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Abstract

A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light
of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current
understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a
systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we
synergized crowd sourcing and social networking methods through an initiative ‘Connect to Decode’ (C2D) to generate the
first and largest manually curated interactome of Mtb termed ‘interactome pathway’ (IPW), encompassing a total of 1434
proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction,
metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the
Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins,
which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five
of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to
our unique approach.
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Introduction

Proclaimed a global health emergency by the World Health

Organization (WHO) in 1993, Tuberculosis (TB) still remains the

leading cause of mortality and affects approximately 32% of the

world population [1]. The emergence of multi-drug-resistant

strains of Mycobacterium tuberculosis, the causative agent of TB, and

the vulnerability of the patients infected with HIV to tuberculosis

have not only fuelled the spread of the disease but also present a

challenging task of understanding the disease physiology and

discovering new drug targets. In this quest, Mtb was sequenced

and annotated in 1998 [2]. A subsequent re-annotation in 2002

successfully assigned functions to almost half of the approximately

4000 genes [3]. More recently, 20 more ORFs have been added to

this list and the annotations updated [4,5]. However a huge gap in

information exists between published literature and the genome

databases. The existing annotations in these databases are thus

insufficient to generate the protein interaction map or the

interactome, pivotal to understanding Mtb biology and identifi-

cation of novel drug targets. To this end, Open Source Drug

Discovery (OSDD) project (www.osdd.net) [6,7] launched the

Connect to Decode (C2D) program (http://c2d.osdd.net), an

innovative blend of crowd sourcing and social networking in a

virtual cloud space for a comprehensive collaborative re-

annotation of Mtb which is the primer for generating the

interactome. The ultimate objective is to identify drug targets

based on better understanding of the complex interactions of

various biological macromolecules in the pathogen.

Systems biology-based approaches have been applied to obtain

better insights into the pathogen biology [8]. This strategy may

help in identifying more than one potential drug targets and these

can be utilized as sets of targets for a polypharmacology approach.

A promising candidate in this category is bi-substrate acyl-

sulfamoyl analogues that simultaneously disrupt crucial nodes in

biosynthetic network of virulent lipid with dramatic effect on the

cell surface architecture of Mtb [9]. Also, a recent study on

genome-wide siRNA experiment has identified host factors that

regulate Mtb load in human macrophages and are crucial to

understand the dynamic interplay of molecular components of the

pathogen and the host [10]. There are many such studies that try

to capture the snapshots of the molecular interactions in Mtb in

different conditions. It is therefore imperative to capture and

curate data on experimentally validated interactions lying

scattered in diverse sources in the literature to generate a genome

scale network. This was achieved through the C2D program. The

C2D community started with initial registration of more than 800

researchers, which largely consisted of research scholars, graduate

students and under-graduate students. The participants were

trained, evaluated and filtered at various stages of online training

and assignments (https://sites.google.com/a/osdd.net/c2d-01/

pathwayannotationproject/results-of-the-exercise). More than

100 researchers were selected as curators to obtain the final

annotations (https://sites.google.com/a/osdd.net/c2d-01/

pathwayannotationproject).

Here we describe how C2D has implemented a community

annotation approach in a distributed co-creation mode for mining

literature and how the accuracies and scope of assigning functions

were enhanced using combined evidence approach. We have

enriched the annotations of the Mtb genome both in terms of

coverage and details (Table 1). Web2.0 collaborative online tools

enabled voluntary community participation for implementing this

task. An important part of the project was creating self-organized

communities to collectively learn and share the process and the

standards for reporting annotations. As per published estimates,

this innovative approach packed nearly 300 man-years into 4

months [11] and it has also established a novel way of collective

problem solving on a voluntary basis in a sustainable manner [12].

This is, to the best of our knowledge, lead to the creation of the

largest manually curated interactome of Mtb. Based on the varied

nature of interactions among proteins in vivo, we propose a new

network definition called ‘‘Protein-Protein Functional Network’’

(PPFN). This network encompasses a total of 1434 proteins

connected through 2575 functional relationships. In this paper, we

detail how the Interactome - PathWay (IPW), an open collabo-

rative platform was used to generate and analyze potential drug

targets. Using betweenness centrality [13] as a first indicator to

shortlist candidate drug targets, we zeroed into 73 proteins. We

have in the process also created a sustainable open innovation

platform.

Results and Discussion

C2D Annotation
An overview of the approach followed in ‘Connect to Decode’

(C2D) exercise is as illustrated in Figure 1. Broadly the approach

was designed based on the principles of the fourth paradigm of

science, encompassing data collation, curation and analysis [14].

Roughly ,4.4 Mbp genome of Mtb was re-annotated manually.

To streamline the annotation process and select a community of

researchers competent to implement this project, a series of online

assignments and training modules were assigned (see methods).

These steps ensured the selection of serious and dedicated

contributors thereby assuring the quality of data collation, curation

and analysis. Various standard operating protocols (SOPs) were

designed and shared with the participants for the consistency in

the steps followed for the annotation of genes (https://sites.google.

com/a/osdd.net/c2d-01/pathwayannotationproject/instructions-

for-annotation and https://sites.google.com/a/osdd.net/c2d-01/

pathwayannotationproject/example-annotation and https://sites.

google.com/a/osdd.net/c2d-01/pathwayannotationproject/steps

forproteinannotation ). Given the exponential increase in the

number of publications from about 300 per year since 1990’s to

a staggering 2000 per year in 2010, the challenging task of

collating and curating data was achieved through the formula-

tion of community editable interactive platform designed to

facilitate real time annotations and continuous updates. The

community scanned and retrieved information from nearly

10,000 published studies in addition to extracting information

from databases and transferred annotations using sequence and

structure analyses based approaches. The community has cited

more than 3000 papers in annotation process as on an average

3–4 manuscripts were referred or read in order to get the

relevant information to annotate a given protein.

The Mtb Genome Annotation and Interactome Curation
IPW has resulted in annotation of 87% of the genome in the

context of reporting gene products as compared to 52% in the re-

annotation reported in 2002. Moreover, less than 5% of the

interactions in IPW (Table S1) exist in other manually curated

interaction databases such as BIND [15], APID [16], IntAct [17],

DIP [18] and MINT [19] (Figure 2(b)). Thus, to the best of our

knowledge, Connect to Decode’s Interactome Pathway Annotation

(IPW) has generated the largest data set of manually curated

interactions in Mtb. These interactions not only include data from

large interaction databases such as IntAct, BIND, MINT, APID,

Crowd Sourcing for M. tuberculosis Interactome
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Table 1. The data structure that was used to capture the interactome data.

Field Description

GeneID The unique identifier for a given gene (Rv ID and NCBI Gene ID)

Gene Name Assigned name of the gene

Pathway Biological role of the gene

Gene function The biological function of the gene

Interacting Partners All the interacting partners for a given gene

Type of Interaction Type of interaction (protein-protein [p-p], protein-nucleotide [p-n])

Nature of Interaction This field contains nature of interaction, such as structural complex, regulatory, signaling etc.

Method of Inferring Interaction Contains information about the experimental or computational methods used for the inference of interacting partners

Type of Evidence Type of evidence, adopted from Gene Ontology (IDA, IPI, ISO, TAS, etc)

PUBMED/Link of source PubMed ID or any web based link from where the interaction and other annotation details were inferred

Email of author E-mail address of curator

There were 11 annotation fields for reporting annotations. The data is available in PSI MITAB format.
doi:10.1371/journal.pone.0039808.t001

Figure 1. From Social Network to Biological Network. The C2D annotation approach for manual annotation and curation of Mtb interactome
followed by network analysis to predict potential drug targets reported at various sequence and structural level filters. (A) Illustrates the overall
approach of crowd sourcing through social network implemented in C2D exercise (B)(a) Mtb Genome (b) Manual collation and sequence/structure
based curation for gene annotation (c) Collation of re-annotated genome into comprehensive data structure (d) Construction of protein-protein
interaction network based on the annotated data (e) Target identification using network analysis; Sequence level comparison of selected proteins
with that of human homologs, human gut flora and human oral flora; systems, sequence and structure level analysis of shortlisted proteins and
experimentally validated drug targets.
doi:10.1371/journal.pone.0039808.g001
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DIP, etc but also include a large amount of manually curated

information from literature.

Of the 1193 hypothetical proteins from TubercuList [4], the

IPW based annotations identify gene products for 770 proteins. Of

the 1480 hypothetical proteins reported in KEGG [20] database,

functional associations have been made to 1055 proteins, clearly

showing how IPW has bridged the wide gap that existed between

information captured in databases and that available in literature.

To ensure that IPW remains up to date, the data from IPW is

shared with members of the OSDD community in an ‘edit’ mode,

through which new interactions can be added using the SOP that

includes a rigorous quality check phase, specifically designed for

community contribution.

Interactome Construction: IPW and Combined Network
with STRING

Interactome as a whole constitutes various biological interac-

tions belonging to both structural and functional type of protein-

protein associations. To have an encyclopedic view of various

interactions that take place at protein functional level, we report

the construction of two types of networks. The first network,

termed IPW only (Figure 2(a)), was constructed on the basis of

the IPW curated data alone. The nodes in the network represent

the proteins whereas the edges represent the functional interac-

tions among those proteins. The nodes were scaled and color

coded in proportion to their degrees. Also, based on the common

interactions we derived a connectivity relationship between

various TubercuList functional classes [4]. Figure 2(c) shows

the connectivity among 10 broad functional classes of Tubercu-

List. The edge thickness was taken to be directly proportional to

the number of common proteins between the two TubercuList

functional classes for the given pair. Significant functional

dependencies are seen among the ‘Lipid Metabolism, Cell Wall,

Intermediary metabolism and Regulatory systems’ functional

classes, reflected in their edge thicknesses in the network.

Disruption of such linkages can lead to breakdown of crosstalk

between these biological processes and thus could be exploited to

identify new drug targets.

Secondly, in order to obtain insights on the complete functional

organization among all the possible proteins of Mtb, a combined

network termed, IPW-STRING (IPWSI), was constructed by

overlaying STRING network on the IPW network. The STRING

based network of Mtb was derived from STRING 8.0 [21]

database consisting of various interactions among proteins as

derived on the basis of extensive computational and limited

experimentally inferred interactions. Computational predictions

Figure 2. IPW interactome and comparison with existing annotation databases (a) IPW-Only protein-protein functional interaction network, (b)
Comparative analysis of IPW-Only proteins and interaction with existing manually curated databases, Ring represents all interactions and proteins in
IPW displaying the subsets which are obtained from other manually curated databases (b1) Comparative analysis of IPW-Only interactions to that of
existing manually curated databases (b2) comparative analysis of protein as curated in IPW-Only to that of proteins presents in other manually
curated databases (c) TubercuList functional class interaction relation based on the interactions as obtained from IPW-Only. The connectivity (lines)
represents the interacting proteins within these classes.
doi:10.1371/journal.pone.0039808.g002

Crowd Sourcing for M. tuberculosis Interactome

PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e39808



have been based on established methods such as phylogenetic

profiling, domain fusion, common gene neighborhood and operon

criteria. However, computational models over predicts interactions

since they do not account for spatio-temporal separation of the

interacting partners. Thus, in the combined network the accuracy

of interaction decreases whereas the coverage increases. It should

also be noted that there is an inherent bias for well-studied proteins

in IPW. A simple comparison shows that nearly 60% of IPW

interactions have experimental evidence codes as compared to 2%

existing in STRING. Also, about 29 additional proteins and 1762

new functional interactions apart from that reported by STRING

were included in the new IPW-STRING combined interactome.

The combined IPW-STRING interactome was further used to

decipher various possible drug targets using the concepts of graph

theory. The network analysis of these networks provides a means

to understand the functional organization of the organism from

the network topology point of view [22,23]. Various network

properties as computed for both the networks and their biological

relevance are discussed below.

Topological Organization of Interactome
In order to understand the functional organization of con-

structed interactome we further assessed the fundamental prop-

erties of this network from the graph theoretic point of view. Given

a vast interaction space encompassing the interactome as whole,

where the nodes represents proteins and interaction represents a

functional relation between them, it becomes imperative to

understand the functional organization of the network from its

topology. The most fundamental characteristic of a graph is the

connectivity of its constituent nodes as represented by the degree.

Degree, being a measure of interconnectedness of nodes highlight

the importance of a node (protein in this case) with respected to

other nodes in the network. A maximum degree of 44 and 289 was

observed for the IPW and IPWSI networks, respectively,

suggesting the level of maximum number of functional relation

of a given protein in both the networks.

Clustering coefficient for a node indicates the connectivity of

the neighbours of a given node to the other nodes in the network

[24]. This parameter was computed to elucidate the dependen-

cies of two or more proteins with respect to each other and to

rest of the proteins in the network. The clustering coefficient for

Figure 3. Network parameters (a) Characteristic path length of IPW-Only network and IPWSI network. In both the graphs the x-axis represents the
path length whereas the y-axis represents the frequency. 3(b) Log-Log plot of degree distribution of IPW network, the solid line was obtained by
fitting the power law for c = 1.99 and Log-Log plot of degree distribution of IPWSI network, the solid line represents the power law fit with c = 2.01.
doi:10.1371/journal.pone.0039808.g003

Crowd Sourcing for M. tuberculosis Interactome
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IPW and IPWSI networks was observed to be 0.249 and 0.377,

respectively. The high clustering coefficient of both the networks

suggests the presence of well-connected hubs within the network,

which are important from the functional crosstalk between the

proteins of Mtb. Further, the characteristic path length of both

the networks was computed in order to comprehend the extent

of functional relation between any two given proteins in the

network. The characteristic path length of both the networks is

as shown in Figure 3(a). The characteristic path length in IPW

network was observed to be 7.2 whereas for IPWSI it was

observed to be 3.13. From the network navigability point of view

the characteristic path length can be inferred as the number of

steps that one has to take traversing from one node to other,

which from biological point of view could be inferred as the

amount of communication that is possible between any two

proteins. Pertaining to the high characteristic path length of IPW

alone, the absence of functional relation between any two

proteins can be inferred; however, the functional relation

between any two proteins increase when the IPW alone was

clubbed with STRING based network. The characteristic path

length, thus, can be used to understand the functional gap that

possibly exists in the protein-protein interaction network.

Emphasizing on the network communication further, the

network diameter was computed representing the length of the

‘longest’ shortest path in the network. The network diameter of

IPW and IPWSI networks was observed to be 18 and 10,

respectively. Akin to characteristic path length, the network

diameter can be used to interpret the overall navigability of the

network, the higher the diameter, the more distantly two nodes

are related and vice versa.

As discussed, understanding the topological organization of the

network could lead to better understanding of its underlying

principles. The network topology could also be used to

understand the number of possible modules (hubs) in the

network, which may help in identifying potential drug targets.

In order to obtain such insights, we tested the existence of power

law distribution on IPW and IPWSI networks, respectively. The

power law distribution can also be used to understand the scale

free nature of a network [23]. There is extensive literature that

reports the existence of scale free nature of biological networks.

The power law distribution on the node degree distribution of

IPW and IPWSI networks is shown in Figure 3(b). The value

of c was observed to be 1.99 for IPW and 2.01 for IPW-

STRING combined node degree distribution.

Target Identification
Apart from inferring fundamental principles of network

properties the availability of an interactome also enables predic-

tion of essential proteins from the network structure point of view.

The protein lethality within a network is usually obtained from the

degree distribution of the nodes in the networks. The nodes with

high degree are considered important and hence regarded as

probable drug targets. The degree distribution alone could lead to

improper putative drug target identification as it does not capture

the alternate routes in the network. Most of the biological networks

possess large number of shortest paths [25]. The large number of

shortest paths also suggests the availability of alternate routes

within the network which could be used to achieve a certain

biological objective. Removing such nodes from the network could

lead to maximum disruption in the network. In order to capture

these properties, important nodes as well as important edges, we

used betweenness centrality [24,26] as a metric system to infer

putative drug targets. The node betweenness centrality at a

threshold of $0.2 lead to identification of 17 and 64 central

proteins from IPW and IPWSI networks, respectively (Table S2).

Analysis of Putative Drug Targets: Identifying Probable
Non-toxic Targets

To design a viable drug it is essential to ensure least probability

of off-target interactions. A sequence, structure and systems based

analysis was performed in order to predict the druggability of the

shortlisted central proteins from the two networks so as to reduce

the chances of off-target interactions.

The list of 17 and 64 proteins (73 unique proteins as eight are

common in the two lists) was first filtered against human homologs

and human oral and gut flora [27]. Of the 17 targets identified by

IPW, none had a homolog in human proteome and in human oral

and gut flora. In the combined network IPWSI, 53 such targets

were identified (Figure 4). There are 62 unique central proteins

without any significant homology to human proteome, gut and

oral flora from IPW and IPWSI. We further analyzed this list of 62

proteins for absence of small peptides (octamer) since it has been

reported that a small fraction of peptide sequences are evolution-

arily conserved and invariant across several organisms [28]. These

peptide sequences can adopt similar conformation in different

protein structures [28]. A comparative analysis shows that one

protein Rv3221A does not share any common octapeptide with

human proteome, gut or oral flora. However, a closer and detailed

analysis needs to be performed for proteins sharing octapeptide

with human proteome and human microbiome in order to

evaluate their status for off-target binding. In order to understand

the binding pockets, an independent analysis has been performed

to predict and match binding pockets of central proteins with

human proteome. Of the 73 central proteins, 57 have either PDB

or ModBase [29] structure making them amenable to structural

analysis for druggability. We analyzed these proteins as per the

targetTB [30] pipeline where the top 10 binding sites for each of

these 57 proteins were identified using PocketDepth algorithm

[31]. The binding pockets of these proteins were then compared

with human proteome using PocketMatch [32]. Of the 57

proteins, 31 proteins have high structural similarity with human

proteome at binding site level whereas 26 proteins which do not

have binding site similarity with human proteome. It is interesting

to note that seven of these are experimentally validated drug

targets.

Rv3221A (RshA) (Figure 4 List d), an anti-sigma factor to the

primary stress response sigma factor SigH, passed all filters but is

neither reported as a potential drug target in literature nor in

targetTB predictions. The gene encoding RshA lies in the same

operon as SigH and is co-expressed with the same [33]. It has a

strong affinity to bind with SigH and attenuates its ability to bind

to the RNA polymerase holoenzyme under normal growth

conditions. Under conditions of oxidative stress, phosphorylation

of RshA by Rv0014c (PknB) abolishes its binding to SigH, which

in turn leads to the cascade of expression of several stress response

proteins [34] (Figure 5). SigH causes increased expression of two

other sigma factors Rv2710 (SigB) and Rv1221 (SigE), which are

also known to be stress related sigma factors that assist Mtb in its

survival during several stress conditions and are also central

proteins. The other interacting partners of RshA include heat

shock proteins and chaperones like Rv0384c (ClpB) and Rv0350

(DnaK), enzymes for oxidative stress response Rv1471 (TrxB1),

Rv3913 (TrxB2) and Rv3914 (TrxC) which are also part of the

sigH regulon. sigH also induces enzymes involved in cysteine

biosynthesis and in the metabolism of ribose and glucose for the

production of mycothiol precursors, which assist in cellular

protection under oxidative stress. The SigB and SigE signaling

Crowd Sourcing for M. tuberculosis Interactome
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cascade downstream interacts and regulate other central proteins

(Figure 5). RshA is at the beginning of this cascade and seems to

play in crucial role in regulating the stress response proteins,

starting with sigH.

The objective of the interactome construction and analyses

was to identify central proteins, which have significant roles in

maintaining growth and survival of the bacterial pathogen. We

identified 17 such central proteins (Table 2), five of which (PknB,

NuoG, PhoP, EccCb1, HspX) have been previously functionally

characterized and shown to be essential by gene deletion and

mutation and thus are considered as validated drug targets. The

target gets further validated if there are inhibitors which inhibit

the function of the target enzyme or protein as well. PknB

(Rv0014c) is an essential serine-threonine protein kinase in Mtb

and has role in a number of signaling pathways in cell division

and metabolism. Several inhibitors have been reported for this

kinase [35] and is also one of the targets being pursued by

Working Group on New TB Drugs (http://www.newtbdrugs.

org/project.php?id = 81). NuoG (Rv3151) is a subunit of type I

NADH dehydrogenase playing an important role in growth in

macrophage and pathogenesis in animal models [36]. PhoP

(Rv0757), a response regulator and part of the two component

system, when mutated leads to growth defects in macrophages

and in mouse models [37]. eccCb1 (Rv3871) is a part of the RD1

Figure 4. Illustrates the comprehensive analyses of central proteins as potential drug targets. The various filters include comparison with
validated drug targets, sequence and structural level comparison with Human proteome, gut and oral flora (a) The list of 73 central ORFs wherein Rv
Ids in bold represent IPW central ORFs, Rv IDs in regular font represents IPWSI central ORFs and the italicized-bold represent common Rv Ids to both
IPW and IPWSI. (b & b’) Five of the 17 IPW and six of 64 central ORFs with experimental validation as drug targets. (c) Sequence homology comparison
with human proteome and human microbiome results in 62 ORFs with no significant similarity (d) Octamer analyses against human proteome and
human microbiome results in one ORF with no hits (e) Comparative binding site analysis with human proteome results in 26 ORFs with no significant
similarity (lists b, b’, c, d and e available in Table S2).
doi:10.1371/journal.pone.0039808.g004

Crowd Sourcing for M. tuberculosis Interactome
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region and mutation leads to attenuated growth and toxicity in

THP-1 cells. The mutants cannot export CFP-10 and are

avirulent [38]. hspX (Rv2031c) encodes for a alpha-crystallin-like

protein and plays a significant role in retaining a non-replicating

state in latency [39,40]. The fact that five of the 17 putative drug

targets from IPW are already validated drug targets, lends

credence to our approach of annotating the genome and

interactome construction of Mtb for system level understanding

towards novel drug target identification.

Despite the efforts over a number of years, discovering novel,

fast acting drugs for TB has been a major challenge. However,

recently introduced combination drug Risorine designed on the

principles of Ayurveda has been shown to cut down rifampicin use

leading to very high compliance [41]. Understanding the biology

of the pathogen through a systems level approach can help in

identifying the Achilles heel for Mtb. Towards this, Interactome

Pathway annotation has captured the updated relevant informa-

tion on Mtb genes and has tried to unravel the puzzle. We have

amalgamated crowd sourcing with social networking to compre-

hensively reannotate the Mtb genome, generated its largest ever

interactome and propose potentially efficacious drug targets. In

the process, we have set up an open collaborative platform and a

dynamic community to ensure regular updates.

Materials and Methods

Crowd Sourcing for Data Curation
Data capture. Two annotation standard operating protocols

(SOPs), in the presence of literature and in the absence of

literature, were designed in order to capture the maximum

amount of relevant data. Wherever the protein was not studied in

Mtb, the annotations were transferred from other organisms based

on conservative statistical measures in sequence and structure-

based analysis as discussed below (i and ii). To ensure consistency

and integrity of the data added to the resource, Standard

Operating Protocols (SOPs) were created and followed by the

community. These SOPs and tutorials may be accessed at (http://

c2d.osdd.net and https://sites.google.com/a/osdd.net/c2d-01/

pathwayannotationproject).

Annotation SOP in presence of literature. The first step

was to retrieve information on Mtb proteins with experimental

evidence from literature. PubMed and Google based literature

searches were carried out using suitable keywords, such as the

respective Rv number, gene name, Mycobacterium tuberculosis, along

with suitable Boolean expressions, such as AND and OR (for

example, [Rv1018c] AND [mycobacterium tuberculosis], [epox-

ide hydrolase] AND [mycobacterium tuberculosis]). While

Figure 5. Illustration of 17 putative drug target interaction from IPW interactome depicting the cascade of how the central proteins
interact with each other in a spatio-temporal manner under different conditions like growth, stress and survival in macrophages
including virulence. Under normal conditions, PknB phosphorylates RshA which inhibits SigH. However, under oxidative stress, RshA is not
phosphorylated and this abolishes its binding to SigH, rendering it free. SigH in turn upregulates expression of SigE and SigB which regulates MprA
(bacterial persistence regulator). MprA also regulates SigB and SigE. SigB plays important role in adaptation to stationary phase and nutritionally poor
conditions and SigE is upregulated in mycobacterial growth within human macrophages and is transcribed from three different promoters under
different conditions. sigB is also regulated by SigF, which regulates the expression of genes involved in the biosynthesis and structure of the
mycobacterial cell envelope, including complex polysaccharides and lipids, particularly virulence- related sulfolipids and several transcription factors.
Rv0516c is an anti-anti sigma factor and regulates anti-sigma factor SigF (upregulated during infection culture of human macrophages and in
nutrient starvation condition; regulates transcription of genes involved in cell wall biosynthesis, sulfolipid metabolism, nucleotide metabolism, energy
metabolism and several transcription factors) on getting phosphorylated by PknD which in turn is regulated by Rv0020c phosphorylated by PknB and
PknE. SigF also regulates sigC and regulates hspx that is also regulated by dosR regulon. dosR regulon in turn is again regulated by PhoP which is a
transcription factor for nuoG, eccCb1, esxb/cfp10 [48].
doi:10.1371/journal.pone.0039808.g005
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manually scanning the available literature, emphasis was placed

on the references, which dealt with Mycobacterium tuberculosis

H37Rv followed, by evidence in other mycobacterial species. If

the protein was an enzyme, the corresponding reaction, along

with the EC number, and the pathway(s) in which the protein

participates was also recorded.

SOP for annotation in the absence of direct information

from literature. In absence of direct literature information,

annotations were derived based on sequence, structure and profile

based information and analyses. To begin with, NCBI-BLAST

[42] was used to obtain homology information of the query

protein. Hits with e-value of #0.0001 and identity of $35%, with

$75% sequence coverage were considered as significant hits.

Annotations of the closest homologue were transferred and

recorded in the template against each annotation. Similarity

search in the Pfam [43] database was carried out to support

BLAST results and also to annotate in the absence of high query

coverage with BLAST analysis. If both BLAST and Pfam

similarity search failed to give a significant hit, Phyre [44], an

automatic fold recognition tool was used for predicting the

function of the Mtb proteins through high confidence fold

associations. Appropriate evidence codes have been used to

distinguish between transferred annotations and experimental

based annotations.

Data curation. Multiple rounds of collaborative data quality

checks were carried out to ensure that the data has been correctly

captured and reported. A set of instructions (SOPs) were devised

for the same (https://sites.google.com/a/osdd.net/c2d-01/

pathwayannotationproject/data-qc-guide) where the annotations

curated by the members were systematically crosschecked

iteratively by other members. It was interesting to note that high

quality curation was achieved by this approach of ‘many eyeballs

make the bug shallow’, a common phenomenon in open source

software projects.

Data organization. The collated data was organized into a

defined data structure as depicted in Table 1 with two columns,

field and description. The PSI MI (Proteomics Standards Initiative

Molecular Interactions) was used as the community standard for

reporting protein-protein interactions in MITAB format (Table

S3). This helps in improving the representation of molecular

interaction data and its accessibility to the user community.

Interactome Construction and Network Parameter
Estimation

IPW and IPWSI network. The IPW-only network was

constructed based on the annotations and curation of the data

from IPW. The combined network of IPW and STRING termed,

IPWSI, was constructed by combining the IPW network with that

from STRING. All the interactions in STRING with high and

medium level confidence score (above 400) were used to construct

STRING based protein-protein interaction network. Methods

used to compute network parameters are discussed below.

Network properties. To understand the functional organi-

zation of interacting proteins in both the networks, an analysis of

various network topologies was performed. These network

properties were computed using Boost Graph library in MATLAB

(David Gleich; http://www.stanford.edu/,dgleich/programs/

matlab_bgl/).

Connectivity or degree. The most elementary characteristic

of a node in the network is its degree k, which represents, for a

given node the number of other nodes it is connected to.

Clustering coefficient. The clustering coefficient was first

defined by Watts and Strogatz [24]. The clustering coefficient, C,

for a node is a notion of how connected the neighbours of a given

node are to the other nodes (cliquishness) [45]. The average

clustering coefficient for all nodes in a network is taken to be the

network clustering coefficient. In an undirected graph, if a vertex vi

has ki neighbors, k i (k i - 1)/2 edges could exist among the vertices

Table 2. The list of all the 17 central proteins as predicted from the betweenness centrality of .0.2 through IPW network with
their gene products.

Accession Gene Name Description (Gene Product)

Rv0014c*[35] pknB TRANSMEMBRANE SERINE/THREONINE-PROTEIN KINASE B PKNB (PROTEIN KINASE B)

Rv0020c fhaA CONSERVED HYPOTHETICAL PROTEIN WITH FHA DOMAIN, TB39.8

Rv0516c Rv0516c ANTI-ANTI SIGMA FACTOR

Rv0757*[37] phoP POSSIBLE TWO COMPONENT SYSTEM RESPONSE TRANSCRIPTIONAL POSITIVE REGULATOR

Rv0931c pknD TRANSMEMBRANE SERINE/THREONINE-PROTEIN KINASE D PKND (PROTEIN KINASE D)

Rv0981 mprA MYCOBACTERIAL PERSISTENCE REGULATOR MRPA (TWO COMPONENT RESPONSE TRANSCRIPTIONAL REGULATORY PROTEIN)

Rv1221 sigE ALTERNATIVE RNA POLYMERASE SIGMA FACTOR SIGE

Rv2031c*[39,40] hspX HEAT SHOCK PROTEIN HSPX (ALPHA-CRSTALLIN HOMOLOG) (14 kDa ANTIGEN) (HSP16.3)

Rv2069 sigC PROBABLE RNA POLYMERASE SIGMA FACTOR, ECF SUBFAMILY

Rv2710 sigB RNA POLYMERASE SIGMA FACTOR

Rv3151*[36] nuoG PROBABLE NADH DEHYDROGENASE I (CHAIN G) NUOG (NADH-UBIQUINONE OXIDOREDUCTASE CHAIN G)

Rv3221A Rv3221A POSSIBLE ANTI-SIGMA FACTOR RSHA

Rv3223c sigH ALTERNATIVE RNA POLYMERASE SIGMA-E FACTOR (SIGMA-24)

Rv3286c sigF ALTERNATE RNA POLYMERASE SIGMA FACTOR

Rv3871*[38] Rv3871 ESX CONSERVED COMPONENT ECCCB1 (ATPase activity)

Rv3874 esxB 10 KDA CULTURE FILTRATE ANTIGEN ESXB (LHP) (CFP10)

Rv3911 sigM RNA POLYMERASE SIGMA FACTOR

RvIDs superscripted with asterisk are essential proteins as evidenced by genetic and biochemical studies.
doi:10.1371/journal.pone.0039808.t002

Crowd Sourcing for M. tuberculosis Interactome

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e39808



within the neighbourhood (Ni ). The clustering coefficient for an

undirected graph G(V, E) (where V represents the set of vertices in

the graph G and E represents the set of edges) can then be

defined as

Ci~
2D ejk

� �
D

ki ki{1ð Þ ; vj ,vk[Ni,ejk[E

The average clustering coefficient characterizes the overall

tendency of nodes to form clusters or groups. C(k) is defined as the

average clustering coefficient for all nodes with k links.

Characteristic path length. The characteristic path length,

L, is defined as the number of edges in the shortest path between

two vertices, averaged over all pairs of vertices. It measures the

typical separation between two vertices in the network. Intuitively,

it represents the network’s overall navigability [45].

Network diameter. The network diameter d is the greatest

distance (shortest path, or geodesic path) between any two nodes in

a network. It can also be viewed as the length of the ‘longest’

shortest path in the network.

d~ max
u,v[G

dG u, vð Þ

where dG (u, v) is the shortest path between u and v in G [45].

Power law distribution. For a given network the power law

distribution states the probability that a given node has k links,

which is given by equation p(k) , k-c, where c is degree exponent.

For smaller values of c, the role of the ‘hubs’, or highly connected

nodes, in the network becomes more important. For c .3, hubs

are not relevant, while for 2,c ,3, there is a hierarchy of hubs,

with the most connected hub being in contact with a small fraction

of all nodes. Scale-free networks have a high degree of robustness

against random node failures, although they are sensitive to the

failure of hubs [23]. The probability that a node is highly

connected is statistically more significant than in a random graph

[45].

Betweenness centrality. The betweenness centrality is the

measure of vertex within a graph. For a given graph G(V,E), with

n vertices, the betweenness CB (v) of a vertex v is defined as.

CB vð Þ~
X

s=v=t [V

sst(v)

sst

where sst is the number of shortest path from s to t, and sst (v) is

the number of shortest paths from s to t that passes from vertex v.

The betweenness centrality analysis was performed for both the

networks [45–46].

Drug Target Identification
Sequence homology with human proteome, oral and gut

flora. The complete human proteome was downloaded from

NCBI and BLAST was used to filter out the proteins, which had

homology of greater than 45% with human protein. Human gut

and oral flora constitutes the microbes that are considered to

influence the physiology, nutrition, immunity and development of

host. The complete proteome of 8-gut flora and 27 oral floras were

downloaded. CD-HIT with similarity of 60% and a word size of 4

was used to compare the predicted proteins [27].

Binding site similarity with human proteome, oral and

gut flora. We analyzed these proteins as reported in targetTB

[30] pipeline where the top 10 binding sites for each protein was

identified using PocketDepth algorithm [31]. The binding pockets

of these proteins were then compared with human proteome using

PocketMatch [32].

Peptide level conformation comparison with human

proteome, oral and gut flora. We analyzed the proteins for

absence of small peptides (octamer) [28] across human proteome,

gut or oral flora using in house PERL scripts.

Literature based target validation. The predicted targets

were further validated based on presence of existing functional

evidence in literature. Data-mining and manual curation was

performed to identify and document validated drug targets in Mtb.

In addition to this, it was also documented whether the central

protein is also reported to be essential or non-essential in context of

Mtb growth and survival.

Web Server for Accessing and Searching IPW
The IPW data has been posted on http://sysborg2.osdd.net, the

semantic web-based platform of Open Source Drug Discovery

(OSDD) project [47]. For ease of access and search, the data is

provided through a web-based server available at http://crdd.

osdd.net/servers/ipw built using PHP and Mysql. This also works

as the annotation and curation interface for the community. Any

new submission to this web servers requires http://sysborg2.osdd.

net open ID for authentication so that appropriate credits may be

given to the members submitting updated information.

Supporting Information

Table S1 The annotations in the data structure format
described in Table 1. This data may be searched in customized

manner using the IPW web-interface (http://crdd.osdd.net/

servers/ipw).

(XLSX)

Table S2 Rv Ids in lists b, b’, c, d and e as obtained
from various sequence and structural level analysis of
central proteins as potential drug targets from IPW and
IPWSI as depicted in Figure 2.
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Table S3 Central proteins predicted from analysis of
the IPW interactome with details of interacting partners
in PSI MITAB format.
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