
Received July 17, 2019, accepted July 30, 2019, date of publication August 6, 2019, date of current version August 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933492

Crowd Navigation in an Unknown and
Dynamic Environment Based on Deep
Reinforcement Learning

LIBO SUN , JINFENG ZHAI, AND WENHU QIN
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Corresponding authors: Libo Sun (sunlibo@seu.edu.cn) and Wenhu Qin (qinwenhu@seu.edu.cn)

This work was supported in part by the National Science Foundation of China under Grant 61300101, in part by the National Science and

Technology Major Project of the Ministry of Science and Technology of China under Grant 2014ZX07405002, in part by the Fundamental

Research Funds for the Central Universities under Grant 2242019k30043, and in part by the Key Research and Development Program of

Jiangsu Province under Grant BE2017035.

ABSTRACT This paper presents an approach for solving the crowd navigation problem in an unknown

and dynamic environment based on deep reinforcement learning. In our approach, we first make four leader

agents learn how to reach their goals and avoid collisions with static and dynamic obstacles in an unknown

environment by use of proximal policy optimization combined with Long short-termmemory and a collision

prediction algorithm. In the second stage, we make each leader agent arrive at a specific goal several times

and record its trajectory as the guiding path so that the members in its group know how to reach their

goals. We adopt the Reciprocal Velocity Obstacle algorithm to make agents not collide with others. Finally,

we simulate the scenario of four groups moving towards their goals simultaneously using the Unity 3D

engine. The experimental results demonstrate self-learning ability of a crowd who can reach their goals

successfully in an unknown and dynamic environment.

INDEX TERMS Crowd simulation deep reinforcement learning, long short-term memory, navigation,

proximal policy optimization.

I. INTRODUCTION

Crowd simulation has been gaining considerable attention

due to its applications in entertainment, education, architec-

ture, training, urban engineering and virtual heritage. Crowd

simulation consists of many different components, including

perception, path planning, behavior, locomotion and how to

integrate them effectively. Path planning and decisionmaking

can guarantee that agents reach their goals without colliding

with obstacles and other agents in an optimal way and it is

a very important aspect of crowd simulation that researchers

should put great effort into.

Simulating crowd motions realistically is complex and

difficult. Classical social force models [1], cellular automata

models [2], rule-based models [3], [4] are mainly concerned

with the realism of crowd behaviors by simulating perception,

memory, planning and emotion in every agent. Typical crowd

simulations decouple global path planning and local collision

The associate editor coordinating the review of this manuscript and
approving it for publication was Tai-hoon Kim.

avoidance. Global path planning takes the form of graph-

based technique or static potential fields since the information

of the environment is known and unchanged. Local collision

avoidance often gets stuck and may not find a global and

existent path because the information of the environment is

unknown or known partially. Even Q-learning can find a

path to the goal in an unknown environment, but the path

is aesthetically unpleasant since the action space is discrete

in most of reinforcement learning systems. That is, these

methods are not suitable for dealing with navigating crowds

in an unknown and dynamic environment in a natural way.

Note that an unknown and dynamic environment means that

agents don’t know the information of the environment at all,

including the positions of static as well as dynamic obstacles

and the number of static as well as dynamic obstacles.

Recently, deep reinforcement learning (DeepRL)[23] has

gained remarkable achievements in many research areas such

as physics-based animation, robotics, computer vision and

games. It aims at finding an optimal policy that maximizes

cumulative rewards and therefore, it is quite suitable for

109544 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

https://orcid.org/0000-0002-7838-9410

L. Sun et al.: Crowd Navigation in an Unknown and Dynamic Environment Based on DRL

solving problems with continuous and high dimensional

states and actions. Inspired by deep reinforcement learning,

we present an approach for crowd navigation in an unknown

and dynamic environment. We first make four leader agents

learn how to reach their goals and avoid the collisions with

static and dynamic obstacles in an unknown environment by

use of Proximal Policy Optimization (PPO)[35] combined

with long short-term memory (LSTM)[34] and a collision

prediction algorithm[38]. Then we make each leader agent

arrive at a specific goal several times and record its trajectory

as the guiding path so that the members in its group know

how to reach their goals. Finally, we adopt the Reciprocal

VelocityObstacle (RVO) algorithm tomake agents not collide

with others and furthermore, we simulate the scenario of four

groups moving towards their goals simultaneously.

The key contribution of this work can be summarized as

follows: 1) The agents can interact with the environment

through RL techniques. Furthermore, agents can learn how to

avoid collisions with static obstacles in an unknown environ-

ment, even if the positions of static obstacles change, which

shows that our agents adopt the self-learning ability of human

beings. 2) The agents can avoid collisions with dynamic

obstacles through predicting the probability of collisions and

getting penalized when they collide with dynamic obstacles,

which shows the adaptability of our approach in a complex

environment. 3) The agents can reach any specified goal

successfully in a collision-free path after the training, which

shows the generality of our approach. 4) The integration of

LSTM can reflect memory characteristics of human beings,

which speeds up the learning of the policies for reaching the

goals in collision-free paths. 5) Multi-agents with different

goals can be trained simultaneously and satisfactory results

are obtained, which shows the feasibility of training agents

with multi-goals.

The remainder of this paper is organized as follows. In the

next section, we review related work in crowd motion simu-

lation. Section 3 describes the framework architecture of our

approach. In Section 4, we present the policy presentation.

Section 5 describes the learning algorithm for agents to learn

how to reach their goals and avoid collisions with static and

dynamic obstacles. In Section 6, we show the experimental

results and make comparisons with other approaches. Finally,

Section 7 draws conclusions and discusses future work.

II. RELATED WORKS

Virtual crowd simulation is a wide topic and the research

on it covers many tangible aspects of human locomotive

behavior such as the realism of the walking motion itself, col-

lision avoidance, navigation, and local interactions between

agents. This overview focuses on the crowd motion simula-

tion. Crowd navigation attempts to reach specific goals while

not colliding with other agents nor static or dynamic obstacles

in the situated environment, which can be separated into local

collision avoidance and global path planning. Global path

planning finds an optimal path to the goal while avoiding

the collisions with static obstacles based on the established

map, in which the environment is known and unchanged.

Local collision avoidance steers the preferred velocity away

from collisions with other agents in which the environment is

unknown or known partially.

Local collision avoidance methods have been proposed

including rule-based methods [3], geometrically-based algo-

rithms [5], grid-based methods [6], force-based methods [7],

[8], Bayesian decision processes [9] and divergence-free flow

tiles [2]. Recent work [10] builds on the adaptive use of

algorithms in [11] and adopts machine learning to fit a model

that determines which policy to use for a given decision.

It analyzes the performance of an ‘‘implicit’’ approach to

collision avoidance with a data-driven technique and states

that a collision avoidance algorithm is necessary for a data-

driven approach to steering. However, collision avoidance

alone cannot properly model real crowds with a specific goal

due to the possibility of getting stuck. Therefore, local meth-

ods are often combined with global path planning techniques.

In general, global path planning has taken the form of graph-

based techniques, such as navigation graphs [12], proba-

bilistic maps [13], coarse graph-based roadmaps [14], [15],

navigation meshes [16], [17] and Voronoi diagrams [18].

The main objective of these methods is to find a path free

of obstacles between two points in the scene by a search

algorithm (usually A∗) based on the generated graph. Recent

work [19] presents a real-time planning framework for multi-

character navigation that enables the use of multiple het-

erogeneous problem domains of differing complexities for

navigation in large, complex, dynamic virtual environments.

It demonstrates realtime character navigation for multiple

agents in a large-scale, complex, dynamic environment, with

precise control and little computational overhead.

Reinforcement learning (RL) has become more popular

and has been applied to mobile robots [20], pedestrian nav-

igation [21] and crowd simulation [22], [25]. The classical

approaches include Q learning, inverse reinforcement learn-

ing (IRL) and Multi-agent reinforcement learning (MARL).

The main idea of these methods is to make agents find an

optimal control policy that maximizes the reward received in

the long term by interacting with the environment by trial

and error. Q learning [23], [24] is mostly used in discrete

environments, which makes the motion unrealistic, and fur-

thermore, it may be infeasible to learn the Q-values in tabular

form due to excessively large state space when there are many

obstacles in the environment. IRL [25] is adopted to learn

human-like navigation behavior based on example paths and

it’s also suitable for discrete environments. MARL [21] is

used to learn local navigational behaviors to simulate virtual

pedestrian groups. The environment is continuous but is quite

simple with only five walls.

In recent years, the advent of deep learning has had a

significant impact on many areas in machine learning and

accelerated progress in RL by use of deep learning algorithms

within RL defining the field of ‘‘deep reinforcement learn-

ing’’ (DRL) [26]. RL approaches lack the scalability and are

inherently limited to fairly low-dimensional problems due to

VOLUME 7, 2019 109545

L. Sun et al.: Crowd Navigation in an Unknown and Dynamic Environment Based on DRL

FIGURE 1. The framework architecture of our approach.

its memory complexity and computational complexity. Deep

neural networks have powerful function approximation and

representation learning properties, and therefore, DRL has

provided new tools in dealing with high-dimensional contin-

uous control problems. Among the recent work in the field

of DRL, there have been two outstanding representatives.

The first was the development of an algorithm that could

learn to play a range of Atari 2600 video games at a super-

human level, directly from image pixels [27]. The second

was the development of a hybrid DRL system, AlphaGo,

that defeated a human world champion in Go [28], par-

alleling the historic achievement of IBM’s Deep Blue in

chess two decades earlier [29] and IBM’s Watson DeepQA

system that beat the best human Jeopardy! players [30].

Besides these two successful stories, DRL has shown promis-

ing results. Mnih et al. [31] propose a deep RL approach,

where the parameters of the deep network are updated by

multiple asynchronous copies of the agent in the environment.

Feifei Li [32] proposes an actor-critic model whose policy is

a function of the goal as well as the current state to address

the issue of lacking generalization capability to new target

goals; and furthermore, proposes AI2-THOR framework to

address the data inefficiency problem for deep reinforcement

learning. Wang et al. [33] develops a new approach to make

agents adapt rapidly to new tasks by leveraging knowledge

acquired through previous experience with related activities.

Lee et al. [34] present an agent-based deep reinforcement

learning approach for the navigation and they use only a

simple reward function to make agents navigate in different

scenarios. Xuebin at al. [35] presents a hierarchical learning-

based framework for 3D bipedal walking skills that makes

limited use of prior structure. It allows for easily-directable

control over the motion style and is shown to produce highly

robust controllers.

Our method is inspired by the deep reinforcement learning

technique, which not only solves the problems that the action

space is discrete and it is intractable when the state space

is high dimensional in Q learning methods, but also finds

feasible paths to reach their goals for crowds while avoiding

collisions with static and dynamic obstacles through giving

the reward and the penalty.

III. OVERVIEW

The focus of this work is to make the agents navigate success-

fully in an unknown and dynamic environment. It should not

only self-learn the policies for collision avoidance with static

and dynamic obstacles, but also plan smooth paths to arrive

at their goals. Our approach can be divided into two phases

to achieve the aforementioned objectives. The first phase is to

train the agents to learn how to avoid the collisions with static

and dynamic obstacles, which is realized by using the PPO

algorithm combined with LSTM and the collision prediction

algorithm. Note that in our paper, dynamic obstacles cannot

avoid the collisions with agents inherently, I.e., the dynamic

obstacle’ trajectories cannot bemodified. That is, agents must

learn how to realize the collision avoidance. The second phase

finds feasible paths to the goal for each of four leader agents

and records their trajectories, and finally adopts the RVO

algorithm to simulate the scenario of four groups moving

towards their goals simultaneously.

The framework architecture is illustrated in FIGURE 1.

The input of our approach are the positions of four leader

agents, their corresponding goals and the environment includ-

ing static and dynamic obstacles. In the training phase,

the leader agent will get the reward if it reaches the goal or

moves towards the goal continuously and get the penalty if

it collides with any obstacles and walls or the probability of

colliding with dynamic obstacles is greater than the speci-

fied threshold Tc if it doesn’t change its velocity. The PPO

algorithm is adopted to guarantee the stability of the learning

and improve the robust performance of our approach. The

integration of LSTM can improve the training results and

reflectmemory characteristics of human beings. The collision

prediction algorithm can compute the probability of colliding

with dynamic obstacles for agents and make agents learn

how to avoid collisions with dynamic obstacles when they

move towards their goals. After the training, four leader

agents can reach their goals successfully and avoid static

and dynamic obstacles. We make each leader agent arrive

at a specific goal several times and record its trajectory as

the guiding path for the members in its group to follow.

Finally, we adopt the RVO algorithm [36] to make agents

not collide with others. That is, the RVO algorithm predicts

109546 VOLUME 7, 2019

L. Sun et al.: Crowd Navigation in an Unknown and Dynamic Environment Based on DRL

FIGURE 2. State representation.

whether a collision is going to happen at every time step.

When there is no collision, the guiding path can lead agents

to achieve their goals. However, once there is a predicted

collision, the RVO algorithm takes the priority to make agents

adapt motions so that the collision is resolved. In that case,

our approach can simulate the scenario of several groups

reaching their goals successfully in an unknown and dynamic

environment.

IV. POLICY REPRESENTATION

A. STATE

As shown in FIGURE 2, a state s consists of features

describing the configuration of the environment, the agent

as well as its goal. The state of the agent is represented

by its position pa and velocity va. The state of the goal

is represented by its position pg. The state of the environ-

ment is determined by the existence of dynamic obstacles.

If there are no dynamic obstacles, the state of the envi-

ronment is represented by raycasting detected one of four

kinds of possible objects from seven perspectives around

agent’s forward direction, in which four kinds of objects

include agents, walls, static obstacles and goals; else the

state of the environment is also represented by the velocities

of obstacles and the distances between agents and dynamic

obstacles.

B. ACTIONS

The action space is discrete in most of reinforcement learning

systems such as Q learning, which makes the motion of the

agent unrealistic. With the development of deep reinforce-

ment learning, it becomes possible to deal with the problem

with continuous and high-dimensional states and actions.

In our approach, the action of agents a = (v,w) is continuous,

which is represented by forward movement v and rotation

around the y axis w.

C. REWARD

In reinforcement learning, the reward function, r(s, a, s′),

is used as a training signal to encourage or discourage behav-

iors. The reward function provides a scalar value reflecting

the desirability of a particular state transition that is observed

by performing an action a starting in the initial state s and

resulting in a successor state s′.

The goal of reinforcement learning is to find a control

policy that maximizes the expected value of the cumulative

reward RR can be expressed as the time-discounted sum of all

transition rewards ri, from the current action up to a horizon

T , in which T may be infinite.

R(s0)=r0+γ r1+γ 2r2+γ 3r3+ . . .+γ iri+ . . . γ T rT (1)

in which ri = r(si, ai, s
′
i) and γ is a discount factor. γ ∈ [0, 1)

ensures that the cumulative reward is bounded.

In our approach, the agent will get the reward if it reaches

the goal or moves towards the goal continuously on condition

that the probability of colliding with dynamic obstacles is

less than the specified threshold Tc. That is, the priority of

avoiding the collision with dynamic obstacles is higher than

that of moving towards the goal when its probability is greater

than the specified threshold Tc. It is in accordance with that

the priority of local collision avoidance is higher than that

of global path planning. The agent will get the penalty if

it collides with the obstacles including static and dynamic

obstacles, walls, other leader agents or it spends too much

time to search for the goal or the probability of colliding with

dynamic obstacles is greater than the specified threshold Tc
in which Tc is set to 0.6. The total reward is given by

R = rgoal + rapproach − (rc_static + rc_dynamic + rc_walls

+ rc_agents + rtime + rp_dynamic) (2)

Note that we differentiate static obstacles from walls since

the positions of the walls are fixed while the positions of

static obstacles can be changed after the training and no post-

processing is needed, which also shows the advantage of our

approach Furthermore, we differentiate agents from dynamic

obstacles since agents have the ability to avoid the collisions

while dynamic obstacles don’t have this ability so that agents

need to learn how to avoid collisions with dynamic obstacles.

The first reward term checks whether the agent reaches its

goal, and gives a reward if it does, in whichwgoal is its weight.

rgoal = wgoal (3)

The second reward term checks whether the agent moves

towards its goal, and gives a reward if it does, in which

wapproach is its weight.

rapproach = wapproach (4)

Note that these rewards are given if the probability of collid-

ing with dynamic obstacles is less than the specified threshold

Tc. Otherwise, the penalty is given to make agents learn not

to collide with dynamic obstacles.

VOLUME 7, 2019 109547

L. Sun et al.: Crowd Navigation in an Unknown and Dynamic Environment Based on DRL

The first penalty term checks whether the agent collides

with static obstacles, and gives a penalty if it has occurred,

in which wc_static is its weight and j is the number of this kind

of collisions

rc_static =







∑

j

wc_static if collision occurs

0 otherwise

(5)

The second penalty term checks whether the agent collides

with dynamic obstacles, and gives a penalty if it has occurred,

in which wc_dynamic is its weight and k is the number of this

kind of collisions

rc_dynamic =







∑

k

wc_dynamic if collision occurs

0 otherwise

(6)

The third penalty term checks whether the agent collides with

walls, and gives a penalty if it has occurred, in which wc_walls
is its weight and m is the number of this kind of collisions

rc_walls =







∑

m

wc_walls if collision occurs

0 otherwise

(7)

The fourth penalty term checks whether the agent collides

with other agents, and gives a penalty if it has occurred,

in which wc_agents is its weight and n is the number of this

kind of collisions.

rc_agents =







∑

n

wc_agents if collision occurs

0 otherwise

(8)

The fifth penalty term checks whether the agent spends too

much time for reaching its goal, in which wtime is its weight.

rtime = wtime (9)

The last penalty term checks whether the probability of col-

liding with dynamic obstacles p_dynamic is greater than the

specified threshold Tc, in which wp_dynamic is its weight.

rp_dynamic =

{

wp_dynamic if p_dynamic > Tc

0 otherwise
(10)

Note that in different situations, the values of the reward and

the penalty are set differently.

D. POLICY REPRESENTATION

Human beings have memory. Agents should also have mem-

ory when they explore an unknown environment. We inte-

grate LSTM (Long short-term memory) [37] to reflect mem-

ory characteristics of human beings. LSTM is a special type

of RNN (Recurrent Neural Network). LSTM is composed of

a memory cell, an input gate, an output gate and a forget gate.

The cell remembers values over arbitrary time intervals and

the three gates regulate the flow of information into and out

of the cell. LSTM deals with the exploding and vanishing

gradient problems that can be encountered when training

FIGURE 3. LSTM architecture.

traditional RNNs. The architecture of the LSTMunit is shown

in FIGURE 3, in which Ct is cell state, ht is the output, ft is

the forget gate’s activation, it is the input gate’s activation and

ot is the output gate’s activation.

The forget gate controls the extent to which a value remains

in the cell, and its output is ft , which is given by:

ft = σ (Wf · [ht−1, xt]+ bf) (11)

in which σ is the sigmoid function.

The input gate controls the extent to which a new value

flows into the cell, which is given by:

it = σ (Wi · [ht−1, xt]+ bi) (12)

C̃t = tanh(WC · [ht−1, xt]+ bC) (13)

The old cell state Ct−1 is updated into the new cell state Ct :

Ct = ft ∗ Ct−1 + it ∗ C̃t (14)

The output gate controls the extent to which the value in the

cell is used to compute the output activation of the LSTM

unit, which is given by:

ot = σ (Wo · [ht−1, xt]+ bo) (15)

ht = ot ∗ tanh(Ct) (16)

To represent the policy, we use a recurrent neural network

that maps a given state s and goal g to a distribution over

action. The action distribution is modeled as a Gaussian. The

inputs are processed by two hidden layers each composed

of 128 LSTM hidden units, followed by a linear output layer.

The value function is modeled by a similar network, with

the exception of the output layer, which consists of a single

linear unit.

V. LEARNING

A. PPO

Proximal Policy Optimization algorithm using the clipped

surrogate objective [38] is adopted to train the agents to learn

how to reach their goals and avoid collisions with static and

dynamic obstacles. Considering that standard policy gradient

methods perform one gradient update per data sample, a novel

objective function was proposed to enable multiple epochs of

109548 VOLUME 7, 2019

L. Sun et al.: Crowd Navigation in an Unknown and Dynamic Environment Based on DRL

minibatch updates. The new methods, which are called Prox-

imal Policy Optimization (PPO), have some of the benefits of

trust region policy optimization (TRPO), but they are much

simpler to implement, more general, and have better sample

complexity.

In TRPO [39], an objective function is maximized subject

to a constraint on the size of the policy update. Specifically,

maximize
θ

Êt

[

πθ (at |st)

πθold (at |st)
Ât

]

(17)

subject to Êt
[

KL
[

πθold (· |st) , πθ (· |st)
]]

≤ δ (18)

where πθ is a stochastic policy, θold is the vector of policy

parameters before the update, and Ât is an estimator of the

advantage function at time step t . With the conjugate gra-

dient algorithm, this problem can be approximately solved

efficiently. The theory justifying TRPO actually suggests

using a KL penalty instead of a constraint, i.e., solving the

unconstrained optimization problem for some coefficient β

maximize
θ

Êt

[

πθ (at |st)

πθold (at |st)
Ât

− βKL
[

πθold (· |st) , πθ (· |st)
]

]

(19)

Let rt (θ) denote the ratio of the probability, rt (θ) =
πθ (at |st)

πθold
(at |st)

, thus rt (θold) = 1. TRPO maximizes a ‘‘surro-

gate’’ objective:

LCPI (θ) = Êt

[

πθ (at |st)

πθold (at |st)
Ât

]

= Êt

[

rt (θ) Ât

]

(20)

The superscript CPI refers to conservative policy itera-

tion [40], for the reason that maximization of LCPI would lead

to an excessively large policy update without a constraint, a

novel objective function was proposed as follows and adopted

as the new variant of PPO:

LCLIP (θ)= Êt

[

min
(

rt (θ) Ât , clip (rt (θ) , 1−ε, 1+ε) Ât

)]

(21)

Here, epsilon is a hyperparameter, say, ε = 0.2. In this way,

we only ignore the change in probability ratio when it would

make the objective improve, and we include it when it makes

the objective worse. This objective implements a way to do

a Trust Region update which is compatible with Stochastic

Gradient Descent, and simplifies the algorithm by removing

the KL penalty and need to make adaptive updates. This

algorithm has been proved to display the best performance

on continuous control tasks and almost matches ACER’s

performance onAtari, despite being far simpler to implement.

In our approach, PPO is based on the actor-critic algo-

rithm in which actor attempts to maximize JPPO while critic

attempts to minimize LBL , in which JPPO is the expected

sum of rewards and LBL is loss function for updating the

critic and furthermore, both of them are given in Algorithm 1.

We maintain two networks, one for the policy πθ and another

for the value function Vφ , with parameters θ and φ respec-

tively. The value function is updated using the temporal

FIGURE 4. The collision cone CCAB.

TABLE 1. Parameters.

difference computed with the λ-return results in the TD (λ)

algorithm. Similarly, the policy is updated using gradients

computed from the surrogate objective, with advantages Ât
computed usingGAE (λ). Empirically, it has been proved that

the λ-return shows better performance than simply using the

nstep return. The concrete learning process is illustrated in

Algorithm 1 in which M , B is the number of sub-iterations

with policy and baseline updates given a batch of datapoints.

Policy updates are performed after a batch of N = 1024

samples has been collected. λ = 0.95 is used for both TD (λ)

and GAE (λ).

B. COLLISION PREDICTION

Agents should avoid collisions with the dynamic obstacles

when they are moving in an unknown environment. Inspired

by the concept of Velocity Obstacle (VO) [41], we compute

the collision probability between the agent and the dynamic

obstacle. The higher the collision probability is, the greater

the penalty the agent will get. Consider the two circular

objects, A and B, shown in FIGURE 4 at time t0, with

velocities vA and vB and radii rA and rB. Let A represent the

agent, and B represent the dynamic obstacle. To compute the

VO,wemapB into the Configuration Space of A, by reducing

VOLUME 7, 2019 109549

L. Sun et al.: Crowd Navigation in an Unknown and Dynamic Environment Based on DRL

FIGURE 5. The process of four leader agents learning about the environment.

FIGURE 6. Four leader agents reach their goals successfully after the
training.

Algorithm 1 Proximal Policy Optimization

for i ∈ {1, · · · ,N } do

Run policy πθ for T timesteps, collecting πθ {st , at , rt }

Estimate advantages Ât =
∑

t ′>t γ
t ′−trt ′ − Vφ (st)

πθold ← πθ

for j ∈ {1, · · · ,M} do

JPPO (θ) =
∑T

t=1min
(

rt (θ) Ât , clip (rt (θ) ,

1− ε, 1+ ε) Ât

)

Update θ by a gradient method w.r.t. JPPO (θ)

end for

for j ∈ {1, · · · ,B} do

LBL (φ) = −
∑T

t=1

(

∑

t ′>t γ
t ′−trt ′ − Vφ (st)

)2

Update φ by a gradient method w.r.t. LBL (φ)

end for

end for

A to the point Â and enlarging B by the radius of A (rA) to B̂

We define the Collision Cone, CCAB, as the set of colliding

relative velocities between Â and B̂:

CCAB = {v
′
A|λ
′
A ∩ B̂ 6= φ} (22)

in which v′A = vA − vB and λ′A is the line of v′A. This cone

is the planar sector with the apex in Â, bounded by the two

tangents from Â to B̂ as shown in red in FIGURE 4. Any

relative velocity that lies in this cone will cause a collision

between A and B. Furthermore, the collision probability

between agent A and dynamic obstacle B is also related to the

time to the-time-to-collision (TTC), which is given:

t =
Â− pC

v′A
(23)

where pC is the intersection point between v′Aand B̂.

The smaller t is, the higher the collision probability is.

Therefore, the collision probability between agent A and

dynamic obstacle B is set as follows:

pc =







min(1,
1

t
) if v′A ∈ CCAB

0 if v′A /∈ CCAB

(24)

Note that, we use the circumscribed circle of the cube to

compute the collision probability since the static and dynamic

obstacles are represented by cubes.

VI. RESULTS

All the experiments were run on a desktop with an NVIDIA

GeForce 1080 Ti GT graphics card and an Intel Core 2

i7-8700K CPU (3.7GHZ) with 16 GB memory. Our virtual

scenes are constructed through the Unity3D Engine. Param-

eters for the simulation and deep reinforcement learning are

summarized in TABLE I.

FIGURE 5 shows the process of four leader agents learn-

ing how to avoid collisions with static obstacles, in which

static obstacles are represented by cubes in red, walls are

represented by the frames in white, four leader agents are

represented by larger spheres in different colors and each

goal is represented by a smaller sphere in the same color as

the leader agent, leader agents’ trajectories are represented

by lines in deep pink and the final state representation is

48-dimensional. FIGURE 5(a) and FIGURE 5(b) show that

four leader agents explore the environment randomly at the

beginning of the training since they don’t know the environ-

ment at all. FIGURE 5(c) shows that four leader agents can

reach their goals while avoiding collisions with static obsta-

cles through getting the reward when they approach their

goals and the penalty when they collide with the obstacles and

other leader agents, however, their paths to goals are longer

and twisted in the middle phase of the training. FIGURE 5(d)

shows that four leader agents can reach their goals while

109550 VOLUME 7, 2019

L. Sun et al.: Crowd Navigation in an Unknown and Dynamic Environment Based on DRL

FIGURE 7. The process of four leader agents learning how to avoid dynamic obstacles.

FIGURE 8. The process of four leader agents avoiding collisions with dynamic obstacles successfully.

FIGURE 9. The learning curve in an unknown and dynamic environment.

avoiding collisions with static obstacles in a much shorter

path in the late phase of the training.

In FIGURE 6(a), the static obstacles have been bounded by

bold lines in blue after the training is finished and four leader

agents have learned how to avoid collisions with static obsta-

cles well. As a result, four leader agents find smooth paths to

reach their goals successfully while not colliding with static

obstacles or the other leader agents. Note that the breakpoints

in the trajectories of the leader agents shown in green and pink

are the last goals for themselves. In FIGURE 6(b), when the

positions of static obstacles change, no training is needed and

four leader agents can also find smooth paths to reach their

goals successfully while not colliding with static obstacles or

the other leader agents.

FIGURE 7 shows the process of four leader agents

learning how to avoid collisions with dynamic obstacles,

in which dynamic obstacles are represented by cubes in

FIGURE 10. The comparison of learning curves with and without LSTM.

yellow and they are moving back and forth, and corre-

spondingly, the final state representation is 62-dimensional.

In FIGURE 7(a) and 7(b), four leader agents don’t know how

to avoid dynamic obstacles so that collisions happen between

leader agents and dynamic obstacles at the beginning of

the training. The red arrows and dark blue arrows label the

collision pairs. FIGURE 7(c) and 7(d) show that four leader

agents know how to avoid collisions with dynamic obstacles

through getting penalties when the collision probability is

greater than the specified threshold Tc or they collide with

dynamic obstacles.

FIGURE 8 shows the process of four leader agents

avoiding collisions with dynamic obstacles successfully. In

FIGURE 8(a), 8(b) and 8(c), agent shown in orange moves

towards its goal and when the collision probability with the

dynamic obstacle is high, it will speed up to avoid the colli-

sion. In FIGURE 8(d) and 8(e), the goal of the agent shown

VOLUME 7, 2019 109551

L. Sun et al.: Crowd Navigation in an Unknown and Dynamic Environment Based on DRL

FIGURE 11. The process of four leader agents moving towards their goals.

FIGURE 12. The process of four groups of agents moving towards their goals.

FIGURE 13. The process of four groups of agents moving towards their goals using navigation mesh combined with RVO.

in blue is very close to a dynamic obstacle and therefore,

the agent shown in blue changes its moving direction to avoid

the collision. Note that the agent and the dynamic obstacle

who are going to collide are labeled by the red arrows.

In FIGURE 9, we evaluate the performance by measuring

the mean reward the agents get every 2000 episodes. From

FIGURE 9, we can see that the agents get higher rewards with

the increase of the iterations. The curve rises with a fast rate

at the beginning of the training; the curve rises with a slower

rate when the episodes reach 1500k; and finally, the curve

becomes steady when the episodes reach 2500k.

In FIGURE 10, we evaluate the performance by measuring

the mean reward the agents get every 2000 episodes without

andwith LSTM. FromFIGURE 10, we can see that the agents

get higher reward with LSTM than without LSTM, which

demonstrates the advantage of our approach.

FIGURE 11 shows the process of four leader agents

moving towards their goals. FIGURE 11(a) shows the

initial positions of four leader agents and the goal of

each leader is the opposite of the corner in a diagonal

line. In FIGURE 11(b), 11(c) and 11(d), each leader agent

approaches its goal continually and avoids collisions with

other leader agents and static obstacles. In FIGURE 11(e),

each leader agent reaches its goal successfully and the

trajectory of each leader agent has been recorded as the

guidance path.

FIGURE 12 shows the process of four groups of agents

moving towards their goals based on the trajectories recorded

in FIGURE 11, in which the group members are represented

in the same color as their leader. FIGURE 12(a) shows the

initial positions of four groups of agents and the goal of

each group is the opposite of the corner in the diagonal

lines where they are situated. In FIGURE 12(b) and 12(c),

each group of agents moves along the leader agent’s trajec-

tory while avoiding collisions with other groups of agents

and furthermore, there is no congest at the center of the

environment and the agents in the same group show the

flocking behavior. In FIGURE 12(d), each group of agents

moves towards their goal continually after the collisions are

resolved. FIGURE 12(e) shows that four groups of agents

reach their goals successfully finally.

In TABLE II, we do the comparisons among classical

path planning approaches and our approach. Compared with

other works related to global path planning and local col-

lision avoidance, we solve the problem of navigating in an

unknown and dynamic environment based on PPO combined

with the LSTM and a collision prediction algorithm. To be

more specifically, compared with traditional approaches for

109552 VOLUME 7, 2019

L. Sun et al.: Crowd Navigation in an Unknown and Dynamic Environment Based on DRL

TABLE 2. Comparisons among classical path planning approaches and our approach.

global path planning, which plan the paths according to the

established graphs, such as navigation graphs[12], probabilis-

tic maps[13], coarse graph-based roadmaps[14], [15], our

approach can make agents reach their goals without know-

ing the environment in prior. That is, the prerequisite for

global path planning is that the environment is known and

the graphs are generated before planning while agents can

learn how to reach their goals and avoid collisions with static

obstacles in our approach and we don’t need to establish

the graph for the environment. Furthermore, when the envi-

ronment changes, such as the positions of static obstacles

change, our approach doesn’t need to train agents again and

can make agents arrive at their goals in collision-free paths

while traditional global path planning approaches need to

regenerate a new graph to guarantee that agents don’t collide

with static obstacles and reach their goals. Compared with

traditional approaches for local collision avoidance, such as

geometrically-based algorithms [5], grid-based methods [6],

force-based methods [7], [8], our approach can make agents

avoid collisions with dynamic obstacles through getting the

reward and the penalty. Compared with the work focusing on

navigation based on Q-learning, we make the action space

continuous and generate more smooth paths while the paths

generated by Q learning are often jagged since its action

space is discrete. Compared with the work focusing on crowd

simulation based on deep reinforcement learning, we make

agents reach any random or specified goals successfully after

the training, which shows the scalability of our approach. Fur-

thermore, the recorded trajectory as the guidance path makes

four groups of agents approach their goals in an uncongested

way. As a comparison, we run the same experiment using

the approach with no guidance paths which combines nav-

igation mesh as global path planning with RVO algorithm

as local collision avoidance, and obtain the result shown

in FIGURE 13, in which four groups of agents congest at

the center of the environment and the same group of agents

scatter out and cannot show the flocking behavior.

VII. CONCLUSION

We present a novel approach for solving crowd navigation

in an unknown and dynamic environment. The proposed

method is inspired by the deep reinforcement learning tech-

nique. We state that global path planning and local collision

avoidance cannot deal with the problem of navigating in an

unknown and dynamic environment and furthermore, most

of reinforcement learning systems such as Q learning cannot

produce realistic motions due to its discrete action space.

Therefore, we first combine PPO with LSTM and a collision

prediction algorithm to train four leader agents to learn how to

reach their goals and avoid collisions with static and dynamic

obstacles, and then we make each leader agent arrive at a spe-

cific goal several times and record its trajectory as the guiding

path so that the members in its group know how to reach their

assigned goals. Finally, we adopt the RVO algorithm to make

agents not collide with others and furthermore, we simulate

the scenario of four groups moving towards their goals simul-

taneously. We evaluated our approach and demonstrated the

achieved improvements as follows: 1) our approach can make

agents navigate successfully in an unknown and dynamic

environment based on deep reinforcement learning; 2) our

approach can plan smooth paths for crowds since the action

space is continuous; 3) our approach can reflect the char-

acteristics of human beings including self-learning ability,

the communication and the memory; 4) our approach can

train multi-agents with different goals simultaneously and

obtain good results. The main objective of our future work

is to extend our method to deal with navigating articulated

characters in a complex environment and develop a more

general and improved navigation model considering the per-

sonality, the emotion and the mood of individual agents for

crowd simulation. That is why we don’t compare the results

derived from our proposed navigation approach with real

human crowd motions.

REFERENCES

[1] D. Helbing, I. Farkas, and T. Vicsek, ‘‘Simulating dynamical features of

escape panic,’’ Nature, vol. 407, pp. 487–490, Sep. 2000.
[2] S. Chenney, ‘‘Flow tiles,’’ in Proc. ACM SIGGRAPH/Eurographics Symp.

Comput. Animation, Aug. 2004, pp. 233–242.
[3] C. W. Reynolds, ‘‘Flocks, herds and schools: A distributed behavioral

model,’’ ACM Comput. Graph., vol. 21, no. 4, pp. 25–34, Jul. 1987.
[4] S. R. Musse and D. Thalmann, ‘‘Hierarchical model for real time simula-

tion of virtual human crowds,’’ IEEE Trans. Vis. Comput. Graphics, vol. 7,

no. 2, pp. 152–164, Apr./Jun. 2001.
[5] O. B. Bayazit, J.-M. Line, and N. M. Amato, ‘‘Better group behaviors

in complex environments using global roadmaps,’’ in Proc. 8th Int. Conf.

Artif. Life, Dec. 2002, pp. 362–370.
[6] R. Narain, A. Golas, S. Curtis, and M. C. Lin, ‘‘Aggregate dynamics

for dense crowd simulation,’’ in Proc. ACM SIGGRAPH Asia Papers,

Dec. 2009, pp. 1–8.
[7] A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin, and D. Manocha, ‘‘Real-

time navigation of independent agents using adaptive roadmaps,’’ in Proc.

ACM Symp. Virtual Reality Softw. Technol., Nov. 2007, pp. 99–106.
[8] P. Charalambous, I. Karamouzas, S. J. Guy, and Y. Chrysanthou, ‘‘A data-

driven framework for visual crowd analysis,’’ Comput. Graph. Forum.,

vol. 33, no. 7, pp. 41–50, Oct. 2014.

VOLUME 7, 2019 109553

L. Sun et al.: Crowd Navigation in an Unknown and Dynamic Environment Based on DRL

[9] R. A.Metoyer and J. K. Hodgins, ‘‘Reactive pedestrian path following from

examples,’’ Vis. Comput., vol. 20, no. 10, pp. 635–649, Dec. 2004.
[10] C. D. Boatright, M. Kapadia, J. M. Shapira, and N. I. Badler, ‘‘Generating

a multiplicity of policies for agent steering in crowd simulation,’’ Comput.

Animation Virtual Worlds, vol. 26, no. 5, pp. 483–494, Sep./Oct. 2015.
[11] S. Singh, M. Kapadia, G. Reinman, and P. Faloutsos, ‘‘Footstep naviga-

tion for dynamic crowds,’’ Comput. Animation Virtual Worlds, vol. 22,

nos. 2–3, pp. 151–158, Apr./May 2011.
[12] J. Pettre, J.-P. Laumond, and D. Thalmann, ‘‘A navigation graph for real-

time crowd animation on multilayered and uneven Terrain,’’ in Proc. 1st

Int. Workshop Crowd Simulation, Nov. 2005, p. 194.
[13] M. Sung, L. Kovar, and M. Gleicher, ‘‘Fast and accurate goal-directed

motion synthesis for crowds,’’ in Proc. ACM SIGGRAPH/Eurographics

Symp. Comput. Animation, Jul. 2005, pp. 291–300.
[14] O. B. Bayazit, J. M. Lien, and N. M. Amato, ‘‘Better group behaviors in

complex environments using global,’’ Artif. Life, vol. 8, no. 8, p. 362, 2003.
[15] S. Rodriguez and N. M. Amato, ‘‘Roadmap-based level clearing of build-

ings,’’ in Motion Games (Lecture Notes in Computer Science). Berlin,

Germany: Springer, 2011, pp. 340–352.
[16] R. Oliva and N. Pelechano, ‘‘Automatic generation of suboptimal

navmeshes,’’ in Motion Games (Lecture Notes in Computer Science).

Berlin, Germany: Springer, 2011, pp. 328–339.
[17] L. Sun, L. Ding, andW. Qin, ‘‘Planning feasible and smooth paths for sim-

ulating realistic crowd,’’ in Intelligent Computing Theories Methodologies

(Lecture Notes in Computer Science). Cham, Switzerland: Springer, 2015,

pp. 498–509.
[18] A. Sud, E. Andersen, S. Curtis, M. Lin, and D. Manocha, ‘‘Real-time

path planning for virtual agents in dynamic environments,’’ in Proc. IEEE

Virtual Reality Conf., Mar. 2007, pp. 91–98.
[19] M. Kapadia, A. Beacco, F. Garcia, V. Reddy, N. Pelechano, and

N. I. Badler, ‘‘Multi-domain real-time planning in dynamic environments,’’

in Proc. 12th ACM SIGGRAPH/Eurographics Symp. Comput. Animation,

Jul. 2013, pp. 115–124.
[20] W. D. Smart and L. P. Kaelbling, ‘‘Effective reinforcement learning for

mobile robots,’’ in Proc. IEEE Int. Conf. Robot. Automat., May 2002,

pp. 3404–3410.
[21] F.Martinez-Gil,M. Lozano, and F. Fernández, ‘‘Multi-agent reinforcement

learning for simulating pedestrian navigation,’’ in Proc. Int. Workshop

Adapt. Learn. Agents. Berlin, Germany: Springer, 2011, pp. 54–69.
[22] L. Casadiego and N. Pelechano, ‘‘From one to many: Simulatin groups

of agents with RL controllers,’’ in Proc. Int. Conf. Intell. Virtual Agents,

Aug. 2015, pp. 119–125.
[23] L. Khriji, F. Touati, K. Benhmed, and A. Al-Yahmedi, ‘‘Mobile robot

navigation based on Q-learning technique,’’ Int. J. Adv. Robot. Syst., vol. 8,

no. 1, pp. 45–51, Jan. 2011.
[24] S. Li, X. Xu, and L. Zuo, ‘‘Dynamic path planning of a mobile robot with

improved Q-learning algorithm,’’ in Proc. IEEE Int. Conf. Inf. Autom.,

Aug. 2015, pp. 409–414.
[25] P. Henry, C. Vollmer, B. Ferris, and D. Fox, ‘‘Learning to navigate

through crowded environments,’’ inProc. IEEE Int. Conf. Robot. Automat.,

May 2010, pp. 981–986.
[26] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,

‘‘A brief survey of deep reinforcement learning,’’ Aug. 2017,

arXiv:1708.05866. [Online]. Available: https://arxiv.org/abs/1708.05866
[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,

M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,

S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,

D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through

deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,

Feb. 2015.
[28] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,

M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,

I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and

D. Hassabis, ‘‘Mastering the game of go with deep neural networks and

tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.
[29] M. Campbell, A. J. Hoane, Jr., and F.-H. Hsu, ‘‘Deep blue,’’ Artif. Intell.,

vol. 134, nos. 1–2, pp. 57–83, Jan. 2002.
[30] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur,

A. Lally, J. W. Murdock, E. Nyberg, J. Prager, N. Schlaefer, and C. Welty,

‘‘Building watson: An overview of the deep QA project,’’ AI Mag., vol. 31,

no. 3, pp. 59–79, 2010.
[31] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement

learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[32] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and

A. Farhadi, ‘‘Target-driven visual navigation in indoor scenes using deep

reinforcement learning,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA),

May/Jun. 2017, pp. 3357–3364.
[33] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo,

R. Munos, C. Blundell, D. Kumaran, and M. Botvinick, ‘‘Learning to

reinforcement learn,’’ Nov. 2016, arXiv:1611.05763. [Online]. Available:

https://arxiv.org/abs/1611.05763
[34] J. Lee, J.Won, and J. Lee, ‘‘Crowd simulation by deep reinforcement learn-

ing,’’ in Proc. 11th Annu. Int. Conf. Motion, Interact., Games, Nov. 2018,

Art. no. 2.
[35] X. Peng, G. Berseth, K. Yin, and M. Van De Panne, ‘‘DeepLoco: Dynamic

locomotion skills using hierarchical deep reinforcement learning,’’ ACM

Trans. Graph., vol. 36, no. 4, Jul. 2017, Art. no. 41.
[36] J. van den Berg, M. Lin, and D. Manocha, ‘‘Reciprocal velocity obstacles

for real-time multi-agent navigation,’’ in Proc. IEEE Conf. Robot. Autom.,

May 2008, pp. 1928–1935.
[37] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural

Comput., vol. 9, no. 8, pp. 1735–1780, 2012.
[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

‘‘Proximal policy optimization algorithms,’’ Jul. 2017, arXiv:1707.06347.

[Online]. Available: https://arxiv.org/abs/1707.06347
[39] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, ‘‘Trust

region policy optimization,’’ inProc. 32nd Int. Conf. Mach. Learn., vol. 37,

Jul. 2015, pp. 1889–1897.
[40] S. Kakade, J. Langford, ‘‘Approximately optimal approximate reinforce-

ment learning,’’ in Proc. ICML, vol. 2, Jul. 2002, pp. 267–274.
[41] P. Fiorini and Z. Shiller, ‘‘Motion planning in dynamic environments

using velocity obstacles,’’ Int. J. Robot. Res., vol. 17, no. 7, pp. 760–772,

Jul. 1998.

LIBO SUN received the Ph.D. degree from the

School of Computer Science and Technology,

Tianjin University, in January 2012. She was a

Visiting Scholar of the Graphics Laboratory, Uni-

versity of Pennsylvania, from November 2009 to

August 2011, where she was a Postdoctoral

Researcher, fromDecember 2015 to January 2017.

She is currently an Associate Professor with the

School of Instrument Science and Engineering,

Southeast University, China. Her research interests

include computer animation, virtual reality, and crowd simulation.

JINFENG ZHAI received the bachelor’s degree

from the School of Instrument Science and Engi-

neering, Southeast University, China, in 2017,

where she is currently pursuing the master’s

degree. Her research interests include computer

animation, virtual reality, and crowd simulation.

WENHU QIN received the Ph.D. degree from the

School of Instrument Science and Engineering,

Southeast University, in 2005, where he is cur-

rently a Professor. He has more than 30 journal

papers, 10 conference papers, and a book. He has

five patents. His research interests include vehicle

safety, virtual reality, crowd simulation, and road

traffic accident reconstruction.

109554 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORKS
	OVERVIEW
	POLICY REPRESENTATION
	STATE
	ACTIONS
	REWARD
	POLICY REPRESENTATION

	LEARNING
	PPO
	COLLISION PREDICTION

	RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	LIBO SUN
	JINFENG ZHAI
	WENHU QIN

