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As a collective and highly dynamic social group, human crowd is a fascinating phenomenon which

has been constantly concerned by experts from various areas. Recently, computer-based modeling
and simulation technologies have emerged to support investigation of the dynamics of crowds,
such as a crowd’s behaviors under normal and emergent situations. This paper assesses the major
existing technologies for crowd modeling and simulation. We first propose a two-dimensional

categorization mechanism to classify existing work depending on the size of crowds and the time-
scale of the crowd phenomena of interest. Four evaluation criteria have also been introduced
to evaluate existing crowd simulation systems from the point of view of both a modeler and an
end-user.

We have discussed some influential existing work in crowd modeling and simulation regarding
their major features, performance as well as the technologies used in these work. We have also
discussed some open problems in the area. This paper will provide the researchers with use-

ful information and insights on the state-of-the-art of the technologies in crowd modeling and
simulation as well as future research directions.

Categories and Subject Descriptors: I.6.5 [Simulation and Modeling]: Model Development—
modeling methodologies; I.6.8 [Simulation and Modeling]: Types of Simulation—animation;
gaming; J.4 [Social and Behavioral Sciences]: —psychology ; sociology

General Terms: Algorithm, Design, Experimentation, Human Factors

Additional Key Words and Phrases: Crowd simulation, crowd dynamics, human behavior, multi-
agent system

1. INTRODUCTION

Human crowd is a fascinating social phenomenon in nature. In some situations,
a crowd of people shows well-organized structure and demonstrates tremendous
constructive power. While in other situations, people in a crowd seem to abandon
their social norms and become selfish animals. Numerous incidents/accidents with
large crowd (see Figure 1) have been recorded in human history, and many have led
to severe casualties and injuries [Crowd Dynamics Pte Ltd 2009a]. How to predict
and control the behavior of a crowd upon various events is an intriguing question
faced by many psychologists, sociologists, physicists and computer scientists. It is
also a major concern of many government agencies.

A crowd is not simply a collection of individuals. The behavior of an individual
may be affected by others in the crowd, which may depend on various physiolog-
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ical, psychological and social factors. A common observation on human crowd is
that an individual may behave quite differently in a crowd as compared to acting
individually. That is, an individual may be forced to behave in a manner that is
deemed proper by the crowd in a given situation. Therefore, a crowd may exhibit
highly complex dynamics. In general, pure mathematical approaches or analytic
models are not adequate in characterizing the dynamics of a crowd.
In recent years, modeling and simulation technologies have been gaining tremen-

dous momentum in investigating crowd dynamics. Various simulation architectures
have been developed [Musse and Thalmann 2001; McKenzie et al. 2004; Pan et al.
2005; Bandini et al. 2007]; virtual environment representations have also been con-
structed for crowd simulations [Paris et al. 2006; Shao and Terzopoulos 2005b;
Yersin et al. 2009]. To represent the behavior of a crowd, a number of behavior
models have been proposed [Helbing et al. 2000; Hughes 2003; Batty et al. 2003;
Sung et al. 2004; Pelechano et al. 2008; Arentze and Timmermans 2009] with dif-
ferent types of modeling approaches, such as flow-based models and agent-based
models. To study or mimic the dynamics of a crowd, modelers have considered a
number of physical factors, social factors, and psychological factors when charac-
terizing crowds in their models. Crowd models may also concern different aspects
of a crowd. Some work aims at the “external characteristics” of a crowd, such as
appearance, poses or movement patterns, coordinated positions of individuals; and
some other work focuses on how a crowd’s social behaviors evolve over time upon
some events.
Crowd modeling and simulation has now become a key design issue in many

fields including military simulation, safety engineering, architectural design, and
digital entertainment etc. Crowd simulations have been intensively used for real-
time tactical military training, such as simulating the civilian behaviors and combat
actions in peacekeeping scenarios. Constructing a pool of human individuals and
their behaviors in a virtual environment has been applied to identify possible risks
or failures in a broad range of emergency situations and facilitate the architecture
design to ensure safety. Some commercial software, such as Massive [Massive Soft-
ware 2009] and AI.implant [Presagis 2009], have been developed and successfully

(A) A crowd in protest (B) A crowd stranded by the paralyzed transport system

Fig. 1. Examples of crowds.
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used in animating crowds for digital entertainment (e.g., scenes of crowd in Lord
of the Rings, Age of Empires 3 etc).

Despite the many existing research efforts and applications in crowd modeling
and simulation, it is still a young and emerging area. New researchers in this area
are often bewildered by the many aspects that they need to consider when modeling
the behavior of a crowd. Thus, there is a need to provide a comprehensive survey
on crowd modeling and simulation technologies. There exists a few effort in sum-
marizing crowd simulation models. For example, Santos and Aguirre gave a critical
review of the existing crowd simulation models for emergency evacuation [Santos
and Aguirre 2004]. However, their discussions are limited to those models for emer-
gency evacuation situations, thus are not sufficient to cover the many behavioral
aspects of human crowds in different situations. In addition, many new research
and development efforts have been conducted in recent years. This paper serves as
an up-to-date review of existing work in crowd modeling and simulation. We do
not aim to give a complete account of all existing work. Instead, we will describe
the major modeling features and related mechanisms of some representative work.
We hope to provide readers with a clear overview of the state-of-the-art of the area
as well as some concrete insights such as how different behavioral aspects could be
modelled. To this end, it is necessary to have a clear classification of existing work.
In fact, one of our major concerns while writing this paper is on the organization
of existing work. Despite the variety in model types, behavioral factors involved
and application areas, we find that the existing work in crowd modeling and sim-
ulation can be generally categorized by the size of the simulated crowd and/or the
time-scale of the crowd phenomena of interest.

Simulated crowds in existing models may consist of thousands or even hundreds
of thousands (huge-sized), hundreds (medium-sized), or tens (small-sized) of indi-
viduals. The crowd size often determines the types of approaches used to model a
crowd. For example, existing work on modeling huge-sized crowd usually treats the
crowd as a whole and focuses on the global trend of the crowd, due to the tremen-
dous computational cost involved. For a small to medium-sized crowd, the relative
small size of the crowd allows researchers to model the behavior of the individuals
in the crowd. Such individual-based approaches usually build more details into the
crowd model and support investigation of crowd dynamics at individual level.

As far as a crowd’s time scale is concerned, the work in crowd modeling either
concerns long-term or short-term crowd phenomena. Examples of long-term crowd
simulations include the investigation on how people’s opinions are affected by var-
ious factors, how extreme ideologies are formed and spread among the individuals
in the crowd [Deffuant 2006; Salzarulo 2006]. The underlying process for these phe-
nomena have a relatively long time period. In contrast, research in the short-term
crowd simulation focuses on the short-term behavior of a crowd, which in general
investigates how a crowd will respond to various events such as emergencies and
threats, given the crowd composition and the social, psychological and physical
characteristics of the individuals and groups in the crowd. The time-scale of the
crowd phenomena of interest is usually in the order of minutes to hours.

Along the dimensions of crowd size and time scale, this paper gives an up-to-
date overview on crowd modeling and simulation technologies. The paper provides
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a review of models, features and applications of some major existing work in this
area. As crowd modeling and simulation is still a new and rapidly evolving field,
developments and research achievements from different communities tend to be
diverse and address issues from different perspectives. Although it is difficult to
fully assess and compare all the existing work in crowd modeling and simulation,
the paper attempts to analyze and evaluate the major efforts in this area based on
carefully defined evaluation criteria. The evaluation is intended to reveal potential
improvements and open research problems in the future.
The remainder of the paper is organized as follows. Section 2 introduces the

classifications and defines the evaluation criteria for analyzing crowd simulation
systems. Section 3 explores major existing work in this field, which will be catego-
rized based on the taxonomy and evaluated against the evaluation criteria. Section
4 discusses open research problems in crowd modeling and simulation. Section 5
summarizes observations on the work surveyed.

2. CLASSIFICATIONS AND EVALUATION CRITERIA

Existing crowd models and simulation systems can be roughly categorized using
a two-dimensional taxonomy defined by crowd size and time scale. For the mod-
els and systems in each category, we further classify them based on two aspects.
The first aspect is the modeling approach being used. These modeling approaches
mainly include flow-based approach, particle system approach, and agent-based
approach. The modeling approach may have significant impact on the simulated
crowd behavior and also the runtime performance of the system. Thus it must be
carefully chosen by a modeler. The other aspect is the behavioral factors being
considered. These factors include tangible factors like physical and physiological
characteristics of individuals (e.g., position, speed, etc.), and intangible factors like
social factors and psychological factors (e.g., family tie, emotion, etc.).
To properly assess various crowd simulation systems, we introduce different types

of evaluation criteria from two perspectives: the first type of criteria is from a mod-
elers’ point of view that concerns with the design and development of crowd models,
the second type of criteria is from the simulation execution point of view that con-
cerns runtime performance of simulation. Note that we do not include believability
as an evaluation criterion in this paper. Although many researchers may argue that
the ultimate evaluation of a crowd modeling and simulation work is to see whether
the generated crowd behavior is believable or not, we feel that believability is not a
properly defined concept - any claim on believability is subjective, thus is debatable
and even doubtful.

2.1 Model Classifications

According to different crowd size and time-scale involved, we found that existing
crowd models can be generally classified into three categories: models of long-
term crowd phenomena, models of short-term phenomena of huge-sized crowd, and
models of short-term phenomena of medium to small-sized crowd. Each category
corresponds to a region in the 2D space defined by crowd size and time scale, as
shown in Figure 2. The size and the time scale of a simulated crowd relate closely
with the crowd model’s modeling approaches and features.
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Different crowd modeling approaches may reproduce the feature, state and behav-
ior of a real crowd in different granularity when modeling a crowd. Some approach
treats the crowd as a whole and studies its dynamics at the crowd level. A typ-
ical example is the flow-based approach, which models the crowd as a continuous
flow and usually aims at the movement pattern of the crowd [Hughes 2003]. A
model for huge-sized crowd may have to opt for this type of approach due to the
computational cost involved. Executing thousands of virtual individuals demands
tremendous computing resources especially when each virtual individual is an in-
telligent and autonomous entity rather than a simple object. In contrast, a model
aiming at medium to small-sized crowd often uses a modeling approach with much
finer granularity. For example, each individual in the crowd may be modelled as
an autonomous agent.
The time scale of a crowd phenomenon of interest is determined by the objective

of a crowd simulation system which also confines its applicability. A crowd simula-
tion model of a long-term phenomenon usually focus on some intangible social and
psychological characteristics rather than the physical characteristics of the crowd.
Research in this category is basically suitable for academic research in social science
or high level operational studies, for instance, to study how extreme ideologies are
formed and spread among individuals in the crowd. On the other hand, simulation
models of short-term crowd phenomena usually describe crowds’ physical charac-
teristics, especially positions and movement patterns. Besides academic research,
these models have been widely applied in military training, digital entertainment
and daily operational studies.

2.1.1 Crowd Modeling Approaches. Crowd modeling approach reflects the over-
all simulation mechanism that controls the way how the simulated individual in
the crowd performs. In the following, we discuss three major modeling approaches
with different modeling granularities. The crowd may be treated as a whole, or as
a collective of homogeneous/heterogeneous entities with interactions among them.
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Fig. 2. Classification of crowd model.
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Flow-based Approach: The flow-based approach models a crowd as continuous
flow of fluid (see Figure 3), such as EVACNET4 [Kisko et al. 1998] and Flow Tiles
technique [Chenney 2004]. Due to the inherent nature of flow-based models, they
basically neglected the features of individuals. In this sense, flow-based models are
mainly useful in estimating the flow of movement/evacuation process for huge and
dense crowds.

(A) A highly dense crowd in a 

marathon race
(B) Flow-based model of the crowd

Fig. 3. An example of flow-based crowd model. [Original pictures were retrieved from

http://www.cs.ucf.edu/∼ sali/Projects/CrowdSegmentation/index.html.]

Entity-based Approach: Individuals are modeled as a set of homogeneous
entities in this approach. A typical example of this approach is the particle sys-
tem model that treats individuals in a crowd as particles in the physical world
(see Figure 4), such as Helbing’s social force model [Helbing et al. 2000]. In mod-
els that adopt the entity-based approach, the motions of the entities are usually
influenced by some global/local laws that are introduced to represent various phys-
ical/social/psychological influences on an individual’s movement in a crowd. Some
global emerging phenomena such as jamming and flocking can be generated by
these models.
Agent-based Approach: Agent-based approach models each individual in a

crowd as an intelligent and autonomous agent, which may have capabilities to be-
have in the simulated world ranging from reacting to certain events to adapting
to complex dynamic environment. Agents are regulated by sets of decision rules,
and each agent may make decision independently. The decision rules for an agent
are usually based on some local information that are relevant to the agent. Never-
theless, some sustainable global patterns may emerge even with some simple local
rules. This approach also allows for more behavioral factors to be considered. The
agent-based approach to crowd modeling and simulation has gained tremendous
momentum recently due to the significant increase in computing power.
It should be noted that sometimes the difference between an entity-based model

and an agent-based model is not very clear as researchers tend to incorporate more
and more behavioral factors into entity-based models [Braun et al. 2005] and the
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Fig. 4. An example of particle system model.[Original pictures were retrieved from reference
[Helbing et al. 2000].]

agents in some agent-based crowd models are equipped with some rather simple
rules. However, in general, an agent is more complex than an entity. An agent has
its own attributes and states that represent various behavioral factors such as mov-
ing speed, emotion, social ties, etc. An agent also has certain level of cognitive and
reasoning capability that allow it to sense its surroundings, assess the current situa-
tion and make decisions. While the homogeneous entities in an entity-based crowd
model generally lack such capability - they simply react to the current situation in
a similar manner according to some pre-defined global or local laws.

2.1.2 Behavioral Factors. The dynamics of a crowd is characterized and influ-
enced by a number of factors, such as the position and moving speed of the individ-
uals, various social relations among the individuals (e.g., family ties, leadership),
and the emotional states of the individuals, etc. Based on different objectives and
design requirements, different crowd models may take into account different behav-
ioral factors. Here, we broadly divide these factors into three categories: (tangible)
physical factors, (intangible) social factors, and (intangible) psychological factors.
Physical Factors: Physical factors refer to those external tangible characteris-

tics of an individual such as position, moving speed, appearance, gesture, etc. A
crowd model that considers only these tangible factors usually aims to investigate
how the movement of an individual may be affected by the movement of others in
the crowd. In general, physical factors are considered in most of the crowd models
as the basic and low level inputs for decision making.
Social Factors: In addition to the tangible factors, human behavior is also in-

fluenced by a wide variety of social factors, such as culture, social norms, family
ties and leadership etc. The computational models that incorporate these factors
are usually based on social theories and observations from social studies. For ex-
ample, Kaminka and Fridman adopted the social comparison theory in their crowd
behavior model [Kaminka and Fridman 2006]. Pan et al [Pan et al. 2005] also em-
ployed a multi-agent based framework to demonstrate some emergent human social
behaviors, for instance, competing, queuing, and herding.
Psychological Factors: As manifested by numerous studies, psychological fac-

tors such as emotion play an important role in human decision making. Due to
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the complex process involved, there is still no consensus on how human behavior is
influenced by these factors. The crowd models that take into account these factors
are in general fragmented and immature. However, research in this area is getting
momentum recently. For example, Gratch and Marsella [Gratch and Marsella 2004]
have proposed a framework for modeling emotion based on the appraisal theory.

2.2 Evaluation Criteria

In order to produce a realistic crowd model and execute the simulation efficiently
and effectively, a crowd simulation system should meet certain requirements from
computer engineering’s perspective. In this paper, we abstract these requirements
as several evaluation criteria, which are grouped into two major categories.

The first category is from a modeler’s point of view that concerns the design and
development of crowd models, which includes flexibility and extensibility.

Flexibility: Flexibility refers to a model’s capability to adapt to different sit-
uations. A model is flexible if it is able to embrace potential internal or external
changes in accordance to various situations, especially when the changes are un-
certain. A major problem with many existing crowd models is that these models
are too tightly coupled with some specific situations. For example, they may adopt
some decision rules specific to a given situation that makes it hard to adapt to other
situations.

Extensibility: A model is extensible if it is able to accommodate new features
without much difficulty. For example, an extensible behavior model should be able
to incorporate new behavioral factors into the existing decision making process
without much difficulty.

The second category is from the simulation execution point of view that concerns
the runtime performance of a crowd simulation model, which includes execution
efficiency and scalability.

Execution Efficiency: Execution efficiency mainly concerns the time needed to
execute a crowd simulation for a given scenario. For a realtime crowd simulation,
this is also reflected by the delay that the simulation system responds to the user
interaction. Obviously, the shorter the execution time is required (or the smaller the
delay is incurred), the better execution efficiency a crowd simulation has. Therefore,
a detailed model taking into account many behavioral factors may not be regarded
as a good model if its execution efficiency is too low. A modeler needs to carefully
balance a model’s granularity and its computational cost. A trade-off is usually
necessary for crowd with large size.

Scalability: Scalability is an important issue for crowd simulation especially
for large-sized crowd. Many crowd models adopt some decision rules that need to
determine the interaction among neighboring individuals. Thus, the computational
overhead often increases very fast as the size of the crowd increases, which will
make the simulation very slow. Scalability has been widely studied in the parallel
computing and distributed simulation community, and various methods have been
proposed to enhance a system’s scalability. However, it should be pointed out that
scalability is largely ignored in the existing crowd simulation systems.
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3. EXISTING WORK

As an intriguing issue, crowd behavior has been studied by researchers in different
areas, e.g., social scientists, psychologists, physicists, computer scientists, etc. Since
the last decade, modeling and simulation technology has become an important tool
in the study of crowd behavior with quite a number of crowd behavior modeling
approaches being proposed and a lot of crowd simulation systems being built. Our
aim in this section is not to give a complete account of all existing work. Instead,
we will sample some representative work in crowd modeling and simulation, as
listed in Table I. These work are selected according to our model classification
methodology as described in Section 2. First, we will discuss some existing work
that focus on the long-term phenomenon of crowd. Secondly, we will discuss work
on the investigation of short-term phenomenon of huge-sized crowd. Thirdly, we
will discuss the modeling and simulation efforts on small-to-medium sized crowd
with short-term phenomenon. We further classify work in this category according
to the modeling approach being used, namely, entity-based approach and agent-
based approach. As agent-based approach represents the major trend in crowd
modeling and simulation, a significant part of our discussion is on work with agent-
based approach. In particular, we put emphasis on work involving virtual crowds
in urban environment, which perhaps represent the most demanding area for crowd
modeling and simulation in terms of the level of detail (e.g, behavioral factors) of
the crowd/individual model as well as the computational resources needed.
For the work in each category, we will summarize their major design considera-

tions, and discuss how these considerations were addressed with various behavior
modeling features and mechanisms. Depending on different application areas and
different objectives of simulation study, the results of crowd simulations may be
presented in different ways such as values of some key statistics, 2D plots, 2D/3D
animation, etc. Nevertheless, animation has become increasingly important for
many important applications, especially for applications using agent-based crowd
models. In fact, an important validation method relies on users’ perception on the
animated crowd behavior. Therefore, for some work on agent-based crowd model-
ing and simulation, we will also briefly discuss how the simulation models facilitate
crowd animation.
We will also make comments on the existing work using the proposed evaluation

criteria. It should be noted that our aim is not to compare these existing work since
different work may have different applications and objectives. Through our analysis,
we hope to provide researchers and developers in crowd modeling and simulation
with more concrete insights such as what types of models are more suitable for
what type of applications involving human crowds, how different behavioral factors
could be modelled, etc.

3.1 Modeling and Simulation of Long-term Crowd Phenomenon

The long-term crowd phenomenon has been studied mainly by social scientists. So-
cial scientists have been intrigued by questions like how social groups are formed,
how extreme ideologies are formed and spread among individuals in a population,
etc. The crowd phenomena of interest in these questions often have a relatively
long time period, e.g., several days to several years. A set of social theories, e.g.,
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Table I. Influential Research Work on Crowd Modeling and Simulation
Organizations / Research

Groups

Model Abbrevi-

ation

Nature of Work Application

Area

Guillaume Deffuant at

Laboratoire d’Ingnierie

des Systmes Complexes,

Cemagref

Deffuant Long Term Crowd
Process

Social Study

Laurent Salzarulo at

Université de Lausanne,

Institut de mathématiques

appliquées

Salzarulo Long Term Crowd
Process

Social Study

Thomas M. Kisko et al at

University of Florida

EVACNET4 Movement of Large
Crowd in Complex
Urban Environment

Civil Planning

Computer Graphics Group

at University of Wisconsin,

Madison

Flow Tiles Movement of Large
Crowd in Complex
Urban Environment

Digital Enter-
tainment

Adrien Treuille et al at Uni-

versity of Washington

Continuum
Crowds

Movement of Large
Crowd in Complex
Urban Environment

Digital Enter-
tainment

Dirk Helbing at Dresden Uni-

versity of Technology

Helbing Movement of
Medium Crowd
in Simple Environ-
ment

Operational
Study

Institute of Theoretical

Physics at University of

Cologne

ITP@UC Movement of
Medium Crowd
in Simple Environ-
ment

Operational
Study

Center for Advanced Spatial

Analysis at University Col-

lege London

CASA@UCL Movement of
Medium Crowd
in Complex Envi-
ronment

Civil Planning

Crowd Dynamics Pte Ltd Legion@Crowd
Dynamics

Movement of
Medium Crowd
in Urban Environ-
ment

Civil Planning

Virtual Reality Lab at the

Swiss Federal Institute of

Technology

VRLab@EPFL Movement of
Medium Crowd
in Urban Environ-
ment

Digital Enter-
tainment

Media Research Lab at New

York University

MRL@NYU Movement of
Medium Crowd
in Urban Environ-
ment

Digital Enter-
tainment

Virginia Modeling, Analysis

and Simulation Center

VMASC Behavior of Small to
Medium Crowd in
Military Operations

Military Train-
ing

Center for Human Modeling

and Simulation at University

of Pennsylvania

CHMS@UPenn Behavior of Small to
Medium Crowd

Military Train-
ing, General
Purpose

Opinion Dynamics [Stauffer 2005] and Self-categorization Theory [Turner et al.
1989] etc, have been established to explain certain long-term crowd phenomena.
These theories are usually in the form of some general observations and rules ac-
companied by a set of assumptions. Only until recently, modeling and simulation
techniques have been introduced in this area, where the focus is on the development
of computational models for existing social theories.
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A typical example is the series of models of opinion dynamics developed by
Deffuant. The models have been designed to explore how extreme ideologies are
formed and spread among the individuals in a crowd [Deffuant 2006], in particular
how marginal extreme opinions become the norm in large parts of a population over
a long period of time. The important modeling factors include the social network
among the individuals, the evolution strategies of an individual’s opinion and the
learning processes of the individuals. A population is modelled as a network of
interacting agents, and each agent can be simply characterized by its (continuous)
opinion value and its uncertainty [Deffuant et al. 2002]. The uncertainty value is
introduced to reflect the degree of willingness that an agent want to change its
opinion. A small uncertainty value means that an agent is unlikely to change its
opinion, and it also implies a higher probability that the agent will influence other
agents’ opinions and uncertainties.

The key of these models is the mathematical equations governing the evolution
strategies of an individual’s opinion. Although these models have been tested on
simulated populations consisting of hundreds of people, as pointed out by Deffuant
in [Deffuant 2006], the results are very sensitive to contingent mathematical choices
of the parameters. Therefore, the models are quite restricted to the specific situa-
tions being considered. In addition, the behavioral factors being considered in these
models are limited to some highly simplified social characteristics such as opinion
and social network. Many important behavioral factors such as physical factors
and psychological factors are omitted. An individuals’ decision making process is
simply reduced to a mathematical equation on the evolution strategy of opinion.

Another interesting work [Salzarulo 2006] is the meta-contrast model proposed
by Salzarulo, which also investigate how people’s opinions are affected by various
factors based on the self-categorization theory. The meta-contrast principle con-
tends that people tend to maximize the ratio of intergroup differences to intragroup
differences, and as a result, different groups may emerge through the interactions
among the individuals. In his model, an individual is modeled as an agent with
a continuous opinion. An agent may change its opinion through the interaction
with other individuals according to the meta-contrast principle. Salzarulo’s model
examines the impacts of several network interactions on the evolvement of people’s
opinions, and indicate that consensus, polarization or extremism are possible out-
comes, even without explicit introduction of extremists as Deffuant’s model does.
Salzarulo’s model suffers from the similar problems and limitations as we men-
tioned on Deffuant’s models. For instance, the choice of d(xi, xj) (the Euclidean
distance between two opinions) and µp(x) (a fuzzy membership function of opinion
x to a prototype p) seems to be quite arbitrary, which may significantly affect the
simulation result.

There are also some work that aim to explain how some plausible assumptions
about individual action could yield certain properties that are observable at macro
level [Miller and Page 2007; Gilbert 2007], for example, how neighborhoods are
formed and may evolve in a community, how some social movements like ‘punks’
may be modelled, etc. These work tackle such problems from a high and abstract
level, and are heavily influenced by research in game theory, complex adaptive
systems, etc. The proposed generic models may help researchers do some simple
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experiments at abstract level, and also provide insights on the link between micro-
level action and macro level properties. However, these models are often oversimpli-
fied without considering many factors in real-life situations. For instance, domain
knowledge is generally abstracted away from these models.
In general, the existing work on the modeling and simulation of long-term crowd

dynamics mainly concerns the statistical trend of some high-level aspects of a crowd
(e.g., opinion) instead of a detailed description of how an individual in a crowd will
react to certain events in more complex scenarios (e.g., how to move in a crowded
shopping area when a fire breaks out). Thus, the proposed crowd models are limited
to some high level operational studies, and are mainly of interest to social scientists
rather than computer scientists and researchers in other areas. Execution efficiency
and scalability are not the major concerns for these modeling and simulation efforts.
These models are not flexible and extensible as they are usually specific to certain
situations and their results are very sensitive to some chosen parameters. Currently,
the majority of research and development efforts in crowd modeling and simulation
is on short-term crowd phenomena, especially for small-to-medium sized crowds.
This paper therefore follows this trend and emphasizes on the work of short-term
crowd phenomena.

3.2 Modeling and Simulation of Short-term Phenomena of Large Crowds

The most representative approach of modeling crowds formed by tens of thousands
of people is the flow-based approach. Unlike other approaches, the flow-based
approach treats the crowd as a whole or continuum without considering the crowd’s
components such as individuals or groups. Typically, with the flow-based approach,
vector fields are used to represent the impact of various environmental factors on
the movement of the crowd, and the movement of a crowd is described using some
differential equations. To form up these vector fields and differential equations,
certain hypothesis and statistical assumptions are needed, whose validity are often
debatable.
Recent research on flow-based approach started to consider the intelligence of

crowd flows [Hughes 2003]. Researchers distinguish crowd flows from a classical fluid
model by considering a crowd’s capacity of thinking. The research of “thinking flu-
ids” attempts to include factors like pedestrians’ moving tendency in a crowd (e.g.,
avoiding extreme density), according to the observations of behavioral sciences.
However, in general, the flow-based approach focuses mainly on the movement of
the crowd, and other behavioral factors are greatly simplified or largely omitted.
A practical application of flow-based approach is the EVACNET4 software

developed by Thomas M. Kisko and his colleagues at University of Florida [Kisko
et al. 1998]. EVACNET4 provides modelers with a tool to build simulation models
for complex building evacuations. In these models, the environment is abstracted
into a network representation, which consists of nodes and arcs. The nodes represent
the physical structures, such as rooms, stairs, and hallways. The node capacity is
determined by the number of occupants the structure may accommodate. The
arcs represent the passageways for the occupants’ flow. Similarly, the arc capacity
needs to be determined to limit the amount of human traffic that can traverse the
passageway in certain time period. Another parameter, the traversal time, denotes
the time an occupant flow takes to traverse the arc. A flow-based model constructed
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using EVACNET4 then relies on a specialized algorithm, used in solving linear
programming problems with network structure, to generate optimal evacuation
plan. Results can be used to determine the shortest evacuation time based on the
network structure and corresponding physical constraints.
EVACNET4 offers great flexibilities in terms of the architectures and types of

buildings. However, as a flow-based approach, EVACNET4 does not model behav-
ioral aspects of crowd besides movement. In addition, compared to other flow-based
models such as the one developed by Hughes [Hughes 2003], the movement of the
crowd in EVACNET4 is greatly simplified – no vector fields and differential equa-
tions are used, i.e., the speed of the crowd is treated as piece-wise constant. These
features limit EVACNET4 essentially to civil planning.
Recently, some significant work has been done in the computer graphics and an-

imation community on animating large-sized crowds in virtual environments. In
general, these efforts focus on the movement rather than other behavioral aspects
of a crowd. In [Chenney 2004], Stephen Chenney (CGG@UW) presents the Flow

Tiles technique for representing and designing velocity fields for large flows, in-
cluding crowd flow. Each flow tile defines a small, stationary region of velocity
field. They can be pieced together to form large stationary fields and then used
to drive various flows such as fluids and crowds. In terms of crowd modeling and
simulation, the flow tiles technique aims at producing visual effects of crowd motion
rather than studying the dynamics of crowd. The major tasks of applying this tech-
nique include dividing the virtual environment into flow tiles and defining velocity
fields on these tiles. These are delicate jobs requiring considerable effort. Except
for movement, the behavioral factors of a crowd are largely ignored. Nonetheless,
this technique is suitable for digital entertainment in general.
In [Treuille et al. 2006], Treuille et al described Continuum Crowds, a real-

time motion synthesis model for large crowds. The model is inspired by Hughes’
work [Hughes 2003] in the sense that it uses a similar potential function to guide
crowds towards their goals. The model unifies global path planning and local
collision avoidance into a single optimization framework. The model is based on
a set of assumptions on the movement of a crowd, in particular, its global path
planning assumes global knowledge of the environment which is often an unrealistic
assumption. Nonetheless, the model is able to generate visually realistic movement
for thousands of characters in near real-time. A research group at the VRLab of
the Swiss Federal Institute of Technology (VR@EPFL) also work on the real-time
animation of large crowd. Their work also focuses on the path planning for the
crowd. Instead of relying on some predefined velocity fields, this work divides the
environment into regions of varying interests. Then, for different regions, different
levels of details are used for path planning and rendering. Experimental results
show that this approach is able to generate near real-time animation for up to
10,000 virtual characters [Morini et al. 2007].

3.3 Modeling and Simulation of Short-term Phenomena of Small-to-Medium Crowds

Most research and development work on crowd modeling and simulations are around
the short-term phenomena of small-to-medium crowds with tens to hundreds of in-
dividuals. This is mainly determined by the uses of crowd models in practice. Ex-
isting work in this area can be further divided by the approaches used for modeling
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crowds, which mainly include the entity-based approach and the agent-based ap-

proach. The former approach mainly denotes physicists’ efforts of analyzing crowd
dynamics using physical theories. The latter represents the main trend of research
efforts in computer science and engineering domains. As we have pointed out in
Section 2.1.1, sometimes the difference between an entity-based model and an agent-
based model is not so clear. However, in general, they have different treatment of
individuals in a crowd. That is, individuals in an entity-based model are largely
modelled as homogeneous entities like physical particles, which is in contrast to
the treatment of individuals in agent-based models where more complex decision
making process as well as human behavioral factors are considered.

3.3.1 Entity-based Approach. In recent years, a number of physicists have em-
ployed physical and mathematical methods in the analysis of complex social phe-
nomena. The study of crowd motion using basic physical theories and analytic
models of individual pedestrians has been well established. The basic feature of
these models is to handle a crowd at individual level and treat individuals as ho-
mogenous entities whose movement are governed by similar physical laws on phys-
ical particles (see Figure 4). These models are often called particle system models.
The major challenge in designing such models is to properly (and often creatively)
design the forces or potential fields to represent the impact of various behavioral
and environmental factors on the movement of the individuals.
Dirk Helbing at Dresden University of Technology (Germany) has proposed a

model based on physics and socio-psychological forces to describe the pedestrian
behaviors in panic situations [Helbing et al. 2000]. The model relies on a quanti-
tative analysis of panic, which is described by distance, velocity, mass and forces.
With Helbing’s model, individuals in a crowd are represented as particles with
associated mass and velocity. The model assumes a mixture of physical and socio-
psychological forces influencing the movement of an individual in a crowd.
More specifically, each of the entities represented by a particle i of mass mi has

a predefined desired speed v0i in a certain direction e0i . The entity tends to adapt
its actual velocity vi with a certain time interval τi towards the desired speed
and direction. This corresponds to the first term on the right-hand side (RHS)
of Equation 1. Simultaneously, the entity tries to keep a distance independent of
velocity from other entities j and walls w controlled by interaction forces fij and
fiw respectively. This corresponds to the second and third terms on the RHS of
Equation 1. The change of velocity at time t for each entity i is mathematically
formulated as in Equation 1 below:

mi

dvi

dt
= mi

v0i (t)e
0
i (t)− vi(t)

τi
+

∑

j( ̸=i)

fij +
∑

w

fiw (1)

The interaction force of fij between entities is further composed of three type of
social forces. The first one is a repulsive interaction force to model the psychological
tendency of two pedestrians to stay away from each other. The second one is a body
force to counteract body compression and the last one is a sliding friction force to
impede relative tangential motion. The interaction force of fiw with walls is treated
analogously with three forces involved. The mathematical details for formulating
the interaction forces are available in [Helbing et al. 2000].
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Helbing’s model was tested with some simulation studies on crowd movement in
a 2-D environment. Since the objective of these studies are on the emerging move-
ment patterns of the crowd, each individual is simply represented by a dot. The
simulation considers various evacuation situations, such as jamming at a congested
exit, passing through a corridor and leaving a smoky room. The results are able to
demonstrate some interesting behavior patterns (e.g., arch-like blockings of exit),
crowding effect (e.g., faster-is-slower) and even optimal escape strategy (e.g., mix-
ture of individualistic and herding behavior) during emergency situation. However,
treating the individuals as homogeneous particles are not adequate to model the
psychological and social factors of a human being, such as family ties, personalities,
etc. These factors may greatly affect the movement of the individuals as well as the
global patterns of the crowd. In addition, although various social forces have been
introduced to model the effect of various urges (e.g., the psychological tendency of
two pedestrians to stay away from each other) on an individual’s movement, defin-
ing the exact magnitude of such forces requires much trials for the end results to
look plausible. After all, these simulated social forces and the real physical forces
on a human body are in two different domains. The computational cost of the
model is generally high due to the quadratic complexity of force computation.

Helbing’s model is extensible in the sense that it allows various behavioral factors
to be modeled as some generalized forces. For example, Braun et al extends Hel-
bing’s model by introducing different personalities as well as group characteristics
in their particle system model [Braun et al. 2005]. The extended work character-
izes different individuals by a list of parameters including personal ID, family ID,
dependence level, altruism level, and desired speed. These parameters may be used
to model different persons. For example, a small value of the desired velocity and
a high dependence level are used to represent a disabled person or a small child.

Burstedde et al at Institute of Theoretical Physics at University of Cologne
(ITP@UC) have attempted to simulate pedestrian traffic using the particle system
approach and a two-dimensional cellular automata model [Burstedde et al. 2001],
which is a representative work among the research work of traffic flows by physi-
cists. In the context of their approach, each individual is denoted by a particle
and the space in which pedestrians move is abstracted as a grid of cells. The ap-
proach adopts a model with simple design which does not assume any intelligence
of particles.

From a particle’s perspective, each neighboring cell is associated with a transi-
tion probability to describe the particle’s preference of motion direction according
to the concepts of cellular automata model, as shown in Figure 5(A) and 5(B). A
3×3 transition matrix is constructed for each cell which defines the probabilities
for a particle to move into neighboring cells or remain in its current cell. All par-
ticles of the same species share the same transition matrices. However, different
species of particles may have different transition matrices (see [Burstedde et al.
2001] for details). The transition matrix of a particle can be affected by the static
components of the environment, such as “emergency exit”, and by the presence of
other particles (pedestrians). The models are able to demonstrate a few collective
phenomena of pedestrians, such as some emerging pattern in building evacuations
(see Figure 5(C)). To apply this approach, considerable efforts are needed in divid-
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ing the environment into a grid of cells and in determining the transition matrices
for these cells. The grid of cells and the transition matrices can be predetermined
based on the situation of interest. The models are thus not flexible to handle dif-
ferent situations. However, compared to Helbing’s model, these models have better
performance in terms of execution efficiency and scalability due to the reduction of
decision rules and environmental influences into simple lookup operations on the
predefined transition matrices.

(A) A particle (individual) with 
possible transitions

(B) Matrix of transition 
probabilities

(C) Simulation of pedestrians leaving room with single door

Fig. 5. Illustration of the cellular automata model. [Original figure was retrieved from reference

[Burstedde et al. 2001].]

Michael Batty and his colleagues at the Center for Advanced Spatial Analysis
at University College London (CASA@UCL) have done remarkable work in the
modelling and simulation of the dynamics of pedestrian movements in spatial events
like carnivals and street parades [Batty 2009; Batty et al. 2003]. The model that
they have proposed is based largely on Helbing’s model, which is built within a
cellula automata structure. The environment consists of a (large) number of square
cells. A pedestrian is represented as a particle that may move from its current
cells to one of its eight neighboring cells in one simulation time step. An essential
requirement of the model is the pre-computation of the relative accessibility of
different attractions which make up the entire event with respect to the points
where pedestrians enter the environment [Batty 2009].
The research group has adopted a nice modelling methodology to deal with the

complex pedestrian dynamics in such events. That is, their model starts with a
simple form of random walk. This simple random walk behavior is then further
constrained by the geometry of the environment as well as economic and social
preferences to reflect various factors in pedestrian movements. Finally, the move-
ments of pedestrians are further constrained by certain safety control policies. In
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this sense, the model is generic that allows for new features to be added in to model
different situations.
Currently, the model is mainly used for evaluating existing safety policies, i.e., it

is not used for on-the-fly decision making in such events. Thus, execution efficiency
and scalability are not major concerns of the model.
In summary, the models based on entity-based approach have successfully demon-

strated some typical motion patterns of pedestrians in normal situations as well as
in emergencies. Although considerable computing power are needed, simulation
models based on this approach are relatively computationally inexpensive com-
pared with the agent-based models. They are in general not adequate to investi-
gate complex crowd behaviors, e.g., human decision-making process, and the so-
cial/psychological factors are either neglected or greatly simplified. Nonetheless,
the particle system approach remains as a convenient and important tool for mod-
eling and simulation of crowd behavior especially when the objective is to study the
emerging movement patterns of a crowd under emergency situations. This is also
manifested by the fact that most commercial crowd simulation software packages
(e.g., EXODUS [Galea and Galparsoro 1993] and WalkSim [AG 2009]) for building
planning and evacuation analysis are built from these classes of models. Interested
readers may also refer to [Klugl and Rindsfuser 2007; Klupfel 2007] as well as the
work done by Batty’s group at CASA@UCL for some more recent crowd simulation
applications with such models.

3.3.2 Agent-based Approach. The agent-based approach is currently the dom-
inant and most active approach to crowd modeling and simulation particularly
among computer scientists. In general, an agent-based crowd model consists of
autonomous, interacting agents, with each agent representing an individual. Each
agent has its own attributes and states representing various behavioral factors rang-
ing from physical factors like moving speed to psychological/social factors like emo-
tion, social ties, etc. An agent is also equipped with certain level of cognitive and
reasoning capability such that it is able to sense its surroundings, make decisions
based on its understanding of the current situation, and take actions accordingly
which affect the environment as well as other agent’s behavior.
The agent-based approach is the most natural way to model and simulate a

crowd. Compared to other approaches, the agent-based approach gives a researcher
tremendous freedom to incorporate various behavioral details into the crowd model.
However, care must be taken for the modeling and simulation efforts to be effective.
Existing work based on this approach may have different focuses with their different
objectives. Nonetheless, an agent-based crowd modeling and simulation system
usually needs to address three aspects: navigation, decision making, and animation.
Most existing work on crowd modeling and simulation focus on the movement

of a crowd. Navigation is about how to drive the agents so that they can move
around in the virtual environments. Usually, navigation is implemented as some
path planning and steering algorithms. Decision making is to decide what an agent
will do in the current situation (e.g., when an explosion occurs). Decision making
can be implemented by some decision rules. These rules vary in their sophistication
as how much information is considered in the agent decisions [Lebbink et al. 2005].
Even simple rules, for example the three local rules (cohesion, separation and align-
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ment) in Reynolds’ boids model [Reynolds 1987] for simulating flocking or schooling
behavior in birds or fishes, can generate complicated patterns. However, the de-
cision rules are generally intuitive and specific to certain situations, thus defining
the proper decision rules is often an art rather than a science. Animation is to
visually show the results of a crowd simulation (i.e., the behavior of agents). It is
especially important for digital media, entertainment, and interactive applications.
Animation is also important for validation. That is, the SMEs (Subject Matter
Experts) may make their judgement by comparing the visualized crowd behavior
with their knowledge and experiences.

In the remainder of this section, we will discuss some recent research efforts
in agent-based crowd modeling and simulation. We will discuss how the above
three aspects are addressed in these work. Where possible, we will make comments
on these work using our proposed evaluation criteria, based on the information
that we have collected about these work. We also realize that there exists some
commercial software that can be used to generate animations for crowd, such as
MASSIVE [Massive Software 2009] and AI.Implant [Presagis 2009]. However, they
are not included in the following discussion. There are three reasons. First, we
have difficulty in getting the technical details of these software. Thus it is hard
for us to make comments on them. Secondly, they are mainly for crowd animation
rather than crowd simulation. While they provide excellent support for artists to
visualize their design, they are not designed for computer scientists and engineers
to investigate crowd behavior. Thirdly, path planning and decision making in these
software actually adopt some common techniques such as A* algorithm [Dechter
and Pearl 1985], and finite state machines (FSMs) [Sipser 2005]. We also noted
some significant work done by researchers in the transportation and urban planning
area, e.g., the work done by the Urban Planning Group at Eindhoven University of
Technology [Arentze et al. 2006; Arentze and Timmermans 2009]. These works are
not included in the following discussion since they describe agents’ behavior from
quite a different perspective, i.e., from an activity-based perspective, and therefore
the focus of these work is on the rescheduling of activity-travel patterns of the
agents.

Crowd Dynamics: Crowd Dynamics Pte Ltd aims at servicing police, event
organizers and security forces. The company has developed a set of crowd modeling
and simulation tools for different application. Though the company put its emphasis
on the analysis of events involving large crowds [Crowd Dynamics Pte Ltd 2009b],
it has also developed an agent-based modeling and simulation tool, called Legion,
which is a collection of programs developed to analyze the dynamics of crowds. The
core of these programs is a global path planning algorithm for agents. The path
planning is formulated as a constrained optimization problem with the objective to
minimize a general cost function. This path planning algorithm can be extended
to accommodate navigational considerations provided that these considerations are
properly reflected in the general cost function. A least effort algorithm is developed
to solve this problem based on simulated annealing, which requires considerable
computing time. Besides path planning, no other decision making is involved.
Psychological and social factors are hardly considered. This tool is mainly used for
operational analysis rather than interactive applications. Thus, execution efficiency
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and scalability are not of major concerns. The visualization of the simulation
output is rather simple – the environment is represented by some 2D structures
and connections, and each agent is represented by a simple 2D shape or simply a
dot.

VRLab@EPFL: The Virtual Reality Lab at the Swiss Federal Institute of Tech-
nology (VRLab@EPFL) has done remarkable research in crowd modeling and sim-
ulation particularly in visualizing and animating virtual crowds. The technologies
developed by VRLab have been applied in computer games, virtual heritage appli-
cations or training systems. A number of crowd simulations have been produced
in various general virtual environments such as urban areas and transportation
systems etc [de Heras Ciechomski et al. 2005; Ulicny and Thalmann 2001; Maim
et al. 2007; Yersin et al. 2009]. The crowd modeling system adopts an agent-based
framework called ViCrowd [Musse and Thalmann 2001; Yersin et al. 2005]. One
key feature of ViCrowd is that it adopts a hierarchical modeling structure where
a crowd consists of various groups with each group consisting of some individuals.
This feature allows ViCrowd to model different social groups such as family and
friend group. Another key feature of ViCrowd is that it has a flexible behavior con-
trol mechanism which allows for different degrees of behavior autonomy. Users can
thus generate scripted behavior, reactive behavior or guided behavior, depending
on the requirements of different applications.

The agents are represented by 3D avatars with different appearances which are
able to move around in a 3D virtual environment. For path planning and collision
avoidance with static obstacles, each agent is equipped with some knowledge about
the environment. This is first achieved by the declaration of all objects in the
environment as well as the areas where agents can walk. Then, to facilitate proper
movement and action of the crowd, the interest points (IPs, denoting the locations
where crowd need to pass) and action points (APs, denoting the locations where
the crowd must perform an action upon arrival) are specified. No sophisticated
path planning is used – basically, the path followed by the crowd is specified using
a predefined set of IPs and APs that are associated with the groups of agents.

To simulate group movement, the agents in the same group share the same list
of APs/IPs. In the meantime, different Bézier curves are computed for each agent
in the same group so that they may take different paths while moving as a group.
Then, by keeping at similar walking speed for the agents in the same group, flocking
behavior can be easily achieved.

As a behavior authorizing tool for crowd animation, ViCrowd provides three
types of behaviors with different degree of autonomy, namely, programmed behav-

iors, reactive behaviors, and guided behaviors. A script language is developed in
ViCrowd for a user to program specific behaviors. Basically, it allows a user to
defined where the crowd should move and what to do at some locations in terms
of a list of IPs/APs. The reactive behavior allows an agent to react to the events
depending on its current states. The decision making process is modeled using
hierarchical finite state machines (FSMs). A major problem with this approach is
that the number of state transitions may increase quickly as more behaviors are
included. To accommodate this problem, some low level behaviors are predefined
as basic building blocks such as flocking, following, attraction, splitting, etc, and
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the FSMs are defined only on some high level behaviors. Guided behavior provides
external control that makes it possible for the crowd behavior to be controlled by
a user or an external application.

ViCrowd provides good interface for a user to add in more behaviors to cater
for a specific applications. In this sense, it is flexible and extensible. However,
it is mainly a behavior authoring tool for crowd animation rather than a tool to
investigate crowd behavior. For example, it allows different emotional states of an
agent to be modeled, such as “sad”, “happy”, etc. However, the emotional states of
the agents are predefined. The emotional states are then used to control the posture
and appearance of the agents. How the emotion of an agent may change and how
the resulted emotion will affect the agent’s decision making are thus ignored.

The virtual characters in VRLab’s crowd animations have state-of-the-art ap-
pearances and varieties. The computational and rendering cost is high especially
for large crowd. To support real-time applications, advanced level-of-detail tech-
niques have been developed so that regions with different level of interest may use
different approaches for path planning, collision avoidance, and rendering [Pettre
et al. 2006; Pettre et al. 2007]. For example, agents in regions of low interest may
take on very simple appearances and may not even need to do path planning and
collision avoidance. As a result, the crowd animation engine of VRLab is able to
generate real-time animation for up to 10,000 3D virtual characters [Morini et al.
2007].

MRL@NYU: The research group at the Media Research Lab in New York Uni-
versity focuses on developing a comprehensive behavior model for animating virtual
pedestrians [Shao and Terzopoulos 2005a; 2005b; 2006]. Their virtual pedestrians
are expected to perform a rich variety of activities in large-scale synthetic urban
spaces. The two major features of their work include: 1) a novel environmental
model that supports the navigation of virtual pedestrians in a complex urban en-
vironment such as the original Pennsylvania Station in New York City; and 2) an
efficient behavior model of autonomous pedestrian agents.

The navigational behavior of the pedestrian agents are determined by the path
planning and collision avoidance mechanisms, which in turn depends heavily on
the representation of the environment. In MRL@NYU’s virtual environmental
model [Shao and Terzopoulos 2005b], an urban environment is characterized us-
ing a hierarchical collection of maps including a topological map, the perception
maps and the path maps. The topological map represents the topological structure
between different parts of the environment using a graph where nodes correspond to
environmental regions and edges represent accessibility between regions. The per-
ception maps include a number of local grid maps that represent stationary objects
(one for each region) and a global grid map that keeps track of the moving agents.
These perception maps will be used by the perception module of an agent to assess
the current situation, such as the number and location of neighboring agents and
obstacles.

The path maps include a quad-tree map that supports global, long-range path
planning, and a grid map that supports short-range path planning. A* algorithm
is then applied on the quad-tree map to compute a rough path to a goal which
consists of a list of key points leading to the goal. The detailed path between two
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points along the rough path is determined by applying A* algorithm on the grid
map. This hierarchical path planning approach is more close to the way how a real
pedestrian does path planning. In addition, it is very efficient. That is, the detailed
path from point A to point B is computed only when the agent has reached point
A. While the agent is moving from A to B following the detailed path, if something
happens that makes the detailed path infeasible, only this detailed path needs to
be recomputed. The rough path for the agent still remains unchanged. This is
an important feature that can greatly enhance the execution efficiency as well as
scalability. The experimental results show that the environmental model is able to
support real-time simulation of about 1,400 pedestrian agents on a 2.8 GHz Xeon
PC with 1GB memory.

The autonomous agent model is heavily influenced by the work on artificial an-
imals [Tu and Terzopoulos 1994] and cognitive modeling for intelligent characters
[Funge et al. 1999]. To imitate a real pedestrian, an agent is equipped with the
ability to perceive the environment around it, make decisions on what to do, and
then take actions. To perceive the environment, an agent needs to query the pre-
vious mentioned environment maps and do some line-of-sight and range tests. One
particular feature that has been implemented is that once a predefined number of
nearby agents are detected, the sensing is terminated. This is to model the cogni-
tive limits of human attention system. That is, at any given time, people usually
pay attention only to a limited number of other people (usually those closest ones).

To address the challenge in modeling the variety of pedestrian behaviors, a hier-
archical structure with a bottom-up strategy is adopted. That is, primitive reactive
behaviors are first defined as basic building blocks, and more complex deliberative
behaviors are then defined by these primitive behaviors controlled by an action
selection mechanism.

The 3D appearances and low-level motor skills (e.g., standing, strolling, walk-
ing, running, etc) of the agents are implemented on DI-Guy [Boston Dynamics
2009], which is a commercial product. Six basic reactive behavior routines are then
developed for initiating, terminating, and sequencing of the low-level motor skills,
guided by sensory stimuli and internal percepts. Each of these six behavior routines
is suitable for a different set of situations, such as cross collision, head-on collision,
etc. (See [Shao and Terzopoulos 2005a] for details.), in a densely populated and
highly dynamic urban environment.

More complex and deliberative navigational behaviors are implemented by an
action selection mechanism. The action selection mechanism needs to decide when
to initiate a proper basic reactive behavior and when to switch to another reactive
behavior, based on an agent’s perception and current states (such as physical, and
psychological states). The selection mechanism is implemented by some decision
rules based on some observations on pedestrian behavior. For instance, in real
life, once oncoming traffic is encountered when people are moving in a narrow
passageway, they will tend to form opposing lanes to maximize the throughput.
This passageway navigation behavior can be implemented by a series of “if-then”
selection rules: First, if an agent detects that its current direction is blocked by
oncoming agents, it will search for a safe direction to get through. If the search
is successful, it will move in the new direction; otherwise, it will slow down and
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proceed in the rightmost direction within a safety fan area.

The above hierarchical path planning and behavior control mechanisms are quite
flexible to implement various pedestrian behaviors. Though the current work fo-
cuses on the navigational behavior, it is possible to incorporate more factors such as
psychological and social factors into the action selection mechanisms. The hierar-
chical architecture also enhances the execution efficiency and scalability of the sim-
ulation system. Experimental results show that the computational load increases
nearly linearly with the number of agents in the simulation.

VMASC: The research group led by Dr. Mckenzie at the Virginia Modeling
Analysis and Simulation Center (VMASC) in Old Dominion University focuses on
investigating psychologically-based real-time interactive crowd model for military
simulation in urban settings [McKenzie et al. 2004; Nguyen et al. 2005; Petty et al.
2004]. Since their focus is not on crowd animation, they rely on some commer-
cial products such as Forterra Systems’ OLIVE (http://www.forterrainc.com/) for
crowd animation as well as the basic navigation. Here we comment only on their
psychologically-based behavior modeling framework.

To make the crowd behavior model flexible and extensible, a behavior hierarchy
is proposed, which consists of a cognitive layer at the top and a physical layer at
the bottom. Each layer is responsible for modeling different aspects of the crowd
model. The cognitive layer is responsible for modeling the “mind” for the crowd.
That is, it will receive stimuli from the physical layer, process the stimuli, and
select an appropriate behavior for the physical model to carry out. The physical
layer acts like the “body” of the crowd and is responsible for get stimuli from the
environment and executing behaviors that are decided by the cognitive model.

The major design considerations of the crowd model thus include: 1) specifying
stimuli; 2) defining the repertoire of behaviors; and 3) developing the computa-
tional model of the decision-making (i.e., behavior selection) process. It should be
noted that VMASC’s crowd model is targeted at military operations and thus is
based on some psychological studies on military operations [Petty et al. 2003]. The
stimuli and psychological factors are therefore closely related to military operations.
For example, the stimuli that have been considered include “see nearest friend”,
“hear militia broadcasting on megaphones”, “hear gunfire”, “leader is shot”, etc.
In addition to some simple behaviors, more complex behaviors in the current imple-
mentation include “wandering”, “fleeing”, “building barricade”, “throwing rocks”,
etc. Although other stimuli and behaviors could be added into the crowd model,
this will involve significant amount of work as we will explain later.

To support real-time interactive simulation, the crowd cognitive model is focused
at the group and crowd levels - no individual cognitive model is implemented. The
assumption here is that a realistic crowd behavior can be achieved without modeling
the cognitive processes of all the individuals (This assumption is certainly debatable
and its validity may be largely determined by the specific application and scenario).
Thus, the mental states of the crowd and of the group have been simplified to a
single state called the crowd aggression level (CAL) and the group aggression level
(GAL), respectively. Again, this simplification also reflects the objective of the
crowd simulation – investigating what makes crowds turn violent. Certainly, for
other applications, more mental states are needed (for example to capture different

ACM Journal Name, Vol. V, No. N, Month 20YY.



Crowd Modeling and Simulation Technologies · 23

emotions, such as jealousy level, fear level, etc).

The decision making process is essentially some simple lookup operations on some
predefined tables. For example, a Mood-Behavior table is constructed which con-
sists of multiple rows of <aggression level, behavior> pairs. This table is used by
the cognitive model to determine the appropriate behavior given the current aggres-
sion level of group or crowd. For example, if the current GAL is “Curious”, then
the corresponding behavior will be “Stare At”. Other tables are also constructed
to determine, for example, the GAL given the current value of certain stimuli.

It should be mentioned that the crowd model is rather simplified and specific
to the applications of interest. It also caters for real-time interactive applications.
However, as the decision making process is tightly coupled with the predefined
tables and stimuli, adding in new behavioral factors will result in significant change
to the simulation model.

CHMS@UPenn: Researchers in the Center for Human Modeling and Simula-
tion at University of Pennsylvania have worked on improving the realism of human
behavior models by integrating a set of psychological factors into a unified behavior
architecture [Silverman et al. 2006; Silverman et al. 2006; Pelechano et al. 2007;
2008].

Like most agent-based behavior models, an agent in CHMS’s work also follows
the “sense-decide-act” cycle to respond to various events in the environment. A
major contribution of the group in crowd modeling and simulation is that they have
modelled the effects of various psychological factors on human decision making.

As illustrated by numerous studies (See [Loewenstein and Lerner 2003] for a quick
reference), psychological factors such as emotion play important role in human
decision making, which will significantly affect how a human behaves in various
situations. For example, in a fire evacuation scenario, people that have not been
properly trained are likely to feel stressed. This may seriously affect their capability
in making the right decision due to time pressure. On the other hand, a well-trained
person like a fire fighter is able to deal much better with the dynamically changing
environment and time pressure.

To model the effect of psychological factors on decision making, PMFServ has
been developed by the group [Silverman et al. 2006]. PMFServ is implemented
as a large library (around 500) of Performance Moderator Functions (PMFs). Es-
sentially, the PMFs take the form of some nonlinear functions that relate certain
psychological factors with certain physiological factors. The PMFs are represented
using a common mathematical framework and organized into four sub-modules
with a layered architecture (from bottom to top layer): Stress PMFs, Perception
PMFs, Emotion PMFs, and Decision PMFs. The modules address different as-
pects of human decision making process. Each module consists of quite a number
of different PMFs. Nonetheless, the principal feature of PMFServ is a model of
decision-making, based on emotional subjective utility constrained by stress and
physiology, which is inspired by Ortony’s OCC model [Ortony et al. 1988]. The
general idea of the OCC model is that an agent possesses three hierarchical trees
that describe its Goals for Action, Standards for Behavior, and Preferences for Peo-
ple, Objects, and Situations. An action can be represented by a series of successes
or failures on the nodes of these three trees. Each sub-goal is given a weight that
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describes how much it contributes to its parent node. An action’s emotional utility
can be computed by some weighted sum operation on these trees. The action with
the highest utility value will be chosen and executed.

The PMFServ is flexible in the sense that it allows a modeler to choose the proper
PMFs to suit his/her specific application. However, determining which PMFs to
use is not an easy task. In particular, determining the value of various parameters
of these PMFs and the value of the weights of sub-goals for action selection needs
considerable efforts, and depends heavily on the specific applications and situations
of interest.

PMFServ essentially models an agent’s mind, that is, it determines what to do.
For an agent to be fully functional in a virtual environment, MACES has been
developed by the group. MACES mainly deals with the locomotion of the agents
in virtual environments [Pelechano et al. 2005; Pelechano and Badler 2006], which
is used to implement and illustrate an agent’s body. It computes agent’s navigation
at two levels. The high level module is a path planning module used to determine a
rough path, e.g., the sequence of rooms towards an exit in an evacuation scenario;
whereas the low level module is used to determine the detailed movement along the
rough path, e.g, the local movement with each room.

The local motion within each room is based on Helbing’s social force model
[Helbing et al. 2000] that treats an agent as a physical particle subject to some
general forces. The unique feature of MACES lies in its high level path planning.
For path planning, each agent is equipped with its own mental map which abstracts
the geometry of the building and is represented by a graph, where nodes are the
rooms and the arcs are the portals between rooms. The mental map of an agent
will be expanded as the agent explores the environment and shares information
with other agents in the crowd through a communication process.

Communication occurs only among agents in the same room. It includes infor-
mation about the location of hazards that block possible paths, the direction within
a room that have been explored, and where no exit was found. Limiting the com-
munication among agents in a room helps to reduce the computational overhead.
This localized communication can also be seen in real-life situations.

Different mental maps are also used to represent the different knowledge of dif-
ferent people. For example, staffs working in the building usually have complete
knowledge about the building’s internal structure, while visitors may have little
knowledge of the building regarding the locations of the exits. The feature allows a
modeler to assign different roles to the agents in the crowd, which will make the sim-
ulation result more realistic. For example, the experimental results from MACES
show that only a relatively small percentage of trained leaders (with building plan
knowledge) yields evacuation rates comparable to the case in which everyone is
trained. This observation is interesting and also intuitive.

In general, the research group at CHMS has done remarkable work in model-
ing the psychological aspects of human behavior for simulation. Their PMFServ
model has been successfully used in simulating various crowd scenarios such as ter-
rorist ambush of a school bus, crowd protesting/rioting at a roadblock, building
evacuation, etc. However, the computational overhead may increase quickly as the
number of PMFs increases to accommodate more complex situations. Therefore, a
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critical decision is to determine what PMFs to use for a specific application. This
is especially important for situations involving a large crowd.

3.4 Summary

In this section, we have discussed some influential existing work in crowd modeling
and simulation. Figure 6 shows how the crowd models in these existing work are
distributed in a two dimensional plane defined by the time-scale and the size of
the crowd. It can be clearly seen from this figure that the majority of the existing
work are on the investigation of the short-term phenomena of small to medium
sized crowds. This reflects the fact that most daily life situations involve small to
medium sized crowd and people are interested in how a crowd will react to certain
events.
Another thing that we can find from Figure 6 is the dominance of agent-based

approach in crowd modeling and simulation. Due the increase in computing power,
researchers tend to adopt a microscopic approach. That is, more and more behav-
ioral factors of the individuals are considered in the agent models of the individuals.
Individuals are treated as autonomous agents that are equipped with human-like
functional modules including perception, cognition, decision-making, and action,
etc. In this regard, we want to emphasize two points. First, including too much
details in the agent model may not necessarily give more realistic results. An in-
teresting fact about crowd is that crowd phenomena are in general robust to some
minor differences or changes at the individual level. Secondly, the relations, partic-
ularly the social relations among the individuals, must be emphasized and properly
modeled. As a complex adaptive system, crowd’s behavior may not be understood
simply by zooming into the individuals no matter how many factors we introduce
in the individual behavior model. Theories and observations from social psychology
may play a key role in bridging the individual behavior and the crowd phenomena.
Table II summarizes the major features of some agent-based crowd modeling

and simulation work that we have discussed. We hope to provide readers with
some quick reference about these work regarding the major behavioral factors that
have been considered and the runtime performance. Although different path plan-
ning and decision making mechanisms may be used in these work, we can still
identify some common features of these mechanisms. First, a hierarchical struc-
ture is widely used in path planning and decision making, which often makes path
planning/decision making process very efficient. In fact, the hierarchical structure
reflects the divide-and-conquer strategy that are often used by humans to make
decisions in everyday situations. Second, the decision making processes are often
implemented as certain forms of rule-based systems, for instance, (hierarchical) fi-
nite state machines. Despite some latest attempts [Lerner et al. 2007; Lee et al.
2007; Bandini et al. 2007], generally speaking, defining the proper rules to realize
certain behaviors is often an art rather than a science. In particular, determining
the parameters involved in these rules is largely a trial and error process that re-
quires a lot of effort. Moreover, the selected rules and parameters are often tightly
coupled with a specific situation. This makes them hardly applicable to other
situations.
To resolve the above problem and also to make the decision making process more

human-like, a promising alternative is the Recognition-Primed Decision (RPD) the-
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Fig. 6. Distribution of crowd models and simulation systems.

Table II. Comparison Among Existing Agent-based Crowd Models and Simulation Systems
Behavioral Factors Evaluation on Runtime Perfor-

mance

Research

Group

Physical

Factors

Social

Factors

Psychological

Factors

Number of Agents

(Scalability)

Execution

Efficiency

Deffuant No Limited Limited hundreds Not applicable

Salzarulo No Limited Limited hundreds Not applicable

Crowd Dynam-
ics

Yes Almost
no

Almost no Thousands real-time

VRLab@EPFL Yes Limited Limited Tens to Tens of

Thousands

real-time

MRL@NYU Yes Limited Limited Less than 1,400 real-time

VMASC Yes Almost

no

Yes Not available Not available

CHMS@UPenn Yes Limited Yes Less than 1,800 real-time

ory [Klein 1998] advocated by the naturalistic decision making community. RPD
is believed to be a more realistic account of how human make decisions in every-
day situations (particularly, time-critical situations), which emphasizes the role of
experiences and knowledge in decision making. Recently, RPD based models have
been used in human-agent collaboration [Fan et al. 2005] and military simulations
[Ting and Zhou 2008].

4. DISCUSSIONS

Although some significant work has been done in crowd modeling and simulation,
it is still a relatively young research area. Many open research issues are still very
much in flux due to the complexity of individual and crowd behaviors. In the
section, we single out three issues that we observed recurring in the existing models
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and systems. We believe that these issues are the important open problems to
be tackled in order to advance the research and practice in crowd modeling and
simulation. We also feel that these issues are either inadequately treated or largely
ignored in the existing work. Here, we give our insights into these problems.

(1) Level of detail of simulation model

A decision of primary importance that a modeler needs to make is the level of de-
tail of the crowd model. To make this decision, a modeler must consider issues like
whether individual behavior needs to be modelled or the crowd can be treated as a

whole, whether individuals in the crowd can be treated as homogenous or heteroge-

nous entities, whether the psychological and social factors need to be consider or

not. Very often, answers to these questions are application-dependent and subject
to the goal of the simulation study. The existing models are largely at two extreme
levels – either model each individual as an autonomous agent equipped with some
human-like behavior modules such as locomotion, perception and decision-making
(e.g., the work done by CHMS@UPenn), or treat the crowd as a collection of homo-
geneous particles with limited or no cognitive features (e.g., Helbing’s model and
the work done by ITP@UC).

With the fast development of computing technology, there seems to be a trend
in crowd simulation to model each individual as some kind of intelligent agent
with attempts to incorporate more and more social and psychological factors into
the agent behavior model. However, we believe that the shortcomings that the
existing models have in common are the absence of modeling the social group
process and its impact on human behavior. As social animals, people’s behavior
can be influenced by the social group they are associated with. For instance, in
an emergency evacuation situation, a person’s decision on whether and when to
evacuate may influence and be influenced by the decisions of other persons in the
same group. It is also natural for a father to first locate and gather all his family
members before evacuating himself from the danger.

As to social group relation, a family can be regarded as a kind of fixed group
bonded by the strong kinship relation. Some other kind of group relations may
not be so strong and are thus dynamic. For example, groups of strangers may be
formed along the way of evacuation since the danger they perceived may cause them
to feel a common fate (threat) so that they re-identify themselves as a member of
a group sharing the same goal. Thus, we believe group dynamics is an essential
dimension that must be considered in crowd simulation. In this regard, the emer-
gent norm theory [Turner and Killian 1987], the social attachment model [Mawson
2005], and social comparison theory [Festinger 1954] of social groups appear to be
quite relevant. These theories help to combine the emphasis on the social psy-
chology of an individual with an interest in macro features such as norms, values,
status demands, leadership, and emergent beliefs. Recently, some researchers have
attempted to incorporate some social theories into their agent-based crowd model.
For example, Kaminka and his colleagues have developed a cognitive model based
on social comparison theory of crowd behavior [Kaminka and Fridman 2006]. To
simulate the effect of social ties on people’s coping style in emergent situations, the
research group at Nanyang Technological University has incorporated the social
attachment theory into their agent behavior model [Luo et al. 2008].
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(2) Validation and generalization

Model validation is one of the most difficult issues in crowd modeling and simu-
lation. We discuss this issue here rather than in previous sections for two reasons.
First, a model’s validity heavily depends on the objectives of simulation study and
the way the model is used. In this sense, this issue is generally orthogonal to crowd
modeling techniques as well as those relatively well-defined evaluation criteria that
we have proposed in Section 2.2. Second, despite its importance, progress in crowd
model validation remains slow and limited, compared to the large number of crowd
simulation models that have been developed.

The most effective approach to establishing model validity is to compare the
simulation result of the model with the output data from the system being modelled.
For example, for validation of a model of pedestrian behaviors, cameras could be
deployed around an area of interest to capture data related to pedestrian movement.
These recorded data are then used to validate and calibrate the results of the
simulated movement of the pedestrians [Batty et al. 2003; Seyfried et al. 2005;
Antonini et al. 2006; Fang et al. 2008].

However, as admitted by many researchers, a major difficulty in applying this
results validation approach lies in the insufficiency of detailed data, especially for
agent-based crowd models that take into account the decision making process and
behavioral factors of individuals [Aguirre 2005; Batty et al. 2003; Klugl 2008;
Pelechano et al. 2008; Galea 1998]. For example, a simulation of emergency evacua-
tion has three distinct analytical dimensions: the physical environment from which
people evacuate, the managerial policies and controls deployed at evacuation, and
the psychological and social organizational characteristics impacting the persons
who participate in the evacuation [Aguirre 2005]. Although it is not difficult to
model the physical environment and managerial policies and controls for an exist-
ing system, modeling the psychological and social aspects of evacuation in the given
system must first solve the problem of insufficient data.

For some relatively simple tasks involving only a small number of individu-
als, data could be collected in a controlled experimental environment, such as in
[Seyfried et al. 2005]. However, data collected in such laboratory experiments are
generally not sufficient to capture the rich crowd behavior in real life situations.
Moreover, for most laboratory experiments, the participants often appear emotion-
ally relaxed, which may make them behave differently as in real-life situations such
as fire evacuation.

Another common approach to model validation is to check the face validity of
the model, i.e., to check whether the simulation results of the model are consistent
with the perceived system behavior by some subject matter experts (SMEs). This
approach has been adopted by many existing crowd simulation systems [Helbing
et al. 2000; Nguyen et al. 2005]. However, the SMEs’ judgements are largely deter-
mined by their knowledge and experiences with past similar (or even quite different)
emergency evacuations, which may have serious bias in the validation results. Re-
cently, Pelechano et al proposed to use the level of presence achieved by a human
in a virtual environment as a metric for validating crowd behavior [Pelechano et al.
2008]. Different from the computer animation community who has been primarily
concerned with external crowd motion features, they focus on some internal or ego-
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centric features that may significantly influence the level of presence of a human in
a virtual environment.

In [Klugl 2008], Klügl argued that a combination of different validation techniques
should be used for validating agent-based simulations based on observations of some
characteristics of multi-agent systems and the limitations of existing validation
techniques. He proposed a validation process that combines different validation
techniques.

We believe that some well-tested basic components (e.g., locomotion, perception,
psychological characteristics of individual, social group dynamics etc) of crowd be-
havior must be built before a credible and comprehensive crowd simulation model
can be achieved. In this regard, the work done by CHMS@UPenn in constructing
a large number of physiologically and psychologically based PMFs (Performance
Moderator Functions) is a good step forward. For evaluating pedestrian steering
behaviors, Singh et al proposed a benchmark suite that consists of 38 testing sce-
narios with different level of complexity [Singh et al. 2009].

The model validation problem naturally brings about the generalization issue of
the crowd simulation model. That is, whether a valid crowd model in a specific
case can be applied to other similar cases. The generalization property is certainly
desirable for a crowd simulation model to be predictive for different testing condi-
tions. The simulation models in the existing work are usually built for a specific
case under specific condition. The generalization issue has not yet been studied for
these models.

(3) Interoperability and composability

The interoperability and composability issue is largely ignored by the existing
research. Although there exist quite a number of crowd simulation models, these
models can hardly work with each other: they may operate at different levels of
abstraction. This makes the communication between different models difficult. In a
typical crowd simulation, the crowd model needs to pass along various information
about the actions of individuals and also needs to understand the events in the
simulated world so that the individuals can determine how to respond to these
events. However, different crowd models may use different models of perception and
action, and may respond to events at different level of abstraction. For example,
some models may work at a higher level of abstraction, thus are able to respond to
events like “Being Insulted” and are able to produce abstract directives like “Show
Anger”; while some models may work at a lower level of abstraction, thus are able
to respond to events like “Being Pushed”, and are able to produce actions like
“Shouting Get-Out”.

Research in interoperable crowd simulation models is still rare. A good prelimi-
nary work has been done in the SCALE-UP project [McDonald et al. 2006] where
a five-level language has been proposed to describe agent behavior. This language
aims at supporting the communication between behavior models at different levels
of abstraction. Such a language may form the basis for a message standard that
enhances the interoperability and composability amongst different human behavior
models in crowd simulation.
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5. CONCLUSIONS

Recent years have witnessed a huge interest in crowd modeling and simulation from
researchers, entertainment industries, and government agencies, with many papers
being published and many projects being conducted. However, crowd modeling and
simulation is still a relatively young research area. Technologies for crowd modeling
and simulation are far from mature.
Crowd behaviors are complex. How a crowd will behave in certain situations

often depends on many factors for different domains, such as physical factors, psy-
chological factors, and social factors, etc. A researcher in crowd modeling and
simulation thus faces many challenges as to which approach to use to model the
crowd behavior, which behavior factors to consider, what level of detail to work on,
which decision making mechanism to use, etc, given the objectives of the project
and constraints of available resources. In this paper, we give an overview of the
research and development of this area. We first classify existing work along two di-
mensions, namely, the size of the crowd and the time-scale of the crowd phenomenon
of interest. This classification helps a researcher to clearly see how existing research
and development efforts are distributed. Then from a modeler’s point of view as
well as a user’s point of view, four evaluation criteria have been proposed, which
will help a researcher to have a quick evaluation of the performance of the existing
work and to decide whether the technologies in the existing work can be applied in
his/her own project.
We have described some influential existing work in crowd modeling and simu-

lation. Major features, performance as well as the technologies used in these work
have been discussed. Base on our observation on the existing work, some open
problems in the area have also been identified and discussed. We hope that these
discussions provide the readers with useful information and insights on the state-
of-the-art of the technologies in crowd modeling and simulation as well as future
research directions.
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