
Crowdfunding Non-fungible Tokens
on the Blockchain

Sean Basu1, Kimaya Basu1, and Thomas H. Austin2,3(B)

1 Monta Vista High School, Cupertino, CA, USA
2 0Chain Corporation, Cupertino, CA, USA

3 San José State University, San Jose, CA, USA
thomas.austin@sjsu.edu

Abstract. Non-fungible tokens (NFTs) have been used as a way of
rewarding content creators. Artists publish their works on the blockchain
as NFTs, which they can then sell. The buyer of an NFT then holds own-
ership of a unique digital asset, which can be resold in much the same
way that real-world art collectors might trade paintings.

However, while a deal of effort has been spent on selling works of
art on the blockchain, very little attention has been paid to using the
blockchain as a means of fundraising to help finance the artist’s work in
the first place. Additionally, while blockchains like Ethereum are ideal
for smaller works of art, additional support is needed when the artwork
is larger than is feasible to store on the blockchain.

In this paper, we propose a fundraising mechanism that will help
artists to gain financial support for their initiatives, and where the back-
ers can receive a share of the profits in exchange for their support. We
discuss our prototype implementation using the SpartanGold framework.
We then discuss how this system could be expanded to support large
NFTs with the 0Chain blockchain, and describe how we could provide
support for ongoing storage of these NFTs.

Keywords: Blockchain · Non-fungible tokens · Crowdfunding ·
Storage

1 Introduction

As the world moves to an online, digital retail model, there has been a struggle
to find ways to reward artists and other content creators for their work.

Non-fungible tokens (NFTs) have been one proposed solution. Artists create
their work and then sell it online, with ownership tracked on the blockchain to
determine who owns the unique copy of the work of art.

However, while NFTs offer a model for artists to sell their work, they do
not intrinsically offer a way for artists to raise funds to help them create their
projects in the first place. Additionally, while NFTs offer a good model for
storing smaller amounts of content on the blockchain, the cost of storing a larger
work of art on the blockchain quickly becomes prohibitive. In this paper, we

c© The Author(s) 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 109–125, 2022.
https://doi.org/10.1007/978-3-030-96057-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_8&domain=pdf
http://orcid.org/0000-0003-2428-0687
https://doi.org/10.1007/978-3-030-96057-5_8

110 S. Basu et al.

highlight how an artist’s project to create an NFT can be supported on the
blockchain through crowdfunding. In our design, an artist posts a transaction to
the blockchain advertising their project. Other clients may then contribute to
the project, in exchange gaining a portion of the coins from the initial sale. Once
the artist then launches the NFT on the blockchain, the funding campaign is
tied to the NFT itself. The artist may then sell the NFT as they see fit, and the
artist’s backers are compensated automatically. For a successful artist, a history
of successful projects can be an excellent form of marketing; backers can see the
artist’s history on the blockchain and thereby be encouraged to invest in the
artist’s next fundraising campaign.

To help further understanding of our design, we offer a prototype implemen-
tation using the SpartanGold framework [2]. Our implementation is available
at https://github.com/taustin/spartan-gold-nft. We then consider the storage
of larger NFTs, and discuss our proposed design for the 0Chain blockchain. As
part of this discussion, we show how 0Chain’s token-locking reward protocol [10]
can be used to create an ongoing revenue stream to fund long-term NFT storage.

2 Background

Bitcoin’s seminal whitepaper [12] introduced the world to the blockchain as a
distributed and decentralized ledger for managing cryptocurrency. Bitcoin also
included a primitive scripting language for writing programmable smart con-
tracts. However, due to concerns about denial-of-service attacks, the power of
these smart contracts was deliberately restricted.

Namecoin, a fork of Bitcoin, focused on allowing data to be stored directly on
the Blockchain. In 2014, Kevin McCoy and Anil Dash used Namecoin to launch
what is generally considered the first NFT [6].

Ethereum expanded upon Bitcoin’s ideas to create a blockchain that supports
a quasi-Turing complete virtual machine [22]. To avoid denial-of-service attacks,
Ethereum’s virtual machine (EVM) includes a notion of gas. Clients pay for their
transactions by specifying a gas price; if they run out of gas, the effects of the
transaction are rolled back, and the miners keep the ether used to pay for the
transaction.

Ethereum’s flexibility introduced the world to a wide variety of new applica-
tions for the blockchain. One popular use was the creation of ERC-20 tokens [20].
The ERC-20 specification allows a standard way for organizations to issue tokens
as a fundraising mechanism. These tokens typically serve as a placeholder for the
native coins on a new blockchain; once the new blockchain is launched, clients
may exchange these tokens to receive an equivalent amount of native coins on
the new blockchain.

While ERC-20 has been an influential design, its focus is on fungible tokens.
There is no connection between a fungible token and any unique asset. Essen-
tially, ERC-20 tokens act as an additional currency running on the Ethereum
blockchain.

To our knowledge, the first example of a fungible token on the Ethereum
blockchain was used in the design of CryptoPunks [4] in 2017. In this application,

https://github.com/taustin/spartan-gold-nft

Crowdfunding NFTs 111

users trade unique cartoon characters on the blockchain. Later that same year,
CryptoKitties was released on the Ethereum blockchain. At its height, Cryp-
toKitties accounted for a quarter of the traffic on Ethereum’s blockchain [5].
The popularity of these applications served to both highlight the power of the
Ethereum blockchain, and to showcase its limitations in handling the amount of
traffic generated by these applications.

The success of these applications lead to the development of two Ethereum
Improvement Proposals (EIP): EIP/ERC-721 [7] provides a standard interface
for non-fungible tokens; EIP/ERC-165 [15] gives a way to tag an implementation
to indicate that it supports a given contract interface.

The ability to create unique tokens on a decentralized, publicly visible
blockchain has lead to some initial efforts at using NFTs as a form of inven-
tory management. Regner et al. [14] describe how NFTs can be used as part of
an event ticketing system. Westerkamp et al. [21] use NFTs on Ethereum to track
inventory in a manufacturing process, where “recipes” dictate how NFTs rep-
resenting ingredients are consumed to produce new NFTs of the finished good.
Stefanović et al. [18] describe the applications for smart contracts in handling
land administration systems and real estate transfers, though the authors do not
explicitly mention NFTs. Bastiaan et al. [1] describe how NFTs could be useful
in real-estate management, including some discussion of early attempted appli-
cations of this work for Vermont and Ukraine. Patil [13] develops a NFT-based
land registry system using government records for the Washington D.C. area.
Salah et al. [16] propose a system for tracking soybeans using the Ethereum
blockchain. Kim et al. [8] describe possible applications in the areas of food
traceability and describe how these assets can be tokenized.

Alternately, NFTs have been seen as a new way to create a market for digital
works of art. While CryptoPunk and CryptoKitties can been seen as initial works
in this direction, additional challenges remain. Chevet [3] provides an overview
of the challenges and benefits in using NFTs to reward artists, arguing that
scarcity is the key property that NFTs add to the existing digital art world.
Trautman [19] provides a detailed overview of the history of NFTs for virtual
art, including extensive discussion of some of the highest-selling NFTs to date.

Muller et al. [11] show how their DeCoCo system can use fungible tokens as a
mode of rewarding artists, where tokens translate to permission to access some
content. While their use case is slightly different than ours, the usage of tokens
to track ownership for artistic content bears a similarity to our own design.

3 Crowdfunding NFT Creation

In this section, we highlight how the blockchain can facilitate decentralized
fundraising for artist projects, and also tie successful projects to the result-
ing NFTs. In our discussion, the artist and the backers are both assumed to be
clients on the blockchain. There is also a smart contract, the NFT Smart Con-
tract (NFTSC), which manages the fundraiser and records the contributions.

112 S. Basu et al.

We assume that the backers will share the proceeds for the sale of the NFT.
However, if the artist wishes to retain all funds, they may specify that when
initializing the fundraiser; and non-monetary benefits from the artist must then
be managed off-chain. Figure 1 shows a sequence diagram of the process.

Fig. 1. Crowdfunding sequence diagram

The process for creating a new fundraiser works as follows:

1. The artist posts a transaction the the NFT Smart Contract, specifying:
– Artist’s ID.
– Project name.
– Project description.
– Project ID, chosen by artist. This should be unique for the artist.
– End date, when the fundraiser will conclude.
– Minimum funding. If not met by the end date, the fundraiser fails.
– Maximum funding (optional). If this amount is met or exceeded, the

fundraiser ends immediately.
– Artist share, between 0 and 1. When the NFT is eventually sold, this

amount specifies what percentage of the sale goes directly to the artist.
2. Backers contribute to the project, specifying:

– Artist’s ID and the project ID.
– Amount of tokens to contribute.
– ID of the backer.

3. The NFT Smart Contract records the contribution. If the maximum funding
goal is met, the fundraiser ends.

When the fundraiser ends, the NFT Smart Contract verifies that the fund-
ing goal has been met. If so, the contributions are recorded and the funds are
transferred to the artist. Otherwise, all funds are returned to the artist. Who
initiates the transaction depends on the result. If the fundraiser is successful, it
is in the best interest of the artist to write the transaction in order to get access
to the raised funds. Otherwise, any of the backers can call the smart contract

Crowdfunding NFTs 113

to reclaim funds from an unsuccessful fundraiser; if there are multiple backers,
this situation could result in a waiting game, where each backer hopes one of
the others will bear the cost of the transaction. This issue could potentially be
addressed by compensating the caller from the contributed funds.

4 Creation of the NFT on the Blockchain

After successful fundraising, the artist can use those resources to create their
project. Once completed, they then call the NFT Smart Contract to release the
NFT on the blockchain. Initially, the NFT is owned and controlled by the artist,
though the backers’ shares of the NFT are also recorded.

To create the NFT on the blockchain, the artist must write a transaction
calling the NFT Smart Contract with the following information:

– artist ID.
– project ID.
– NFT data.
– NFT content hash (optional).

For smaller NFTs, the entire content might be stored on the blockchain, in
which case the content hash is unnecessary. For larger NFTs, the data must be
uploaded to its storage location before this transaction is written. Specifying the
correct hash is the responsibility of the artist, and the blockchain miners are not
expected to validate it. However, the specification of the hash allows others to
verify the validity of the content off chain.

Of course, many storage schemes could be used. Section 7 shows how the
NFT creation on the blockchain could be coupled with 0Chain’s storage system.

Once the transaction has been written, the NFT Smart Contract records the
NFT and tracks the ownership information, including details about the backers’
shares.

5 Initial Sale of the NFT

With our design, the NFT Smart Contract serves as an escrow service handling
the exchange of the NFT for coins on the blockchain. Once the transfer is com-
plete, both the artist and their backers receive their coins, and the buyer receives
ownership and control of the NFT. Figure 2 shows a sequence diagram for the
steps in the initial sale of the NFT.

To begin this process, the artist writes a transaction calling the NFT Smart
Contract. This call should specify:

– The ID of the buyer.
– The purchase price.
– The expiration of the offer.
– The NFT itself. It information should include the project ID.

114 S. Basu et al.

Fig. 2. NFT initial sale sequence diagram

As part of this transaction, the NFT is transferred to the ownership of the
NFT Smart Contract. If the offer expires before the buyer has fulfilled the agree-
ment terms, then the artist may call the NFT Smart Contract to reclaim its
NFT.

To accept the terms of the agreement, the buyer must write to the NFT
Smart Contract, specifying the NFT and transferring enough coins to meet the
purchase price. If it does so before the offer expiration, the NFT is transferred
to the buyer.

Once the exchange is completed, the proceeds from the sale are transferred
to the artist and their backers according to the terms specified in the initial
fundraising phase of the project.

6 Implementation

To help further understanding of our design, we implement our system in the
SpartanGold blockchain framework. Our implementation is available at https://
github.com/taustin/spartan-gold-nft.

6.1 SpartanGold Overview

SpartanGold [2] is a JavaScript framework for simulating different blockchain
designs. Its default design is roughly patterned after Bitcoin, with its miners
using proof-of-work to validate transactions. However, its design is simpler, and
more amenable to being easily extended with alternate designs or configurations.
Transactions in SpartanGold include a data field, which accepts arbitrary JSON
data. As a result, transactions may be extended in a variety of ways without
changing the Transaction class. However, the logic to correctly interpret any
information in the data field must be added to the Block class, described later
in this section. In our design, we add a type field to data, allowing the Block
implementation to easily add custom logic for that specific kind of transaction.

Simulations in SpartanGold can be done in a single-threaded mode, commu-
nicating through the FakeNet module. This approach allows for better demon-
strations, with all results posted in a single window. However, the miners may
instead be run in separate processes, in which case they can communicate over
the network and avoid any “cheats” in the code.

https://github.com/taustin/spartan-gold-nft
https://github.com/taustin/spartan-gold-nft

Crowdfunding NFTs 115

A couple of differences between SpartanGold and Bitcoin should be noted.
First, SpartanGold uses an account-based model. In our experience, this model is
easier for students to understand than Bitcoin’s UTXO model, and it simplifies
many cases where we wish to tie some information to a specific account. Sec-
ond, SpartanGold does not have a built-in scripting language for writing smart
contracts.

Instead of using smart contracts, we must extend SpartanGold’s Block class
to handle new types of transactions. The Block class not only stores all trans-
actions, but also stores any additional information that should be tracked and
keeps track of the rules for validating transactions.

6.2 NFT Basic Operations

For our prototype, we first review how an NFT can be added to the SpartanGold
blockchain. While NFTs are often visual works of art, in our example, we use
a poet creating a new poem as an NFT. Figure 3 shows the driver for creating
and transferring an NFT.

The initial code sets up a blockchain with four clients (alice, storni,
minnie, and mickey), where two of the clients (minnie and mickey) are miners,
and storni is an artist who creates an NFT. The balances for all clients are
specified in the genesis block, along with the implementations for transactions
and blocks. For this example, we use the standard SpartanGold Transaction
class, but extend the NftBlock class with extra logic for handling NFTs.

After running for 2 s, storni invokes her createNFT method, where her NFT
content is the poem “Hombre pequeñito”. The code runs for an additional 3 s
before storni then transfers the NFT to alice. At the 10 s mark, the blockchain
terminates, and final balances are displayed. Additionally, the NFTs for storni
and alice are displayed in order to show that the NFT has been successfully
transferred.

The output of the program is given below. Some messages have been edited to
reduce the output length, but note that alice has possession of the NFT at the
end of program execution. The balances of the two miners have also increased,
each gaining a reward of 25 gold for every block that they have produced.

Initial balances:
Alice: 233
Minnie: 500
Mickey: 500
Storni: 500
Mickey: found proof for block 1: 2764
Mickey: found proof for block 2: 4080

... TRIMMED FOR BREVITY ...

Mickey: found proof for block 12: 1268
CREATING NFT
Minnie: found proof for block 13: 9984
Mickey: found proof for block 14: 25567

... TRIMMED FOR BREVITY ...

Mickey: found proof for block 23: 54456

116 S. Basu et al.

const {Blockchain , Miner , Transaction , FakeNet} = requ i r e (' spartan - gold ') ;
const Nf tCl i ent = r equ i r e (' ./ nft - client . js ') ;
const NftBlock = r equ i r e (' ./ nft - block . js ') ;

l e t fakeNet = new FakeNet () ;

// Clients and miners
l e t a l i c e = new NftCl i ent ({name : " Alice " , net : fakeNet }) ;
l e t minnie = new Miner ({name : " Minnie " , net : fakeNet }) ;
l e t mickey = new Miner ({name : " Mickey " , net : fakeNet }) ;

// Artist creating an NFT
l e t s t o r n i = new NftCl i ent ({name : " Alfonsina Storni " , net : fakeNet }) ;

// Creating genesis block
l e t g en e s i s = Blockchain . makeGenesis ({

b lockClas s : NftBlock ,
t r an sa c t i onC la s s : Transaction ,
c l ientBalanceMap : new Map([

[a l i c e , 2 3 3] , [s t o rn i , 5 0 0] , [minnie , 5 0 0] , [mickey , 5 0 0] ,
]) ,

}) ;

f unc t i on showBalances (c l i e n t) {
conso l e . l og (A l i c e : ${ c l i e n t . l a s tB lo ck . balanceOf (a l i c e . address) }) ;
conso l e . l og (Minnie : ${ c l i e n t . l a s tB lo ck . balanceOf (minnie . address) }) ;
conso l e . l og (Mickey : ${ c l i e n t . l a s tB lo ck . balanceOf (mickey . address) }) ;
conso l e . l og (Sto rn i : ${ c l i e n t . l a s tB lo ck . balanceOf (s t o r n i . address) }) ;

}

conso l e . l og (" Initial balances :") ;
showBalances (a l i c e) ;

fakeNet . r e g i s t e r (a l i c e , minnie , mickey , s t o r n i) ;

// Miners start mining .
minnie . i n i t i a l i z e () ; mickey . i n i t i a l i z e () ;

// Artist creates her NFT .
setTimeout (() => {

conso l e . l og (" *** CREATING NFT *** ") ;
s t o r n i . c r ea t eNf t ({

artistName : s t o r n i . name , t i t l e : " Hombre peque ~n ito " ,
content :

,otiñeuqeperbmoh,otiñeuqeperbmoH
Sue l ta a tu canar io que qu i e r e vo l a r . . .

,otiñeuqeperbmoh,oiranacleyosoY
dé jame s a l t a r . ,

}) ;
} , 2000) ;

setTimeout (() => {
l e t nftID = s t o r n i . g e tNf t Ids () [0] ;
c onso l e . l og (Trans f e r r i ng NFT ${nftID }) ;
s t o r n i . t r a n s f e rN f t (a l i c e . address , nftID) ;

} , 5000) ;

// Print out the final balances after it has been running for some time .
setTimeout (() => {

conso l e . l og () ;
conso l e . l og (Minnie has a chain o f l ength ${minnie . currentBlock .

chainLength } :) ;
c onso l e . l og (" Final balances (Alice ' s perspective):") ;
showBalances (a l i c e) ;

conso l e . l og () ;
conso l e . l og (" Showing NFTs for Storni :") ;
s t o r n i . showNfts (s t o r n i . address) ;

conso l e . l og () ;
conso l e . l og (" Showing NFTs for Alice :") ;
a l i c e . showNfts (a l i c e . address) ;

p roce s s . e x i t (0) ;
} , 10000) ;

Fig. 3. SpartanGold NFT simulation

Crowdfunding NFTs 117

***Transferring NFT fc469b3105a3c89416a...
Minnie: found proof for block 24: 27051

... TRIMMED FOR BREVITY ...

Minnie: found proof for block 45: 66366

Minnie has a chain of length 46:
Final balances (Alice’s perspective):
Alice: 233
Minnie: 1125
Mickey: 975
Storni: 500

Showing NFTs for Storni:

Showing NFTs for Alice:

Alfonsina Storni’s "Hombre peque~nito"

Hombre peque~nito, hombre peque~nito,
Suelta a tu canario que quiere volar...
Yo soy el canario, hombre peque~nito,
déjame saltar.

esCrow . se tContract ([
(tx) => tx . from === a l i c e . address &&

tx . outputs [0] . amount === 150 &&
tx . outputs [0] . address === esCrow . address ,

(tx) => tx . from === s t o r n i . address &&
tx . data !== undef ined &&
tx . data . r e c e i v e r === esCrow . address &&
tx . data . nftID === nftID

] , () => {
esCrow . postTransact ion ([{ amount : 150 , address : s t o r n i .

address }]) ;
esCrow . t r an s f e rN f t (a l i c e . address , nftID) ;

}) ;

Fig. 4. Setting an escrow agreement

6.3 NFT Escrow

Since SpartanGold does not have smart contracts, we must enable another way
for an NFT to be transferred between clients. Our solution is to extend the
SpartanGold Client class to create an EscrowClient. An EscrowClient can receive
gold (SpartanGold’s currency) or NFTs just like any other client. However, it
can receive a contract of conditions that different parties agree to take through
the setContract method.1

1 Note that calling this method does not involve transactions on the blockchain, and
it does not provide any defenses against abuse; this design simulates what would be
done through a smart contract in a blockchain that supported them.

118 S. Basu et al.

Figure 4 shows an example using the setContract method. The setContract
method take an array of conditions, which are callback functions returning true
or false. The EscrowClient monitors transactions, testing them against these
functions. Whenever a condition is satisfied, it is removed from the list of condi-
tions. Once the last condition is met, the action callback function is executed,
and then the action itself is deleted. In the example, the contract monitors the
blockchain to watch for alice transferring 150 gold to the escrow account and
for storni to transfer the NFT to the escrow account. Once these actions have
been completed, the escrow account posts transactions to transfer to the gold to
storni and the NFT to alice.

6.4 Crowdfunding

For our implementation, the following code snippet shows how a client storni
advertises a fundraiser, set to expire one minute after the project is posted.

storni.createFundraiser ({

projectName: "Un poema de amor",

projectDescription: "Probablemente pienses que este

canci ón es sobre ti , ¿no es as ı́?",

projectID: "1",

endDate: Date.now() + 60000,

minFunding: "20",

maxFunding: "25",

artistShare: "0.20",

});

The following code shows the initFundraiser method of the NftClient
class. It derives a fundraiser ID from the artist’s ID and the artist’s choice for
project ID, and then stores that fundraiser in the current block.

initFundraiser(artistID , projectID , {

projectName , projectDescription , endDate , maxFunding ,

artistShare ,

}) {

let fundraiserID = this.calcFundraiserID (artistID ,

projectID);

this.fundraisers.set(fundraiserID , {

donations: [],

artistID ,

projectName ,

projectDescription ,

endDate ,

maxFunding ,

artistShare ,

});

}

Crowdfunding NFTs 119

A few changes are then needed in other parts of the code. When the createNft
method from Sect. 6.2 is invoked, the artist must specify the projectID matching
the ID she selected during the fundraising piece. Doing so ensures that the con-
tributors receive a share of the proceeds on the initial sale of the NFT. Of course,
the artist could neglect to specify the projectID and keep the full sale price. How-
ever, the artist’s fundraising history is on the blockchain, and a history of unful-
filled fundraisers is likely to reduce her success in fundraising again in the future.
Of course, she could register additional accounts, but if she is a successful artist,
changing her identity would be to her detriment.

In addition, when an NFT is sold initially, the contract with the escrow service
must also be changed to reward the backers. The code below shows the modified
action that could be registered for the EscrowClient. Note the addition of the
project field with the relevant details of the project.

(p r o j e c t) => {
l e t payment = 450 ;
l e t a r t i s t Sha r e = Math . f l o o r (p r o j e c t . a r t i s t Sha r e ∗ payment) ;
payment −= ar t i s t Sha r e ;
l e t outputs = [] ;
// Giving the artist her cut .
outputs . push ({amount : a r t i s tSha r e , address : s t o r n i . address }) ;
p r o j e c t . backers . forEach (({ id , amount }) => {

l e t reward = Math . f l o o r (payment ∗ amount / p r o j e c t .
to ta lDonat ions) ;

outputs . push ({amount : reward , address : id }) ;
}) ;
esCrow . postTransact ion (outputs) ;
esCrow . t r an s f e rN f t (a l i c e . address , nftID) ;

}

7 Storing Large NFTs on the 0Chain Blockchain

For smaller NFTs, it is feasible to store the entire NFT directly on the blockchain.
However, as the storage needs increase, it becomes exceedingly expensive (or even
prohibitive) to store the data directly on the blockchain. Since our focus is on
providing a market for artists, we discuss how our design may be coupled with
storage using the 0Chain blockchain.

In this section, we first provide a brief overview of 0Chain’s design. Then we
show how our system could be integrated into this blockchain.

7.1 0Chain Overview

To understand our design, a few key features of 0Chain’s architecture must be
understood.

0Chain advertises itself as a high performance decentralized storage network.
Its token-locking reward model (TLRM) [10] allows for “free” transactions or
other services. Instead of paying for service by transferring tokens, clients may
temporarily lock their tokens (making them unavailable) in order to generate
interest, acting somewhat like a bond where the interest is prepaid. That gen-
erated interest may then be given to miners or service providers. Essentially,
clients pay in liquidity, but do not permanently lose their tokens.

120 S. Basu et al.

On the 0Chain blockchain, tokens may be placed in token pools. A client
can then give signed markers to other clients, allowing those other clients to
draw funds from the token pools. The combination of token pools and markers
is roughly analogous to banking accounts and checks.

0Chain’s focus is on creating a marketplace for storage. Blobbers provide the
storage, curated by the blockchain. Data for the blobbers is erasure coded and
encrypted, ensuring that no single blobber is given an inordinate amount of power
over the data that it stores. Through the use of proxy re-encryption [17], the client’s
data can be easily and efficiently re-encrypted for any recipient without revealing
it to the blobbers themselves. Clients then pay blobbers in read markers and write
markers, allowing the blobbers to draw on funds from the appropriate token pools
(referred to as the read pool and write pool respectively).

7.2 Modifications Needed for Storage

The steps that we outlined in the design of our prototype implementation for the
creation and sale of NFTs still apply for NFTs created for the 0Chain blockchain.
However, with 0Chain, we can tie the NFTs to storage allocations directly on
the blockchain. Note that the data is not stored on the blockchain itself, but the
record of payment for storage and the management of the blobbers storing the
data is publicly available on the blockchain.

When the artist writes a transaction to the blockchain creating the NFT,
they must also specify any needed requirements for storage, such as the amount
of data to be stored and the quality of service required. Additionally, they must
provide a supply of ZCN (0Chain’s native token) to fund the initial storage.

Since the NFT itself is not stored on the blockchain directly, a hash of the
content must be stored instead. This hash allows any user accessing the NFT
and its off-chain data to verify its authenticity.

When the NFT Smart Contract creates the NFT, it assigns blobbers to store
the NFT based on the specifications of the artist. The tokens provided by the
artist are divided between the read pool and write pool for the NFT.

Finally, an additional step is needed beyond the process listed in Sect. 4. The
artist must upload the erasure coded and (optionally) encrypted data to the
blobbers. As part of this interaction, the artist must send signed write markers to
each blobber. These markers include a Merkle root [9] of the erasure coded data,
thereby serving both as a handshake between the artist and the blobber and as a
form of payment. The blobber may write a transaction to redeem these markers
on the blockchain, but doing so serves as the blobber’s commitment to store the
data that matches the Merkle root specified by the client. A challenge protocol
probabilistically ensures that the blobber is both storing the data and that it
matches this agreed-upon Merkle root. The blobber is rewarded or punished
depending on the results of the challenge. For more details on this challenge
protocol and the format of the write markers, we refer the interested reader to
Merrill et al. [10].

One significant modification is needed to 0Chain’s architecture for this design.
In the 0Chain ecosystem, allocations of data are permanently tied to a single

Crowdfunding NFTs 121

account. However, with an NFT, we wish to be able to transfer control of the
data corresponding to the NFT to the new owner. Adding this ability would be
relatively straightforward, and could potentially lead to additional applications.

There is one significant challenge that must be addressed, however. If the
data for the NFT is encrypted using proxy re-encryption [17], then the ability
to generate re-encryption keys requires the original private key used to encrypt
the data. This would require the blobbers to re-encrypt the data when an NFT’s
ownership changed, who would need to be compensated for their additional work.
We will discuss that point in more detail in the next section.

When selling an NFT on 0Chain’s network, the ownership of the associated
data allocation must also be transferred with it. While this is not a currently
supported feature, the change to do so seems fairly minor. When the allocation
is transferred to the new owner, the tokens in the corresponding read and write
pools remain associated with it. Therefore, the initial cost of storing the NFT
will already be handled by the previous owner; handling the ongoing storage is
described in the next section.

If the data for the NFT is not encrypted, no other change is needed to
the process. Essentially, a storage allocation for an NFT can be handled like any
other. Ideally, the allocation should be marked as read-only, thereby guaranteeing
to any buyer of an NFT that the content has not changed from the original
hash. While this does not guarantee that the data originally updated is correct,
an auditing service could be used to review the NFT and provide a stamp of
approval on the blockchain.

A more interesting case arises when the data for the NFT is encrypted.
0Chain uses proxy re-encryption. The NFT owner would first erasure code the
data into separate stripes given to each storage provider, and then encrypt the
stripes using its public key. When providing read access to other parties, the
owner would take the receiver’s public key; from that public key and the owner’s
own public/private key pair, the owner generates a re-encryption key. The re-
encryption key is sent to the blobbers, who can re-encrypt the data as if it had
been originally encrypted with the receiver’s public key. The advantage of this
approach is that the blobbers do not have access to the original content, but can
re-encrypt the data for the receiver on the owner’s behalf.

However, when transferring an NFT to a new owner, the data stored must be
re-encrypted for the new owner’s key pair. Fortunately, this re-encryption can
be done entirely on the blobber’s side. When the seller writes a transaction to
transfer ownership of the NFT, they must include the valid re-encryption key.

The blobbers would need to re-encrypt their storage using the re-encryption
key. However, they would need to be compensated for their work, and to ensure
that the Merkle root that they have committed to storing matches the data
that they are actually storing. As a result, the buyer would need to calculate
the Merkle roots for each data chunk and upload matching write markers to all
blobbers.

122 S. Basu et al.

7.3 Funding Storage

For NFTs stored on the blockchain, the initial cost is high, but the NFT owner
does not need to pay maintenance costs. Since data on the blockchain is perma-
nent, it will always be available as long as the full blockchain is stored by some
subset of the mining network.

In contrast, in 0Chain’s ecosystem, storage is an ongoing cost. Clients pay
blobbers for a period of storage; when that period ends, the client must negotiate
to continue the storage contract, or else let the storage allocation expire. This
model allows storage to be done more cheaply, but requires ongoing funds to
maintain the NFT.

However, 0Chain’s token-locking reward model can be used to create perma-
nent storage. By locking tokens for a set period of time, the client earns additional
tokens as a form of pre-paid interest. Those tokens can be spent however the
client wishes, and is the basis for 0Chain’s “free” transaction model.

In order to create permanent storage for an NFT, the owner needs to create
an additional token pool, which we refer to as the NFT funding pool. The NFT
funding pool may be periodically locked in order to generate an ongoing revenue
stream for the NFT’s write pool.

Fig. 5. Fundraising pool

For example, let’s assume that the cost of storing an NFT is 20 tokens for 90
days, and that the interest rate for locking tokens is 10% for the same period.
The owner can create an NFT funding pool with 200 tokens. By locking the
tokens in the NFT funding pool, 20 tokens are minted and added to the write
pool for the NFT. When the storage contract duration elapses, the tokens in the
NFT funding pool are also unlocked, allowing the owner to relock them, thus
continuing funding for the storage. Figure 5 shows a picture of this process.

Crowdfunding NFTs 123

Of course, this design must consider price fluctuations in the cost of storage
and the value of 0Chain tokens, known as ZCN. Should the price of ZCN rise
compared to the cost of storage, additional rewards are generated for the write
pool, and could be used to offset periods where the price drops.

On the other hand, if the cost of storage drops below the amount of tokens
that the NFT funding pool can generate, then the same blobbers will be unwilling
to provide storage. However, other blobbers with lower quality of storage could
be used as backup storage providers. We introduce the notion of archival blobbers;
these blobbers would provide cheap storage, but with extremely low read rates.
In their role, they could help NFTs to weather sudden, unexpected rises in the
cost of storage relative to the value of ZCN.

Some client must initialize the transaction and pay the cost of that trans-
action. With 0Chain, certain types of transactions are designated zero-cost; the
re-locking of NFT funding pools could be added to this list. Alternately, a por-
tion of the minted tokens could be given to the client to compensate them for
the transaction fee, or even to provide a small reward for calling the transaction.

The ability of the token-locking reward protocol to create a steady revenue
stream seems likely to be useful in a number of other areas. Whenever an ongoing
service needs to be funded, this design provides a model of how that funding
could be achieved.

8 Conclusion and Future Work

In this paper, we have proposed a system for helping artists to produce NFTs on
the blockchain. Our crowdsourcing mechanism both helps artists to create their
new projects and more easily reward their backers with a share of the proceeds.
We also show how the 0Chain blockchain could be leveraged to store large NFTs
and how a revenue stream could be created to offset the cost of that storage.

In future work, we intend to explore how these NFTs could be transferred
across blockchains. Additionally, we intend to expand our prototype to further
explore the challenges of NFTs.

References

1. Real estate use cases for blockchain technology. Enterprise Ethereum Alliance -
Real Estate Special Interest Group, vol. 1 (2019)

2. Austin, T.H.: SpartanGold: a blockchain for education, experimentation, and rapid
prototyping. In: Park, Y., Jadav, D., Austin, T. (eds.) SVCC 2020. CCIS, vol. 1383,
pp. 117–133. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72725-3 9

3. Chevet, S.: Land registry on blockchain. Blockchain Technology and Non-Fungible
Tokens: Reshaping Value Chains in Creative Industries. Master’s thesis, Paris,
France (2018)

https://doi.org/10.1007/978-3-030-72725-3_9

124 S. Basu et al.

4. Cryptokitties, cryptopunks and the birth of a cottage industry. Financial Times
(2018)

5. Cryptokitties key information. https://www.cryptokitties.co/technical-details.
Accessed April 2021

6. Dash, A.: NFTs Weren’t Supposed to End Like This. The Atlantic, Washington
(2021)

7. Entriken, A.W., Shirley, D., Evans, J., Sachs, N.: EIP-721: ERC-721 non-fungible
token standard (2018). https://eips.ethereum.org/EIPS/eip-721

8. Kim, M., Hilton, B., Burks, Z., Reyes, J.: Integrating blockchain, smart contract-
tokens, and IoT to design a food traceability solution. In: 2018 IEEE 9th Annual
Information Technology, Electronics and Mobile Communication Conference (IEM-
CON), pp. 335–340 (2018). https://doi.org/10.1109/IEMCON.2018.8615007

9. Merkle, R.C.: Protocols for public key cryptosystems. In: 1980 IEEE Symposium
on Security and Privacy, p. 122 (1980)

10. Merrill, P., Austin, T.H., Thakker, J., Park, Y., Rietz, J.: Lock and load: a model for
free blockchain transactions through token locking. In: IEEE International Confer-
ence on Decentralized Applications and Infrastructures (DAPPCON). IEEE (2019)

11. Müller, M., Janczura, J.A., Ruppel, P.: DeCoCo: blockchain-based decentralized
compensation of digital content purchases. In: 2nd Conference on Blockchain
Research & Applications for Innovative Networks and Services, BRAINS 2020,
Paris, France, 28–30 September 2020, pp. 152–159. IEEE (2020). https://doi.org/
10.1109/BRAINS49436.2020.9223299

12. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf. Accessed 1 April 2021

13. Patil, M.: Land registry on blockchain. Master’s thesis, San José State University,
San Jose, CA, USA (2020)

14. Regner, F., Urbach, N., Schweizer, A.: NFTs in practice - non-fungible tokens as
core component of a blockchain-based event ticketing application. In: Krcmar, H.,
Fedorowicz, J., Boh, W.F., Leimeister, J.M., Wattal, S. (eds.) Proceedings of the
40th International Conference on Information Systems, ICIS 2019, Munich, Ger-
many, 15–18 December 2019. Association for Information Systems (2019). https://
aisel.aisnet.org/icis2019/blockchain fintech/blockchain fintech/1

15. Reitwießner, C., Johnson, N., Vogelsteller, F., Baylina, J., Feldmeier, K., Entriken,
W.: EIP-165: ERC-165 standard interface detection (2018). https://eips.ethereum.
org/EIPS/eip-165

16. Salah, K., Nizamuddin, N., Jayaraman, R., Omar, M.: Blockchain-based soybean
traceability in agricultural supply chain. IEEE Access 7, 73295–73305 (2019).
https://doi.org/10.1109/ACCESS.2019.2918000

17. Selvi, S.S.D., Paul, A., Dirisala, S., Basu, S., Rangan, C.P.: Sharing of encrypted
files in blockchain made simpler. In: Pardalos, P., Kotsireas, I., Guo, Y., Knotten-
belt, W. (eds.) Mathematical Research for Blockchain Economy. SPBE, pp. 45–60.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37110-4 4

18. Stefanović, M., Ristić, S., Stefanović, D., Bojkić, M., Pržulj, D.: Possible applica-
tions of smart contracts in land administration. In: 2018 26th Telecommunications
Forum (TELFOR), pp. 420–425 (2018). https://doi.org/10.1109/TELFOR.2018.
8611872

19. Trautman, L.J.: Virtual art and non-fungible tokens (2021). https://papers.ssrn.
com/sol3/papers.cfm?abstract id=3814087

20. Vogelsteller, F., Buterin, V.: EIP-20: ERC-20 token standard (2015). https://eips.
ethereum.org/EIPS/eip-20

https://www.cryptokitties.co/technical-details
https://eips.ethereum.org/EIPS/eip-721
https://doi.org/10.1109/IEMCON.2018.8615007
https://doi.org/10.1109/BRAINS49436.2020.9223299
https://doi.org/10.1109/BRAINS49436.2020.9223299
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://aisel.aisnet.org/icis2019/blockchain_fintech/blockchain_fintech/1
https://aisel.aisnet.org/icis2019/blockchain_fintech/blockchain_fintech/1
https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-165
https://doi.org/10.1109/ACCESS.2019.2918000
https://doi.org/10.1007/978-3-030-37110-4_4
https://doi.org/10.1109/TELFOR.2018.8611872
https://doi.org/10.1109/TELFOR.2018.8611872
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3814087
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3814087
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Crowdfunding NFTs 125

21. Westerkamp, M., Victor, F., Küpper, A.: Blockchain-based supply chain traceabil-
ity: token recipes model manufacturing processes. In: IEEE International Confer-
ence on Internet of Things (iThings) and IEEE Green Computing and Communi-
cations (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), iThings/GreenCom/CPSCom/SmartData
2018, Halifax, NS, Canada, 30 July–3 August 2018, pp. 1595–1602. IEEE (2018).
https://doi.org/10.1109/Cybermatics 2018.2018.00267

22. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
https://gavwood.com/paper.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/Cybermatics_2018.2018.00267
https://gavwood.com/paper.pdf
http://creativecommons.org/licenses/by/4.0/

	Crowdfunding Non-fungible Tokens on the Blockchain
	1 Introduction
	2 Background
	3 Crowdfunding NFT Creation
	4 Creation of the NFT on the Blockchain
	5 Initial Sale of the NFT
	6 Implementation
	6.1 SpartanGold Overview
	6.2 NFT Basic Operations
	6.3 NFT Escrow
	6.4 Crowdfunding

	7 Storing Large NFTs on the 0Chain Blockchain
	7.1 0Chain Overview
	7.2 Modifications Needed for Storage
	7.3 Funding Storage

	8 Conclusion and Future Work
	References

