#### **Crowds:** Anonymity for Web Transactions

## Paper by: Michael K. Reiter and Aviel D. Rubin,

Presented by Eric M. Busse

Portions excerpt from Crowds: Anonymity for Web Transactions Michael K. Reiter and Aviel D. Rubin AT&T Labs Research

#### How safe is web browsing?

- Web surfing is exposed to many types of monitoring and tracking, many of which may be undesirable
- SSL and existing technologies do not address these issues
- What can we do to prevent this sort of monitoring?

#### Crowds

Crowds seeks to obscure the actions of the individual within those of a group, by randomly forwarding requests from members between each other before sending them to their final destination.

This gives us deniability!

# Conceptually, is this a good solution?

That really all depends...

- Joining a group makes you a coconspirator
- You could be held accountable for fulfilling someone else's request
- Crowds can be undermined by some types of content (which are becoming progressively more common)

#### Overview

- Each user is represented by a *Jondo*.
- Jondos contact a blender to join a crowd.
- At the first request for a web page the users Jondo contacts another Jondo at random to begin constructing a path.
- Each path has a path key, meaning encryption of requested content is only preformed at the end points of the jondo chain.

#### Jondos

- Each jondo maintains a list of other active jondos
- Each jondo has a shared key which is known to all other jondos (by way of the blender) to allow for secure communication between jondos.
- Jondos perform limited page processing both to prevent certain attacks and remove dangerous content.

#### Blenders

- Authenticate jondos
- Maintain a list of active jondos and their shared keys
- Schedule "join-commit" events
- Blender failure will not entirely compromise the crowd, or disrupt communication between existing members.

#### Improves on Related Research...

- Anonymizer & LPWA (Proxies)
- Mixnets

## Analysis

#### Anonymity (Security), Performance & Scalability

## General types of Anonymity

- Sender Anonymity
- Receiver Anonymity
- Unlinkability of Sender and Reciver

To this the authors add:Degree of Anonymity

### **Degrees of Anonymity**

Absolutely Privacy

- Beyond Suspicion
- Probable Innocence
- Possible Innocence

Provably Exposed

Crowds

Most Web Browsers

#### Attackers and Crowds Safety

Attackers:

- Local Eavesdroppers
- End Servers
- Collaborating crowd members

| Attacker                            | Sender anonymity                                            | Receiver anonymity                                          |  |  |
|-------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--|--|
| local eavesdropper                  | exposed                                                     | $P(\text{beyond suspicion}) \xrightarrow[n \to \infty]{} 1$ |  |  |
| c collaborating members,            | probable innocence                                          | $P(\text{absolute privacy}) \xrightarrow[n \to \infty]{} 1$ |  |  |
| $n \geq \frac{p_f}{p_f - 1/2}(c+1)$ | $P(\text{absolute privacy}) \xrightarrow[n \to \infty]{} 1$ |                                                             |  |  |
| end server                          | beyond suspicion                                            | N/A                                                         |  |  |

#### Local Eavesdropper

- Request initiation is obvious, however the destination is obscured.
- This is only compromised in the event that the user is unlucky and is at the end of his particular chain
- The above event is unlikely as the probability is inversely proportional to crowd size.

#### **End Servers**

 Because of the nature of the crowd and the manner in which messages are passed between members it is equally likely that any member initiated the request.

#### **Collaborating Jondos**

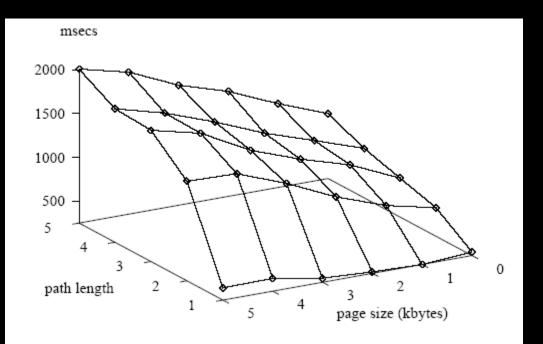
- The goal of collaborating jondos is to determine the path back to the initiator of the request
- Assuming *pF* is > ½, n is the number of crowd members, c is the number of collaborators we have:

$$n \geq \frac{p_f}{p_f - 1/2}(c+1)$$

Which means that the path initiator has probable innocence

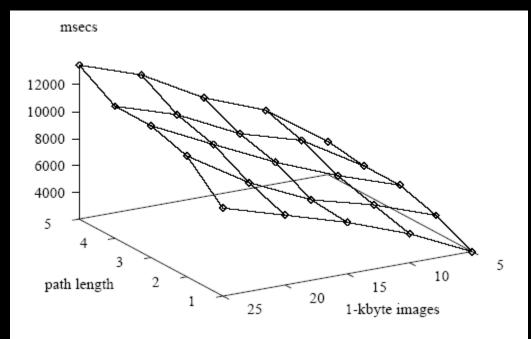
### **Timing Attacks**

- These attacks arise out of the nature of web content, as an HTML page is parsed additional requests are generated from links on the page (images, jscript, etc).
- By timing the gap between a page request and the subsequent requests of its linked content a corrupt jondo on the path can attempt to deduce the position of the initiator
- This is avoided by the mechanism mentioned earlier.


#### Path Reasoning

- Static vs. Dynamic
- Dynamic changes increase the odds of a collaborator being on your path
- A path will only be altered at a "joincommit" or because a node sends a "fail stop"
- A malicious jondo(s) executing a "fail stop" will not compromise the initiator

#### Crowd Control


- The blender should have limits on the number of jondos allowed to associated with a single username/IP
- Two types of crowds should exist, large public crowds, and smaller personal crowds

#### Performance



| Path   | Page size (kbytes) |      |      |      |      |      |  |  |
|--------|--------------------|------|------|------|------|------|--|--|
| length | 0                  | 1    | 2    | 3    | 4    | 5    |  |  |
| 1      | 288                | 247  | 264  | 294  | 393  | 386  |  |  |
| 2      | 573                | 700  | 900  | 1157 | 1369 | 1384 |  |  |
| 3      | 692                | 945  | 1113 | 1316 | 1612 | 1748 |  |  |
| 4      | 814                | 1004 | 1191 | 1421 | 1623 | 1774 |  |  |
| 5      | 992                | 1205 | 1446 | 1620 | 1870 | 2007 |  |  |

#### Performance, cont'd



| Path   | Number of 1-kbyte images |      |      |       |       |  |  |
|--------|--------------------------|------|------|-------|-------|--|--|
| length | 5                        | 10   | 15   | 20    | 25    |  |  |
| 1      | 2069                     | 4200 | 5866 | 7219  | 8557  |  |  |
| 2      | 3313                     | 4915 | 6101 | 8195  | 10994 |  |  |
| 3      | 4127                     | 5654 | 7464 | 9611  | 11809 |  |  |
| 4      | 4122                     | 6840 | 8156 | 10380 | 11823 |  |  |
| 5      | 4508                     | 7644 | 9388 | 11889 | 13438 |  |  |

#### **Performance Implications**

- Paths are relatively fixed, hence slow links on a path can dramatically impact performance.
- Path length, and therefore *pF* also factor heavily into the performance.

$$\begin{aligned} (1-p_f)\sum_{k=0}^{\infty} (k+2)(p_f)^k \ &= \ (1-p_f)\left[\sum_{k=0}^{\infty} k(p_f)^k + 2\sum_{k=0}^{\infty} (p_f)^k\right] \\ &= \ (1-p_f)\left[\frac{p_f}{(1-p_f)^2} + \frac{2}{1-p_f}\right] \\ &= \ \frac{p_f}{1-p_f} + 2 \end{aligned}$$

#### Scale

- The upper bound on the number of times a jondo appears on a given path is
   O { 1/(1-pF)^2 [ 1 + (1 + (1/n)) ] }
- As a consequence of this result the load on any given jondo will remain constant as the number of crowd members increases
- Throughput on the network increases as the number of crowd members increases

#### **Other Concerns**

Firewalls pose a special concern for Crowds users as they prevent jondos outside the wall from forming paths involving jondos within the wall. While a jondo inside a wall can create a path involving those outside his security is seriously compromised.

#### Questions?

To clarify the "Wide Mouth Frog" protocol is also known as the "Otway-Rees Protocol"

When Alice wants to talk to Bob she asks Troy, the trusted third party, to assist in the key exchange.

The process is as follows: A - Identity or location of Alice B - Identity or location of Bob Ka - Key shared between Troy and Alice Kb - Key shared between Troy and Bob Sab - Secret shared between Alice and Bob for session communication

Exchange: Alice -> Troy {B,Sab}Ka Troy -> Bob {A,Sab}Kb In this manner Alice uses Troy to securely share a secret with Bob.