
 Open access  Proceedings Article  DOI:10.1109/WOWMOM.2010.5534910

Crowd-sourced sensing and collaboration using twitter — Source link 

Murat Demirbas, Murat Ali Bayir, Cuneyt Gurcan Akcora, Yavuz Selim Yilmaz ...+1 more authors

Institutions: University at Buffalo

Published on: 14 Jun 2010 - World of Wireless, Mobile and Multimedia Networks

Topics: Microblogging, Ubiquitous computing and Collaborative software

Related papers:

 Earthquake shakes Twitter users: real-time event detection by social sensors

 Mobile crowdsensing: current state and future challenges

 Demo: Medusa: a programming framework for crowd-sensing applications

 Sensing meets mobile social networks: the design, implementation and evaluation of the CenceMe application

 mCrowd: a platform for mobile crowdsourcing

Share this paper:    

View more about this paper here: https://typeset.io/papers/crowd-sourced-sensing-and-collaboration-using-twitter-
4qyttuwsdl

https://typeset.io/
https://www.doi.org/10.1109/WOWMOM.2010.5534910
https://typeset.io/papers/crowd-sourced-sensing-and-collaboration-using-twitter-4qyttuwsdl
https://typeset.io/authors/murat-demirbas-50cbe9nr2x
https://typeset.io/authors/murat-ali-bayir-1x5k4sfwwk
https://typeset.io/authors/cuneyt-gurcan-akcora-1a3iu2usjp
https://typeset.io/authors/yavuz-selim-yilmaz-4mck9tlo48
https://typeset.io/institutions/university-at-buffalo-36dhk23o
https://typeset.io/conferences/world-of-wireless-mobile-and-multimedia-networks-1otabj31
https://typeset.io/topics/microblogging-2smuh0xg
https://typeset.io/topics/ubiquitous-computing-1tsqkzds
https://typeset.io/topics/collaborative-software-3bw0cd9w
https://typeset.io/papers/earthquake-shakes-twitter-users-real-time-event-detection-by-1tue7cvj9p
https://typeset.io/papers/mobile-crowdsensing-current-state-and-future-challenges-5fknm2jqo5
https://typeset.io/papers/demo-medusa-a-programming-framework-for-crowd-sensing-3nfdem3xpd
https://typeset.io/papers/sensing-meets-mobile-social-networks-the-design-13d7pgc3oe
https://typeset.io/papers/mcrowd-a-platform-for-mobile-crowdsourcing-1trbcnk0e4
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/crowd-sourced-sensing-and-collaboration-using-twitter-4qyttuwsdl
https://twitter.com/intent/tweet?text=Crowd-sourced%20sensing%20and%20collaboration%20using%20twitter&url=https://typeset.io/papers/crowd-sourced-sensing-and-collaboration-using-twitter-4qyttuwsdl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/crowd-sourced-sensing-and-collaboration-using-twitter-4qyttuwsdl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/crowd-sourced-sensing-and-collaboration-using-twitter-4qyttuwsdl
https://typeset.io/papers/crowd-sourced-sensing-and-collaboration-using-twitter-4qyttuwsdl


Crowd-Sourced Sensing and Collaboration Using Twitter

Murat Demirbas, Murat Ali Bayir, Cuneyt Gurcan Akcora, Yavuz Selim Yilmaz
Computer Science & Engineering Dept.,

University at Buffalo, SUNY

Email: {demirbas, mbayir, cgakcora, yavuzsel}@cse.buffalo.edu

Hakan Ferhatosmanoglu
Computer Science & Engineering Dept.,

The Ohio State University

Email: hakan@cse.ohio-state.edu

Abstract—Despite the availability of the sensor and smart-
phone devices to fulfill the ubiquitous computing vision, the-
state-of-the-art falls short of this vision. We argue that the
reason for this gap is the lack of an infrastructure to task/utilize
these devices for collaboration. We propose that Twitter can
provide an “open” publish-subscribe infrastructure for sensors
and smartphones, and pave the way for ubiquitous crowd-sourced
sensing and collaboration applications. We design and implement
a crowd-sourced sensing and collaboration system over Twitter,
and showcase our system in the context of two applications: a
crowd-sourced weather radar, and a participatory noise-mapping
application. Our results from real-world Twitter experiments give
insights into the feasibility of this approach and outlines the
research challenges in sensor/smartphone integration to Twitter.

I. INTRODUCTION

The ubiquitous systems vision [1] of embedding and weav-

ing abundantly available tiny-computers to the fabric of our

daily lives is close to fruition. With the advances in MEMS

technology in the previous decade, it has become feasible

to produce various types of sensors (such as magnetometers,

accelerometers, passive-infrared based proximity, acoustics,

light, heat) inexpensively, in very small-form factor, and in

low-power usage. Furthermore, cellphone technology has seen

an adoption rate faster than any other technology in human his-

tory [2]: as of 2009, the number of cellphone subscribers has

exceeded 3.3 billion users. The rate of innovation in this field

has been head-spinning. Nokia, Google, Microsoft, and Apple

have all introduced cellphone operating systems (Symbian,

Android, Windows Mobile, iPhoneOS) and provided APIs

for enabling open application development on the cellphones.

These modern cellphones, which are dubbed as smartphones,

enable location-aware services as well as empowering the

users to generate and access multimedia content.

Despite the availability of the devices to fulfill the ubiqui-

tous computing vision, the-state-of-the-art falls short of this

vision. We argue that the reason for this gap is the lack of

an infrastructure to task/utilize these devices for collaboration

and coordination. In the absence of such an infrastructure, the

state-of-the-art today is for each device to connect to Internet

to download/upload data and accomplish an individual task

that does not require collaboration and coordination. Providing

an infrastructure for publish/subscribe and tasking of these

devices enables any node to search the data published by

several nodes in one region to aggregate and decide on a

question, as well as task several nodes in one region to acquire

the needed data (if the data is not already being published to

the infrastructure).
We propose that Twitter [3] can provide an “open” publish-

subscribe infrastructure for sensors and smartphones and pave

the way for ubiquitous crowd-sourced sensing and collab-

oration applications. The open publish-subscribe system of

Twitter implies that different actors may integrate user data

differently. Moreover, third parties can use the gathered data

in unanticipated ways to offer new services with them. In ad-

dition to this open publish-subscribe infrastructure, the social

networks angle of Twitter also provides a useful feature for the

crowd-sourced sensing and collaboration applications. Finally,

the wide popularity of Twitter and the big community behind

it (more than 30 million users in US), is an important reason

to target our crowd-sourcing system for Twitter: It is easier to

give the community a tool than to give the tool a community.
More specifically, we provide the following contributions.

• In Section II, we provide a detailed survey of Twitter

with existing application domains on news and alert

systems. In Section III, we present emerging application

domains for Twitter: including crowd-sourcing, partici-

patory sensing, social collaboration, expert-finding, and

market research and trend mining.

• We discuss sensor integration to Twitter in Section III-A

and smartphone integration in Section III-B. We point to

a potential new architectural trend in sensor integration,

that of inexpensive sensors using cellular data network to

reach Internet in one hop.

• In Section IV, we present our design and implementation

of a crowd-sourced sensing and collaboration system over

Twitter. Central to our system is a Twitter-bot (with an in-

tegrated database system) that accepts questions, crowd-

sources them, and aggregates the answers to reply back to

the querier. The system also includes a smartphone client

for automatically pushing sensor reading information to

Twitter.

• In Sections V and VI-A, we showcase and evaluate the



performance of our crowd-sourced sensing and collab-

oration system on two case-studies. The first one is a

crowd-sourced weather radar, which help monitor fine-

granularity weather conditions and act as a ground-truth.
1 Our second application is noise mapping of a region

by aggregating the automatic noise-sensing updates from

smartphones.

• We present an analysis of our real-world Twitter experi-

ments to give insights for the feasibility of our approach.

We find that although we do not offer the user any

incentives to reply, our queries receive at least 15%

reply ratios. Surprisingly, 50% of the total replies arrive

within the first 10 minutes of our query, and 80% of

the replies arrives within the first 2 hours, enabling low-

latency operations for crowd-sourcing applications. Our

experiments also found that consistently the majority of

replies come from users that access Twitter from their

mobile phones.

II. TWITTER

A. Twitter in a Nutshell

A web 2.0 project, Facebook.com established a status update

field in June 2006, but it was Twitter.com that took status

sharing between people to mobile phones four months later.

First named as “Status”, then as “Twttr”, Twitter has gone

beyond status sharing and became a Web 2.0 microblogging

site for information sharing and news reporting. Twitter started

its journey in 2006, but its fame started to spread after the

South by Southwest festival in 2007. In the event, company

set up user accounts for the participants, and used big screens

streaming tweets from them in the conference simultaneously.

The effect of the conference was huge for Twitter. According

to a report by HubSpot in 2008 [4], despite being functional

since 2006, Twitter had its 70% of users joined in 2008, and

reached around 4-5 million users, making it a top 1000 website

in web traffic.

The trend of growth for Twitter has continued since then. In

2009, HubSpot [5] reported an astonishing 18.0000% growth

rate of Twitter users. The report gives the total number of

Twitter users in USA as 27 million. 55% of these users are

male, 48% is between 18 and 34 ages. Twitter has seen a

rapid growth in the western sphere, and cities like London,

New York and San Francisco generate the largest traffic on

the site. Top 100 cities list [6] is dominated by US, with the

first non-USA city being Toronto, Canada. Tehran, Iran is 18th

on the list, making it the first non-western city. Tokyo, Japan,

once in top 10 in 2008, now enters the list as the 21st city.

B. Beneath the Hood

Twitter’s success can be attributed to two main factors;

elegance in design, and simplicity in adding third party

1You can visit our weather radar at rainradar on Twitter.
We display the answers to our weather radar on a map at
http://ubicomp.cse.buffalo.edu/rainradar. The map is configurable to show
results from previous days, and also is zoomable to show fine-grain locations
of the replies.

improvements to Twitter. Elegance is due to the character

limit. Twitter names micro-blog posts from users as tweets.

Each tweet has a 140 character limit which is inherited from

text messaging. (The original 160 character SMS limit was

reorganized into 20 character username and 140 character post

fields.) A comparison between blogging and microblogging

gives us a good understanding of the reason behind Twitter’s

popularity. While blogging requires good writing skills and

large content to fill pages, Twitter restricts posts to 140

characters, which encourages much more people to post.

Simplicity is due to an early decision by Twitter to provide

a HTTP based open source API and share posts with third

party applications. Twitter’s API consists of two different

parts: Search API and REST API. REST API enables Twitter

developers to access the core Twitter data. This data includes

tweets, timelines, and user data. Search API provides the

developer to query the tweets. It also provides information

about the trending topics. The usage of both APIs is subject to

rate limiting, however, based on the request of the third party,

Twitter may add these applications to its whitelist and remove

request limitations. The ease and flexible usage of Twitter API

encouraged several developers to write applications. Starting

with Twitterrific in January 2007, many applications have been

created for Twitter [7].

C. Existing Twitter Application Domains

1) News: Twitter is becoming regarded as the fastest way

to reach to breaking news. Users’ collaboration has given

Twitter a clear edge over news centers and recently news

centers have set up Twitter accounts and encouraged users

to interact with these accounts in order to capture breaking

news. CNN maintains 45 official Twitter accounts with more

than 5 million followers. During the election protests in Iran,

Twitter played a greater role than news centers, and attracted

attention. US government reportedly warned Twitter.com to

not to undergo maintenance for it would break the news stream

from Iranian users [8]. Even after banning foreign journalists

from covering rallies, Iran could not stop information flow

and finally shut down access to Twitter. In recent Mumbai

attacks in India, just minutes after the attacks, Twitter was

the major source until news sites caught up with updates. As

well as posts, information flow to Twitter consists of pictures,

links and videos. Demonstration pictures from Iran and the

first picture from US Airways plane in the Hudson River [9]

increased Twitter’s popularity in the public. The Economist

declared Twitter a winner in this information race [10].

2) Alert Systems: Twitter provides a system that can con-

nect residents of a city with virtually no cost. It also in-

creases the abilities of an alert system by inputting more

user generated data. Some cities already opted for Twitter

to alert their residents [11]. The Virginia Tech incident in

2007 highlighted the security issues on university campuses.

To integrate e2Campus emergency notification network with

popular social networks, Pacific University of Forest Grove,

Oregon, implemented a Twitter based alert system for its
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students, and the trend is likely to grow [12]. With this system,

universities can send e2Campus alerts to popular networks.

III. RESEARCH DIRECTIONS USING TWITTER

In this section we discuss sensor and smartphone integra-

tion to Twitter and identify research directions and emerging

applications for these domains.

A. Integrating Sensors

With the advances in MEMS technology in the previous

decade, it has become feasible to produce various types of sen-

sors (such as magnetometers, accelerometers, passive-infrared

based proximity, acoustics, light, heat) inexpensively, in very

small-form factor, and in low-power usage. Moreover there has

been nearly a decade of research in wireless sensor networks

(WSNs) and some real-world deployments of WSNs have

been successfully demonstrated [13]–[16]. As such, WSNs

offer an untapped source of information about our physical

world. However, WSNs have not achieved the broad impact

and visibility it deserves. Not only are we far away from “a

central nervous system for earth”, there is no significant market

penetration for WSNs yet.

Arguably the greatest barrier against wider adoption of

WSNs is the difficulty in locating sensors and subscribing

to them. We propose that Twitter can provide an “open”

publish-subscribe infrastructure for sensors, as well as the

search/discovery of sensors with certain attributes. Moreover,

having access to a lot of sensors is also valuable in that it

would be possible to reduce false-positives from sensors by

cross-checks. Below we list some ideas we are pursuing for

sensor integration to Twitter.

Sensor tweet standards. In order to search and process

sensor values on Twitter, we need to agree upon a standard for

publishing these sensor readings. We offer a biography format

on Twitter that describes a sensor in detail in Section IV-B.

The bio-code makes sensors easy to find. By just searching

for the desired sensor functionalities using the Twitter API

over the bios, one can reach all sensors within a locality that

provides the desired functionalities.

We are currently developing a standard, TweetML, for tweet-

ing sensor values. We will make use of the built-in hashtags

feature in Twitter for easier accessibility and searchability of

sensor value fields. As part of our current work, we are pub-

lishing data to Twitter from some existing WSNs deployments.

One of these is the wine-cellar monitoring WSN deployment,

and another is personnel tracking WSN deployment.

New WSN architectures. The popularity of Twitter already

have resulted in the production of inexpensive specialized

devices for tweeting. TwitterPeek [17] is a very good example

of this trend. TwitterPeek enables the user to tweet and follow

Twitter from anywhere (no WiFi necessary) using the cellular

data network to connect to Twitter. One can buy TwitterPeek

for $199 and get connectivity service for the lifetime of the

device –without any bills ever. In comparison a barebones

WSN node with only 100 feet transmission radius is rated at

$129. The reason TwitterPeek is able to offer such a powerful

device at such a low price is because of the benefits of mass

production. TwitterPeek may signal a new direction for WSN

devices. Instead of using low communication range devices

that incur the challenges/complexity of maintaining a multihop

network and still require a basestation to access Internet,

TwitterPeek-like sensors can directly reach Internet at one hop.

These devices may not only tweet their sensor readings, but

can also be easily controlled over Twitter to reconfigure their

sensing schedules and tune their parameters.

B. Integrating Smartphones

Smartphones provide significant advantages over traditional

wireless sensor nodes. Firstly, smartphones are mobile. Wher-

ever a smartphone user goes, smartphone can take sensor

readings (with built-in sensors for acoustic, image, video,

accelerometer, tilt, magnetometer, and potentially with other

integrated custom sensors). The dynamic geolocation feature

of smartphones enables these readings to be location and time-

stamped. Thus, in contrast to WSN nodes that are tied to

static locations, and do not scale for coverage of large areas,

smartphones cover large areas due to their mobility. Secondly,

smartphones are personal and administrated by their users. In

contrast to sensor networks where energy-efficiency of utmost

importance, smartphones are recharged by their users and it is

not necessary to try to squeeze every bit of energy. Moreover,

since smartphones are personal, they provide the potential of

interacting with the phone user for tasks requiring human

intelligence and intervention, such as taking a picture of a

requested location, answering a question for which the user is

well-equipped.

Below, we identify 3 new application domains for smart-

phone integration to Twitter, with increasing level of com-

plexity.

1) Participatory Sensing: Participatory sensing is the use of

volunteering smartphones to collect data from a large region.

Although there has been significant work on participatory

sensing [18], using Twitter opens up novel improvements

on this application domain. Twitter’s open publish-subscribe

system enables others to use the gathered data in unanticipated

ways and offer new services over them. Moreover Twitter’s

social network aspect enables new features to be added to

participatory sensing. For example, when one of the users

have performed significant amount of participatory sensing

but her friend and competitor (Twitter enables using lists for

followers/friends) have not done anything for that week, our

system can send a reminder message for that friend.

There is already good support for enabling participatory

sensing applications over Twitter. Some Twitter third party

applications (including Twittervision17, Twittearth, Twitter

Atlas, Twibs20) use maps to show status posts, and can be

configured to show posts only from certain regions.

2) Crowd-Sourcing: Crowd-sourcing means distributing a

query to several Twitter users in order to gather and aggregate

the results and exploit the wisdom-of-crowds effect. Examples

of crowd-sourcing may be a weather/rainradar (with better pre-

cision and ground-truth than meteorological weather radars),
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and polling for the best restaurant entree in town.

Crowd-sourcing depends on user participation. With Twit-

ter’s popularity, finding a user to ask a question is not a

problem, and we find that users are willing to participate and

answer questions. In our experiments up to 1/6th of our queries

got answered, although we did not provide any incentive for

answering. We think this is due to the sharing and participatory

nature of Twitter culture. It is possible and easy to provide

incentives for encouraging participation. Using Twitter’s list

functionality a group of users might be classified as experts

of a topic. Each topic may have multiple user groups with

different expert levels. Upon answering questions, the users

can get promoted to a higher level. Visibility of these lists

to the public would will be a great incentive for users to

collaborate. Another way to incentivize users is to give the

users that answer more questions the right to send more

questions to our crowd-sourcing engine.

The social network nature of Twitter can also be exploited

to provide an extra incentive for crowd-sourcing. It is also pos-

sible to provide useful feedback to crowd-source participant

based on others answers. For example, the participant may get

to see how her answer fares with other answers. In the “best

restaurant” query, participants may get to learn which other

participants also favorite their restaurant of choice.

3) Social Collaboration: Social collaboration applications

are more sophisticated than crowd-sourcing applications in

that they require back-and-forth interaction in contrast to the

asymmetric one-shot interaction involved in crowd-sourcing.

Examples of social collaboration applications include pick-up

soccer games, arranged ride-sharing, community-organization

events, support groups for addicts, and support groups for

exercising and weight-watching.

C. Data Mining of Tweets

Twitter provides an excellent medium for spatiotemporal

text mining and information retrieval. Here we summarize

three research problems in the context of mining Twitter data:

text classification, expert finding, and trend mining.

Text Classification. A useful research problem mining of

tweets is to classify streaming tweets into topic-based groups.

Mining short segments of text has been studied in the literature

in various other contexts, e.g., query-query similarity [19],

paragraph and sentence similarity [20]. A successful Twitter

text classification needs to handle a diverse set of streaming

short text messages with abbreviations, slangs, and no sound

grammar use. Fortunately, the quality of mining results can

be improved by incorporating the rich contextual information,

such as the author bio, profile, hash tags, urls, previous tweets

and status of the author in the underlying social network.

Expert Finding. Expert finding have been traditionally

studied in the context of enterprise intranets [21]. One of

the most promising fields of information finding on Twitter

takes advantage of the sheer size of its huge user base.

Identifying experts in topics of user interests is a challenging

task, given the large number of users and wide variety of

potential interests. Some applications use bios to group similar

�✁✂✁✄✁☎✆ ✝✞✟✂✂✆✠ ✡☛✟✆☞✂✌✍✎✆✠✏ ✑✞☞✆✠✒✡✆☛☛ ✓✔✕☞✆✖✗✆✄Askweet 
�✟✘✂✟✕☞✁✠✏ ✁ ✄✙✘✓✠✕✘✆☎☎✚☞☎✞✆✠✍✎✆☎✂✟✕☞✛✁☞✜☛✆✓✕☛☛

Sensweet 
✍✎✆☎✂✟✕☞ ✛✁☞✜☛✆✝✠✁✘✢✟☞✣✤✓✥ ✥✆☞☎✕✠☎ ✡✁✦✆✠✁

|43.003509,-78.787079|noise:H |11/27/2009 16:48:26|

|LO:?43.003,-78.787|N97:NO| 
UTC-5|UB:CSE:CSS| 

Fig. 1. Crowd-sourcing System Architecture

people, and user posts can be scanned to find people with

same hobbies, background and profession. Besides user bios

and previous tweets as the text-base, the spatial and temporal

meta-data provide a constraint on the potential user-base, since

we typically look for ideas constrained to location and time.

Twitter has the potential of involving more than locating

experts, it provides an environment for people to assert their

expertise by actively joining the information flow and giving

useful insights.

Trend Analysis. While expert finding focuses on authorita-

tive sources, observing the patterns in a crowd would provide

information with the power of collaboration potentially by

millions of users. Applications of trend mining include identi-

fying and monitoring emerging topics and events dynamically

[22], [23], and sentiment analysis on user posts for products

publicized on Twitter [24]. Canonizing some ideas through

Twitter user posts has an inherent liability to manipulation,

but it also offers a quick and effective way of getting to

know how people react to, discuss and adopt new ideas. By

aggregating users’ ideas, we can effectively eliminate fringe

cases, and find accurate information on a fact. The system

strongly resembles the idea of democracy. Crowd mining is a

luminous manifestation of the power of Web 2.0 applications.

To make it more interesting, Twitter as an open platform

enables briefer exchanges of information that would be lost

in a lengthy blog or text.

IV. OUR CROWD-SOURCING SYSTEM ARCHITECTURE

In this section, we present the design of our crowd-sourced

sensing and collaboration system over Twitter. Figure 1 il-

lustrates the high level architecture of our crowd-sourcing

system. Twitter acts a middleware for publish/subsribe as well

as search & discovery. Our system is composed of three

components namely Askweet, Sensweet and Twitter clients.

Sensweet is a smartphone application that publishes real-time
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readings from the integrated-sensors to Twitter. Askweet is a

program that listens to its Twitter account for questions and

processes the questions and aggregates the replies it receives

to these questions from Sensweet and the Twitter clients. We

discuss the design of the Askweet and Sensweet components

in more detail below.

A. Askweet

Askweet accepts a question, and tries to answer the ques-

tion using the data on Twitter, potentially data published by

Sensweets. If it is not possible to answer the question with ex-

isting data and/or if the question requires interaction, Askweet

finds experts on Twitter (potentially using information retrieval

techniques) and forwards the question to these experts. After

obtaining answers from the experts, it replies the answers back

to the asker. Askweet accepts a certain syntax from queries and

replies, but it can also be extended and generalized to adopt

modern natural language processing techniques.

The Askweet components of two case studies in this paper

run on a dedicated server, and keep all relevant data in a

database to process questions and replies in a coordinated mat-

ter. Due to the parallelizable nature of processing queries and

replies (a thread is assigned to each reply), it is easy to deploy

Askweet on a cloud computing platform for elastic scalability.

Since Askweet accounts have been recently whitelisted by

Twitter and hourly request limits removed, it is possible to

implement Askweet over Hadoop Map/Reduce framework to

handle millions of queries and replies daily.

B. Sensweet

A Sensweet application uses the smartphones’ ability to

work in the background without distracting the mobile user.

Sensweet applications sense the surrounding environment and

send these data to the Twitter. While sending the data to

Twitter, the Sensweet client formats the data according to

the bio-code it advertises in the Biography section of its

Twitter account. The main idea of using a bio-code is to allow

worldwide users to search for the sensors they are looking for

on-the-fly and enjoy a plug-and-play sensor network without

registering through dedicated sites.

Here we provide a standard for a bio-code for Twitter to

encode the values published by the sensor. To illustrate with an

example, the Bio section of our noise-sensing application reads

as: |LO :?43.003,−78.787|N97 : NO|UTC − 5|UB : CSE : CSS|.

This bio-code consists of tuples separated with a vertical bar

(|). In each tuple, descriptive fields are separated with a colon

(:). The values that are separated with commas describe the

phenomena the sensor(s) captures. The first tuple is always

the location parameter: longitude and latitude (obtained from

the built-in GPSs or entered manually). If the sensor is mobile

(e.g., smartphone), a question mark will precede the longitude

value. Even for mobile sensors a default location is added to

give the queriers an idea of the region the sensor operates. The

question mark hints that a more accurate location is included

in the tweets. The second tuple explains the manufacturer of

the sensor, product ID (if possible) and the sensor type(s) the
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Fig. 2. State transition diagram for Askweet component

sensor provides. The third tuple is optional, and describes

the time zone that the sensor uses and can also include a

timestamp. Although Twitter provides timestamping of tweets,

this extra timestamp becomes important in case when a sensor

need to store readings and send them later when it can connect

to the Internet. The fourth tuple involves identification of the

company/project that deploys the sensor, and defines a group

id to locate other sensors that are part of that project.

Thus, the above bio-code is decoded as: Location is dy-

namic, but default location is UB North Campus Bell hall,

Nokia N97 is used to capture GPS and accelerometer values

in NY time zone for UB CSE Crowd-Sourced Sensing (CSS)

Project.

V. CASE STUDY: CROWD-SOURCED WEATHER RADAR

In this section we explain our crowd-sourced weather

radar application. For the sake of simplicity, we choose a

topic where everybody in Twitter can be an expert: the

current weather condition. Our application contains two sub-

applications, one of them obtains the current weather condition

from users, and the other one obtains guesses from the users

about the next day’s weather condition.

Weather radar application has its own question and answer

format. The question messages sent by query owners are in the

form of “?[Application Name] Loc:Location” where applica-

tion name is either Weather or WeatherGuess. For instance

“?Weather Loc:Buffalo,NY” might be a valid question for

asking weather condition in Buffalo,NY. The forwarded query

to the Twitter users is of the form: “How is the weather there
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now? reply 0 for sunny, 1 for cloudy, 2 for rainy, and 3 for

snowy” Our weather radar application account can be visited

at rainradar on Twitter. We display the answers to our weather

radar on a map at http://ubicomp.cse.buffalo.edu/rainradar.

The map is configurable to show results from previous days,

and is also zoomable to show fine-grain locations of the

replies.

We have implemented only the Askweet component of the

crowd-sourced system since the Sensweet component can be

any Twitter client. The Askweet component of our weather

radar application is written in Java Programming language

by using Twitter4J open source API library and total size of

the source is about 2KLOC. Askweet listens to the incoming

messages to its Twitter account and processes them with

respect to their message types. The main function of Askweet

component is to get a question, process it and/or forward this

query to the multiple users who can answer it. After obtaining

answers from Twitter users, Askweet sends the reply to the

original querier.

Our Askweet implementation is multithreaded for scalabil-

ity, with each thread implementing a specific functionality.

When the Askweet application is launched (Figure 2), it starts

the poll thread that polls the Twitter account and gets the

messages. Then the thread detects whether the message is

a question or answer. Depending on the message type, it

starts either a question handle thread or a process answer

thread. Poll thread keeps on checking the account every minute

continuously to get the new messages addressed to itself.

Question handle thread receives the question from the

poll thread and detects if it is weather guess question or

weather condition question. Depending on the question type

it starts either a weather condition application thread or a

weather guess application thread. Question handle thread also

starts Twitter rate-limit checker thread in order to ensure that

Askweet stays within Twitter’s request limits. After this step,

the question handle thread is terminated.

Weather guess application and weather condition application

threads have almost the same functionality. Both of them get

the question and parse the location from question text and

search through Twitter to find users for the specified location.

Then they send the question to the selected qualifying Twitter

users. After that these application threads are terminated. Both

of the applications keep all the relevant data in a database in

order to observe the social collaboration and attendance. This

database also helps the program not to spam any Twitter user

with multiple requests within a week.

Twitter rate-limit checker thread checks the rate limit and

locks question asking permit if rate limit exceeds and releases

the lock if otherwise. Process answer thread gets the answers

from the poll thread and tweets the answer to Twitter. It also

selects five of the answers to forward to the original querier.

A. Experiment Results

In this section, we present our experimental results for

weather radar application. We performed three types of ex-

periments using weather radar. In the first one, we compare

the user responses in different time slices of day for New York

City (NYC). In the second, we compare user responses from

three different cities: NYC, Toronto and Montreal. In the last

one, we analyze the correlation of answers from our users with

data from weather.com for one day (December 6, 2009).

In the first experiment, we compare the user response

behaviors in NYC at different time slices. We observed that

the response times in the afternoon and in the evening are

better than those in the morning and at night (Figure 3(a)).

An interesting phenomenon is that on the average 50% of the

answers are received within the first ten minutes (Figure 3(a)).

Figure 3(b) shows the user contribution to our experiments.

We observe that Twitter user contribution to the experiment

is highest in the morning which is nearly 20% (Figure 3(b));

we get a response from 20% of the queried users. For the

other time slices, the contribution is around 15% (Figure 3(b)).

Figure 3(c) shows the user distribution with respect to Twitter

client types. At night time, an overwhelming majority of

people use mobile Twitter clients to send their responses (Fig-

ure 3(c)). Overall, mobile client users consistently dominate

over desktop/laptop users (Figure 3(c)).

In the second experiment, we compare the user responses

from different cities. We observe that users in NYC respond

quicker than those in Toronto and Montreal, which have almost

the same response patterns (Figure 4(a)). In Figure 4b, we

compare the participation ratio of the users in these three

cities. We see that users in NYC participate more than those

in Toronto and Montreal (Figure 4(b)). In all these three cities,

mobile Twitter client users dominate over desktop/laptop users

and this ratio is highest in NYC (Figure 4(c)).

TABLE I
COMPARISON OF USER RESPONSES WITH WEATHER.COM

City Match for Current Day Match for Next Day

New York City 89% 56%

Toronto 79% 29%

Montreal 88% 54%

In the final experiment, we analyze the correlation of

answers from our users with data from Weather.com. Since

it is not practical to validate Twitter user responses with

various fine-grain spatial (latitude, longitude) and temporal

dimensions, the correlation is based on course-grain city wide

level weather data for the entire day.

In the first column of Table I, we list the correlation of user

responses with the data from weather.com for the current day

(the weather.com data and user responses are collected in the

same day). If the weather.com reports “snowy” for the day,

all responses except “snowy” are counted as “unmatched”.

If the weather.com reports a fuzzy condition such as “partly

cloudy”, all responses including “sunny” and “cloudy” are

counted as “matched”. In this experiment, we observe that

for each city at least 79% of the answers match with the data

from weather.com.

In the second column of Table I, we list the correlation

of user predictions for the next day with the data from

weather.com. Here we collect the predictions of users in
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Fig. 4. Experimental results for 3 cities

previous day (December 6) and find the correlations of those

predictions with weather.com data collected on the next day

(December 7). We observe that at least 50% of the user

predictions match with weather.com for New York City and

Montreal whereas it is 29% in Toronto.

VI. CASE STUDY: SMARTPHONE ENABLED NOISE MAP

In this application, we measure the noise level of the

surrounding environment via GPS enabled smartphones and

provide a noise level querying service over Twitter. We

describe our implementations of the Askweet and Sensweet

components for this application below.

Askweet component. We implemented the Askweet com-

ponent similar to that of the weather radar application. The

noise map application has its own query format of “?Noise

Loc:Location”. Any Twitter user can send a question to the

Twitter account of Askweet (twitter.com/askweet) in order

to query the noise level of a specific location. For example

“?Noise Loc:Student Union, UB, Buffalo, NY” queries for the

noise level of the Student Union at the University at Buffalo.

When Askweet gets a new query, it automatically tries

to resolve the location by using Google’s Geocoding Ser-

vice (http://code.google.com/apis/maps/documentation/). After

getting the latitude and longitude information from Google’s

Geocoding Service, Askweet searches previously known

Sensweet clients in the database in proximity of the specified

location. If Askweet finds a local client, it returns the latest

noise level obtained from that client. If multiple Sensweet

clients are found, the noise value with the latest timestamp

is returned to the querier.

Sensweet component. We implemented a Sensweet client

for the Nokia N97 Smartphone series. For implementing the

Sensweet client we used Carbide C++ version 2.0.2, Nokia

N97 Symbian S60 SDK V1.0 and Qt Tower 4.5.2. The total

size of the source code for this Sensweet component is more

than 1500 lines of code.

The Sensweet client detects the noise level of the surround-

ing environment and forwards this data to Twitter using our

TweetML format mentioned in Section IV-B. The specific

TweetML format (|Loc|Noise : V al|Timestamp|) for Noise

Map application includes ordered values for location, sensor

reading and timestamp. An example sensor reading can be

“Noise:H” denoting that the current noise reading is “High”.

Since Nokia N97 smartphones do not provide the noise level

in decibel format, we implemented our own noise sensor driver

to map noise samples into three categories: L as Low, M as

Medium and H as High.

Our Sensweet client implements a timer for reading the GPS

coordinates and using the microphone to record a one second

noise sample in “Windows WAV” file format. Then, Sensweet

client parses this WAV file to obtain the mean value for the

amplitude of signals in the sample. In order to map the current

sample into one of the noise categories {Low, Medium, High},

we used three normal distributions. For a given mean value x

of amplitudes obtained from a one second sample, we calculate

the following probability density function (pdf(x)) for each of

the predefined 3 normal distributions:

pdf(x) =
1√

2πσ2
exp(− (x − µ)2

2σ2
) (1)

The µ in the formula represents the mean of the corre-
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Fig. 5. Normal distributions for different noise levels
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Fig. 6. Representative samples for different noise levels

sponding distribution and σ2 represents the variance. The

assignment is based on the highest value. Since there is no gain

setting for the microphone of Nokia N97, our mapping is valid

for any Nokia N97 smartphone device. For the smartphones

having adjustable microphone gain, our mapping can be easily

adapted by dividing signal values by the gain factor.
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Fig. 7. State transition diagram for Sensweet client

The state diagram of the Sensweet client for noise map

application is given in Figure7. When the phone is started the

Sensweet application is also launched as a background process

and waits in the “idle” state. The GPS based location, noise

level, and current timestamp is logged to the flash memory

when the sensor timer is fired. We also keep another timer for

forwarding sensor readings to Twitter. When the Internet timer

is fired, main application reads the latest sensor readings from

the flash disk and tweets it (http://twitter.com/Sensweet).

A. Experiment Results

Here we provide our experimental results for the noise map

application.

In order to determine the normal distributions representing

the “Low”, “Medium”, and “High” categories for noise levels,

we performed experiments in six different locations with

varying noise levels. In each location, we recorded more than

200 noise samples with a duration of one second.
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Fig. 8. Daily noise fluctuation graph

We assign the “Low” category to the samples that we

obtained during the silence in home and computer lab lo-

cations. The amplitude distribution for “Low” level noise is

given in Figure 5(a). Here the amplitude (absolute value of

signal values) of low level noise mostly fluctuates between

[0,100], which also implies that signal values mostly fluctuate

between [-100,100] (Figure 6(a)). For the “Medium” category

we collect samples from the Student Union at UB and various

meeting rooms at the CSE department where people talk to

each other (noise mostly includes human voice). The “High”

category is collected in bars and clubs in Buffalo with loud

background music. The normal distribution of amplitudes for
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“Medium” and “High” categories are given in Figure 5(b) and

Figure 5(c). Representative samples for these two categories

are also given in Figure 6(b) and Figure 6(c) respectively.

In another experiment, we measure the noise fluctuation of

our case study user for one weekend day over different time

slices starting from Saturday 4.00 pm until Sunday 8.00 am

(Figure 8). By analyzing the temporal noise fluctuation, it can

be possible to predict some of the activities of the user during

the day time. In the afternoon period the noise level fluctuates

between “Low” and “Medium” level. During this time the user

was at home and meeting with his friends. In the evening

period the ratio of “Low” level decreases and ratio of other

two levels increase. In this period, the user was having dinner

with his/her friends in some place and going to a bar/club after

that. In the night period the noise level is mostly “High” and

the user was visiting a club. The noise level in the morning

period is “Low” mostly since the case user was sleeping at

home.

VII. CONCLUDING REMARKS

We presented a crowd-sourcing system architecture over

Twitter, and demonstrated this system with two case studies:

weather radar and noise mapping. Our experiments with

crowd-sourcing on Twitter are promising. Even without an

incentive structure, Twitter users volunteer to participate in

our crowd-sourcing experiments (with around 15% reply rates)

and the latency of the replies are low (50% replies arrive

in 30 minutes and 80% replies arrive in 2 hours). Another

promising finding is that a majority of replies were tweeted

from smartphones.

Our experiments suggest that Twitter provides a suitable

open publish-subscribe infrastructure for tasking/utilizing sen-

sors and smartphones and can pave the way for ubiquitous

crowd-sourced sensing and social collaboration applications.

There are several open research questions remaining for fulfill-

ing this vision. Security and trust issues remain as significant

challenges. In our future work we will consider mining of

tweets and exploiting of social networks structures in Twitter

to deploy expert finding and social collaboration applica-

tions. We will also experiment with adding various incentive

schemes to our crowd-sourcing system, caching replies, and

deploying our system on a cloud computing platform.
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