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Cognitive radio technology allows unlicensed users to utilize licensed wireless spectrum if the wireless spectrum is unused by
licensed users. �erefore, spectrum sensing should be carried out before unlicensed users access the wireless spectrum. Since
mobile terminals such as smartphones are more and more intelligent, they can sense the wireless spectrum. �e method that
spectrum sensing task is assigned to mobile intelligent terminals is called crowdsourcing. For a large-scale region, we propose
the crowdsourcing paradigm to assign mobile users the spectrum sensing task. �e sensing task assignment is in	uenced by some
factors including remaining energy, locations, and costs of mobile terminals. Considering these constraints, we design a precise
sensing e
ect function with a local constraint and aim to maximize this sensing e
ect to address crowdsensing task assignment.
�e problem of crowdsensing task assignment is di�cult to solve since we prove that it is NP-hard.We design an optimal algorithm
based on particle swarm optimization to solve this problem. Simulation results show our algorithm achieves higher performance
than the other algorithms.

1. Introduction

In recent years, the wireless tra�c has grown heavily and
this case leads to crowd wireless spectrum. According to the
current policy that wireless spectrum assignment is �xed,
only licensed users can utilize the licensed wireless spectrum.
Even though the wireless spectrum is idle, unlicensed users
cannot use the idle spectrum.�erefore, the current policy of
spectrum assignment leads to low ratio of wireless spectrum
utilization. To solve this problem, cognitive radio has recently
emerged to improve wireless spectrum utilization [1]. When
the licensed wireless spectrum is idle, cognitive radio makes
unlicensed users utilize the wireless spectrum. �erefore,
unlicensed users should carry out spectrum sensing before
they use the wireless spectrum.

With the development of mobile terminals such as
smartphones and pads, a new paradigm called mobile crowd
sensing and computing (MCSC) appears [2]. �e formal
de�nition of MCSC is described as follows: a new sensing

paradigm that empowers ordinary citizens to contribute data
sensed or generated from their mobile devices and aggregates
and fuses the data in the cloud for crowd intelligence
extraction and human-centric service delivery.

Inspired by MCSC, mobile terminals con�gured with
sensors are leveraged to accomplish spectrum sensing task.
In the same spirit, with the recent Federal Communications
Commission (FCC) ruling that a geolocation database could
be used by Secondary TV spectrum users to obtain the spec-
trum availability, it is assumed that there is a crowdsourcing-
based fusion center (FC). FC assigns sensing task to mobile
users and receives the sensing data from them. To incentivize
mobile users to carry out sensing tasks, FC needs to provide
monetary bene�ts. �is way is called crowdsourcing.

In this paper, we propose the crowdsourcing paradigm to
assign the spectrum sensing task to many mobile users. It is
assumed that there is a crowdsourcing-based fusion center
(FC). FC assigns the sensing task to mobile users. During
the assignment process, we have considered some factors.
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At �rst, the remaining energy is very important to mobile
users. Only when a mobile user has enough energy can
the wireless spectrum be sensed. �en mobile users should
be given incentives to carry out spectrum sensing. With a
limited budget, FC may choose a subset of whole mobile
users to carry out spectrum sensing. At last, the positions of
mobile users also in	uence the sensing results. Considering
these factors, we propose precise sensing e
ect function
for the crowdsourcing-based sensing task assignment. And
the objective function considers a local constraint. �en we
prove that the sensing task assignment is NP-hard.�erefore,
we design an optimal algorithm based on particle swarm
optimization (PSO) to solve the problem. Simulation results
show our proposed algorithm achieves higher performance
than other algorithms.

In this paper, we study the problem of sensing task assign-
ment. �e main contributions of this paper are summarized
below.

(i) Considering the remaining energy of mobile users,
budget constraint, and mobile users’ positions, we
propose precise objective function with a local con-
straint. We de�ne the local constraint which means
the sensing e
ect of a channel in a location is not less
than a threshold. Compared to other literatures, we
aim to not only maximize global sensing e
ect but
also satisfy the local sensing constraint. And we prove
the sensing task assignment is NP-hard.

(ii) Since the sensing task assignment is NP-hard, we
design an optimal algorithm based on particle swarm
optimization (PSO) to solve the problem. To the
best of our knowledge, there is no related work
designing the PSO-based algorithm to solve sensing
task assignment in cognitive radio networks.

(iii) Simulation results show our proposed algorithm
achieves higher performance than other algorithms.

�e rest of the paper is organized as follows. In Section 2,
related literatures are introduced. In Section 3, the system
model of sensing task assignment is described. In Section 4,
we design a PSO-based algorithm to solve the sensing task
assignment. In Section 5, the proposed algorithm is evaluated
with simulation results. Finally, conclusions are shown in
Section 6.

2. Related Work

In cognitive radio networks, licensed users activitywill decide
whether the spectrum is idle or not [3]. As some factors such
as shadowing and multipath fading may make a user mistake
the sensing result, cooperative spectrum sensing is proposed
to improve the sensing accuracy [4].

�ere have been some related literatures about cooper-
ative spectrum sensing. In wideband wireless system, users
exchange their compressed sensing results. According to the
sensing results, they estimate the spectrum states coopera-
tively [5]. In [6], authors propose a two-level defense scheme
to solve the attackers in cooperative spectrum sensing. In
[7], cooperative spectrum sensing based on crowdsourcing

is studied to address the security issue brought by malicious
mobile users. In [8], authors consider the simultaneous sens-
ing and transmitting of users and propose a novel detection
model for cooperative spectrum sensing. In multichannel
networks, the sensing task assignment is considered in par-
allel, and several sensing strategies are proposed to schedule
users based on network parameters [9]. In [10], authors pro-
pose a game-theoretic distributed power control mechanism
based on channel sensing results of users in cognitive wireless
sensor network. To maximize the sensing quality, authors
study the problem of multichannel sensing assignment in the
multichannel system [11–13].�ese literatures use a simplistic
objective function and there is no budget constraint. If the
system has a limited budget, there may be only a subset of
mobile users chosen to carry out spectrum sensing. In [14],
considering budget constraint, the authors study the problem
of sensing task and channel allocation. However, the energy
of mobile users is not considered. In [15], considering the
character of sensing tasks and the sensor availability, authors
study the multitask allocation problem to maximize overall
system utility. It is the �rst to study di
erent data quality
metrics and formulate the multitask allocation optimization
problem when diverse sensing capability constraints of each
participant are taken into account. To achieve the near-
optimal objective, the method using a two-phase o�ine
multitask allocation framework needs historical call data
from the telecom operator.

�e aforementioned literatures use centralized algo-
rithms. �ere are some distributed methods about spectrum
sensing. In [16], with a distributed way, spatial spectrum
sensing is studied to make use of spatial spectrum oppor-
tunities. To analyze the performance of spatial spectrum
sensing, stochastic geometry is utilized. In [10], based on
channel sensing results of users, a game-theoretic distributed
power control mechanism is proposed. Besides, there are
other studies about spectrum sensing [17–20].

3. System Model

It is assumed that there is a crowdsourcing-based fusion
center (FC). FC assigns the sensing task to mobile users.
Remaining energy and positions of mobile users, as well
as limited budget, may in	uence the assignment process.
Considering these constraints, we propose precise sensing
e
ect function with a local constraint. �en we prove the
sensing task assignment is NP-hard.

3.1. Problem Formulation. We assume that there are many
locations needed to be sensed. In each location, there are
many channels that needed sensing. By crowdsensing task
assignment, we aim to maximize the sensing e
ect with a
local constraint.

Let � denote the number of locations needed to be
sensed and �(�) denote the number of channels that should
be sensed in a location �. In the location �, shadowing,
multipath fading, and other issues may in	uence the sensing
results of mobile users in di
erent positions of this location.
In other words, mobile users may obtain di
erent sensing
results in the same location since they are at di
erent
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positions. �erefore, location � may be divided into several
sublocations. �e spatial diversity can be captured by the
sensing outcomes of mobile users in di
erent sublocations.

In a sublocation ℎ of location �, ��ℎ� = 1 denotes that there

is at least one mobile user sensing channel �, and ��ℎ� =
0 denotes that there are no mobile users sensing channel

�. In location �, let ��� denote the number of sublocations

where channel � is sensed by at least one mobile user. We

can derive ��� = ∑�(�)ℎ=1 ��ℎ�, where 
(�) denotes the number

of sublocations in location �. Obviously, the higher ��� is,
the more e
ective the sensing result is. When ��� equals
zero, there is no sensing e
ect. When ��� equals 
(�), the
maximized sensing e
ect is reached. We can imagine that

sensing e
ect increases fast as ��� increases when ��� is small,

while sensing e
ect increases slowly as ��� increases when ���
is large. Let �(�, �) = √���/
(�) denote the sensing e
ect of
channel � in location �. �en we can design the sensing e
ect
function for the crowdsensing task assignment as follows:

�
∑
�=1

�(�)
∑
�=1

���� (�, �) , (1)

where ��� denotes the nonnegative weight with

∑��=1∑�(�)�=1 ��� = 1, and ��� could distinguish the important

degrees of sensing channels in each location. According to

formula (1), the sensing e
ect function increases as ��� varies
from zero to 
(�). And the smaller ��� is, the faster sensing
e
ect function increases with the ��� growth. �e larger ���
is, the more slowly sensing e
ect function increases with the

��� growth.
To obtain optimized sensing e
ect, we aim to maximize

the sensing e
ect function in (1) with a local constraint which
means the sensing e
ect of channel � in location � is no less
than a threshold �. �e local constraint can be described as

� (�, �) ≥ � � ∈ [1, � (�)] , � ∈ [1, �] . (2)

�ere are some factors which should be considered as
follows.

For the mobile users, the remaining energy should be
considered at �rst. Only when one mobile user’s remaining
energy is higher than the threshold could the mobile user
carry out the task of spectrum sensing. Let Th be the
normalized threshold of the remaining energy, K denote the
set of all mobile users, and �� be the remaining energy for a
mobile user �. �en the energy constraint can be expressed
as

�� ≥ Th � ∈ K. (3)

Let � denote the number of locations needed to be
sensed. For a location �, only themobile users in that location
can sense the channels within that location. We assume a
mobile user can only sense one channel. In location �, letK(�)
denote the set of mobile users, �(�) denote the number of

mobile users, and �(�) denote the number of channels that
should be sensed. For the mobile user � ∈ K(�), ��� = 1
denotes that the channel � is sensed by mobile user � and
��� = 0 denotes that the channel � is not sensed by mobile
user �. �en considering a mobile user can only sense one
channel, another constraint can be expressed as

∑
�∈K(�)

�(�)
∑
�=1

��� ≤ � (�) . (4)

Additionally, the incentive scheme allows FC to pay for
the mobile users that try to sense channels. However, the cost
of crowdsensingmust be in the acceptable range. Let � be the
maximum cost that can be paid for the sensing users and ��
be the cost for the mobile user � ∈ K(�). �e constraint can
be expressed as

�
∑
�=1

∑
�∈K(�)

��
�(�)
∑
�=1

��� ≤ �. (5)

�e optimal object of crowdsensing task assignment can
be described as

max
�
∑
�=1

�(�)
∑
�=1

���� (�, �)

subject to � (�, �) ≥ �, � ∈ [1, � (�)] , � ∈ [1, �]

�� ≥ Th, � ∈ K

∑
�∈K(�)

�(�)
∑
�=1

��� ≤ � (�)

�
∑
�=1

∑
�∈K(�)

��
�(�)
∑
�=1

��� ≤ �

�
∑
�=1

�(�)
∑
�=1

��� = 1.

(6)

Figure 1 depicts an example of crowdsensing task assign-
ment. �ere are two locations and three channels in the
system. Each location is divided into three sublocations.
Mobile users in di
erent sublocations may obtain di
erent
sensing results about the same channel. Since the local
constraint is not satis�ed or the remaining energy is not
enough or the cost is too high, some mobile users are not
assigned sensing task. Other users are assigned channels to
sense according to formula (6).

3.2. NP-Hardness. �e problem of crowdsensing task assign-
ment is di�cult to solve since we prove this problem is NP-
hard. �e reason is that the problem of crowdsensing task
assignment is as hard as maximum coverage problem which
is NP-hard [21].

�e maximum coverage problem is described as follows:
given a number � and a collection of � sets � = {�1, �2, . . . , �
},
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sublocation 1

Sublocation 1

Location 1

Location 2

sublocation 2

Sublocation 2

sublocation 3

Sublocation 3

A mobile user sensing channel 1

A mobile user sensing channel 2

A mobile user sensing channel 3

A mobile user sensing no channels

Figure 1: An example of crowdsensing task assignment.

themaximum coverage problem is to select at most � of these
sets to form �� such that the maximum number of elements
is covered:

max
��

         
U
��∈��

��
         
,

s.t. �� ⊆ �,      �
�     ≤ �.

(7)

�eorem 1. �e problem of crowdsensing task assignment is
NP-hard.

Proof. By showing a special case of crowdsensing task assign-
ment is as hard asmaximum coverage problem, we prove that
the problem of crowdsensing task assignment is NP-hard.

�e special case is described as follows: each mobile user
has enough energy to carry out spectrum sensing, the local
threshold � is set to zero that means the local constraint is
satis�ed, and the cost of crowdsensing is in the acceptable
range. �ere are " mobile users and � locations in the
system. And, in each location, there are � channels that
should be sensed. Each mobile user is denoted by � ∈
{1, 2, . . . , "}. �en " mobile users can form 2 sets such as
{1}, {1, 2}, and {1, 2, 3}. Let the nonnegative weight ��� be a
constant. �en (6) can be rewritten as

max
�
∑
�=1

�
∑
�=1

� (�, �) . (8)

Let � equal 2 and � equal ��. Equation (8) means
selecting � sets from � sets to maximize the sum of �(�, �).
Compared to (7), it is at least as hard as the maximum
coverage problem which is NP-hard. In other words, the
special case of crowdsensing task assignment is NP-hard.

�e problem of crowdsensing task assignment is no easier
than the special case.�erefore, the problem of crowdsensing
task assignment is NP-hard.

4. The Optimal Algorithm Based on PSO

Since the crowdsensing task assignment problem is NP-hard,
we design the optimal algorithm based on particle swarm
optimization (PSO) to solve this problem in this section.
�e PSO algorithm is good at NP-hard problem optimization
[22].�ePSOalgorithm is described at �rst.�en the optimal
algorithm based on PSO is proposed. And time complexity is
analyzed.

4.1. PSO Algorithm. In the PSO algorithm [23], each particle
	ies in the search space with certain speed. During the 	ight,
a particle changes its 	ight experience with its companions.
�erefore, each particle can 	y to a better solution region
based on this mechanism. Let #�� denote the particle speed
and $�� denote the particle’s position. �e movement of the
particle is described as follows:

#�+1�� = �#��� + �1%1 ('�� − $���) + �2%2 ('�� − $���) (9)

$�+1�� = #�+1�� + $���, (10)

where � denotes the inertia weight, '�� denotes this particle’s
historical best position, and '�� denotes the global best
position. Both %1 and %2 are independent in the range [0, 1],
and both �1 and �2 are study factors. �e inertia weight �
makes the algorithm improve its performance according to
a series of applications. Formulas (9) and (10) calculate the
current particle’s velocity and position, respectively.

4.2. Crowdsensing Task Assignment Algorithm Based on PSO.
We design an optimal algorithm based on PSO to solve
crowdsensing task assignment. According to PSO algorithm,
each particle’s position represents a solution to the crowd-
sensing task assignment problem. It can be denoted by a
matrix as follows.

When there are �(�) channels in location � ∈ [1, �], the
total number of sensing channels is∑��=1�(�) in all locations.
Let " denote the number of mobile users. �en each particle

is de�ned as a " × ∑��=1�(�) matrix X, where X[-][4] = 1
denotes that themobile user - chooses channel 4 to sense, and
X[-][4] = 0 denotes that the mobile user - does not choose
channel 4 to sense.

We optimize the crowdsensing task assignment based
on PSO algorithm (PSO-CTA). �e optimized algorithm is
described as follows. Initialize 5 particles randomly, and each
particle denotes a solution of crowdsensing task assignment
of all " mobile users. �en we set the particle with the
highest objective function based on formulas (6) to be the
current best solution. According to the PSO algorithm, we
use the PSO formulas (9) to merge the crowdsensing task
assignment and determine the new particle position until
it converges or this swarm obtains its longest lifetime. If
PSO-CTA converges, the best solution can be obtained. �e
proposed algorithm is described as follows.
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Initialization.�e�rst important problem to be solved is how
the algorithm initially produces the particles. We produce a
random particle as follows.

For a mobile user, its remaining energy should be consid
ered at �rst. If its remaining energy is higher than the thresh-
old, the mobile user could carry out the task of spectrum
sensing. �en it chooses a channel to sense randomly in
its corresponding locations. All mobile users with enough
energy choose channels like this. If the local constraint of
sensing e
ect in (2) is satis�ed in each location, the cost
should be considered next. Otherwise, this particle should be
generated again. If the cost for the mobile users which carry
out spectrum sensing is lower than the maximum cost �, the
process of initialization is completed. If the cost for themobile
users which carry out spectrum sensing is higher than the
maximum cost �, FC will not assign sensing task to some
mobile users to satisfy the cost constraint. At �rst, when there
are multiple users sensing a channel in the same sublocation,
FC will only choose a user with lower cost to assign sensing
task, and other users are given up. According to our model,
the sensing e
ect will not change. If the cost constraint
is satis�ed, the initialization is completed. Otherwise, FC
should continue to give up users in the sublocations with
less weight until the cost constraint is satis�ed. �en a

" × ∑��=1�(�) matrix X is generated corresponding to this

particle.
Initialize 5 particles randomly, and each particle denotes

a solution of crowdsensing task assignment of all " mobile
users.

Optimizing Process. A�er each spectrum sensing instance of
a mobile user, its energy will decrease. A mobile user should
determine that its remaining energy meets the energy con-
straint. If its remaining energy is higher than the threshold,
the mobile user is able to carry out spectrum sensing again. If
its remaining energy is lower than the threshold, the mobile
user could not carry out spectrum sensing from now on. For
each particle, if a mobile user’s energy is not enough to carry
out spectrum sensing, the user’s row vector is set to zero in
the corresponding matrix. �en the matrix of a particle will
change.

Based on the current matrix, the crowdsensing e
ect
function of the particle is obtained following (1). A�er calcu-
lating all particles’ e
ect function, we can derive a particle’s
historical best position '�� and the global best position '��.
�e best position corresponds to the maximized crowdsens-
ing e
ect function.

According to a particle’s historical best position '�� and
the global best position '��, we merge the matrixes to
optimize the sensing task assignment. Let T1 denote the
current matrix of a particle and T2 and T3 denote historical
best solution of the particle and the global best solution,
respectively. �e merging matrix can be described as the
combination of T1, T2, and T3. �en we optimized the
merging matrix as follows.

In the merging matrix, if a channel in a sublocation is
sensed by multiple users, only one user with higher energy
is reserved and other users are given up. �at means only an

element is set to one in the column vector of the merging
matrix a�er optimization. If a user chooses di
erent channels
to sense in T1, T2, and T3, there are more than elements set
to one in the row vector of the merging matrix. Considering
the global property of PSO, we optimize the row vectors of
the merging matrix with speci�c probability decided by the
parameters in (9) to guarantee the search space. If a mobile
user chooses di
erent channels in these three matrixes, the
user will select the channel in T1 based on the probability
�/(� + �1 + �2), select the channel in T2 based on the
probability �1/(� + �1 + �2), and select the channel inT3 based
on the probability �2/(�+�1+�2).�atmeans only an element
is set to one in the row vector of the merging matrix a�er
optimization. �e search space and converging speed of this
algorithm can be adjusted by adjusting the values of�, �1, and
�2.

�e proposed algorithm for crowdsensing task assign-
ment problem is described in Algorithms 1, 2, and 3.

4.3. Analysis of TimeComplexity. �ecomplexity of proposed
PSO-CTA algorithm is computed as follows. �e computa-
tion complexity is 6(� × � × 5) in the initialization stage,
where � denotes the number of mobile users, � denotes the
number of channels, and 5 denotes the number of particles.

In Line (3) of Algorithm 1, optimizing the sensing task
assignment which is described in Algorithm 3 dominates the
complexity of our algorithm. �en we focus on the compu-
tation complexity of optimizing the sensing task assignment.
In a particle, the mobile users satisfying formulas (2), (3), (4),
and (5) should be chosen, and the chosen mobile users are
combined to obtain the maximized sensing e
ect function.

�erefore, the complexity of a particle is 6(�2 × �). �e

complexity of all particles is 6(�2 × � × 5) at the stage of
evaluating sensing e
ect function.

When particles update their velocities and positions, the
computation complexity is 6(� × 5) in Lines (4)–(7) of
Algorithm 1. �erefore, the computation complexity of the

whole algorithm is 6(�2 × � × 5).

5. Simulation Results

�e proposed PSO-CTA algorithm is evaluated by simu-
lations. �e average solution is obtained by running the
algorithm 100 times. We compare our PSO-CTA algorithm
with the algorithm in [14]. �e simulation parameters are
described as follows. �ere are some locations needed to be
sensed, with the same radius. Each location is equally divided
into 3 sublocations. �e whole number of channels is � = 5.
�e local threshold � is set to 0.57. �e nonnegative weight

of ��� is identical for each channel and each location. Mobile
users are deployed randomly in the locations.

Figure 2 shows the crowdsensing e
ect outcomes as the
number of locations varies from 15 to 40 when there are
50 mobile users. �e cost values of �� are chosen from

{1; 2; 3; . . . ; 49; 50}. �e maximum cost is � = - ∑50�=1 ��,
where - equals 0.6 and 0.8, respectively. �e normalized
energy threshold of � is set to 0.2 and 0.5, respectively.
�e crowdsensing e
ect function could be obtained based
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Input:
Objective function according to formula (6);
A local constraint �;
�e number of mobile users ";
�e number of locations �;
�e number of channels �(�) in location �;
�e number of sub-locations 
(�) in location �;
�e maximum cost �;
�e maximal generation <;
Output: �e maximum sensing e
ect function and sensing task assignment
Initialization:
Randomly generate each particle;

Optimization:
(1) repeat
(2) for each particle
(3) Optimizing the crowdsensing task assignment of the particle;
(4) Update the '��;
(5) Update the '��;
(6) end for
(7) until stopping criterion is satis�ed

Algorithm 1: Overall procedure of proposed PSO-CTA.

(1) for each mobile user
(2) if its remaining energy satis�es formula (3)
(3) It chooses a random channel;
(4) else it will not sense;
(5) end if
(6) end for
(7) if the cost constraint is satis�ed
(8) �e initialization is completed;
(9) else reserve a user sensing a same channel in a sub-location;
(10) end if
(11) if the cost constraint is satis�ed
(12) �e initialization is completed;
(13) else give up users less weight until the cost is satis�ed;
(14) end if

Algorithm 2: Random generation of each particle (initialization).

(1) for each particle
(2) for each mobile user
(3) if its remaining energy satis�es formula (3)
(4) Maintain the matrix;
(5) else set the corresponding row vector to zero;
(6) end if
(7) end for
(8) �en the current matrix T1 is derived;
(9) Evaluate the crowdsensing e
ect function of this particle;
(10) Obtainthis particle’s Pid (matrix T2) based on crowdsensing e
ect function;
(11) Obtain '�� (matrix T3) with the optimal '��;
(12) Merge matrix T1, T2, T3;
(13) Optimize the column vectors of the merging matrix;
(14) Optimize row vectors of the merging matrix with speci�c probability using (9);
(15) Evaluate the crowdsensing e
ect function of merging matrix according to (6);
(16) end for

Algorithm 3: Procedure of optimizing the sensing task assignment of the particle.
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Figure 2: Crowdsensing e
ect function with 50 mobile users.

on (1). �is function re	ects the sensing e
ect and its value
is between 0 and 1. �e closer the value is to 1, the better
the sensing e
ect is. Compared to the DRA algorithm in [13]
and the budget algorithm in [14], our proposed PSO-CTA
algorithm achieves higher crowdsensing e
ect function. As
the number of locations increases, the crowdsensing e
ect
function decreases. �e reason is that more locations lead to
more sublocations and �xed number of mobile users cannot
sense all sublocations. When � equals 0.2 and - equals
0.8, the crowdsensing e
ect function obtained is higher than
those obtained when Th and - equal other values, since there
are more mobile users assigned to sense channels with Th =
0.2 and - = 0.8.

Figure 3 shows the crowdsensing e
ect results as the
number ofmobile users varies from20 to 70when there are 20
locations.�e cost values of �� are chosen from {1; 2; 3; . . . ; @},
where @ denotes the number of mobile users. �e maximum
cost is � = - ∑��=1 ��, where - equals 0.6 and 0.8, respectively.
�e normalized energy threshold of Th is set to 0.2 and
0.5, respectively. Compared to the DRA algorithm in [13]
and the budget algorithm in [14], our proposed PSO-CTA
algorithm achieves higher crowdsensing e
ect function. As
the number ofmobile users increases, the crowdsensing e
ect
function increases. �e reason is that more sublocations
could be sensed by more mobile users. When Th equals 0.2
and - equals 0.8, the crowdsensing e
ect function obtained is
higher than those obtainedwhenTh and - equal other values,
since there are more mobile users assigned to sense channels
with Th = 0.2 and - = 0.8.

Figure 4 shows the average remaining energy of mobile
users as the number of spectrum sensing instances increases
when there are 50 mobile users deployed randomly in 15
locations. It is assumed that the initial average energy of
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Figure 3: Crowdsensing e
ect function with 20 locations.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
ve

ra
ge

 r
em

ai
n

in
g 

en
er

g
y

20 40 60 80 1000

�e number of spectrum sensing instances 

PSO-CTA, � = 0.5

PSO-CTA, � = 0.3

�e budget algorithm

DRA

Figure 4: Average remaining energy with the number of spectrum
sensing instances.

each user is 0.6. And a�er each spectrum sensing instance,
a mobile user’s energy falls 0.5%. �e normalized energy
threshold Th is set to 0.5 and 0.3, respectively. As shown in
Figure 4, our proposed PSO-CTA algorithm achieves higher
remaining energy of mobile users than the other algorithms.
Andwe can see that the remaining energywill be higherwhen
the threshold of Th is set to a higher value.

It is assumed that there are four channels and three
locations which can be divided into three sublocations. �e
nonnegative weight is not identical for each channel. We
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Figure 5: Local sensing e
ect with weight equaling 0.1 for three
locations.
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Figure 6: Local sensing e
ect with weight equaling 0.1 for 40 users.

set the weights equal to 0.3, 0.3, 0.3, and 0.1 for these four
channels. Under the aforementioned conditions, the local
sensing e
ect for the fourth channel (weight equaling 0.1)
is shown in Figure 5. When there are not so many users in
the system, the fourth channel is not sensed for the budget
algorithm and DRA algorithm as the weight is too small
to increase the global sensing e
ect. In the proposed PSO-
CTA algorithm, the fourth channel should be sensed because
a local constraint is set. Any channel, no matter what its
weight equals, should be sensed. �erefore, no channel will
be omitted with the PSO-CTA algorithm.

When there are 40 users, Figure 6 shows the local sensing
e
ect for the fourth channel as the number of locations

increases. �ere will not be enough users to sense each
channel if the number of locations increases.�us, the budget
algorithm and DRA algorithmmay choose the channels with
higherweights to improve the global sensing e
ect.�erefore,
the local sensing e
ect for the fourth channel will decrease.
However, the proposed PSO-CTA algorithm will not ignore
the fourth channel due to the local constraint.

6. Conclusion

For a large-scale region, this paper proposes the crowdsourc-
ing method to assign the spectrum sensing task to many
mobile users such as smartphones and pads. Considering
some constraints such as remaining energy, locations, and
costs of mobile users, we propose a sensing e
ect function
with a local constraint and aim to maximize the sensing
e
ect function. Since the problem of sensing task assignment
is proved to be NP-hard, we design an optimal algorithm
based on PSO to solve this problem. Simulation results show
our algorithm achieves higher performance than the other
algorithms.
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