
CrowdOracles: Can the Crowd Solve the Oracle Problem?

Fabrizio Pastore and Leonardo Mariani
University of Milano Bicocca

Milan, Italy
{pastore,mariani}@disco.unimib.it

Gordon Fraser
University of Sheffield

Sheffield, UK
Gordon.Fraser@sheffield.ac.uk

Abstract—Despite the recent advances in test generation,
fully automatic software testing remains a dream: Ultimately,
any generated test input depends on a test oracle that deter-
mines correctness, and, except for generic properties such as
“the program shall not crash”, such oracles require human
input in one form or another. CrowdSourcing is a recently
popular technique to automate computations that cannot be
performed by machines, but only by humans. A problem is
split into small chunks, that are then solved by a crowd of
users on the Internet. In this paper we investigate whether it is
possible to exploit CrowdSourcing to solve the oracle problem:
We produce tasks asking users to evaluate CrowdOracles –
assertions that reflect the current behavior of the program. If
the crowd determines that an assertion does not match the
behavior described in the code documentation, then a bug has
been found. Our experiments demonstrate that CrowdOracles
are a viable solution to automate the oracle problem, yet taming
the crowd to get useful results is a difficult task.

Keywords-test oracles, crowd sourcing, test case generation

I. INTRODUCTION

Automatic test generation is an important and intensively
investigated research area, in which many solutions have
been proposed. For example, PEX [1] or DART [2] use dy-
namic symbolic execution, EVOSUITE [3] uses evolutionary
search, and Randoop [4] uses random sampling to generate
test cases. Many of these techniques generate test cases that
stimulate the software under test without explicitly checking
the correctness of the results returned by the tested program.
Unless there is a formal specification, these techniques can
only reveal faults that cause general problems that can
be recognized without requiring any knowledge about the
system under test, such as crashes or uncaught exceptions.
The lack of a means of verifying the correctness of an
execution beyond the presence of general problems is known
as the oracle problem [5]. This problem is extremely relevant
– solving it would enable full automation of software testing.

Automatic synthesis of test assertions is an initial step
towards automatic generation of oracles [3], [4]. Unfortu-
nately, the synthesized assertions are not oracles because
they encode the behavior observed by executing the test
case, rather than the intended behavior. For instance, if
a calculator component implements a faulty sum opera-
tion that always returns 0, a test case that executes sum
with inputs 5 and 3 will include the (incorrect) assertion

Figure 1. An example CrowdOracle task, demonstrating how the oracle
problem can be represented as a Human Intelligence Task (HIT) on com-
mercial CrowdSourcing platforms: Crowd workers decide on the correctness
of the presented assertions based on the code documentation.

assertEquals(0, sum(5,3)) rather than the (cor-
rect) assertion assertEquals(8, sum(5,3)). Even if
the automatically synthesized assertions cannot be consid-
ered oracles, these assertions represent a relevant contribu-
tion towards the generation of oracles. In fact, the generation
of these assertions implies the identification of both the
relevant points where the assertions should be placed and
the right variables that should be checked in the assertion;
and state of the art tools do a good job in both cases [3].

To turn synthesized assertions into oracles it is necessary
to identify and fix the incorrect assertions. Fixing assertions
provides two important benefits: (1) each fixed assertion
usually corresponds to an observed behavior that differs from
the intended behavior, and thus it leads to the immediate
identification of a fault; and (2) the test suite with the
fixed assertions can be effectively and efficiently used for
regression testing because every violation produced in the
future by the assertions will be relevant for developers.

Unfortunately, verifying synthesized assertions can hardly
be automated because it requires human intelligence – cor-
recting an assertion requires understanding what the system
is supposed to do. Humans can usually fix assertions rela-
tively easily because unit tests tend to be short and simple.
In practice, however, developers do not revise synthesized
assertions because the total effort necessary to revise an

entire test suite with many tests and assertions is significant.
Recently, the idea of CrowdSourcing software engineer-

ing problems [6] has gained popularity. CrowdSourcing a
problem consists of specifying it in the form of a Human
Intelligence Task (HIT) and making the problem available
in a CrowdSourcing platform, where registered workers
can choose to complete HITs for a small remuneration.
CrowdSourcing offers a unique opportunity for the oracle
problem: In this paper, we introduce the idea of CrowdOra-
cles, where test cases with synthesized assertions are verified
with respect to the documentation and fixed by the crowd,
thus offering a solution to the oracle problem that, from the
viewpoint of the developer, is fully automated. In detail, the
contributions of this paper are:

• We describe the idea of using CrowdSourcing to over-
come the oracle problem.

• We empirically investigate the feasibility of Crow-
dOracles by studying different models of interactions
with the crowd and different ways of collecting and
combining the results produced by the crowd.

• We empirically investigate how well the crowd behaves,
not only in identifying the wrong assertions, but also
in providing the correct fixes.

We do not systematically look into the aspects that are
affected by rapidly changing factors, such as the economic
convenience of CrowdOracles compared to other solutions,
which is influenced by the relative incomes of countries,
and the time that the crowd requires to complete the tasks,
which is influenced by the number of workers subscribed
to a platform. However, we provide the empirical data that
reflect our experience with the platform that we used, to give
some hints about the current state of the practice.

The main findings of our study are that the crowd can
perform well at verifying CrowdOracles, but the perfor-
mance strongly depends on the qualification of the crowd
and the clarity and complexity of the underlying tests and
documentation. Interestingly, our experiments also showed
that once the crowd has identified a wrong assertion, it can
also fix it. The results of our study can be used to setup a
process for CrowdSourcing the oracle problem.

This paper is organized as follows: Sections II describes
CrowdSourcing and how we CrowdSourced the oracle prob-
lem. Section III elaborates the research questions that are
investigated in this paper. Section IV describes the empirical
process that we followed to answer the research questions,
and Section V reports and discusses the empirical results.
Finally, Section VI discusses related work, and Section VII
provides final remarks.

II. CROWDSOURCING SOFTWARE ENGINEERING TASKS

CrowdSourcing a task can be seen as a problem solving
strategy [7]. To solve a problem, a requester specifies a
Human Intelligence Task (HIT), which encodes the problem,
and assigns it to an undefined (and possibly large) group of

workers (the crowd) who provide their solutions back to the
requester; the requester can then derive the final solution
from the solutions collected from the workers. The workers
are usually rewarded for their work with cash or prizes. A
CrowdSourcing platform mediates the interaction between
the requesters and the workers. Even if the identity of the
workers is unknown, the platforms usually provide a certain
level of control over the profile of the workers who can
accept a HIT.

Amazon Mechanical Turk

There exist a number of platforms that support Crowd-
Sourcing, and each platform has its own crowd and its
own set of features. Well known platforms are Amazon
Mechanical Turk1, CrowdFlσ̂wer2, Gun.io 3,and Topcoder4.
The HITs that encode the oracle problem are quite simple
and most of the platforms are suitable for our purposes. We
selected the Amazon Mechanical Turk (AMT) platform for
our experiments because it is well known, well documented
and it implements a web service API that lets us automate
part of the work.

The typical way of interacting with AMT is the following:
The requestor accesses AMT and creates a new HIT by
providing a title and a description. The description is usually
provided in HTML and includes fields to let workers enter
the results. When entering a HIT into the platform, the
requestor can specify the number of assignments associated
with the HIT, that is the number of (different) workers who
will have to complete the same task. Finally, the requestor
specifies the monetary reward that is provided to a worker
that completes an assignment.

A HIT can be associated with a qualification that must
be owned by a worker to be able to accept it. A requestor
can define new qualifications and can define the test that a
worker has to complete to obtain the qualification. Usually
the test is another HIT that is available in the platform and
that a worker has to successfully complete in order to get
the qualification.

Workers can fully view HITs before accepting them, but
can provide an answer only upon accepting the assignment.
As soon as a worker submits a result for an assignment, the
result is available to the requestor. The requestor can decide
whether to accept or reject a result submitted by a worker.
The worker gets the monetary reward associated with the
HIT only if the requestor accepts the result.

CrowdOracles

In our study each HIT requires checking and fixing the
assertions included in a test case. We implemented an
Eclipse plug-in that automatically creates a HIT, in HTML

1https://www.mturk.com/mturk/welcome
2http://crowdflower.com
3http://gun.io
4http://www.topcoder.com

format, for every JUnit test case in an Eclipse project (or for
a selection of test cases). Every HIT has an initial description
that explains what the worker is supposed to do5. After the
description, the HIT includes the code of the test case, and
next to each assertion there is a form with the following four
options (see Figure 1):

1) the assertion is fine;
2) the Javadoc does not provide enough information to

judge the assertion;
3) the assertion is wrong and the fix consists of removing

it;
4) the assertion is wrong and this is the right assertion:

The worker has to select the proper option. If option 4 is
selected, the worker has to specify the correct assertion in a
textfield.

A test case may include a fail statement rather than
an assert statement, which typically occurs in a try-catch
block to signify an expected exception. In these cases, a HIT
includes slightly different options.

1) the fail assertion is fine (the method before fail should
throw the expected exception);

2) the Javadoc does not provide enough information to
judge the fail assertion;

3) the fail assertion is wrong, an exception should not be
thrown;

4) the fail assertion is wrong, an exception of the following
type should be thrown:

If option 4 is selected, the worker has to specify the
correct exception that should be caught. In the rest of the
paper we will use the term assertion to generally refer to
both, the case of an assert statement and a fail statement.

Each method name or class name that occurs in the HIT
can be clicked to open a pop-up window. If a method name
is clicked, the pop-up window includes the method signature
and the description of the method extracted from the Javadoc
code documentation. If a class name is clicked, the pop-
up window includes the class description extracted from
the Javadoc. This information is useful to help the worker
understanding and analyzing the test case.

In our study we also considered HITs that only workers
with a qualification can accept. To this end, we introduced
the CrowdOracle qualification and a qualification test to
obtain it. The qualification test consists of revising two
assertions and a fail statement included in three test cases.
One assertion is wrong and requires to be fixed, while the
other is correct. The exception caught in the test case with
the fail statement is also wrong and should be changed.
When evaluating the result of the qualification test submitted
by a worker, we assign 20 points for every correct answer,
20 points if the wrong assertion is fixed in the right way,
and 20 points if the exception is fixed in the right way.

5For space reason we do not report the description here, but the tool, the
objects of the study, and the results are available at http://www.lta.disco.
unimib.it/tools/crowd/

Listing 1. Qualification Test
1 public void test1 () {
2 ArrayList list0 = new ArrayList()
3 assertEquals(false, list0.isEmpty());
4 }
5

6 public void test2 () {
7 ArrayList list0 = new ArrayList()
8 Integer int0 = new Integer(3);
9 list0.add(int0);

10 assertEquals(1, list0.size());
11 }
12

13 public void test3 () {
14 ArrayList list0 = new ArrayList()
15 Integer int0 = new Integer(3);
16 list0.add(int0);
17 Integer int1 = new Integer(-2);
18

19 try {
20 list0.add(3,int1);
21 fail("Expecting exception:
22 IllegalArgumentException");
23

24 }catch(IllegalArgumentException e) {
25 }
26 }

A worker gains the qualification if at least 60 out of 100
possible points are obtained. Intuitively 60 points correspond
to the capability of recognizing what is wrong and what is
right, even if the worker is not able to provide any fix. The
objective of the qualification test is to select the workers
that have a reasonable confidence with JUnit tests and
assertions, and prevent that unskilled workers complete our
assignments. Listing 1 shows the code in our qualification
test (to save space we removed the four options following
each assertion).

III. RESEARCH QUESTIONS

In our empirical investigation we consider the following
three key research questions:

• RQ1: Is it possible to use an unqualified crowd to fix
automatically generated assertions?

• RQ2: What is the quality of the results returned by a
qualified crowd?

• RQ3: Is it possible to distill correct CrowdOracles from
the results returned by the crowd?

Research question RQ1 investigates if crowd platforms
can be used without worrying about the profile and expertise
of the workers. The question is whether the workers in a
crowd behave fairly enough to exclude themselves from
accomplishing tasks that are out of their expertise, or on
the contrary workers tend to accept tasks regardless of their
real capability of correctly completing the tasks.

Research question RQ2 investigates what is the quality
of the results returned by the workers in the crowd. If the
crowd generates a high number of wrong results, fixing
automatically generated assertions through the crowd would
be infeasible. On the contrary, a well behaving crowd could
be the basis for generating CrowdOracles. This research
question looks at the results returned by the crowd from

two perspectives. First, we investigate if the crowd is able
to distinguish wrong from correct assertions. Second, we
investigate if the crowd is able to fix the assertions that are
recognized to be wrong.

Research question RQ3 investigates the effectiveness of
the possible processes for taking decisions about the cor-
rectness of synthesized assertions, starting from the results
returned by the crowd. This research question provides
insights about the feasibility of the CrowdOracle approach.

IV. EMPIRICAL SETUP

In this section we describe the objects of the study and the
empirical process that we followed to investigate research
questions RQ1-3.

A. Objects of the Study

To study the capability of the crowd at fixing assertions
generated by tools, we need both a test case generation
technique that produces test cases that include assertions
and applications that include faults. We need applications
with faults otherwise the generated oracles would be always
correct, and the crowd should only confirm the assertions
in the test cases, and we would be unable to measure the
capability of the crowd in fixing wrong assertions.

We used EVOSUITE [3] for generating test cases because
the tool targets Java, a well known language that will likely
be known by a number of workers, and represents the state
of the art in assertion generation.

As applications with faults we considered two sets of
cases: simple cases and hard cases. Simple cases correspond
to the case of assertions embedded into test cases designed
for classes with a clear and well documented interface. The
hard cases correspond to the case of assertions embedded
into test cases designed from classes with a complex and
relatively well documented interface.

We generated the simple cases by injecting faults in the
java.util.Stack class, because it has a clear and well
documented API. Test cases to be submitted to AMT were
produced as follows: First, we used MuJava [8] and its
set of sufficient mutation operators defined in [9] to inject
faults in the Stack class; this resulted in 59 mutants.
Then, we used EVOSUITE to generate, for each mutant,
a full test suite targeting branch coverage. The test cases
that cover the injected faults lead to wrong oracles, which
reflect the incorrect behavior that has been revealed. For
instance, one of the test cases automatically produced by
EVOSUITE is shown in Listing 2. The test case creates
an empty Stack, checks if it is empty and retrieves the
object at the top of the stack causing an exception of
type EmptyStackException. The presence of a fault
in the implementation of class Stack leads EVOSUITE
to generate an erroneous assertion in line 3: the assertion
expects that the invocation of method empty() on the
empty stack returns false instead of true.

Listing 2. Example test generated by EVOSUITE for a Stack class mutant
1 public void test2() {
2 Stack stack0 = new Stack();
3 assertEquals(false, stack0.empty());
4

5 try {
6 stack0.peek();
7

8 fail("Expecting exception:" +
9 "EmptyStackException");

10 } catch(EmptyStackException e) { }
11 }

To automatically detect the wrong assertions we executed
each test case generated by EVOSUITE on the original
Stack class. If a test case fails, it means that the test case
covers the mutation, and thus it likely includes an incorrect
oracle. Using this approach we determined that EVOSUITE
produced 67 test cases that reveal the injected faults for 37
of the 59 mutants. For these test cases we manually double
checked the presence of incorrect oracles. To avoid selecting
trivial or redundant test cases, we manually iterated over the
generated test cases and selected, for each mutant, the test
case with the highest number of assertions that has not been
already selected. This led to 21 test cases, including a total
of 50 assertions. Among these 50 assertions, 27 are correct
and 23 are erroneous assertions that need to be fixed.

The simple cases include no case of incomplete docu-
mentation because the documentation for the Stack class
is fairly complete. Therefore, we complemented the simple
cases with hard cases. The hard cases were obtained by
browsing public bug repositories looking for classes that
(a) have a non-trivial interface, (b) include faults, (c) are
documented with a Javadoc. For these classes we generated
test cases with EVOSUITE, re-executed the test cases on
the version of the class without the fault, to automatically
check if the fault has been revealed; finally, we manually
inspected the test cases to confirm the presence of wrong
oracles. We thus selected four hard cases (summarized in
Table I), originating from the Java libraries Trove4J6, which
provides high performance collection classes, and j85837, a
Java implementation of the ISO 8583 protocol.

Table II summarizes the contents of the test cases for the
hard cases: Rows indicate the individual test cases, whereas
columns discriminate the answers that the workers should
return for each assertion in the test cases. The crowd has
to evaluate 3 correct assertions, 1 assertion that refers to an
incomplete Javadoc, 1 meaningless assertion that should be
removed and 2 wrong assertions that need to be fixed, for a
total of 7 assertions to be evaluated.

B. Empirical Setup for RQ1

To evaluate if workers without a qualification can be used
to produce CrowdOracles, we initially submitted 4 HITs
from the simple cases to AMT. The 4 HITs include a total of

6http://trove4j.sourceforge.net
7http://j8583.sourceforge.net

Table I
DESCRIPTION OF HARD CASES

Case Software Bug Id Description
Study

TC1 Trove4J 846286 The documentation for method
TObjectDoubleHashMap.get(Object
key) erroneously indicates that it returns
true when no value is associated to the given
key. This method should return a primitive
value, a double, thus it cannot return null.

TC2 Trove4J 3196242 Method TIntObjectHashMap.get-
NoEntryKey() erroneously returns the
default value, because the constructor
of the class does not properly set field
noEntryKey.

TC3 Trove4J 3448111 Method TIntArrayList.retainAll
erroneously throws an ArrayIndexOutOf-
BoundsException.

TC4 ISO8583 2941743 Method setAssignDate(boolean)
does not use the passed in argument but
erroneously sets field assignDate to true.

Table II
DETAILS OF HARD CASES

Opt1: correct Opt2: incomplete Opt3: remove Opt4: wrong Totassertion Javadoc the assertion assertion

TC1 - 1 - - 1
TC2 1 - - 1 2
TC3 2 - 1 - 3
TC4 - - - 1 1

Tot 3 1 1 2 7

3 correct assertions, 1 assertion that should be removed and
5 wrong assertions that need to be fixed. For each HIT we
submitted 50 assignments. To evaluate the performance of
the crowd, we measure metrics about both the general ability
of the crowd in evaluating the assertions and the ability of
the crowd in identifying and correcting the wrong assertions.

The considered metrics are:
• Correct: percentage of correct results returned by the

crowd
• Wrong: percentage of wrong results returned by the

crowd
• WrongAssert: percentage of wrong assertions identi-

fied by the crowd
• FixAssert: percentage of wrong assertions correctly

fixed by the crowd

C. Empirical Setup for RQ2

To investigate the quality of the results returned by the
crowd, we submitted the 21 HITs corresponding to the
simple cases and the 4 HITs corresponding to the hard cases.
For each HIT we submitted 20 assignments, for a total of
500 assignments returned by the crowd. Since the correct
answer (i.e., the option that must be selected among the
four available options) to each question is known, the results
returned by the crowd have been checked automatically.
Every time a field contains a new assertion entered by
a worker, we automatically compared the text with the
expected assertion (manually specified by us). The answers
that did not match our assertions were inspected manually
to distinguish the case in which the worker provided a

different but still correct assertion, from the case of a worker
providing the wrong assertion.

Based on the results returned by the crowd (note that here
we used qualified workers only), we compute three groups
of metrics. The first group of metrics measures the ability
of the crowd in recognizing wrong and correct assertions.
The second group of metrics investigates the effectiveness
of the crowd when different answers are expected. The third
group of metrics measures the ability of the crowd in fixing
the incorrect assertions.
As part of the first group we compute the following metrics:

• TP: True Positives - the number of wrong oracles
correctly classified as wrong

• FP: False Positives - the number of correct oracles
incorrectly classified as wrong

• TN: True Negatives - the number of correct oracles
correctly classified as correct

• FN: False Negatives - the number of wrong oracles
incorrectly classified as correct oracles

• Precision: TP
TP+FP - the rate of incorrect oracles in the

set of oracles classified as wrong by the crowd
• Recall: TP

TP+FN - the rate of incorrect oracles discov-
ered by the crowd

As part of the second group, we aggregate the results
according to the option that the worker is expected to select,
and we compute the following metrics:

• Correct: TP+TN
TP+FP+TN+FN - the rate of correct answers

• Wrong: FP+FN
TP+FP+TN+FN - the rate of wrong answers

As part of the third group we compute the following metrics:
• AsIs: percentage of fixes returned by the workers that

exactly match our expectation
• Equivalent: percentage of fixes returned by the workers

that are equivalent but not equal to our expectation
• Wrong: percentage of wrong fixes returned by the

workers

D. Empirical Setup for RQ3

In this research question we investigate if a voting
mechanism can be used to automatically distill a correct
CrowdOracle from the results returned by the crowd. The
idea is that when at least T% of the workers agree on
selecting the same option between the four available options,
the selected option represents the right answer. If there is no
agreement on one option, the crowd has been inconclusive
about the correctness of the evaluated assertion. We evaluate
the quality of the decisions taken by the voting schema for
T=60%, 70%, 80% and 90%. We exclude 50% because two
options may get enough votes to be selected both at the
same time, and we exclude 100% because we assume it is
unrealistic to have a crowd perfectly agreeing on a result.

We investigate the voting schema in the same cases
considered from RQ2. Thus we submit 20 assignments for
each HIT, and we consider both the 21 simple cases and

the 4 hard cases. Since the effectiveness of the voting
schema might be affected by the number of assignments
submitted per HIT, we evaluate the schema with considering
different numbers of NUM ASSIG submitted assignments.
In particular, we consider NUM ASSIG = 5, 10, 15 and 20.

We obtain the results for a number of assignments smaller
than the ones that we really submitted by randomly selecting
NUM ASSIG answers from the results returned by the
crowd and applying the voting schema to the data pool. To
mitigate the effect of randomness we repeat the process 100
times and we report average results.

To evaluate the results, for each combination of values T
and NUM ASSIG, we compute the following metrics:

• CORRECT: Percentage of correct results returned by
the voting schema

• INCONCLUSIVE: Percentage of inconclusive results
returned by the voting schema

• WRONG: Percentage of wrong results returned by the
voting schema

• DISCOVERED: Percentage of wrong assertions dis-
covered by the voting schema

Finally, to investigate if, in addition to identifying the
wrong and correct assertions, it is possible to automatically
fix assertions, we evaluate the following mechanism. When
an assertion is classified as wrong, we collect all the asser-
tions provided by the workers. If at least T% of the returned
assertions match, we automatically replace the assertion in
the test with the one identified by the crowd. We evaluate
this strategy by computing for every combination T and
NUM ASSIG the following metrics:

• FIXED: percentage of wrong assertions replaced with
a correct assertion

• WRONG FIX: percentage of wrong assertions re-
placed with an incorrect assertion

• MAYBE FIXED: percentage of wrong assertions with
no decision, with the majority of workers agreeing on
the new correct assertion (but the number of workers
who agree are less than T%)

• SUGGESTED: percentage of wrong assertions with no
decision, with a minority of workers agreeing on the
new correct assertion

• NO FIX: percentage of wrong assertions with no
decision and no worker suggesting the right fix

V. RESULTS

In this section we present the results obtained for RQ1-
3, report additional information about our experience, and
discuss the threats to validity.

RQ1: Is it possible to use an unqualified crowd to fix
automatically generated assertions?

Table III reports the results obtained by using unqualified
workers. We can notice that the unqualified workers selected
a wrong option in 62% of the cases, denoting a poor

Table III
QUALITY OF THE RESULTS RETURNED BY THE UNQUALIFIED CROWD

Unqualified Crowd

Correct 38%
Wrong 62%

WrongAssert 20%
FixAssert 11%

Table IV
QUALITY OF THE RESULTS RETURNED BY THE CROWD

Simple Cases Hard Cases

TP 371 43
FP 46 32
TN 526 53
FN 57 12

Precision 0.89 0.57
Recall 0.86 0.78

Correct 0.90 0.69
Wrong 0.10 0.31

ability of evaluating assertions. The already poor results are
even worse when the assertion that is evaluated must be
classified as a wrong assertion. In fact in only the 20% of the
cases the workers recognized a wrong assertion as wrong.
Note that this result is even worse than a random choice,
which on average provides the right answer in 25% of the
cases. Finally, only a few times (11% of the cases) workers
succeeded in specifying the right fix for an assertion that
has been qualified as wrong.

In summary, the results with four simple cases for the
Stack class clearly indicate that CrowdOracles cannot be
produced using an unqualified crowd. We believe that this
behavior of the crowd is not specific to the oracle problem,
but is general and would likely be observed whenever HITs
that require technical knowledge need to be evaluated.

The unqualified crowd is not suitable for performing
technical tasks that require specific knowledge.

This, however, is a problem that can be overcome by using
only qualified workers. A qualification test may reduce the
pool of workers to choose from, which may result in longer
response times or may require higher renumeration, but it
avoids receiving unnecessary wrong responses. For the two
remaining empirical questions we used a qualified crowd,
obtained according to the process described in Section II.

RQ2: What is the quality of the results returned by a
qualified crowd?

Table IV reports data about the performance of the
qualified crowd in recognizing the wrong oracles among
the assertions that occur in the submitted HITs. As one
would expect, we can notice that the qualified crowd behaves
definitely better than the unqualified crowd. In fact for the
simple cases the rate of wrong answers drops from 62%
to 10%. Moreover, the crowd performed a good job in
indicating as wrong only the incorrect oracles (precision

Table V
QUALITY OF THE RESULTS PER OPTION

Simple Cases Hard Cases
Correct Wrong Correct Wrong

Opt 1 (correct assertion) 90% 10% 46% 54%
Opt 2 (wrong Javadoc) - - 35% 65%
Opt 3 (remove the assertion) 89% 11% 80% 20%
Opt 4 (wrong assertion) 79% 21% 50% 50%

0.89) and detecting most of the incorrect oracles (recall
0.86).

These good results are essentially confirmed in the hard
cases. In fact, the rate of correct answers, even though
slightly decreased, is still high (69% of the answers are
correct). In the hard cases, the crowd seems to be more
conservative in judging oracles, reflected by a relatively
high recall (0.78 compared to 0.86 for simple cases), which
indicates that still many of the wrong oracles are discovered.
However, the precision (0.57 compared to 0.89 for the simple
cases) decreases more compared to the simple cases, which
suggests that when in doubt the crowd prefers to classify an
assertion as wrong. This conservative behavior of the crowd
is beneficial because it reduces the risk of overlooking at
wrong assertions and increases the number of faults that
can be discovered through the CrowdOracle approach.

A qualified crowd can support
the CrowdOracle approach.

Table V shows the performance of the crowd per option.
We can notice that workers handled assertions that must
be removed and wrong assertions in both simple and hard
cases well. Surprisingly, the workers address the correct
assertions in the simple cases well, while they perform
poorly with the correct assertions in the hard cases. This
is due to the complexity of the interfaces and lack of
clarity of the Javadoc that describes the methods used in
the tests. An example is the Javadoc for the constructor of
TIntObjectHashMap, a Map tailored for using keys of
integer type, that indicates that the first argument, initial-
Capacity, is used to find a prime capacity for the table.
This Javadoc led workers to errors when evaluating the
assertion in line 2 of test TC3 (Listing 3): They expected
the return value of capacity() to be 174 instead of 3,
while it is correct that capacity() returns 3 8. This is
reflected by only 35% of the workers correctly answering
that the Javadoc does not provide enough information to
judge this assertion. We can conclude that the clarity of the
documentation is of huge relevance for the performance of
the crowd.

Poor documentation strongly degrades
the performance of the crowd.

Listing 3. Portion of the test case TC3 for class TIntObjectHashMap
1TIntObjectHashMap tIntObjectHashMap0 =
2 new TIntObjectHashMap(174, -1305.8732F, 174);
3assertEquals(3, tIntObjectHashMap0.capacity());

Table VI
ABILITY OF FIXING ASSERTIONS

Simple Cases Hard Cases

AsIs 249 (83%) 17 (85%)
Equivalent 13 (4%) 2 (10%)

Wrong 38 (13%) 1 (5%)

Table VI summarizes data about the quality of the fixes
suggested by the workers when a wrong assertion is iden-
tified. When workers identify wrong oracles, the workers
perform exceptionally well in providing the right assertion
that should replace the existing one. Our data show that
workers tend to perform better with hard cases, which led to
95% of correct assertions vs. the 87% of the simple cases. A
possible explanation is that the wrong assertions of the hard
cases are detected only by good Java programmers who are
also able to properly fix the assertion. The workers provided
exactly the assertion that we expected in 83% and 85%of the
simple and hard cases, and equivalent assertions in 4% and
10% of the simple and hard cases, respectively. Equivalent
assertions are correct assertions that do not syntactically
match the one expected. This difference on the percentage
of equivalent assertions seems to depend mostly on the
number of assignments which tend to mask the outliers in
the simple cases. In most of the cases equivalent answers
just include additional Java style comments that explain the
worker choice.

The crowd performs well at
fixing assertions detected as wrong.

RQ3: Is it possible to distill correct CrowdOracles from the
results returned by the crowd?

The previous section showed that a qualified crowd can
support oracle generation in principle. The aim of this
research question is to determine if we can make use of the
information gathered from the crowd in making decisions
on the correctness of assertions.

Tables VII and VIII summarize the results of the decisions
taken as described in Section IV. For the simple cases we
can notice that the number of wrong decisions is extremely
small: 4.18% in one configuration, less than 2% in seven
configurations and 0% for the rest. In addition, the number
of correct decisions is extremely high, especially for T=60%
(the percentage of correct answers ranges from 92.72% to
94%) and T=70% (the percentage of correct answers ranges

8JavaDoc is misleading because the HashMap implementation differs
in Trove and Java JDK: the former uses the initialCapacity parameter
to estimate the initial capacity of the Map, the latter uses the value of
the parameter as the actual initial capacity of the Map. For details see
http://sourceforge.net/p/trove4j/bugs/137/

Table VII
RESULTS FOR RESEARCH QUESTION RQ3 (SIMPLE CASES)

NUM ASSIG T Correct Inconclusive Wrong Discovered Fixed Maybe Fixed Suggested No Fix Wrong Fix

5

60% 93.28 2.54 4.18 89.783 79.421 6.105 0.684 12.421 1.368
70% 81.28 17.78 0.94 74.261 61.737 7.895 0.842 29.421 0.105
80% 81.28 17.78 0.94 74.261 50.474 19.158 0.895 29.474 0
90% 56.08 43.9 0.02 40.522 21.789 16.421 0.211 61.579 0

10

60% 92.72 5.64 1.64 87.957 78.368 6.316 0.684 14.579 0.053
70% 86.64 13.04 0.32 81.261 67.579 9.316 0.421 22.684 0
80% 77.58 22.38 0.04 70.522 50.053 15.316 0.158 34.474 0
90% 63.88 36.12 0 51.348 26.211 21.947 0 51.842 0

15

60% 93.96 5.1 0.94 88.652 79.368 6.316 0.579 13.737 0
70% 82.2 17.8 0 76.957 63 9.105 0 27.895 0
80% 75.18 24.82 0 69.348 50.895 12 0 37.105 0
90% 53.46 46.54 0 36.174 27.421 7.368 0 65.211 0

20

60% 94 6 0 86.957 84.211 0 0 15.789 0
70% 86 14 0 78.261 63.158 10.526 0 26.316 0
80% 74 26 0 69.565 52.632 10.526 0 36.842 0
90% 60 40 0 43.478 31.579 10.526 0 57.895 0

Table VIII
RESULTS FOR RESEARCH QUESTION RQ3 (HARD CASES)

NUM ASSIG T Correct Inconclusive Wrong Discovered Fixed Maybe Fixed Suggested No Fix Wrong Fix

5

60% 52.286 15 32.714 64.667 49.5 0.5 0 50 0
70% 38.143 40.571 21.286 58.667 45.5 4.5 0 50 0
80% 38.143 40.571 21.286 58.667 45.5 4.5 0 50 0
90% 21.857 65.143 13 42 23 27 0 50 0

10

60% 53.143 19 27.857 66.667 50 0 0 50 0
70% 43.571 32.571 23.857 64.667 50 0 0 50 0
80% 33.143 47.714 19.143 56.667 46 4 0 50 0
90% 21.143 62.857 16 44.667 30.5 19.5 0 50 0

15

60% 52.857 18.571 28.571 66.667 50 0 0 50 0
70% 41 38.286 20.714 66.667 50 0 0 50 0
80% 30 53.429 16.571 58.333 50 0 0 50 0
90% 15 70.571 14.429 34.667 7.5 42.5 0 50 0

20

60% 57.143 14.286 28.571 66.667 50 0 0 50 0
70% 42.857 28.571 28.571 66.667 50 0 0 50 0
80% 28.571 57.143 14.286 66.667 50 0 0 50 0
90% 14.286 71.429 14.286 33.333 0 50 0 50 0

from 81.28% to 86.64%). Higher values for T and number
of assignments minimize the risk of wrong decisions. The
choice of the best configuration largely depends on the
possibility to tolerate the presence of few wrong oracles in
the final test suite.

The best configuration depends on whether to minimize
wrong oracles or maximize detection of wrong assertions.

Results indicate that even few assignments per HIT could
be effective if a few wrong oracles are acceptable. In fact
T=60% and 5 assignments per HIT are sufficient to correctly
identify 93.28% of the correct assertions, discover 89.78%
of the wrong ones, and fix 79.42% of the wrong ones.

If the presence of wrong oracles must be minimized, the
best configuration consists of T=70% with 15-20 submitted
assignments. Here, the number of correct decisions decreases
to about 82%-86%, and the number of inconclusive decisions
rises to 14%-18%. To be conservative about the assertions
that should occur in a test case, those without decision
could be removed, and only those with a decision could be
preserved (if evaluated as correct by the crowd) or replaced
with the correct one (if evaluated as wrong by the crowd).

This configuration reveals 76.95%-78.26% of the wrong
assertions, while the rest are evaluated as inconclusive by
the crowd, and thus would be eliminated according to the
suggested process. When a wrong assertion is discovered,
the right assertion is automatically obtained in most of the
cases (around 86%), thus allowing to fix wrong assertions in
63% of the cases. When the right assertion is not obtained
automatically, the right assertion is always the one with the
highest number of preferences, thus it seems reasonable to
always suggest the majority choice as a replacement.

For the hard cases the number of wrong answers can
be minimized by using T=90%. Even with a few number
of submitted assignments, 5-10, the crowd provides wrong
decisions only in 13%-16% of the cases, identifies 42%-
44.67% of wrong assertions, but provides 65.14%-62.85%
of inconclusive results. To lower the number of inconclusive
results without maximizing the number of wrong answers
a configuration with T=70% and 10-15 submitted assign-
ments can be adopted. This configuration allows to discover
64.67%-66.67% of wrong assertions, provide 41%-43.57%
of correct answers, and repair 50% of the wrong assertions.

Other Notes From Our Experience

Our main objective was to evaluate the CrowdOracle
approach, with special emphasis on the correctness of the
results returned by the crowd. However, there are secondary
aspects that are worth to be mentioned.

One interesting aspect is the time passing from the
submission of a HIT to the reception of the results. This
information does not represent a kind of durable knowledge
because it depends on the number of workers registered on
a CrowdSourcing platform. However, we want to report data
about the state of the practice at the time we conducted the
experiment.

According to our empirical investigation the best config-
urations require submitting a number of assignments per
HIT between 5 and 15. When interacting with the crowd
without using a qualification, it took only 4 hours (median
value) to receive 20 assignments per HIT. However, the
quick responses produced by the unqualified crowd resulted
of little use for the CrowdOracle approach.

The median time taken by the qualified workers to com-
plete 5, 10 and 15 assignments consisted of 4, 17 and 26
days, respectively. The time required to complete from 5 to
10 assignments per HIT, which covers most of the optimal
configurations that we identified, could be already acceptable
in a real scenario. If the CrowdSourcing approach gains
popularity in the future, the timing aspect would naturally
improve, thus increasing the number of configurations that
can produce results in few days. The use of professional
crowd based testing services, such as uTest9, instead of free
platforms is another option for reducing the response time.

We also want to report that the cost for generating
CrowdOracles is extremely small, definitely smaller than
hiring someone just for fixing assertions in test cases. In
fact, for each completed assignment we paid 0.05$+0.05$×
number of assertions in the assignment, for a total cost per
assignment ranging from 0.15$ to 0.2$. The amount paid
per HIT is likely to affect the speed and quality of results.

Threats to Validity

Our results might be affected by the crowd registered
at Amazon Mechanical Turk, and might be different using
other CrowdSourcing platforms. This threat is mitigated by
the qualification test. In fact, our qualification test would
likely select a similar subset of workers in any platform. We
do not expect the results about the quality of the responses
would change much by changing platform (on the contrary
the timing aspect could change significantly).

The results cannot be generalized, as we used a relatively
small combination of simple and hard cases. Even so, the
reported data include relevant insights about the quality
of the results that can be returned by the crowd, and the
performance of different decision processes that can be

9http://www.utest.com

defined to automatically fix assertions. The reported results
can thus be used to setup a baseline for future similar studies.

In principle, different mechanisms can be used to derive
conclusions from results returned by the crowd. In this initial
study we used what we believe is an obvious voting schema;
results might change with different decision processes.

The results could be affected by the techniques that we
used to generate the tests and the assertions. To mitigate
this issue, we used a state of the art technique to generate
tests with assertions; we do not expect results could improve
considering other techniques.

VI. RELATED WORK

Many techniques to produce inputs have been proposed
over the years. Yet, the problem of the expected outcome
persists, and has become known as the oracle problem [5].
In general, the term test oracle refers to both, the information
about the expected behavior, and the procedure to verify this
behavior on a concrete execution.

In the case of unit testing, oracles are usually specified in
terms of test assertions. Such assertions can be synthesized
for automatically generated tests. For example, Randoop [4]
can include assertions based on annotated observer methods.
Orstra [10] generates assertions based on observed return
values and object states and adds assertions to check future
runs against these observations. As the number of assertions
can be large, and many of the assertions are actually irrel-
evant for a given test, Fraser and Zeller proposed mutation
analysis as a technique to identify fault revealing asser-
tions [11]. A related approach to synthesize assertions aims
to distinguish two versions of the same program [12], [13].
In all of these cases, assertions reflect the current behavior
of the program, and not the intended behavior. A noteworthy
exception is Eclat [14], which generates assertions based on
a model learned from a set of tests that are assumed to be
correct. However, ultimately these assertions also need to be
manually verified. Consequently, CrowdOracles can be seen
as the logical next step after applying such approaches.

As software evolves, assertions that passed previously
might fail on future versions. The idea of test repair, as
for example done by the ReAssert tool [15], is to suggest
possible assertion fixes to the developer. It is conceivable to
apply the CrowdOracle approach also in a scenario of test
repair, in order to let the crowd decide whether the program
is now faulty, or whether the assertion needs to be fixed.

The use of CrowdSourcing in software engineering ex-
perimentation is recently becoming popular. For example,
Stolee and Elbaum [6] performed a study on the effects of
code smells on user’s perference and understandability of
web mashups. Their experiences are along the line of our
own: Qualification tests are necessary in order to guarantee
that resulting data is useful, yet it has a negative impact on
the response rate. Applications of CrowdSourcing related to
software engineering range from database queries [16] to

graphical perception experiments [17]. However, to the best
of our knowledge our work is the first to apply CrowdSourc-
ing to software testing and the oracle problem. In general,
although CrowdSourcing is very popular, many questions are
still open, and current research is trying to better understand
and use CrowdSourcing (e.g., [18]).

VII. CONCLUSION

The oracle problem is one of the main challenges in
software testing, as it makes full automation impossible.
To overcome this issue, we have proposed the use of
CrowdSourcing in this paper in terms of CrowdOracles.
From the point of view of the developer, CrowdOracles
make it possible to fully automate software testing – on the
click of a button, the developer could produce tests, and the
crowd would decide which of the tests failed, based on the
documentation. Our empirical investigation showed that this
approach is indeed possible.

However, our experiments also revealed that the CrowdO-
racles approach highly depends on the ability to represent
the oracle problem in a simple and understandable way. An
essential prerequisite for this are clear and well documented
interfaces – which is desirable in any case, yet not always
done in practice. Similarly, the test cases need to be easy
to understand, in order to keep the human oracle costs to
a minimum. Consequently, our results point out important
directions of future work.

Our current approach relies on the developer providing
sufficient API documentation to make it possible for crowd
workers to determine the correctness of assertions. In prin-
ciple, this process could be supported by natural language
processing [19], for example by filtering out obvious bugs. A
fault detected by the crowd may of course also be a fault in
the documentation and not the code – this is also a bug and
is just as valuable to know for the developer. In fact, even the
information that an assertion cannot be conclusively verified
by the crowd points out a problem in the documentation, so
it is conceivable to use our approach to test documentations.

CrowdSourcing has opened up new possibilities for soft-
ware engineering, as demonstrated by the CrowdOracles
approach. We believe that CrowdOracles can currently pro-
vide practical benefits especially for open-source software.
In fact even in presence of long Crowd response time,
open source systems with frequent maintenance releases will
benefit from test cases generated automatically and validated
with CrowdOracles. Furthermore the availability of source
code will limit the drawbacks of incomplete documentation.

Our future work will face the issues identified in our
study. We are planning an evaluation of CrowdOracles on a
broader set of case studies, and the comparison of results
obtained with generic and professional crowds. We are
also considering the possibility to adopt the CrowdOracle
approach as a mean to measure the quality of a program’s
documentation.

REFERENCES

[1] N. Tillmann and J. D. Halleux, “Pex: white box test gener-
ation for .NET,” in Proc. International Conference on Tests
and Proofs. Springer-Verlag, 2008, pp. 134–253.

[2] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed auto-
mated random testing,” in Proc. Conference on Programming
Language Design and Implementation, 2005, pp. 213 – 223.

[3] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite gen-
eration for object-oriented software,” in Proc. ACM SIGSOFT
Symposium and the European Conference on Foundations of
Software Engineering. ACM, 2011, pp. 416–419.

[4] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed
random testing for Java,” in Proc. Object-oriented Program-
ming Systems and Applications, 2007, pp. 815–816.

[5] E. Miller and W. E. Howden, Software Testing and Validation
Techniques, 2nd ed. IEEE Computer Society, 1981.

[6] K. T. Stolee and S. Elbaum, “Exploring the use of crowd-
sourcing to support empirical studies in software engineer-
ing,” in Proc. International Symposium on Empirical Software
Engineering and Measurement, 2010, pp. 35:1–35:4.

[7] J. Howe, “The rise of crowdsourcing,” Wired, vol. 14, no. 6,
June 2006.

[8] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: a mutation
system for Java,” in Proc. International Conference on Soft-
ware Engineering, tool demo, 2006, pp. 827 – 830.

[9] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf, “An experimental determination of sufficient mutant
operators,” ACM Transactions on Software Engineering and
Methodology, vol. 5, no. 2, pp. 99–118, 1996.

[10] T. Xie, “Augmenting automatically generated unit-test suites
with regression oracle checking,” in Proc. European Confer-
ence on Object-Oriented Programming, 2006, pp. 380–403.

[11] G. Fraser and A. Zeller, “Mutation-driven generation of unit
tests and oracles,” IEEE Transactions on Software Engineer-
ing, vol. 38, no. 2, pp. 278–292, 2011.

[12] R. Evans and A. Savoia, “Differential testing: a new approach
to change detection,” in Proc. European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, 2007, pp. 549–552.

[13] K. Taneja and T. Xie, “DiffGen: Automated regression unit-
test generation,” in Proc. IEEE/ACM International Confer-
ence on Automated Software Engineering, 2008, pp. 407–410.

[14] C. Pacheco and M. D. Ernst, “Eclat: Automatic generation
and classification of test inputs,” in Proc. European Confer-
ence on Object-Oriented Programming, 2005, pp. 504–527.

[15] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert:
Suggesting repairs for broken unit tests,” in Proc. Int. Confer-
ence on Automated Software Engineering, 2009, pp. 433–444.

[16] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin, “CrowdDB: answering queries with crowdsourcing,”
in Proc. Int. Conf. on Management of Data, 2011, pp. 61–72.

[17] J. Heer and M. Bostock, “Crowdsourcing graphical percep-
tion: using mechanical turk to assess visualization design,”
in Proc. International Conference on Human Factors in
Computing Systems, 2010, pp. 203–212.

[18] J. J. Horton and L. B. Chilton, “The labor economics of
paid crowdsourcing,” in Proc. ACM conference on Electronic
commerce. ACM, 2010, pp. 209–218.

[19] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and
A. Paradkar, “Inferring method specifications from natural
language API descriptions,” in Proc. International Conference
on Software Engineering, June 2012, pp. 815–825.

