fig. 3 Participatory and mobile crowd sensing

Transportation and traffic planning: TrafficInfo

(Farkas et al., 2014) implements a participatory

sensing-based live public transport information ser-

vice, which exploits the power of the crowd to gather

the required data, share information, and send the

feedback. TrafficInfo visualizes the actual position of

public transport vehicles with live updates on a map

and gives support to crowdsourced data collection

and passenger feedback. Moreover, Zhang CJ et al.

(2014b) adopted the mobile crowdsourcing approach

to enhance the accuracy of navigation systems.

Environment monitoring: EarPhone (Rana

et al., 2010) presents the design, implementation,

and performance evaluation of an end-to-end par-

ticipatory urban noise mapping system called Ear-

Phone. The key idea is to crowdsource the col-

lection of environmental data in urban spaces to

people who carry smartphones equipped with GPS

and other sensors.

Public safety: Recently, user-contributed data

has been used for crime prevention. For instance,

Ballesteros et al. (2014) showed that the data
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collected by geo-social networks bears a relation-

ship to crimes, and proposed iSafe which is able to

evaluate the safety of users based on their spatial

and temporal dimensions. The spread of technol-

ogy from the security cameras to the smartphones in

every pocket, has proved helpful to criminal investi-

gations. It has been reported that, during the Boston

marathon explosion in Apr. 2013, photos and videos

shot by onlookers after the explosion have been used

as evidence in the investigation by FBI (Fowler and

Schectman, 2013).

Mobile crowdsourcing marketplaces: A

number of companies, for example, Gig-

Walk (http://www.gigwalk.com), Field Agent

(http://www.fieldagent.net), and TaskRabbit

(http://www.taskrabbit.com), have sprung up to

build mobile crowdsourcing marketplaces (Gao

et al., 2016). These mobile crowdsourcing markets

offer physical world tasks to crowd workers, such

as checking street signs, verifying the existence of

a pothole, and running household errands. One of

the sharing economy’s pioneers and largest success

stories, TaskRabbit Inc., allows users to outsource

small jobs and tasks to local contractors.

Mobile crowdsourcing tasks have varying com-

plexities, which require different levels of time, exper-

tise, and cognitive efforts to complete. For example,

most tasks posted in TaskRabbit include deliveries,

furniture assemblies, and house chores, which often

demand high degrees of expenditure of effort. In

contrast, common tasks posted on the site of Gig-

Walk are mostly microtasks, including store audits,

price checks, customer interviews, and field photog-

raphy. These microtasks can be done while workers

are already out and near the task locations.

3.2.2 Organizational mechanism of mobile crowd-

sourcing

Teodoro et al. (2014) conducted a qualitative

study to investigate the motivations of workers in

both TaskRabbit and GigWalk, shown as follows:

Motivation for joining on-demand mobile work-

force: They found that monetary compensation

and control of working conditions (e.g., working

duration, payment rate, and the allocated tasks)

are the primary factors for joining these systems.

Participants seem to prefer a flexible work schedule,

personal control of working tasks, and locations as

the main motivations for joining a mobile workforce

service.

Motivation for selection of mobile crowdsourc-

ing tasks: The main motivations driving task se-

lection over other tasks involve cost-benefit anal-

ysis, physical location, geographic factors, as well

as trust in the task requesters. Participants con-

sider the costs, distance, benefits, and conditions as-

sociated with completing the physical world tasks,

such as time spent traveling, gas consumption,

familiar/safe locations, and potential payout. For

example, how far people have to travel appears to

influence their attitudes toward a task. This is a

reflection of the important principle of distance de-

cay in geography. In addition, statistical modeling

shows that both the distance to a task and the so-

cioeconomic status of a task area influence whether a

worker is willing to accept it, and that distance is the

dominant predictor of task price (Thebault-Spieker

et al., 2015). In addition to location factors, work-

ers consider situational factors about the task, such

as their availability of time, the timing of the task,

and even weather conditions. They express pref-

erences for tasks posted by requesters who have pic-

tures and information on their profiles verifying their

identities.

3.2.3 Problem-solving workflow in mobile crowd-

sourcing

In this subsection, we first introduce a general

problem-solving workflow in mobile crowdsourcing,

and then further discuss different problem-solving

models in real mobile crowdsourcing applications.

Problem-solving workflow: A general problem-

solving workflow is shown in Fig. 4 (Tong et al.,

2017). The participants in mobile crowdsourcing

include ‘requesters of tasks’ and ‘workers’, who

are connected through mobile crowdsourcing ‘plat-

forms’. We next introduce the workflow from the

perspectives of the requesters of tasks, workers, and

platforms.

1. Requesters of tasks. The requesters set the

spatiotemporal constraints of their tasks at first.

Next, the requesters submit the tasks to the plat-

forms. Then, the requesters need to wait for a feed-

back from the platforms.

2. Workers. To perform tasks, the workers

should submit their spatiotemporal information first.

Then, they can select tasks autonomously or wait to
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Fig. 4 Problem-solving workflow in mobile crowd-

sourcing

be assigned some tasks by the platforms. Workers

also need to wait for feedback from platforms.

3. Platforms. Platforms are central to the

workflow. After receiving the information from the

requesters/workers and preprocessing the informa-

tion, the platforms transfer the processed informa-

tion to the task assignment engine, whose duty is

to assign the tasks to appropriate workers. Ac-

cording to the requirements of different types of

tasks, the platforms can feed back the result of the

tasks to the corresponding requesters with or without

aggregation.

Problem-solving models: As shown in the afore-

mentioned workflow, the core component in the

problem-solving process is the task assignment en-

gine, which chooses different task assignment strate-

gies to assign tasks to suitable workers. According

to different task assignment strategies, the existing

problem-solving approaches in mobile crowdsourc-

ing can be described as the following two models:

matching-based model and planing-based model.

1. Matching-based model. This model uses

the bipartite graph matching model as the task

assignment strategy, where each task and worker cor-

responds to a vertex in the bipartite graph, and the

relationship between the task and the worker is re-

garded as the edges in the bipartite graph (Tong

et al., 2016c; 2016b). Based on different optimiza-

tion goals and constraints, there are some variants of

the matching-based model. For example, She et al.

(2015b; 2016) proposed a conflict-based matching

model to address the spatiotemporal conflict among

different vertices of a bipartite graph. Tong et al.

(2015b; 2016a) integrated the social relationships

of different workers into the matching-based model.

In particular, Tong et al. (2016c) used the online

minimum matching model to explain the rationality

that real-time taxi-calling services adopt the near-

est neighbor approach to assign taxis to taxi-callers.

Therefore, the matching-based model has a wide

range of applications, such as the taxi-calling service

and last-mile delivery.

2. Planning-based model. This aims to pro-

vide the optimal planning for each worker, according

to the given spatiotemporal information and con-

straints of the tasks. She et al. (2015a) proposed a

general planning-based model, which provides travel

planning for a set of workers based on the spatiotem-

poral conflicts of the other set of tasks. In particu-

lar, the planning-based model can be widely used to

the on-wheel meal-ordering service, real-time ride-

sharing, etc.

To sum up, with rapid development of mobile

Internet and the sharing economy, various mobile

crowdsourcing platforms are playing important roles

in our daily life. Hence, research on mobile crowd-

sourcing will definitely have more and more signifi-

cance in the future.

3.3 Citizen science platforms

Citizen science (also known as crowd science) is

the scientific research conducted, in whole or in part,

by amateur or nonprofessional scientists. It encour-

ages the members of the public to voluntarily par-

ticipate in the scientific process. Whether by asking

questions, making observations, conducting experi-

ments, collecting data, or developing low-cost tech-

nologies and open-source code, members of the pub-

lic can help advance scientific knowledge and benefit

the society.

Fig. 5 displays the research paradigm of citi-

zen science. A scientific research project normally

consists of five major phases: hypothesis formation,

data collection, data processing, pattern discovery,

and model and theory revision based on new evi-

dence. In each of the steps, crowd intelligence can

greatly accelerate the scientific research processes,

enrich scientific data sets, and extract valuable in-

sights into phenomena and observations.
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We next use two examples to introduce the sci-

entific data collection and processing.

3.3.1 Scientific data collection

Networks of human observers play a major role

in gathering scientific data. They continue to con-

tribute significantly in astronomy, meteorology, or

observations of nature. eBird (Sullivan et al., 2009) is

a Web-enabled community of bird watchers who col-

lect, manage, and store their observations in a glob-

ally accessible unified database. Birders, scientists,

and conservationists are using eBird data worldwide

to better understand avian biological patterns and

the environmental and anthropogenic factors that in-

fluence them. Developing and shaping this network

over time, eBird has created a near real-time avian

data resource, producing millions of observations per

year.

3.3.2 Scientific data processing

Galaxy Zoo (Lintott et al., 2008) is a project

involving over 250 000 volunteers who help with the

collection of astronomical data, and who have con-

tributed to the discovery of new classes of galaxies

and a deeper understanding. It was launched in the

summer of 2007, to process the large amount of im-

age data of distant galaxies that are made available

by the Sloan digital sky survey (SDSS). Volunteers

are asked to sign up, read an online tutorial, and

then code six different properties of astronomical ob-

jects visible in SDSS images. Seven months after the

project was launched, about 900 000 galaxies had

been coded, and multiple classifications of a given

galaxy by different volunteers were used to reduce the

incidence of incorrect coding, for a total of roughly

50 million classifications. For an individual scientist,

50 million classifications would have required more

than 83 years of full-time effort. The Galaxy Zoo

data allowed Lintott’s team to successfully complete

the study they had initially planned.

The success of Galaxy Zoo sparked interest in

various areas of science and the humanities. In 2009,

Lintott and his team established a cooperation with

other institutions in the UK and USA to run a num-

ber of projects on a common platform ‘the Zooni-

verse’ (Borne and Zooniverse Team, 2011). The

Zooniverse platform currently has more than one

million registered volunteers, and hosts dozens of

projects in fields as diverse as astronomy, marine

biology, climatology, and medicine. Recent projects

have also involved participants in a broader set of

tasks and in closer interaction with machines.

3.4 Crowd-based software development

Software development is a kind of intellectual

activity, which involves both the creation and manu-

facturing activities of the crowds (Wang et al., 2015).

In the process of software development, various types

of tasks, such as the requirement elicitation and bug

finding, may rely on the creativity and talents of

developers. Meanwhile, ensuring the efficiency and

quality of the outcome of software development re-

quires rigorous engineering principles to be applied

in the entire life cycle of software development. Open

source software and software crowdsourcing have sig-

nificantly changed our understanding of software de-

velopment, and presented a successful demonstration

of crowd-based software development.

3.4.1 Crowd tasks in crowd-based software develop-

ment

Some software development activities, which

have presented the difficulties for traditional

methods for several decades, are now becoming an

active arena for crowd intelligence. Essentially, soft-

ware development tasks demand consistent efforts

from programmers with software expertise and rig-

orous testing, verification, and validation process.

The complex nature of software engineering deter-

mines that crowd intelligence for software develop-

ment has many unique features and issues different

from general crowd intelligence. Specifically, it needs

to support the following three points:
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1. The rigorous engineering discipline of soft-

ware development, such as rigid syntax and seman-

tics of programming languages, modeling languages,

and documentation or process standards.

2. The creativity aspects of software require-

ment analysis, design, testing, and evolution. The

issue is how to stimulate and preserve creativity

in these software development tasks through crowd

intelligence.

3. The quality aspects including objective qual-

ities, such as functional correctness, performance, se-

curity, reliability, maintainability, safety, and subjec-

tive qualities such as usability.

3.4.2 Organizational mechanism of crowd software

development

There are two major approaches to crowd soft-

ware development: open source and software crowd-

sourcing (Wu et al., 2013). In fact, the two ap-

proaches are highly similar because they emphasize

the openness of crowd software development, but

from different aspects.

Open source for crowd software develop-

ment: Open source software (OSS) has re-

shaped our understanding of software develop-

ment. Open source project hosting services like

GitHub (http://www.github.com), Google Code

(http://www.code.google.com), and SourceForge

(http://www.sourceforge.net) make it possible for

anyone to create and manage OSS projects at any

time. Developers across the world can easily access

the source codes, documents, and test cases of these

OSS projects, and participate in the entire develop-

ment process. This meritocracy drives both profes-

sionals and amateurs to actively share their ideas, ex-

perience, and source codes in OSS communities, and

to create novel software products collaboratively.

Users from all over the world, no matter what

professional level they are at, can become archi-

tects through design discussion, developers through

code contribution, or testers through bug report-

ing. The Mozilla OSS project, which has pro-

duced the famous Firefox browser, has actually gath-

ered such a large crowd that the number of offi-

cially acknowledged contributors is over 1800. The

open source method values the openness of source

code among software development communities, and

encourages contributions from community members

through intrinsic and altruism incentives, such as the

reputation, opportunity to learn programming skills,

and willingness to address user needs.

Software crowdsourcing for crowd software de-

velopment: Software crowdsourcing is an open call

for participation in any task of software development,

including documentation, design, coding, and test-

ing. It features the openness of the software process,

distributing all kinds of development tasks to com-

munities. Software crowdsourcing platforms often

adopt explicit incentives, especially monetary reward

such as contest prizes, to stimulate the participation

of community members. Therefore, software crowd-

sourcing can be regarded as an extension of open

source, which generalizes the practices of peer pro-

duction via bartering, collaboration, and competi-

tion. However, it does not necessarily distribute end-

products and source-material to the general public

without any cost. Instead, it emphasizes community-

driven software development on the basis of open

software platforms, the online labor market, and a

financial reward mechanism.

TopCoder (http://www.topcoder.com) is a soft-

ware crowdsourcing example, which creates a soft-

ware contest model where programming tasks are

posted as contests and the developer of the best so-

lution wins the top prize. Following this model, Top-

Coder has established an online platform to support

its ecosystem, and gathered a virtual global work-

force with more than 250 000 registered members,

and nearly 50 000 active participants. All these Top-

Coder members compete against each other in soft-

ware development tasks, such as requirement analy-

sis, algorithm design, coding, and testing.

App Store as online software market: Apple’s

App Store is an online IOS application market,

where developers can directly deliver their creative

designs and products to smartphone customers.

These developers are motivated to contribute

innovative designs for both reputation and payment

by the micro-payment mechanism of the App Store.

Around the App Store, there are many community-

based, collaborative platforms for the smartphone

applications incubators. For example, App-

Stori (http://www.crunchbase.com/organization/

appstori) introduces a crowd funding approach to

build an online community for developing promising

ideas about the new iPhone applications. Despite

different needs and strategies adopted by crowd
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software development processes, they actually share

much commonality in terms of platform support.

3.4.3 Problem-solving workflow in crowd software

development

As an online labor market where a crowd work-

force can autonomously choose a variety of software

development tasks requested by project initiators,

a software crowdsourcing platform needs to effec-

tively facilitate the synergy between two clouds—

the human cloud and the machine cloud. Many

core services pertaining to labor management and

project governance must be incorporated into the

platform, including expertise ranking, team format-

ting, task matching, rewarding, as well as crowd

funding. Moreover, each individual should be able to

easily initialize a virtual workspace with design and

coding software tools customized for specific tasks

in a crowd software project. All these common ele-

ments are encapsulated in the reference architecture

of a crowd software development platform (Fig. 6).

Software development tools: In any crowd soft-

ware project, the crowd workforce needs modeling,

simulation, and programming language tools, such as

compilers and intelligent editors, design notations,

and testing tools. An integrated development en-

vironment (IDE) for crowd workers can integrate

these tools for requirements, design, coding, com-

pilers, debuggers, performance analysis, testing, and

maintenance.

Knowledge sharing and collaboration tools:

Facebook, Twitter, wikis, blogs, online forums,

Question-Answer sites, and other Web-based col-

laboration tools allow participants to communicate

for knowledge sharing and collaboration. For ex-

ample, Facebook profiles can be enhanced to facil-

itate the formation of a crowd team, even if the

participants do not previously know each other.

StackOverflow enables crowd developers to post

questions and answers to technical problems to share

development experiences and knowledge.

Quality assurance and improvement tools: Soft-

ware artifacts contributed by crowd developers have

to be fully evaluated and tested before they can

be integrated into software products. Software

testing, performance profilers, and program anal-

ysis tools are very important to crowd project

managers for running automatic checking on crowd

submissions.

Project management tools: Crowd software

project management should support project cost es-

timation, development planning, decision making,

bug tracking, and software repository maintenance,

all specialized for the context of the distributed and

dynamic developer community. In addition to these

regular functions, it needs to incorporate crowd-

sourcing specific services such as ranking, reputa-

tion, and reward systems for both the products and

participants.

3.5 Summary of crowd intelligence platforms

The summary of crowd intelligence platforms is

shown in Table 1.

4 Research problems in crowd intelli-
gence

In this section, we discuss some research prob-

lems in crowd intelligence.

Research problem 1 (Effectiveness of crowd or-

ganization) How can individuals with different

backgrounds and skills be effectively organized in

a distributed way to generate measurable and per-

sistent crowd intelligence? Crowd intelligence may

involve a wide range of crowd tasks, such as collec-

tive data annotation, collaborative knowledge shar-

ing, and crowdsourcing-based software development,

which demands different levels of expertise and ded-

ication. To achieve the goals of these crowd tasks,

one can adopt interaction patterns including collab-

oration, coordination, and competition to connect

individuals and provide mediation mechanisms for

them to work in a socialized environment.

Research problem 2 (Incentive mechanism of

crowd intelligent emergence) Through the decen-

tralized ways of collaboration, competition, and in-

centive, individuals are linked as a crowd. The crowd

has a complicated pattern of behavior and distinc-

tive intelligence, which is greater than the sum of

the intelligence of the individuals. However, because

the individuals have high autonomy and diversity,

the time, strength, and cost of the crowd intelligence

have high uncertainties. Therefore, a key scientific

problem is how to grasp the pattern of crowd in-

telligence in different scenarios, reveal its internal

mechanism, and guide the incentive mechanism and

operation method to realize predictable crowd intel-

ligent emergence.
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Table 1 Crowd intelligence platforms

Platform

type

Human

computation

Mobile crowd-sourcing

Citizen science
Software

developmentParticipatory

sensing
Sharing economy

Crowd task Microtasks, Spatiotemporal Providing services Simple analysis Software

mostly simple microtasks for or sharing goods of scientific data development

data processing data gathering tasks

tasks

Organizational Monetary Reputation, physical Auction and Reputation Open source

mechanism payment location, situation, market curiosity learning or competition

and self-control

schedule

Problem- Data-driven Data-driven Pricing model Map-reduce Crowd-based

solving map-reduce map-reduce for optimization software

workflow process model

Research problem 3 (Quality control of crowd in-

telligence) The submissions of crowds, such as data

labels and ideas of product designs, will be further

processed in the system. The quality of the sub-

missions therefore has a great impact on the effec-

tiveness of the system, which, however, often varies

among different workers. How to assess, control, and

guarantee the quality of the work, and how to use the

work even of low quality are important issues. To ad-

dress these problems, new mechanisms and methods

are needed for quality control to assure the quality

of the whole crowd intelligent system.

4.1 Crowd organization

As a typical and most complex crowd intelli-

gence process, OSS development heavily relies on a

massive number of developers participating in a dis-

tributed collaboration to create software innovations.

How to organize such autonomous crowds to achieve

efficient collaboration and effective intelligence

emergence is quite a challenging problem. Most suc-

cessful open source projects and communities suggest

a similar type of organization that is not completely

liberal, but with a hierarchical institution embedded.

In this subsection, we introduce the crowd organiza-

tion through open source practice.

4.1.1 Organization structure of open source crowds

Although a strict hierarchical structure does not

exist in OSS communities, developers playing dif-

ferent roles are collaborating with each other under

the ‘onion’ structure (Ye and Kishida, 2003); i.e., a

project team consists of a small but strongly orga-

nized core team, and a large-scale but unorganized

periphery of contributors (i.e., the crowds), as shown

in Fig. 7. Generally speaking, there are eight roles
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(Nakakoji et al., 2002) in the communities. In this

paper, we summarize the five key roles as follows:

Fig. 7 Collaborative structure in open source software

communities

The project leader/owner has initiated the

project, and takes the responsibility for the devel-

opment direction and vision of the project.

The core member is responsible for guiding,

managing, and coordinating the developments of the

project. A core member usually has been involved

with the project for a relatively long time and made

significant contributions.

The active contributor finishes most of develop-

ment tasks in the project, such as contributing new

features and fixing bugs.

The peripheral contributor occasionally makes

contributions to the project, such as submitting a

code patch or reporting a bug to the projects.

The watchers/readers/users have not directly

contributed to the project, but they are the project

users by reusing the code, modules, or the whole

software. Also, because of the high quality of an

OSS project, they try to deeply understand how the

project works by analyzing its architecture and de-

sign pattern, or learn how to program by reading the

source code.

From the social perspective, crowd contribu-

tors would spontaneously gather into different sub-

communities in terms of their social activities. By

constructing and mining follow-networks, the typ-

ical patterns of social behavior have been investi-

gated (Yu et al., 2014). For example, a famous de-

veloper is followed by a large number of users, but

almost never follows back to others, which is called

star-pattern (Yu et al., 2014). Bird et al. (2006;

2008) confirmed the consistency between social

behavior and technical collaboration behavior, by

mining email social network and development activ-

ity history.

4.1.2 Governance structure of open source crowds

Crowd intelligence usually emerges in certain

online organizations and communities. However, the

autonomy of the crowds requires effective organiza-

tional mechanisms to ensure the outcome of crowd

creation.

In crowd software development, especially in

successful OSS projects, their governance mecha-

nisms play a very crucial role. A software foundation

is commonly adopted as an effective governance in-

stitution in open source communities.

As one of the most famous open source organiza-

tions, the Apache communities are governed by the

Apache Software Foundation (ASF), which embod-

ies the principle of meritocracy (Castaneda, 2010),

and forms community-driven governance known as

the Apache way. The governance structure in the

Apache community consists of two types of hierar-

chy: corporate governance and technical governance.

Corporate governance includes roles of ASF

member, board of directors, executive and corporate

officer, and project management committee (PMC),

which makes ASF work as a corporation. Corpo-

rate governance is fairly simple: the ASF members

elect a board of directors, the board appoints various

officers and creates PMCs, the PMCs report period-

ically to the board, and most other officers report

through the president, and then to the board.

Technical governance includes roles of commit-

ter and PMC. PMC manages the Apache projects

independently using the Apache Way, and deter-

mines the general direction (especially the tech-

nical direction) of the project and its releases.

Committees are elected for every project and granted

write access to it.

These different roles are chosen by self-selecting

individuals, and they are authorized with power ac-

cording to their sustained contributions over time

(Erenkrantz and Taylor, 2003). Such hierarchi-

cal governance with different roles in Apache has

proved to have a direct influence on code production

(Mockus et al., 2002).

Many other OSS like Linux, Eclipse, and Open-

Stack establish their foundations to govern the

corresponding communities for crowd creation.

These institutions often have a hierarchical

structure, and provide similar functions like deter-

mining technical directions, providing legal frame-
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works, and business supports. Such governance

is of great importance for inspiring and guiding

the continuous emergence of crowd intelligence in a

promising direction, and forms a prosperous creation

ecosystem.

4.2 Incentive mechanism in crowd intelligence

A well-designed incentive mechanism is an effec-

tive way to degrade the uncertainty in crowd intel-

ligent emergence. We introduce monetary and non-

monetary incentive mechanisms in this subsection.

4.2.1 Monetary-driven incentive mechanisms in

crowd intelligence

Most monetary incentive mechanisms are de-

signed based on the auction theory. We first in-

troduce the preliminaries of an auction-based mech-

anism. Then the relationship between auctions

and monetary incentive mechanisms is discussed.

Finally, we survey some representative studies of

auction-based incentive mechanisms for crowd intel-

ligence emergence.

1. Preliminaries of auction-based mechanisms

Auction theory (Krishna, 2009) is a branch of

game theory, which studies the properties of auctions

and human behavior in auction markets. Briefly, an

auction is the process of buying and selling goods by

negotiating the monetary prices of the goods. In the

process of an auction, based on the bids submitted

by the users (i.e., buyers or sellers), the auction se-

lects a subset of users as winners and determines the

payment of each winning user. In particular, auc-

tions have two properties: (1) An auction is a decen-

tralized market mechanism for allocating resources

and may be used to sell any item; i.e., auctions are

universal. (2) An auction does not depend on the

identities of the bidders, so auctions are anonymous.

The existing research on auctions can be clas-

sified roughly into two categories, i.e., regular auc-

tions and reverse auctions. In regular auctions, a

group of buyers bid on an item sold by a seller, and

the highest bidder wins the item. Conversely, in

reverse auctions, a buyer offers a reward for execut-

ing a task, and a group of sellers offer bids to com-

plete the task. During the reverse auction progress,

the price decreases due to the competition of the

sellers, and thus the task is finally assigned to the

lowest bidder(s). Reverse auction is more appropri-

ate for modeling the negotiation process in crowd

intelligence, and many monetary incentive mecha-

nisms based on reverse auctions have been proposed

(Lee and Hoh, 2010; Jaimes et al., 2012; Krontiris

and Albers, 2012; Yang et al., 2012; Subramanian

et al., 2013; Yang et al., 2013; Feng et al., 2014; Luo

et al., 2014; Zhao et al., 2014; Zhu et al., 2014; Gao

et al., 2015; Han et al., 2016). Therefore, we focus

only on discussing the reverse-auction based incen-

tive mechanisms for crowd intelligence.

2. Emergence of the relationship between auc-

tion and crowd intelligence

Auctions have been extensively used in crowd

intelligence emergence, because they can effectively

model the economic behaviors between crowd intel-

ligent platforms and their users. Specifically, on

the one hand, the participants in the crowd intel-

ligent systems earn rewards using their intelligence

to complete the tasks. In other words, these partici-

pants can be considered as selling their intelligence.

As discussed above, since auctions are universal for

any trade, the auction theory can be used to de-

sign a monetary incentive mechanism to provide rea-

sonable and acceptable prices for crowd intelligence.

On the other hand, auctions are anonymous, and

crowd intelligent emergence platforms often recruit

anonymous participants only to contribute their in-

telligence and finish the tasks. In addition, most

existing studies usually believe that the following

four characteristics should be considered when a rea-

sonable and robust auction-based incentive mecha-

nism is designed under crowd intelligence emergence

scenarios.

Truthfulness: A bidder cannot improve

her/his utility by submitting a bidding price

different from its true valuation, no matter how oth-

ers submit.

Individual rationality: Each bidder can expect

a nonnegative profit.

System efficiency: An auction is system-efficient

if the sum of the valuations of all the winning bids is

maximized over the possible sets of valuations.

Computation efficiency: The outcome of the

auction, i.e., the set of winners among all bidders,

can be computed in polynomial time.

Specifically, truthfulness can improve the sta-

bility of the platform. Particularly, truthfulness can

prevent market manipulation and guarantee auction

fairness and efficiency. If auctions are untruthful,
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selfish bidders may manipulate their bids to trick

the system and obtain outcomes that favor them-

selves but hurt others. However, in truthful auc-

tions, the dominant strategy for bidders is to bid

truthfully, thereby eliminating the threat of mar-

ket manipulation and the overhead of strategizing

over others. With true valuations, the auctioneer

can allocate tasks efficiently to the buyers who value

it the most. Individual rationality guarantees that

every participant can gain nonnegative profits, and

thus more participants will be attracted to the plat-

form. System efficiency is also important, because

it guarantees that crowd intelligent platforms can

run healthily. Last but not the least, computation

efficiency requires that the computation of the plat-

forms is efficient, which is necessary to provide a

satisfactory user experience.

3. Representative studies of auction-based in-

centive mechanism

There are many auction-based incentive mecha-

nisms that have been proposed to motivate the par-

ticipants in crowd intelligent platforms. Most studies

are based on reverse auctions. Based on the charac-

teristics of different crowd intelligent platforms, dif-

ferent auctions, such as online auction and double

auction, are applied to design incentive mechanisms.

Basic reverse auction: In the context of crowd

intelligence, the platform which plays the role of

buyer distributes tasks. The participants who play

the role of sellers will offer their own bids represent-

ing their expectation for the rewards. The plat-

form finally may choose a subset of participants

with lower bids to finish the task. Lee and Hoh

(2010) first applied reverse auction into incentive

mechanism design. In the auction, there is an

auctioneer (buyer) who wants to purchase m sens-

ing data, and a group of crowd participants (sellers)

who use their mobile devices to collect the sensing

data. As the auction progresses, the price decreases

as participants (sellers) compete to offer lower bids

than their competitors. The mechanism is designed

to minimize and stabilize the bid price while main-

taining an adequate number of participants, in case

some participants who were lost in previous auction

rounds drop out. To attain such goals, the authors

proposed a novel reverse auction based dynamic price

incentive mechanism with the virtual participation

credit (RADP-VPC). Specifically, the participants

lost in the previous auction round will receive vir-

tual participation credit. In the current round, the

bid price for a participant (used in price competition)

is the participant’s real bid price minus its VPC; i.e.,

in auction round r, the competition bid price for

participant i is br
∗

i = bri − vri , where bri represents

the participant’s real bid price, and vri represents its

VPC. Such credits can increase the winning proba-

bility of the participant without affecting its profit,

since the platform will pay the participant its real

bid price. By introducing VPC to the mechanism,

many issues can be solved.

Jaimes et al. (2012) pointed out that an in-

centive mechanism should also consider the partic-

ipants’ location information, budget, and coverage

constraints, which will make the mechanism more

realistic and efficient. By analogy with the set cover

problem, they formulated their problem as a bud-

geted maximum coverage problem, which can be

regarded as an extension of the set cover problem.

Then they tackled their problem by designing a new

greedy incentive algorithm (GIA) that uses the ex-

isting techniques to address the classical set cover

problem.

Yang et al. (2012) considered the fundamental

property of truthfulness in incentive mechanism de-

sign, and proposed a mechanism satisfying such a

property, called MSensing. MSensing consists of

two phases: winner selection and payment deter-

mination. Both phases follow a greedy approach,

since the objective function in their specific problem

has the property of submodularity, which guaran-

tees a good approximation when the algorithm uses

a greedy strategy.

Online auction: As the crowd participants may

be available at different times, the mechanism should

handle the dynamic arrivals of participants. In the

online auction, participants arrive in a sequence and

the platform must decide immediately whether to

choose the current participant or not. Therefore, it

is desirable to assume that the mechanism which pro-

cesses the current bids without knowing the future

bids can still have good performance, which means

that the objective function value of the online algo-

rithms can be at most a factor of the offline optimal

solution with the same input.

Han et al. (2016) considered for the first time the

mechanism design of an online auction. Specifically,

they tackled the problem called mobile crowdsens-

ing scheduling (MCS), and then proposed algorithms
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under both the offline and online settings with an op-

timal performance. Following their work, Subrama-

nian et al. (2013), Zhao et al. (2014), and Zhu et al.

(2014) explored online incentive mechanism design

with different assumptions and goals.

Multi-attribute auction: As the sensing data

submitted by the participants is not all of the same

quality, the auctioneer (buyer) may have a prefer-

ence. Krontiris and Albers (2012) proposed the

multi-attributive auction (MAA) mechanism that

not only considers the negotiated price, but also

helps the auctioneer (buyer) select the sensing data

of the highest quality. In fact, MAA can be regarded

as an extension of the traditional reverse auction.

Specifically, the auctioneer will express its own

preferences in the form of a utility function. The

function takes the bid price and multiple quality at-

tributes as the input, and translates the value of

each attribute into a utility score. Suppose the ith

attribute of bid x is denoted by xi. The score is

calculated using S(x) =
n∑

i=1

w(i)S(xi), where w(i)

denotes the weight toward the ith attribute. Bids

with higher utility scores will win the auction. The

authors also give advice about other attributes: lo-

cation distance, location accuracy, user credibility,

etc.

Combinatorial auction: In real scenarios, a plat-

form usually distributes multiple tasks which the

crowd participants can finish if these tasks appear in

the service coverage of the participants. Feng et al.

(2014) proposed a combinatorial auction mechanism,

which allows the participants to bid for a combina-

tion of the tasks, and assigns it to a participant.

However, it is still an extension of a reverse auction.

By formulating the problem as an optimiza-

tion problem, they first proved the NP-hardness

for the problem and then embedded an approxi-

mation algorithm with an approximation ratio of

1 + ln n, where n denotes the number of sensing

tasks, into the proposed mechanism called truthful

auction (TRAC). They demonstrated many desired

properties of TRAC by theoretical analysis and ex-

tensive experiments.

All-pay auction: In the definition of the all-pay

auction, every bidder needs to pay the bid they pro-

pose, while only the bidder with the highest bid gets

the prize. Luo et al. (2014) studied the incentive

mechanism problem based on the model of an all-

pay auction, which is the first work using an all-pay

auction in crowd intelligence. In particular, differ-

ent from a winner-pay auction, an all-pay auction

requires all the participants make their contribution

to the task, while only the participant with the high-

est contribution gets the prize. Thus, in the setting

of an all-pay auction, to maximize the contribution

collected from users, the organizer needs to choose a

prize as the function of the winner’s contribution. In

addition, Luo et al. (2014) considered that users may

prefer a smaller but more stable prize rather than

taking the risk to lose even if they have the same

expected prize, which is called being risk-averse. For

all-pay auctions and risk-averse, Luo et al. (2014)

proposed a mechanism to solve the profit maximiza-

tion problem. The mechanism guarantees a positive

payoff for the participants, which means that it is

effective.

Double auction: Unlike the reverse and all-pay

auctions in which a single buyer exists, a double auc-

tion contains more than one buyer and one seller.

Because of this property, the double auction has also

been used as an incentive mechanism of crowd intel-

ligence emergence.

Yang et al. (2013) studied the problem of incen-

tive mechanism design for a k-anonymity location

privacy. In this privacy, k − 1 other mobile users as

well as the exact user form a cloaking area to pro-

tect the location privacy. However, not all the users

are willing to share their locations without a prize.

Yang et al. (2013) designed three incentive mecha-

nisms based on the model of double auction to moti-

vate mobile users to join the k-anonymity process. In

particular, the mechanisms were designed consider-

ing three kind of users: (1) users who have the same

privacy degree, (2) users who have different privacy

degrees, and (3) users who can cheat. Further study

shows that the proposed mechanisms all satisfy the

following properties: (1) computational efficiency;

(2) individual rationality; (3) truthfulness.

Vickrey-Clarke-Groves auction: In addition

to the above auctions, the Vickrey-Clarke-Groves

(VCG) (Vickrey, 1961) auction proposed recently

is also a useful incentive mechanism. In the VCG

auction, the loss of a bidder results in other bid-

ders paying this bidder. Gao et al. (2015) studied

the sensor selection problem in time-dependent and

location-aware participatory sensing systems under

both future and current information scenarios. To
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solve the online (current information) asymmetric

sensor selection problem, they proposed an incen-

tive mechanism based on the VCG auction. This

study also showed that the mechanism is truthful

and converges asymptotically to the optimal offline

performance.

4.2.2 Community-driven incentive mechanism in

crowd intelligence

1. Incentive mechanism in software develop-

ment communities

OSS is usually developed by a loosely-knit com-

munity of developers distributed across the world,

who contribute to a software project via the Internet

without necessarily being employed or paid by an

institution. The development communities of OSS

have been likened to a bazaar where everyone can

join and contribute (Raymond, 1999), creating an

inspiring, creative, and democratic atmosphere. Fol-

lowing this model, hundreds of thousands of high-

quality and successful pieces of software have been

produced by a large number of voluntary developers

collaborating with each other.

Most research on OSS communities focuses on

discovering what motivates people to join OSS even

without direct compensation for the work. Starting

from internal factors, Hars and Ou (2001) argued

that open-source programmers are not motivated by

monetary incentives, but by their personal hobbies

and preferences, which confirms the need for self-

actualization, i.e., the “desire for a stable, firmly

based, usually high evaluation of oneself” (Maslow

et al., 1970). Furthermore, collaborating in OSS

communities, contributors treat other participants

of the community as kin, and thus are willing to

do something that is beneficial for them but not for

themselves. Altruistic behavior of this type is called

the ‘kin-selection altruism’ by social psychological

researchers (Hoffman, 1981).

For external reward, communities can provide

a rapid, constructive feedback about the quality of

contributors’ work. This feedback mechanism would

encourage contributors to expend additional effort to

perfect their code, so they can attract more favorable

feedback in turn. Similarly, the survey of free/libre

and open source software (FLOSS) (Ghosh, 2005)

pointed out that 53.2% of the developers express

social or community-related motives, such as sharing

knowledge and skills. In the long run, the abilities

and skills of OSS contributors can undergo signifi-

cant improvement, which leads to better job oppor-

tunities and higher salaries (Hertel et al., 2003).

2. Incentive mechanism in software knowledge

sharing communities

Crowds of enthusiasts and experts are becom-

ing an integral part of the support network for on-

line communities, and knowledge sharing is a typical

activity in crowd intelligence. The motivations for

crowds spending time and effort to contribute knowl-

edge can be either intrinsic or extrinsic. The intrinsic

motivations include the sense of personal ownership

of one’s knowledge, self-interest, enjoyment, and feel-

ings of gratitude and respect. The extrinsic motiva-

tions are these factors that are outside the individual,

such as community reputations, ratings, and mone-

tary reward (Raban and Harper, 2008). To inspire

the crowds to contribute their experience and knowl-

edge, such motivations should be transferred into

an effective incentive mechanism, which is of great

importance for the emergence of crowd intelligence.

In practice, various non-monetary mechanisms are

widely employed on the online information sites.

The largest programming Q&A site, StackOver-

flow, is a typical crowd intelligence community which

earns its place in software development by high-

quality answers and fast response. The incentive

system consists mainly of reputation and privilege

hierarchy, bade hierarchy, and voting and ordering

mechanism.

Reputation: Reputation hierarchy represents

how much a user is trusted by the community. It

is measured by reputation points which are earned

by convincing peers through asking questions, an-

swering, commenting, editing, etc.

Privilege: Privilege hierarchy controls what a

user can do in the site and corresponds to the user’s

reputation. For example, voting others’ posts, edit-

ing others’ questions and answers, accessing to site

analytic, and other activities that require different

numbers of reputation points. The more reputation

points a user gains, the more privilege the user will

have.

Badges: Badges are another honor for users

who are viewed as being especially helpful in the

community. Badges will appear on the profile page,

flair, and posts to motivate users to post high-quality

content.
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Voting and ordering: The quality of posted

questions and answers is measured by their read-

ers, who can vote up or down a post if they view

it as useful or not, and the authors will get or lose

corresponding reputation points. Accordingly, the

questions and answers are ordered by the number

of votes and the activeness. The more votes a post

gets, the more chances it will be read, and the more

reputation points the author will get.

The incentive system in StackOverflow effec-

tively motivates users to actively participate and pro-

vide high-quality knowledge. It attracted more than

6.4 million registered users who contributed more

than 33 million technical posts, and achieved an over

92% answer rate and about 11 minutes of the first

answer time, which is much better than other similar

sites (Mamykina et al., 2011).

In summary, the success of most knowl-

edge sharing communities like StackOverflow relies

mainly on the powerful incentive mechanisms. It

combines reputations, interests, and competitions ef-

fectively, and forms a productive loop such that high-

quality and quick responses attract more crowds to

take part in, while this in turn provides more knowl-

edge. However, how to motivate the crowds to con-

tinuously engage in is still a great challenge for a non-

monetary incentive system. As has been experienced

in StackOverflow, developers who earn enough rep-

utation points may reach a plateau and experience

a subsequent reduction in participation. Thus, such

external motivations like reputation are only part

of the consideration in designing the incentive sys-

tem. How to discover the crowds’ intrinsic needs and

introduce them into the incentive mechanism reason-

ably should be the great research issue.

4.3 Quality control of crowd intelligence

Due to the diverse nature of crowd tasks, differ-

ent kinds of crowd applications need to adopt differ-

ent quality control methods. In this subsection, we

introduce methods of quality control for data pro-

cessing, decision making, and software innovation.

4.3.1 Crowd intelligence for data processing

The aim of quality control for data processing

is to obtain the most useful and reliable data with

the minimum cost. To achieve this goal, we need

methods derived from multiple points of view. First,

when only low-quality data is available, we need

to be able to extract the correct information from

that. Second, better crowdsourcing mechanisms can

be designed. Moreover, fundamental questions on

what can be done in crowd intelligence need to be

addressed. These aspects are briefly summarized

below:

1. Learning correct labels from crowd-sourced

labels

Often, only low-quality data is collected from

crowd workers. In this case, we have to extract the

correct information from the crowd-sourced data. A

frequently considered situation is that workers give

labels for the data to extract a supervised model

from the data and the labels. Low-quality data

means that the labels may not be correct. To ad-

dress this problem, the most popular methods are

based on the Dawid-Skene model (Dawid and Skene,

1979) and inference methods such as the expecta-

tion maximization (EM) algorithm (Dempster et al.,

1977). The Dawid-Skene model is a probabilistic

model on how a crowd of workers label the tasks.

It assumes that the performance of each worker is

independent of the specific task, and that the labels

given by the workers are conditionally independent

of each other given the ground-truth label. In this

case, each worker corresponds to an unknown confu-

sion matrix. Then, the EM algorithm is used to infer

the confusion matrices and the ground-truth label

of each task. Similar to Dawid and Skene (1979),

Raykar et al. (2009; 2010) used a two-coin model to

model the ability of each worker. They assumed that

the ground-truth labels of the tasks were generated

by an unknown linear classifier. Then, a Bayesian

method based on the EM algorithm was used to in-

fer the confusion matrices and the parameters of the

linear classifier. In Whitehill et al. (2009), a model

considering both worker quality and task difficulty

with the conditional independence assumption was

proposed, and the most probable label can be in-

ferred based on the EM algorithm. Subsequently,

Welinder et al. (2010) introduced a generalized prob-

abilistic model with a high-dimensional formulation

representing task difficulty, worker quality, and

worker bias. Liu et al. (2012) transformed the crowd-

sourcing problem into a graph-based variational in-

ference problem. The labels can be inferred with

tools such as belief propagation and mean field. How-

ever, the usefulness of the method largely depends on
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the prior knowledge of the worker’s reliability, and

the mean field (MF) form of their method is closely

related to EM. A major drawback of the methods

based on the EM algorithm is the lack of guaranteed

convergence. In Zhang Y et al. (2014), an alternative

algorithm combining EM and a spectral method was

proposed, which uses EM for model initialization,

and uses the spectral method for parameter tuning

to guarantee the convergence.

The minimax entropy principle has also been

introduced into crowdsourcing. Zhou et al. (2012)

assumed that the labels were generated by a prob-

ability distribution over the workers, tasks, and la-

bels. The task difficulty and the worker performance

are inferred by maximizing the entropy of this dis-

tribution, and the ground-truth labels are inferred

by minimizing the entropy of the distribution. Tian

and Zhu (2015) presented a max-margin formula-

tion of the most popular majority voting estimator

to improve its discriminative ability, which directly

maximizes the margin between the aggregated score

of a potential true label and that of any alternative

label. Yan et al. (2011) combined the active learning

with crowdsourcing. In their work, a probabilistic

model providing the criterion for selecting both the

task and worker was proposed. When the crowd is

dominated by spammers, an empirical Bayesian algo-

rithm based on EM was proposed in Raykar and Yu

(2012) for iteratively estimating the ground-truth la-

bel and eliminating the spammers. Traditionally, the

label inference process and the machine learning pro-

cess with the inferred labels are treated separately in

crowdsourcing. To unify both steps, Wauthier and

Jordan (2011) proposed a Bayesian framework under

the name of Bayesian bias mitigation.

2. Designing smart crowdsourcing mechanisms

for saving the budget

In a crowd intelligent system, each task is pre-

sented to multiple workers and each worker is also

presented with multiple tasks. The system must

decide to assign which tasks to which worker. In

Karger et al. (2011), a task assignment algorithm

was proposed. Karger et al. (2011) used the Dawid-

Skene model to characterize the tasks and work-

ers, and further formulated task assignment into

edge assignment on random regular bipartite graphs.

Khetan and Oh (2016) generalized the result into the

generalized Dawid-Skene model which considers the

heterogeneous tasks with different difficulties. In

Ho and Vaughan (2012) and Ho et al. (2013), the

problem of assigning heterogeneous tasks was solved

with an online primal-dual technique achieving near-

optimal guarantees. Chen et al. (2013; 2015) formu-

lated the budget allocation of crowdsourcing into a

Markov decision process, and characterized the opti-

mal policy using dynamic programming. They pro-

posed an efficient approximation based on the opti-

mistic knowledge gradient method.

Besides task assignment, more crowdsourcing

mechanisms have been proposed to reduce the bud-

get. In Shah and Zhou (2015), when labeling the

tasks, the workers were allowed to skip the question

if their confidence in their answer was low. In Wang

and Zhou (2015), conditions had been derived for

when allowing the skipping of questions is useful us-

ing an ‘unsure’ option. In Zhong et al. (2015), it

was observed that the workers labeling multiple la-

bels, instead of one label per object, tend to act in

an effort-saving behavior; i.e., rather than carefully

checking every label, they would prefer just scan-

ning and tagging a few most relevant ones. A des-

ignated payment mechanism was proposed to incen-

tivize the worker to select the correct answer based

on his/her true confidence. They proved that the

mechanism is the uniquely incentive compatible one

under the ‘no free lunch’ assumption. Similar results

were extended to allow workers to select multiple

possible answers (Shah et al., 2015) or to correct

their answers (Shah and Zhou, 2016). Furthermore,

Cao et al. (2012) adopted the Poisson binomial dis-

tribution to model the uncertainty that a crowd of

workers complete a task correctly, and used the var-

ious uncertain mining techniques to discover the set

of reliable workers (Cao et al., 2012; Tong et al.,

2012a; 2012b; 2015a; 2016d).

3. Theoretical guarantees

More fundamental questions of crowdsourcing

need to be addressed. Gao and Zhou (2013) es-

tablished the minimax optimal convergence rates of

the Dawid-Skene model, and proposed a nearly opti-

mal projected EM method. Wang and Zhou (2016)

emphasized the importance of model performance

and bridged the gap between label cost and model

performance by an upper bound of the minimal

cost for crowdsourcing. They also disclosed the

phenomenon that the label performance is not the-

oretically and empirically the higher the better. Li

and Yu (2014) showed the error rate bounds from the
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view of voting, and proposed an iterative weighted

majority algorithm, which outperforms majority vot-

ing empirically and theoretically. In Ok et al. (2016),

the belief propagation algorithm was proved to be op-

timal when each worker is assigned at most two tasks.

Dekel and Shamir (2009) considered the case where

each task is labeled by only one worker. They pre-

sented a two-step method to prune low-quality work-

ers in the crowd. First, a classifier is trained using

all the training data. Then, the workers who provide

the label very differently from the predictions of the

classifier are identified as of low quality. The labels

provided by these workers are deleted before a new

classifier is trained. They also presented the theoret-

ical analysis for this two-step process. Tran-Thanh

et al. (2012) proposed a multi-arm bandit algorithm

for crowdsourcing with limited budget. They used a

small portion of the budget to estimate the worker’s

quality, and maximized the utility of the remain-

ing budget based on these estimations. An upper

bound on the regret for the algorithm was derived.

Abraham et al. (2013) considered a special crowd-

sourcing problem, called the bandit survey problem,

in which each worker can be treated as a bandit arm.

In this work, multi-arm and Lipschitz bandit algo-

rithms were used to solve the bandit survey problem

with theoretical guarantees. In Jain et al. (2014),

bandit setting was employed to deal with task as-

signment. In Zhou et al. (2014), bandit arm identifi-

cation was employed for worker selection.

4.3.2 Crowd intelligence for decision making

Decision making is an important activity for hu-

man beings. It accompanies us from our daily life

to the activity of changing nature and our society.

Traditional decision-making is limited to a single in-

dividual, or is in the form of a small group of do-

main experts. It does not consider the challenges in

open environments where the influencing factors are

unclear, the information is dynamically changing, or

the feedback is not on time. As a consequence, tradi-

tional decision making is unable to effectively solve

challenging problems in open environments and to

make correct decisions.

Crowd intelligence opens up new ways for

more informed decision making. We can mine the

massive pieces of the information provided by mil-

lions of crowd participants on the Internet, to analyze

the sensible and computable factors that influence

the activity and credibility of individual crowd par-

ticipants, to build corresponding theoretical models,

and to design methods for informed decision mak-

ing by aggregating diverse information from crowd

participants.

For example, crowd intelligence has been used to

decide when and where to dispatch resources and res-

cuers after earthquakes (Sakaki et al., 2010), which

flight to take to avoid delay (Li et al., 2012), where to

obtain living resources after a typhoon (Wang et al.,

2014), when to visit a target place to avoid crowded-

ness or long waiting lines (Ouyang et al., 2015), and

which route to take when traveling (Dantec et al.,

2015).

However, there are also significant challenges.

First, information about the same target provided

by different crowd participants may be conflicting.

However, the reliability of each crowd participant

is unknown a priori. Moreover, crowd participants

may be affected by each other through social inter-

action (e.g., simply retweet others’ tweets). It is

difficult to decide which information to trust. Thus,

decision making faces significant risks without any

risk-controlling mechanism. Second, the number of

crowd participants is huge. Processing all the pieces

of information by these participants is unnecessary,

and may reduce the decision accuracy due to the in-

volved noises. Selecting a small set of reliable crowd

participants for decision making will possibly fur-

ther increase the decision accuracy and reduce the

cost. Third, the information source for crowd deci-

sion making is not diversified and typically not well

calibrated. Consequently, it is challenging to de-

sign an appropriate model to combat the uncertainty

caused by diverse information sources, particularly

for the prediction-oriented decision making tasks.

Therefore, the following research problems need

to be addressed when leveraging crowd intelligence

for decision making: (1) risk controlling in decision

making given diverse, conflicting, and dependent in-

formation; (2) selection of a small set of reliable

information sources from a tremendous number of

crowd participants; (3) determining the reliability

or credibility of the information source for decision

making.

1. Risk controlling in decision making

Risk controlling in decision making aims to

make the most accurate decision whose risk (e.g.,

error or cost) is the lowest.
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Researchers from the University of Tokyo,

Japan proposed a temporal model and a spa-

tial model, for accurately determining when and

where an event (e.g., earthquake) happens for res-

cue deployment from diverse and conflicting crowd-

provided information (e.g., tweets) (Sakaki et al.,

2010). They modeled the event occurrence time us-

ing an exponential distribution, and modeled that

each crowd participant has a false positive rate. Af-

ter parameter learning from data, they calculated the

probability of an event occurrence at a given time t.

To determine the event location, they view the

location over time as a state sequence {xt} and

xt=ft(xt−1, ut), where ut is a process noise sequence.

They then explore the Kalman filter and the parti-

cle filter to determine the location of an event at

time t (e.g., the location of an earthquake center or

the trajectory of a typhoon). Through experiments,

they showed that 96% of the earthquakes in Japan

Meteorological Agency (JMA) seismic intensity scale

three or more can be accurately detected merely by

monitoring tweets from crowd participants. Noti-

fication and rescue decisions are made much faster

than those broadcasted by JMA. The average error

in event location estimation is around 3 km.

Researchers from the University of Illinois at

Urbana Champaign (UIUC) proposed a method for

accurate decision making that takes the social re-

lationships of crowd participants into consideration

(Wang et al., 2014). They modeled that each crowd

participant i has two reliability parameters, ai and

bi. The former is the probability that an event is

true and the crowd participant also claims that the

event is true, while the latter is the probability that

an event is false but the crowd participant claims

that the event is true. They also modeled that each

crowd participant i has a probability pig to follow

another participant g.

Based on the follower–followee relationships

in social networks, they partitioned the crowd

participants involved in each event into several

groups, where group members retweet the group

leader’s information. Each group leader is consid-

ered to be independently providing information (i.e.,

using parameters ai and bi), while group members

are considered to copy the group leader’s informa-

tion (i.e., using parameter pig). The event label (i.e.,

true or false) was modeled as a latent variable zj .

They then jointly learned these parameters and

inferred the event label from the observed data by

maximizing the data log likelihood. In particular,

they solved the maximization problem via the EM

algorithm. They conducted experiments to deter-

mine the trace of hurricane Sandy by using crowd

intelligence. Experimental results showed that their

method can reach up to 90% accuracy in decision-

making, while methods that do not consider social

relationships can lead to only 60% accuracy.

Researchers from the University of California,

Los Angeles (UCLA) (Ouyang et al., 2015) proposed

a method for accurate decision making from quanti-

tative information, different from Wang et al. (2014)

who worked on binary information. They modeled

that each crowd participant has a bias parameter

and a confidence parameter when providing a piece

of quantitative information (e.g., occupancy rate in a

gym or a classroom), and such information is noise-

centered on the true but latent quantity value. More-

over, each latent true quantity value is associated

with a difficulty level. They then built a unified

graphical model to account for all these variables.

They also used the EM algorithm to jointly learn all

the parameters and latent variables based on the ob-

served data. The errors of inferred quantity values

were shown to be within 10%.

Researchers proposed a method to make accu-

rate decisions with streaming data in Wang D et al.

(2013) and to make accurate decisions for planning

tasks in Dantec et al. (2015).

2. Selection of a small set of reliable information

sources

As the number of crowd participants is huge and

the information provided by them is noisy, selecting

a small set of reliable crowd participants for decision

making will further increase the accuracy.

Researchers from the AT&T Research Lab

(Dong et al., 2012) proposed a method for wisely

selecting information sources. They formulated the

problem as selecting the set of information sources

that maximize the decision accuracy. They mod-

eled that each information source has an accuracy

parameter, and proposed a method that can esti-

mate the accuracy of the fused decision, based on the

accuracy of individual information sources. They

then presented an algorithm that applies the greedy

randomized adaptive search procedure (GRASP)

meta-heuristic to solve the source selection problem.
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Experimental results showed that selecting a subset

of reliable information sources leads to even higher

decision accuracy.

Researchers from the University of Fribourg

(Difallah et al., 2013) built profiles for each in-

dividual crowd participant, and then selected the

most appropriate participants for each decision task

at hand. They built profiles in three different

ways, namely, category-based, expertise-based, and

semantic-based. Through experiments, they ob-

served that selecting a subset of participants can

indeed increase the task accuracy. They then pro-

posed a scheduling workflow in a subsequent study

(Difallah et al., 2016).

Researchers from the Université de Rennes 1,

IRISA (Mavridis et al., 2016) used hierarchical skills

for selecting a small set of participants for each

task. They modeled the skills of each crowd partici-

pant using a skill taxonomy, and proposed a method

to compute the skill distance between the required

skill and the skills of participants. Then, given a

task, only the first few participants whose skill dis-

tances to the required one are the smallest are se-

lected. They tested several algorithms for partici-

pant selection, including Random, ExactThenRan-

dom, MatchParticipantFirst, ProfileHash, and Hun-

garianMatch. They showed that the latter four algo-

rithms result in higher decision accuracy than ran-

dom ones.

3. Credibility of information source for decision

making

For crowd decision making, the first task is to

evaluate the credibility of the information source for

crowd decision making, particularly for prediction-

oriented decision making. For example, the failure

of predicting the presidential election of the USA

demonstrates that the source of information could

significantly bias the prediction results.

Google Flu Trends (GFT) is a flu track-

ing system, developed based on the query log of

their search engine. GFT achieves a much earlier

prediction about the scope of flu in the USA. How-

ever, as reported, GFT generally overestimates the

proportion of doctor visits for influenza-like illness

than Centers for Disease Control and Prevention

(Lazer et al., 2014). Scientists attribute the fail-

ure of GFT to the low reliability of the information

source. Shen and Barabási (2014) designed a collec-

tive credit allocation method to identify the intellec-

tual leaders of each multi-author publication. Dif-

ferent from existing methods that use the author list

as the information source, the proposed method uses

co-citation as a reliable information source, achiev-

ing a much higher accuracy at identifying the No-

bel laureate from his prize-winning papers. Bollen

et al. (2011) investigated collective mood states de-

rived from large-scale Twitter feeds to predict the

Dow Jones industrial average (DJIA). The proposed

method achieves an accuracy of 86.7% in predicting

the daily up and down changes in the closing values

of DJIA. The success of this method also indicates

the importance of a credible information source.

4.3.3 Crowd intelligence for innovation

Innovation was defined by Rogers (2010) as “an

idea, practice, or object that is perceived as new by

an individual or other unit of adoption”. OSS de-

velopment is actually a continuous process for crowd

innovation aggregation. The gathering and evalua-

tion of contributions from the crowds is a key process

in the emergence of crowd intelligence.

1. Contribution gathering in software commu-

nities

OSS projects are primarily driven by community

contribution, and contribution collection in software

communities has become an important factor that

affects the success of the software (Wang et al., 2015).

GitHub designed a novel contribution model

called a pull-based development model, which is

widely used in distributed software development

(Gousios et al., 2015; Vasilescu et al., 2015). Us-

ing this model, external contributors can easily con-

tribute their changes to software without accessing

the central repository. The core team members can

merge these external contributions by processing cor-

responding pull-requests. Such a paradigm offers

much convenience for collaborative development and

greatly promotes the efficiency of contribution col-

lection (Gousios et al., 2015). Many researchers

have studied the contribution gathering mechanisms.

Gousios et al. (2015) studied the practice of pull-

based software development and its challenges from

a contributor’s perspective. Yu et al. (2016a) lever-

aged a regression model to quantitatively analyze

what factors are determinants of pull-based develop-

ment. They found that continuous integration is a

dominant factor in the pull-request process.
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Some researchers analyzed the contribution col-

lection from the perspective of openness. Openness

reflects how easy it is for a new developer to ac-

tively contribute to a software community. They

have proposed three metrics to evaluate the open-

ness: the distribution of the project community, the

rate of acceptance of external contributions, and the

time it takes to become an official collaborator on

the project. These metrics have been applied on a

dataset of GitHub projects. Project members and

owners can use these metrics to improve the attrac-

tiveness of their projects, while external contributors

can rely on these metrics to identify those projects

that better fit their development needs (de Alwis and

Sillito, 2009).

Some others focus on studying mechanisms for

accelerating the contribution gathering process. Yu

et al. (2016b) combined the social connections and

technical factors, and designed a reviewer recommen-

dation approach, which helps project managers find

proper contribution reviewers. Many other similar

works have been conducted in recent years (Rigby

et al., 2014; Thongtanunam et al., 2015). They

can be very valuable for promoting the efficiency

and quality of contribution gathering. Tamrawi

et al. (2011) paid attention to the automatic task

assignment like bug triage, which aims to automat-

ically find the right person to accomplish the right

task (Jeong et al., 2009; Bhattacharya and Neamtiu,

2010).

2. Innovation evaluation in software com-

munities

Innovation evaluation is an indispensable step

in ensuring the quality of crowd intelligence. As a

typical innovation process, OSS development in com-

munities is studied extensively for how to evaluate

such innovations.

A lot of work has been done on measuring and

predicting software quality by analyzing the struc-

ture of source code and its development process.

Basili et al. (1996) and Subramanyam and Krishnan

(2003) studied the relations between the complexity

of source code and its defect density. Their empiri-

cal work found that, in object-oriented software, the

CK metrics, like design complexity, are significantly

associated with the software quality. Nagappan and

Ball (2005) and Moser et al. (2008) analyzed the code

differences between multiple versions, and found that

the change metrics can be good indicators for defect

density prediction.

Some researchers studied software quality from

the team behaviors’ perspective. Rahman and De-

vanbu (2013) found that development behaviors can

have great influence on software quality. Hassan

(2009) used the entropy to quantify the complex-

ity of code changes, and found it to be an important

factor for introducing defects. Bird et al. (2011) and

Rahman and Devanbu (2011) focused on studying

the impact of the developer number in the team, and

their experience and contribution rate on innovation

quality.

In addition, some approaches have been pro-

posed to evaluate the contributions from the com-

munity’s perspective. In GitHub and many other

software communities, project members often engage

in extended discussions to evaluate whether an ex-

ternal contribution should be integrated (Tsay et al.,

2014b). In addition, Tsay et al. (2014a) studied the

social and technical factors’ influence on evaluating

contributions in the GitHub community. They found

that the strength of the social connection between

contributors and the project managers, as well as the

discussion density, are important factors for evaluat-

ing external contributions.

4.4 Future challenges

As an emerging area, there are some research

challenges in crowd intelligence.

Dynamic crowd organization: Although the ex-

isting crowd organization techniques have already

achieved good efficiency, there is little research

on how to adjust the organization structure of

crowd intelligence to cope with the variable external

environment.

Dynamic pricing: The onetary incentive mech-

anism is important in crowd intelligence emergence.

However, the supply and demand between the task

requesters and workers often change. How to design

an effective monetary incentive mechanism that can

dynamically set a proper price for tasks, will be one

of the research emphases in the future.

Quality control on latency: Current research of

quality control mostly focuses on the assurance of

the outcome of crowd intelligence. However, in some

application scenarios such as mobile crowdsourcing,

it is an important issue to control the latency of task
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completion. This is also the research emphasis of

quality control in crowd intelligence.

5 Conclusions

In this paper, we review extensive theoretical

studies and industrial applications on crowd intelli-

gence in AI 2.0 era. We first introduce some funda-

mental concepts of crowd intelligence, then illustrate

various platforms of crowd intelligence, and finally,

discuss the existing hot topics and the state-of-the-

art techniques. In addition, we provide the poten-

tial challenges for future research. Specifically, the

techniques of crowd organization and allocation, in-

centive mechanisms of crowd intelligence and qual-

ity control of crowd intelligence can be further im-

proved. Since crowd intelligence is one of the core

components of studies in AI 2.0 era, we hope that

this paper can enlighten and help scholars working

on the emerging topics of crowd intelligence.
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