
CrowdDB: Answering Queries with
Crowdsourcing

Franklin, Michael J., Donald Kossmann, Tim Kraska, Sukriti Ramesh, and

Reynold Xin. "CrowdDB: answering queries with crowdsourcing."

In SIGMOD Conference, pp. 61-72. 2011.

Presented by Patricia Ortega

February/2013

Outline

• Introduction

• Problem definition

• Crowdsourcing

• CrowdDB

• User Interface Generation

• Query Processing

• Experiment and Results

• Conclusion

What do
they have

in
common?

Introduction

Problem definition

company_name logo revenue

Apple US$ 156.508 billion

Intelligence
Bussines Machine

US$ 106.916 billion

Microsoft US$ 73.72 billion

SELECT revenue FROM company

WHERE name = “I.B.M”;

Entity resolution problem

Problem definition

company_name logo revenue

Apple US$ 156.508 billion

Intelligence
Bussines Machine

US$ 106.916 billion

Microsoft US$ 73.72 billion

SELECT revenue FROM company

WHERE name = “Google”;

Closed world assumption

Problem definition

image relevance

SELECT image FROM picture

WHERE topic =“Business Success”

ORDER BY relevance LIMIT 1;

Problem definition

company_name logo revenue

Apple US$ 156.508 billion

Intelligence
Bussines Machine

US$ 106.916 billion

Microsoft US$ 73.72 billion

SELECT revenue FROM company

WHERE name = “The best software
company to work at”;

I guess your answer was "Google". Is that the answer from
the crowd?

Image from imlworldwide.com

Crowdsourcing

Two main human capabilities that allow corrects

answers:

• Finding new data

• Comparing data

Crowdsourcing

A requester has
work to be

done.

The problem is
broadcast

online

Crowd is asked
for a solution

Crowd reply
their solutions

Requesters
approve or

reject

Requesters pay
the pre-defined

reward

Crowdsourcing – Mechanical Turk
Basics
Microtasks: No requires special training, typically less

than a minute.

HIT(Human Intelligent Task): The smallest entity of

work that could be accepted by a worker.

Assignment: HIT can be replicated into multiple

assignments. A worker can process at most a single

assignment per HIT.

HIT Group: AMT automatically groups HIT’s by
requester, tittle, description and reward.

AMT Workflow

• Requesters post HITs.

• AMT post them into compatible HIT groups.

• Worker search, accept and process the assignment.

• Requesters approve or reject.

• For each task completed requesters pay the

predefined reward, bonus and commission to

Amazon.

Mechanical Turk APIs

Create new HIT:

• createHit(tittle,description,question,keywords,rewa

rd,duration,maxAssignments,lifetime):HitId

List of assignments of a HIT

• getAssignmentsForHIT(HitId):list(ansId,workerId,Ans

wer)

Approve/Reject

• approveAssignment(ansId)/rejectAssignment(ansId)

CrowdDB – Design Considerations

• Performance and variability

• Work speed

• Work cost

• Work quality

• Task design and ambiguity

• Natural language ambiguity

• UI Design

CrowdDB – Design Considerations

• Affinity and learning

• Workers develop skills, and relationships with

requesters.

• Relatively small worker Pool

• Impact in parallelism and throughput

• Open vs. closed world

• Possible return unlimited number of answers.

(Query planning, execution cost, answer quality)

CrowdDB- Architecture

Crowd Components

Turker Relationship Manager:

• Handles: approving/rejecting assignments, paying,

etc.

User Interface Management:

• CrowdSQL extends data definition language to

annotate tables, information used later to create

UI.

HIT Manager:

 Manages interaction CrowdDB and

crowdsourcing platform

CrowdSQL

Is a SQL extension that support crowdsourcing.

• Minimal extension

• Support use case with missing data and

subjective comparisons.

CrowdSQL - Considerations

SQL DDL extensions

Keyword CROWD:

• Incomplete data can occurs:

• Specific attributes of tuples

• Entire tuple

Crowdsourced column
CREATE TABLE Department (

university STRING,

name STRING,

url CROWD STRING, phone STRING,

PRIMARY KEY (university, name));

Crowdsourced Table
CREATE CROWD TABLE Professor (

name STRING PRIMARY KEY,

email STRING UNIQUE,

university STRING,

department STRING,

FOREIGN KEY (university, department)

REF Department(university, name));

CrowdSQL - Considerations

SQL MDL semantics

Keyword CNULL:

• Equivalent to NULL

• Means that value should be crowd sourced at its

first use.

• Default value of CROWD column

 INSERT INTO

Department(university, name)

VALUES ("UC Berkeley", "EECS");

INSERT INTO Department(university,

name, url)

VALUES ("ETH Zurich", "CS",

"inf.ethz.ch");

CrowdSQL - Considerations

Query semantics

• Suppor any kind of query on CROWD tables and

columns.

• Incorporates crowdsourced data as part of processing

SQL queries.

SELECT url FROM Department

WHERE name = "Math";

SELECT * FROM Professor

WHERE email LIKE "%berkeley%" AND

dept = "Math";

CrowdSQL – Subjective comparisons

To support subjective comparisons has to built in

functions (CROWDEQUAL and CROWDORDER):

• CROWDEQUAL : ~= (takes 2 paraters lvalue, rvalue,

ask the crowd to decide if values are equals)

SELECT profile FROM department

WHERE name ~= "CS";

CrowdSQL – Subjective comparisons

• CROWORDER : Used to ask crowd rank the result.

CREATE TABLE picture (

p IMAGE,

subject STRING);

SELECT p FROM picture

WHERE subject = "Golden Gate Bridge"

ORDER BY CROWDORDER(p,

"Which picture visualizes better %subject");

User Interface Generation

Key: Provide effective user interfaces.

User Interface Generation

UI key to success in crowdsourcing:

• At compile time, creates templates to

crowdsourcing missing information (HTML5,

JavaScript)

• These templates are instantiated at runtime

providing a UI for a concrete tuple or set of tuples.

User Interface Generation

Key: Provide effective user interfaces.

User Interface Generation

Key: Provide effective user interfaces.

User Interface Generation

Key: Provide effective user interfaces.

Query Processing – Crowd Operators

Current version of CrowDB has three crowd operators:

• CrowdProbe:

Crowd missing information about CROWD columns

and new tuples. (Uses generated UI)

Query Processing – Crowd Operators

• CrowdJoin:

• Implement an index nested-loop-join over two

tables (at least one crowdsourced).

• Creates HIT’s for each tuple in the inner relation.

Query Processing – Crowd Operators

• CrowdComprare:

• Implements CROWDEAQUAL and CROWDORDER.

• Instantiate UI.

• Typically used inside another traditional

operator(sorting or predicate evaluation).

Query Processing – Plan Generation

Experiments and Results

Experiments run with CrowdDB and AMT.

Ran over 25,000 HITs on AMT during October 2010

• Parameters:

• Price

• Jobs per HIT and

• Time of day.

• Measured the response time and quality of the

answers provided by the workers.

Experiments and Results

Micro-benchmarks:

• Simple jobs involving finding new data or making

subjective comparisons.

• Goal:

• Observe the behavior of workers for the types of

tasks required.

• Obtain insight to develop costs models for query

optimization.

Experiments and Results - Micro
Benchmarks
• Description: Simple tasks requiring workers to find

and fill in missing data for a table with two

crowdsourced columns:

CREATE TABLE businesses (

name VARCHAR PRIMARY KEY,

phone_number CROWD VARCHAR(32),

address CROWD VARCHAR(256));

Experiments and Results - Micro
Benchmarks

• Table was populated with names of 3607 businesses

(restaurants, hotels, and shopping malls) in 40 USA

cities.

• Study the sourcing of the phone_number and

address columns using the following query:

SELECT phone_number, address FROM businesses;

Experiment 1: Response Time, Vary
HIT Groups

Time of

completion of

1,10,25 group

HIT size.

Response time

decrease

dramatically as

size of group is

increased.

Experiment 2: Responsiveness, Vary
Reward

How response

time varies as a

function of the

reward.

Experiment 2: Responsiveness, Vary
Reward

Fraction of HITs that

received at least one

assignment as a

function of time and

reward

Experiment 3: Worker Affinity and
Quality

Number of HITs

computed for a

particular

worker and the

number of errors

made for the

worker

Complex Queries: Entity Resolution
on Companies

SELECT name FROM

company WHERE

name~="[a non-

uniform name of

the company]"

Complex Queries: Ordering Pictures

Conclusion

• CrowdDB is a relational query processing system

that uses microtask-based crowdsourcing to answer

queries that cannot otherwise be answered.

• Combination of human input with high-powered

database processing:

• Extends the range of existing database systems.

• Enables completely new applications and

capabilities

References

REFERENCES

[1] Pictures of the Golden Gate Bridge retrieved from Flickr by akaporn,

Dawn Endico, devinleedrew, di_the_huntress, Geoff Livingston,

kevincole, Marc_Smith, and superstrikertwo under the Creative

Commons Attribution 2.0 Generic license.

[2] Amazon. AWS Case Study: Smartsheet, 2006.

[3] Amazon Mechanical Turk. http://www.mturk.com, 2010.

[4] S. Amer-Yahia et al. Crowds, Clouds, and Algorithms: Exploring the

Human Side of "Big Data" Applications. In SIGMOD, 2010.

[5] M. Armbrust et al. PIQL: A Performance Insightful Query Language.

In SIGMOD, 2010.

[6] M. S. Bernstein et al. Soylent: A Word Processor with a Crowd

Inside. In ACM SUIST, 2010.

[7] M. J. Carey and D. Kossmann. On saying “Enough already!” in SQL.
SIGMOD Rec., 26(2):219–230, 1997.

[8] S. S. Chawathe et al. The TSIMMIS Project: Integration of

Heterogeneous Information Sources. In IPSJ, 1994.

References
[9] K. Chen et al. USHER: Improving Data Quality with Dynamic

Forms. In ICDE, pages 321–332, 2010.

[10] A. Doan, R. Ramakrishnan, and A. Halevy. Crowdsourcing Systems

on the World-Wide Web. CACM, 54:86–96, Apr. 2011.

[11] L. M. Haas et al. Optimizing Queries Across Diverse Data Sources.

In VLDB, 1997.

[12] J. M. Hellerstein et al. Adaptive Query Processing: Technology in

Evolution. IEEE Data Eng. Bull., 2000.

[13] J. M. Hellerstein and J. F. Naughton. Query Execution Techniques

for Caching Expensive Methods. In SIGMOD, pages 423–434, 1996.

[14] E. Huang et al. Toward Automatic Task Design: A Progress Report.

In HCOMP, 2010.

[15] P. G. Ipeirotis. Analyzing the Amazon Mechanical Turk Marketplace.

http://hdl.handle.net/2451/29801, 2010.

[16] P. G. Ipeirotis. Mechanical Turk, Low Wages, and the Market for

Lemons. http://behind-the-enemy-lines.blogspot.com/2010/07/

mechanical-turk-low-wages-and-market.html, 2010.

[17] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison-Wesley, 2003.

References
[18] G. Little. How many turkers are there?

http://groups.csail.mit.edu/uid/deneme/?p=502, 2009.

[19] G. Little et al. TurKit: Tools for Iterative Tasks on Mechanical Turk.

In HCOMP, 2009.

[20] A. Marcus et al. Crowdsourced Databases: Query Processing with

People. In CIDR, 2011.

[21] Microsoft. Table Column Properties (SQL Server), 2008.

[22] A. Parameswaran et al. Human-Assisted Graph Search: It’s Okay to

Ask Questions. In VLDB, 2011.

[23] A. Parameswaran and N. Polyzotis. Answering Queries using

Humans, Algorithms and Databases. In CIDR, 2011.

[24] J. Ross et al. Who are the Crowdworkers? Shifting Demographics in

Mechanical Turk. In CHI EA, 2010.

[25] D. Schall, S. Dustdar, and M. B. Blake. Programming Human and

Software-Based Web Services. Computer, 43(7):82–85, 2010.

[26] Turker Nation. http://www.turkernation.com/, 2010.

[27] Turkopticon. http://turkopticon.differenceengines.com/, 2010.

[28] T. Yan, V. Kumar, and D. Ganesan. CrowdSearch: Exploiting Crowds

for Accurate Real-time. Image Search on Mobile Phones. In

MobiSys, 2010.

Questions…?

Thank you.

