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Abstract

Crowdsourcing is now widely used to replace judgement or evaluation by an expert authority with an aggregate
evaluation from a number of non-experts, in applications ranging from rating and categorizing online content all the
way to evaluation of student assignments in massively open online courses (MOOCs) via peer grading. A key issue
in these settings, where direct monitoring of both effort and accuracy is infeasible, is incentivizing agents in the
‘crowd’ to put in effort to make good evaluations, as well as to truthfully report their evaluations. We study the design
of mechanisms for crowdsourced judgement elicitation when workers strategically choose both their reports and the
effort they put into their evaluations. This leads to a new family of information elicitation problems with unobservable
ground truth, where an agent’s proficiency— the probability with which she correctly evaluates the underlying ground
truth— is endogenously determined by her strategic choice of how much effort to put into the task.

Our main contribution is a simple, new, mechanism for binary information elicitation for multiple tasks when
agents have endogenous proficiencies, with the following properties: (i) Exerting maximum effort followed by truthful
reporting of observations is a Nash equilibrium. (ii) This is the equilibrium with maximum payoff to all agents, even
when agents have different maximum proficiencies, can use mixed strategies, and can choose a different strategy for
each of their tasks. Our information elicitation mechanism requires only minimal bounds on the priors, asks agents
to only report their own evaluations, and does not require any conditions on a diverging number of agent reports per
task to achieve its incentive properties. The main idea behind our mechanism is to use the presence of multiple tasks
and ratings to estimate a reporting statistic to identify and penalize low-effort agreement— the mechanism rewards
agents for agreeing with another ‘reference’ agent report on the same task but also penalizes for blind agreement
by subtracting out this statistic term, designed so that agents obtain rewards only when they put in effort into their
observations.

1 Introduction
Crowdsourcing, where a problem or task is broadcast to a crowd of potential participants for solution, is used for an
increasingly wide variety of tasks on the Web. One particularly common application of crowdsourcing is in the context
of making evaluations, or judgements— when the number of evaluations required is too large for a single expert, a
solution is to replace the expert by an evaluation aggregated from a ‘crowd’, recruited on an online crowdsourcing
platform such as Amazon Mechanical Turk. Crowdsourced judgement elicitation is now used for a number of appli-
cations such as image classification and labeling, judging the quality of online content and identifying abusive or adult
content, and most recently for peer grading in online education, where Massively Open Online Courses (MOOCs)
with enrollment in the hundreds of thousands crowdsource the problem of evaluating assignments submitted by stu-
dents back to the class itself. While one issue in the context of crowdsourcing evaluations is how best to aggregate the
evaluations obtained from the crowd, there is also a key question of eliciting the best possible evaluations from the
crowd in the first place.

The problem of designing incentive mechanisms for such crowdsourced judgement elicitation scenarios has two
aspects. First, suppose each worker has already evaluated, or formed a judgement on, the tasks allocated to her. Since
the ‘ground truth’ for each task is unknown to the system, a natural solution is to reward workers based on other
workers’ reports for the same task (this being the only available source of information about this ground truth)1. The
∗Yahoo! Labs, Sunnyvale, CA 95054. Email: anirban@yahoo-inc.com
†Cornell University, Ithaca, NY 14853. Email: arpitaghosh@cornell.edu
1It is of course infeasible for a requester to monitor every worker’s performance on her task, since this would be a problem of the same scale as

simply performing all the tasks herself. We also note that a naive approach of randomly checking some subset of evaluations, either via inserting
tasks with known responses, or via random checking by the requester, turns out to be very wasteful of effort at the scale neccessary to achieve the
right incentives.
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problem of designing rewards to incentivize agents to truthfully report their observation, rather than, for example, a
report that is more likely to agree with other agents’ reports, is an information elicitation problem with unobservable
ground truth. Information elicitation has been recently been addressed in the literature in the context of eliciting
opinions online (such as user opinions about products, or experiences with service providers); see §1.1. However, in
those settings, agents (users) have already formed an opinion after receiving their signal (for example a user who buys
a product forms an opinion about it after buying it)— so agents only need to be incentivized to incur the cost to report
this opinion and find it more profitable to report their opinions truthfully than to report a different opinion.

In the crowdsourcing settings we consider, however, the user does not have such a pre-formed, or experiential,
opinion anyway, but rather forms a judgement as part of her task— further, the accuracy of this judgement depends on
whether or not the agent puts in effort into it (for instance, a worker evaluating whether images contain objectionable
content could put in no effort and declare all images to be clean, or put in effort into identifying which images are
actually appropriate; a similar choice applies in other contexts like peer-grading). A key issue in these crowdsourced
judgement elicitation scenarios is therefore incentivizing effort2— that is, ensuring that agents make the best judge-
ments that they possibly can (in addition, of course, to ensuring that they then truthfully report this observation). This
leads to a new kind of information elicitation problem where an agent’s proficiency now depends on her effort choice,
and so is endogenous and unknown to the system— even if an agent’s maximum proficiency is known, the actual
proficiency with which she performs a task is an endogenous, strategic choice and therefore cannot be assumed as
fixed or given.

A mechanism for information elicitation in this setting should make it ‘most beneficial’, if not the only beneficial
strategy, for agents to not just report their observations truthfully, but to also make the best observations they can in the
first place. Also, it is even more important now to ensure that the payoffs from all agents always blindly reporting the
same observation (for instance, declaring all content to be good) are strictly smaller than the payoffs from truthfully
reporting what was actually observed, since declaring all tasks to be of some predecided type requires no effort and
therefore incurs no cost, whereas actually putting in effort into making observations will incur a nonzero cost. Finally,
unlike mechanisms designed for settings where a large audience is being polled for its opinion about a single event, a
mechanism here must retain its incentive properties even when there are only a few reports per task— this is because
it can be infeasible, due to either monetary or effort constraints, to solicit reports from a large number of agents for
each task. (For example, the number of tasks in peer grading scales linearly with the number of agents, limiting the
number of reports available for each task since each student can only grade a few assignments; similarly, the total
cost to the requester in crowdsourcing platforms such as Amazon Mechanical Turk scales linearly with the number
of workers reporting on each task). How can we elicit the best possible evaluations from agents whose proficiency of
evaluation depends on their strategically chosen effort, when the ground truth as well as the effort levels of agents are
unobservable to the mechanism?

Our Contributions. We introduce a model for information elicitation with endogenous proficiency, where an agent’s
strategic choice of whether or not to put in effort into a task endogenously determines her proficiency (the probability
of correctly evaluating the ground truth) for that task. We focus on the design of mechanisms for binary information
elicitation, i.e., when the underlying ground truth is binary (corresponding to eliciting ‘good’ or ‘bad’ ratings). While
generalizing to an arbitrary underlying type space is an immediate direction for further work, we note that a number of
interesting judgement and evaluation tasks, for example identifying adult content or correctness evaluation, are indeed
binary; also, even very recent literature providing improved mechanisms for information elicitation (e.g. [17, 19]),
as well as experimental work on the performance of elicitation mechanisms [16, 5], focuses on models with binary
ground truth.

Our main contribution is a simple, new, mechanism for binary information elicitation for multiple tasks when
agents have endogenous proficiencies. Our mechanism has the following incentive properties.

(i) Exerting maximum effort followed by truthful reporting of observations is a Nash equilibrium.

(ii) This is the equilibrium with maximum payoff to all agents, even when agents have different maximum proficien-
cies, can use mixed strategies, and can choose a different strategy for each of their tasks.

Showing that full-effort truthtelling leads to the maximum reward amongst all equilibria (including those in-
volving mixed strategies) requires arguing about the rewards to agents in all possible equilibria that may arise.

2We thank David Evans (VP Education, Udacity) for pointing out this issue in the context of peer-grading applications— while students might
put in their best efforts on grading screening assignments to ensure they demonstrate the minimum proficiency required to be allowed to grade, how
can we be sure that they will continue to work with the same proficiency when grading homeworks outside of this screening set?
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To do this, we use a matrix representation of strategies where every strategy can be written as a convex com-
bination of ‘basis’ strategies, so that maximizing a function over the set of all possible strategies is equivalent
to a maximization over the space of coefficients in this convex combination. This representation lets us show
that the reward to an agent over all possible strategy choices (by herself and other agents), and therefore over all
equilibria, is maximized when all agents use the strategy of full-effort truthful reporting.

(iii) Suppose there is some positive probability, however small, that there is some ‘trusted’ agent for each task who
will report on that task truthfully with proficiency greater than half. The equilibrium where all agents put in full
effort and report truthfully on all their tasks is essentially the only equilibrium of our mechanism, even if the
mechanism does not know the identity of the trusted agents.

We note that our mechanism requires only minimal bounds on the priors and imposes no conditions on a diverging
number of agent reports per task to achieve its incentive properties— to the best of our knowledge, previous mecha-
nisms for information elicitation do not provide all these guarantees simultaneously, even when proficiency is not an
endogenously determined choice (see §1.1 for a discussion).

The main idea behind our mechanismM is the following. With just one task, it is difficult to distinguish between
agreement arising from high-effort observations of the same ground truth, and ‘blind’ agreement achieved by the low-
effort strategy of always making the same report. We use the presence of multiple tasks and ratings to distinguish
between these two scenarios and appropriately reward or penalize agents to incentivize high effort—M rewards an
agent i for her report on task j for agreeing with another ‘reference’ agent rj(i)’s report on the same task, but also
penalizes for blind agreement by subtracting out a statistic term corresponding to the part of i and rj(i)’s agreement
on task j that is to be ‘expected anyway’ given their reporting statistics estimated from other tasks. This statistic term
is chosen so that there is no benefit to making reports that are independent of the ground truth; the incentive properties
of the mechanism follow from this property that agents obtain positive rewards only when they put effort into their
evaluations.

1.1 Related Work
The problem of designing incentives for crowdsourced judgement elicitation is closely related to the growing literature
on information elicitation mechanisms. The key difference between this literature (discussed in greater detail below)
and our work is that agents in the settings motivating past work have opinions that are experientially formed anyway—
independent, and outside of, any mechanisms to elicit opinions— so that agents only need be incentivized to participate
and truthfully report these opinions. In contrast, agents in the crowdsourcing settings we study do not have such
experientially formed opinions to report— an agent makes a judgement only because it is part of her task, expending
effort to form her judgement, and therefore must be incentivized to both expend this effort and then to truthfully report
her evaluation. There are also other differences in terms of the models and guarantees in previous mechanisms for
information elicitation; we discuss this literature below.

The peer-prediction method, introduced by Miller, Resnick and Zeckhauser [12], is a mechanism for the infor-
mation elicitation problem for general outcome spaces where truthful reporting is a Nash equilibrium, using proper
scoring rules to reward agents for reports that are predictive of other agents’ reports. The main difference between
our mechanism and [12], as well as other mechanisms based on the peer prediction method [8, 9, 18, 10, 19], is in
the model of agent proficiency. In peer-prediction models, while agents can decide whether to incur the cost to par-
ticipate (i.e., submit their opinion), an agent’s proficiency— the distribution of opinions or evaluations conditional on
ground truth— is exogenously determined (and common to all agents, and in most models, known to the center). That
is, an agent might not participate at all, but if she does participate she is assumed to have some known proficiency.
In contrast, in our setting, agents can choose not just whether or not to participate, but also endogenously determine
their proficiency conditional on participating through their effort choice. Thus, while peer prediction mechanisms
do need to incentivize agents to participate (by submitting a report), they then know the proficiency of agents who
do submit a report, and therefore can, and do, dispense rewards that crucially use knowledge of this proficiency. In
contrast, even agents who do submit reports in our setting cannot be assumed to be using their maximum proficiency
to make their evaluations, and therefore cannot be rewarded based on any assumed level of proficiency. Additionally,
truthtelling, while an equilibrium, is not necessarily the maximum-reward equilibrium in these existing peer-prediction
mechanisms— [6] shows that for the mechanisms in [12, 8], the strategies of always reporting ‘good’ or always re-
porting ‘bad’ both constitute Nash equilibria, at least one of which generates higher payoff than truthtelling. Such
blind strategy equilibria can be eliminated and honest reporting made the unique Nash equilibrium by designing the
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payments as in [10], but this needs agents to be restricted to pure reporting strategies, and requires full knowledge of
the prior and conditional probability distributions to compute the rewards.

The Bayesian Truth Serum (BTS) [15] is another mechanism for information elicitation with unobservable ground
truth. BTS does not use the knowledge of a common prior to compute rewards, but rather collects two reports from
each agent— an ‘information’ report which is the agent’s own observation, as well as a ‘prediction’ report which is
the agent’s prediction about the distribution of information reports from the population— and uses these to compute
rewards such that truthful reporting is the highest-reward Nash equilibrium of the BTS mechanism. In addition to the
key difference of exogenous versus endogenous proficiencies discussed above, an important limitation of BTS in the
crowdsourcing setting is that it requires the number of agents n reporting on a task to diverge to ensure its incentive
properties. This n → ∞ requirement is infeasible in our setting due to the scaling of cost with number of reports as
discussed in the introduction. [17] provides a robust BTS mechanism (RBTS) that works even for small populations
(again in the same non-endogenous proficiency model as BTS and peer prediction mechanisms), and also ensures
payments are positive, making the mechanism ex-post individually rational in contrast to BTS. However, the RBTS
mechanism does not retain the property of truthtelling being the highest reward Nash equilibrium— indeed, the ‘blind
agreement’ equilibrium via constant reports achieves the maximum possible reward in RBTS, whereas truthtelling
might in fact lead to lower rewards.

There is also work on information elicitation in conducting surveys and online polling [11, 7], both of which are
not quite appropriate for our crowdsourcing setting. The mechanism in [11] is weakly incentive compatible (agents
are indifferent between lying and truthtelling), while [7] presents a online mechanism that is not incentive compatible
in the sense that we use and potentially requires a large (constant) number of agents to converge to the true result. For
other work on information elicitation, albeit in settings very different from ours, see [3, 2, 14].

We note also that we model settings where there is indeed a notion of a ground truth, albeit unobservable, so that
proficient agents who put in effort are more likely than not to correctly observe this ground truth. Peer-prediction
methods as well as the Bayesian truth serum are designed for settings where there may be no underlying ground truth
at all, and the mechanism only seeks to elicit agents’ true observations (whatever they are) which means that some
agents might be in the minority even when they truthfully report their observation— this makes the peer prediction
setting ‘harder’ along the dimension of inducing truthful reports, but easier along the dimension of not needing to
incentivize agents to choose to exert effort to make high-proficiency observations.

We note that our problem can also be cast as a version of a principal-agent problem with a very large number of
agents, although the principal cannot directly observe an agent’s ‘output’ as in standard models. While there is a vast
literature in economics on the principal-agent problem too large to describe here (see, eg, [1] and references therein),
none of this literature, to the best of our knowledge, addresses our problem. Finally, there is also a large orthogonal
body of work on the problem of learning unknown (but exogenous) agent proficiencies, as well as on the problem of
optimally combining reports from agents with differing proficiencies to come up with the best aggregate evaluation
in various models and settings. These problems of learning exogenous agent proficiencies and optimally aggregating
agent reports are orthogonal to our problem of providing incentives to agents with endogenous, effort-dependent
proficiencies to elicit the best possible evaluations from them.

2 Model
We now present a simple abstraction of the problem of designing mechanisms for crowdsourced judgement elicitation
settings where agents’ proficiencies are determined by strategic effort choice.

Tasks. There are m tasks, or objects, j = 1, . . . ,m, where each task has some underlying ‘true quality’, or type,
X̄j . This true type X̄j is unknown to the system. We assume that the types are binary-valued: X̄j is either H (or 1,
corresponding to high-quality) or L (or 0, for low quality) for all j; we use 1 and H (resp. 0 and L) interchangeably
throughout for convenience. The prior probabilities of H and L for all tasks are denoted by P[H] and P[L]. We
assume throughout that max(P[H],P[L]) < 1, i.e., that there is at least some uncertainty in the underlying qualities
of the objects.

Agents. There are n workers or agents i = 1, . . . , n who noisily evaluate, or form judgements on, the qualities
of objects. We say agent i performs task j if i evaluates object j. An agent i’s judgement on task j is denoted by
X̂ij ∈ {0, 1}, where X̂ij is 0 if i evaluates j to be of type L and X̂ij is 1 if i evaluates it to be H . Having made an
evaluation X̂ij , an agent can choose to report any value Xij ∈ {0, 1} either based on, or independent of, her actual
evaluation X̂ij .
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We denote the set of tasks performed by an agent i by J(i), and let I(j) denote the set of agents who perform task
j. We will assume for notational simplicity that |J(i)| = D and |I(j)| = T for all agents i and tasks j.

Proficiency. An agent’s proficiency at a task is the probability with which she correctly evaluates its true type
or quality. We assume that an agent’s proficiency is an increasing function of the effort she puts into making her
evaluation. Let eij denote agent i’s effort level for task j: we assume for simplicity that effort is binary-valued,
eij ∈ {0, 1}. Putting in 0 effort has cost cij(0) = 0, whereas putting in full effort has cost cij(1) ≥ 0 (we note that our
results also extend to a linear model with continuous effort where eij ∈ [0, 1] and the probability pi(eij) of correctly
observing X̄j as well as the cost ci(eij) increase linearly with eij).

An agent who puts in zero effort makes evaluations with proficiency pij(0) = 1/2 and does no better than random
guessing, i.e., Pr(X̂ij = X̄j |eij = 0) = 1/2. An agent who puts in full effort eij = 1 attains her maximum proficiency,
Pr(X̂ij = X̄j |eij = 1) = pij(1) = pi. Note that this maximum proficiency pi can be different for different
agents modeling agents with different abilities, and need not be known to the center. We assume that the maximum
proficiency pi ≥ 1

2 for all i— this minimum requirement on agent ability can be ensured in online crowdsourcing
settings by prescreening workers on a representative set of tasks (Amazon Mechanical Turk, for instance, offers the
ability to prescreen workers [13, 4], whereas in peer-grading applications such as on Coursera, students are given a set
of pre-graded assignments to measure their grading abilities prior to grading their peers, the results of which can be
used as a prescreen.)

We note that our results also extend easily to the case where the maximum proficiency of an agent depends on
whether the object is of type H or L, i.e., the probabilities of correctly observing the ground truth when putting in
full effort are different for different ground truths, Pr(X̂ij = X̄j |X̄j = H) 6= Pr(X̂ij = X̄j |X̄j = L) (of course,
different agents can continue to have different maximum proficiences).

Strategies. Agents strategically choose both their effort levels and reports on each task to maximize their total
utility, which is the difference between the reward received for their reports and the cost incurred in making evaluations.
Formally, an agent i’s strategy is a vector of D tuples [(eij , fij)], specifying her effort level eij as well as the function
fij she uses to map her actual evaluation X̂ij into her report Xij for each of her tasks. Note that since an agent’s
proficiency on a task pij is a function of her strategically chosen effort eij , the proficiency of agent i for task j is
endogenous in our model.

For a single task, we use the notation (1, X) to denote the choice of full effort eij = 1 and truthfully reporting
one’s evaluation (i.e., fij is the identity function Xij = X̂ij), (1, Xc) to denote full effort followed by inverting one’s
evaluation, and (0, r) to denote the choice of exerting no effort (eij = 0) and simply reporting the outcome of a random
coin toss with probability r of returning H . We use [(1, X)] to denote the strategy of using full effort and truthtelling
on all of an agent’s tasks, and similarly [(1, Xc)] and [(0, r)] for the other strategies.

Mechanisms. A mechanism in this setting takes as input the set of all received reports Xij and computes a reward
for each agent based on her reports, as well as possibly the reports of other agents. Note that the mechanism has no
access3 to the underlying true qualities X̄j for any task, and so cannot use the X̄j to determine agents’ rewards. A set
of effort levels and reporting functions [(eij , fij)] is a full-information Nash equilibrium of a mechanism if no agent
i can strictly improve her expected utility by choosing either a different effort level êij , or a different function f̂ij to
map her evaluation X̂ij into her report Xij . Here, the expectation is over the randomness in agents’ noisy evaluation
of the underlying ground truth, as well as any randomness in the mechanism.

We will be interested in designing mechanisms for which it is (i) an equilibrium for all agents to put in full
effort and report their evaluations truthfully on all tasks, i.e., use strategies [(1, X)], and (ii) for which [(1, X)] is
the maximum utility (if not unique) equilibrium. We emphasize here that we do not address the problem of how to
optimally aggregate the T reports Xij for task j into a final estimate of X̄j , which is an orthogonal problem requiring
application-specific modeling— our only goal is to elicit the best possible judgements to aggregate, by ensuring that
agents find it most profitable to put in maximum effort into their evaluations and then report these evaluations truthfully.

3 Mechanism
The main idea behind our mechanism M is following. Recall that a mechanism does not have access to the true
qualities X̄j , and therefore must compute rewards for agents that do not rely on directly observing X̄j . Since the only

3Crowdsourcing is used typically precisely in scenarios where the number of tasks is too large for the principal (or a set of trusted agents chosen
by the principal) to carry out herself, so it is at best feasible to verify the ground truth for a tiny fraction of all tasks, which fraction turns out to be
inadequate (a formal statement is omitted here) to incentivize effort using knowledge of the X̄j .
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source of information about X̄j comes from the reports Xij , a natural solution is to reward based on some form of
agreement between different agents reporting on j, similar to the peer-prediction setting [12]. However, an easy way
for agents to achieve perfect agreement with no effort is to always report H (or L). With just one task, it is difficult
for a mechanism to distinguish between the scenario where agents achieve agreement by making accurate, high-effort,
evaluations of the same ground truth, and the low-effort scenario where agents achieve agreement by always reporting
H , especially if P[H] is high. However, in our setting, we have the benefit of multiple tasks and ratings, which could
potentially be used to distinguish between these two strategies and appropriately reward agents to incentivize high
effort.
M uses the presence of multiple ratings to subtract out a statistic term Bij from the agreement score, chosen so

that there is no benefit to making reports that are independent of X̄j— roughly speaking,M rewards an agent i for
her report on task j for agreeing with another ‘reference’ agent rj(i)’s report on the same task, but only beyond what
would be expected if i and rj(i) were randomly tossing coins with their respective empirical frequencies of heads.

Let d denote the number of other reports made by i and rj(i) that are used in the computation of this statistic term
Bij based on the observed frequency of heads for each pair (i, j). We use Md to denote the version of M which
uses d other reports from each of i and rj(i) to compute Bij . To completely specifyMd, we also need to specify a
reference rater rj(i) as well as this set of d (non-overlapping) tasks performed by i and rj(i), for which we use the
following notation. (We require these d other tasks to be non-overlapping so that the reports for these tasks Xik and
Xrj(i)l are independent4, which is necessary to achieve the incentive properties ofMd.)

Definition 1 (Sij , Srj(i)j). Consider agent i and task j ∈ J(i), and a reference rater rj(i). Given a value of d
(1 ≤ d ≤ D − 1), let Sij and Srj(i)j be sets of d non-overlapping tasks other than task j performed by i and rj(i)
respectively, i.e.,

Sij ⊆ J(i) \ j, Srj(i)j ⊆ J(rj(i)) \ j, Sij ∩ Srj(i)j = ∅, |Sij | = |Srj(i)j | = d.

A mechanismMd is completely specified by reference raters rj(i) and the sets Sij and Srj(i)j , and rewards agents
as defined below. Note thatMd only uses agents’ reportsXij to compute rewards and not their maximum proficiencies
pi, which therefore need not be known to the system.

Definition 2 (Mechanism Md). Md computes an agent i’s reward for her report Xij ∈ {0, 1} on task j, Rij , by
comparing against a ‘reference rater’ rj(i)’s report Xrj(i)j for j, as follows:

Rij = Aij −Bij , where (1)
Aij = XijXrj(i)j + (1−Xij)(1−Xrj(i)j), and

Bij = (

∑
k∈Sij

Xik

d
)(

∑
l∈Srj(i)j

Xrj(i)l

d
) + (1−

∑
k∈Sij

Xik

d
)(1−

∑
l∈Srj(i)j

Xrj(i)l

d
), (2)

where the sets Sij and Srj(i)j in Bij are as in Definition 1. The final reward to an agent i is βRi, where Ri =∑
j∈J(i)Rij and β is simply a non-negative scaling parameter that is chosen based on agents’ costs of effort.

The first term, Aij , in Rij is an ‘agreement’ reward, and is 1 when i and rj(i) both agree on their report, i.e., when
Xij = Xrj(i)j = 1 or when Xij = Xrj(i)j = 0. The second term Bij is the ‘statistic’ term which, roughly speaking,
deducts from the agreement reward whatever part of i and rj(i)’s agreement on task j is to be ‘expected anyway’
given their reporting statistics, i.e., the relative frequencies with which they report H and L. This deduction is what
givesM its nice incentive properties— whileM rewards agents for agreement via Aij ,M also penalizes for blind
agreement that agents achieve without effort, by subtracting out the Bij term corresponding to the expected frequency
of agreement if i and rj(i) were randomly choosing reports corresponding to their estimated means.

For example, suppose all agents were to always report H . Then Aij is always 1, but Bij = 1 as well so that the
net reward is 0; similarly if agents chose their reports according to a random cointoss, even one with the ‘correct’
bias P [H], the value of Aij is exactly equal to Bij since there is no correlation between the reports for a particular
task, again leading to a reward of 0. The reward function Rij is designed so that it only rewards agents when they
put in effort into their evaluations, which leads to the desirable incentive properties ofMd. (We note that there are
other natural statistics which might incentivize agents away from low-effort reports— e.g., rewarding reports which
collectively have an empirical mean close to P[H], or for variance. However, it turns out that appropriately balancing

4We assume that co-raters’ identities are kept unknown to agents, so there is no collusion between i and rj(i).
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the agreement term (which is necessary to ensure agents cannot simply report according to a cointoss with bias P[H])
with a term penalizing blind agreement to simultaneously ensure that [(1, X)] is an equilibrium and the most desirable
equilibrium is hard to accomplish.)

There are two natural choices for the parameter d, i.e., how many reports of i and rj(i) to include for estimating
the statistic term that we subtract from the agreement score in Rij5. (i) InMD−1, we set d = D − 1 and include all
reports of agents i and rj(i), except those on their common task j. Here, the non-overlap requirement for sets Sij and
Srj(i)j says that an agent i and her reference rater rj(i) for task j have only that task j in common. (ii) InM1, we set
d = 1, i.e., subtract away the correlation between the report of i and rj(i) on exactly one other non-overlapping task.
InM1, the non-overlap condition only requires that for each agent-task pair, there is a reference agent rj(i) available
who has rated one other task that is different from the remaining tasks rated by i, a condition that is much easier to
satisfy than that inMD−1. In § 4, we will see thatM1 will require that the choices of (j, j′), where {j′} = Sij is the
task used in the statistic term of i’s reward for task j, are such that each task j′ performed by i is used exactly once
to determine Rij for j 6= j′. Note that this is always feasible, for instance by using task j + 1 in the statistic term for
task j for j = 1, . . . , D − 1 and task 1 for task D.

4 AnalyzingM
In this section, we analyze equilibrium behavior inMd. We begin with some notation and preliminaries.

4.1 Preliminaries
Recall that proficiency is the probability of correctly evaluating the true quality. We use p[H] (respectively p[L]) to
denote the probability that an agent observes H (respectively L) when making evaluations with proficiency p, i.e., the
probability that X̂ij = H is p[H] = pP[H] + (1 − p)P[L]. Similarly, q[H], q[L] and pi[H], pi[L] correspond to the
probabilities of seeing H and L when making evaluations with proficiencies q and pi respectively.

Matrix representation of strategies. We will frequently need to consider the space of all possible strategies an agent
may use in the equilibrium analysis ofMd. While the choice of effort level eij in an agent’s strategy [(eij , fij)] is
easily described— there are only two possible effort levels 1 and 0— the space of functions fij through which an agent
can map her evaluation X̂ij into her report Xij is much larger. For instance, an agent could choose fij corresponding
to making an evaluation, performing a Bayesian update of her prior on X̄j , and choosing the report with the higher
posterior probability. We now discuss a way to represent strategies that will allow us to easily describe the set of all
reporting functions fij .

An agent i’s evaluation X̂ij can also be written as a two-dimensional vector oij ∈ R2, where oij =
[
1 0

]T
if i

observes a H , and oij =
[
0 1

]T
if i observes a L, where aT denotes the transpose of a. For the purpose of analyzing

Md, any choice of reporting function fij can then be described via a 2× 2 matrix

M ij =

[
x 1− y

1− x y

]
,

where x is the probability with which i chooses to report H after observing H , i.e., x = Pr(Xij = H|X̂ij = H), and
similarly y = Pr(Xij = L|X̂ij = L). Observe that the choice of effort eij affects only oij and its ‘correctness’, or
correlation with the (vector representing the) actual quality X̄j , and the choice of reporting function fij only affects
M ij .

Any reporting matrix M ij of the form above can be written as a convex combination of four matrices— one for
each of the fij corresponding to (i) truthful reporting (Xij = X̂ij) (ii) inverting (Xij = X̂c

ij), and (iii, iv) always
reporting H or L independent of one’s evaluation (Xij = H and Xij = L respectively):

MX =

[
1 0
0 1

]
,MXc =

[
0 1
1 0

]
,MH =

[
1 1
0 0

]
,ML =

[
0 0
1 1

]
.

5Understanding the effect of the parameter d in our mechanisms, which appears irrelevant to the mechanism’s behavior when agents are risk-
neutral, is an interesting open question.
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That is, M ij = α1MX + α2MXc + α3MH + α4ML, where α1 = x − α3, α2 = 1 − y − α3, and α3 = x − y and
α4 = 0 if x ≥ y, and α3 = 0 and α4 = y− x if y > x. It is easily verified that αi ≥ 0, and

∑
αi = 1, so that this is a

convex combination. Since all possible reporting strategies fij can be described by appropriately choosing the values
of x ∈ [0, 1] and y ∈ [0, 1] in M ij , every reporting function fij can be written as a convex combination of these four
matrices.

The agent’s final report Xij is then described by the vector M ijoij ∈ R2, where the first entry is the probability
that i reports H , i.e., Xij = H , and the second entry is the probability that she reports Xij = L. The expected reward
of agent i for task j can therefore be written using the matrix-vector representation (where T denotes transpose and 1
is the vector of all ones) as

E[Rij ] = E[(Mrj(i)jorj(i)j)TM ijoij + (1−Mrj(i)jorj(i)j)T (1−M ijoij)]

− [(Mrj(i)jE[orj(i)j ])TM ijE[oij ] + (1−Mrj(i)jE[orj(i)j ])T (1−M ijE[oij ])],

which is linear in M ij . So the payoff from an arbitrary reporting function fij can be written as the correspond-
ing linear combination of the payoffs from each of the ‘basis’ functions (corresponding to MX ,MXc ,MH and ML)
constituting fij = M ij . We will use this to argue that it is adequate to consider deviations to each of the remaining ba-
sis reporting functions and show that they yield strictly lower reward to establish that [(1, X)] is an equilibrium ofMd.

Equivalent strategies. For the equilibrium analysis, we will use the following simple facts. (i) The strategy (0, X)
(i.e., using zero effort but truthfully reporting one’s evaluation) is equivalent to the strategy (0, r) with r = 1/2, i.e., to
the strategy of putting in no effort, and randomly reporting H or L independent of the evaluation X̂ij with probability
1/2 each. (ii) The strategy (1, r) is equivalent to the strategy (0, r), since the report Xij in both cases is completely
independent of the evaluation X̂ij and therefore of eij .

Cost of effort. While agents do incur a higher cost when using eij = 1 as compared to eij = 0, we will not need to
explicitly deal with the cost in the equilibrium analysis— if the reward from using a strategy where eij = 1 is strictly
greater than the reward from any strategy with eij = 0, the rewards Rij can always be scaled appropriately using the
factor β (in Definition 2) to ensure that the net utility (reward minus cost) is strictly greater as well.

We remark here that bounds on this scaling factor β could be estimated empirically without requiring knowledge
of the priors by estimating the cost of effort cij from the maximum proficiencies obtained from a pre-screening (§2),
by conducting a series of trials with increasing rewards and then using individual rationality to estimate the cost of
effort from observed proficiencies in these trials.

Individual rationality and non-negativity of payments. The expected payments made by our mechanism to each
agent are always nonnegative in the full-effort truthful reporting equilibrium, i.e., when all agents use strategies [1, X].
To ensure that the payments are also non-negative for every instance (of the tasks and reports) and not only in ex-
pectation, note that it suffices to add 1 to the payments currently specified, since the penalty term Bij in the reward
Rij is bounded above by 1. We also note that individual rationality can be achieved by using a value of β large
enough to ensure that the net utility βRij − c(1) remains non-negative for all values of P [H]— while the expected
payment Rij does go to zero as P [H] tends to 1 (i.e., in the limit of vanishing uncertainty as the underlying ground
truth is more and more likely to always be H (or always be L)), as long as there is some bound ε > 0 such that
max{P [H], P [L]} ≤ 1− ε, a simple calculation can be used to determine a value β∗(ε) such that the resulting mech-
anism with β = β∗ leads to nonnegative utilities for all agents in the full-effort truth-telling Nash equilibrium of
M.

4.2 Equilibrium analysis
We now analyze the equilibria of Md. Throughout, we index the tasks J(i) corresponding to agent i by j ∈
{1, . . . , D}.

First, to illustrate the idea behind the mechanism, we prove the simpler result that [(1, X)] is an equilibrium ofM
when agents all have equal proficiency pi = p, and are restricted to choosing one common strategy for all their tasks.

Proposition 3. Suppose all agents have the same maximum proficiency p, and are restricted to choosing the same
strategy for each of their tasks. Then, all agents choosing [(1, X)] is an equilibrium ofMd for all d, if p 6= 1/2.
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Proof. Consider an agent i, and suppose all other agents use the strategy (1, X) on all their tasks. As discussed in
the preliminaries, an agent’s reward is linear in her reports fixing the strategies of other agents, so it will be enough to
show that there is no beneficial deviation to (1, Xc), or (0, r) for any r ∈ [0, 1] to establish an equilibrium. (as noted
earlier, the choice of effort level is irrelevant when reporting Xij according to a the outcome of a random coin toss
independent of the observed value of Xij). The reward to agent i when she uses strategy [(1, X)] is

E[Ri((1, X))] =

D∑
j=1

E
[
XijXrj(i)j + (1−Xij)(1−Xrj(i)j)

]
− E

[∑
k∈Sij

Xik

d

∑
l∈Srj(i)j

Xrj(i)l

d
+ (1−

∑
k∈Sij

Xik

d
)(1−

∑
l∈Srj(i)j

Xrj(i)l

d
)]

]
= D

[
p2 + (1− p)2 − (p[H]2 + (1− p[H])2)

]
= D(p− p(H))(p− p(L))

= D(2p− 1)2P[H]P[L],

which is strictly positive if p 6= 1/2 and min(P[H],P[L]) > 0 (as assumed throughout), where we use p − p[H] =
(2p − 1)P[L] and p − p[L] = (2p − 1)P[H]. The expected reward from deviating to (1, Xc), when other agents are
using (1, X) is

E[Ri((1, X
c))] = D (2p(1− p)− 2p[H](1− p[H])) = −D(p− p(H))(p− p(L)).

Therefore, the expected reward from deviating to (1, Xc) is negative and strictly smaller than the reward from (1, X)
if p 6= 1/2. Finally, suppose agent i deviates to playing (0, r), i.e., reporting the outcome of a random coin toss with
bias r as her evaluation of Xij . Her expected reward from using this strategy when other agents play according to
(1, X) is

E[Ri((0, r))] = D (rp[H] + (1− r)p[H]− (rp[H] + (1− r)(1− p[H]))) = 0.

(In fact, if either agent reports ratings on her tasks by tossing a random coin with any probability r ∈ [0, 1], independent
of the underlying true realization of Xij , the expected reward to agent i is 0.) Therefore, if p 6= 1/2, deviating from
(1, X) leads to a strict decrease in reward to agent i. Hence, the rewards Rij can always be scaled appropriately to
ensure that [(1, X)] is an equilibrium ofM for any values of the costs ci.

We will now move on to proving our main equilibrium result forMd, where agents can have different maximum
proficiencies, as well as possibly use different strategies for different tasks. We begin with a technical lemma and a
definition.

Lemma 4. Let fα(p, q) = pq + (1 − p)(1 − q) − α(p[H]q[H] + (1 − p[H])(1 − q[H])). If α ≤ 1, (i) fα(p, q) is
strictly increasing in p if q > 1/2, and strictly increasing in q if p > 1/2. (ii) fα(p, q) is nonnegative if p, q ≥ 1/2,
and positive if p, q > 1/2. (iii) Denote f(p, q) , f1(p, q). Then, f(p, q) = f(q, p) = f(1 − p, 1 − q). Also
f(p, 1− q) = f(1− p, q) = −f(p, q).

Proof. Recall that p[H] = pP[H] + (1− p)P[L], and similarly for q[H].

fα(p, q) = p(2q − 1) + (1− q)− α(pP[H] + (1− p)P[L])(2q[H]− 1)− (1− q[H])

= p [(2q − 1)− α(P[H]− P[L])(2q[H]− 1)] +K−p

= p(2q − 1)(1− α(P[H]− P[L])2) +K−p,

where K−p is a term that does not depend on p, and we use 2q[H]− 1 = (2q − 1)(P[H]− P[L]) in the last step.
Note that P[H] − P[L] < P[H] < 1 if max(P[H],P[L]) < 1, so that 1 − α(P[H] − P[L])2 > 0 if α ≤ 1.

Therefore, fα(p, q) is linear in p with strictly positive coefficient when q > 1/2 and α ≤ 1. An identical argument
can be used for q since fα(p, q) can be written as a linear function of q exactly as for p:

fα(p, q) = q(2p− 1)(1− α(P[H]− P[L])2) +K−q.

This proves the first claim.
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For nonnegativity of fα(p, q) on p ∈ [1/2, 1], we simply argue that f1(p, q) is increasing in q when p ∈ [1/2, 1],
and 0 at q = 1/2. So for any q > 1/2, f1(p, q) ≥ 0 for any p ∈ [1/2, 1]. But fα(p, q) is decreasing in α, so fα(p, q)
is nonnegative for any α ≤ 1 as well.

The final claims about f(p, q) and f(1− p, q) can be verified just by substituting the definitions of p[H] and q[H]
and from symmetry in p and q.

Definition 5 (Tij , dij). Let Tij be the set of all tasks j′ 6= j such that j ∈ Sij′ , i.e., Tij is the set of tasks j′ for which
i’s report on task j is used to compute the statistic term of i’s reward Rij′ for task j′. We use dij = |Tij | to denote the
number of such tasks j′.

Our main equilibrium result states that under a mild set of conditions on the choice of reference raters rj(i) and
sets Tij , exerting full effort and reporting truthfully on all tasks is an equilibrium of Md— even when agents have
different maximum proficiencies and can choose a different strategy for each task (for instance, an agent could choose
to shirk effort on some tasks and put in effort on the others). The main idea behind this result can be understood
from the proof of Proposition p-easy above, where all agents had the same maximum proficiency pi = p and were
restricted to using the same strategy for each task. There, the payoff from using [(1, X)] is exactly f(p, p) where f is
as defined in Lemma 4, while the payoff from playing [(0, r)] is 0 (independent of other agents’ strategies); the payoff
from deviating to [(1, Xc)] when other agents play [(1, X)] is −f(p, p). Since f(p, p) > 0 for p > 1/2 and increases
with p, it is a best response for every agent to attain maximum proficiency and truthfully report her evaluation.

Extending the argument when agents can have both different maximum proficiencies pi and use different strategy
choices for each task requires more care, and are what necessitate the conditions on the task assignment in Theorem
6 below. We note that these conditions on Md arise because of the generalization to both differing abilities pi and
being allowed to choose a different strategy for each task— if either generalization is waived, i.e., if agents can
choose different strategies per task but all have equal ability (pi = p), or agents can have different abilities pi but are
restricted to choosing the same strategy for all their tasks, [(1, X)] can be shown to be an equilibrium of Md even
without imposing these conditions.

Theorem 6. Suppose pi > 1/2 for all i, and for each agent i, for each task j ∈ J(i), (i) dij = d, and (ii) E[prj(i)] =

Ejl∈Tij [prjl (i)] , p̄i, where the expectation is over the randomness in the assignment of reference raters to tasks and
the sets Tij . Then, [(1, X)] is an equilibrium ofMd.

The first condition in Theorem 6, dij = d, says that each task j performed by an agent i must contribute to
computing the reward via the statistic term for exactly d other tasks in J(i), where d is the number of reports used
to compute the ‘empirical frequency’ of H reports by i in the statistic term. The second condition E[prj(i)] =
Ejl∈Tij

[prjl (i)] says that an agent i should expect the average proficiency of her reference rater rj(i) to be equal for
all the tasks that she performs, i.e., agent i should not be able to identify any particular task where her reference raters
are, on average, worse than the reference raters for her other tasks (intuitively, this can lead to agent i shirking effort
on this task being a profitable deviation). The first condition holds for each of the two specific mechanismsM1 and
MD−1, and the second condition can be satisfied, essentially, by a randomization of the agents before assignment, as
described in §5. We now prove the result.

Proof. Consider agent i, and suppose all other agents use strategy [(1, X)], i.e., put in full effort with truthtelling on
all their tasks. It will be enough to consider pure strategy deviations, and show that there is no beneficial deviation to
(1, Xc), or (0, r) for any r ∈ [0, 1] on any single task or subset of tasks.

First, consider a particular assignment of reference raters rj(i) and the sets Sij (and therefore Tij). The total
expected reward to agent i from all her D tasks in this assignment, when other agents all play according to [(1, X)] is

E[Ri] =

D∑
j=1

E[XijXrj(i)j + (1−Xij)(1−Xrj(i)j)]−

[∑
k∈Sij

E[Xik]

d
prj(i)[H] + (1−

∑
k∈Sij

E[Xik]

d
)(1− prj(i)[H])

]

=

D∑
j=1

E[XijXrj(i)j + (1−Xij)(1−Xrj(i)j)]−

[∑
k∈Sij

E[Xik]

d
(2prj(i)[H]− 1) + (1− prj(i)[H])

]

=

D∑
j=1

[
E
[
XijXrj(i)j + (1−Xij)(1−Xrj(i)j)

]
−
∑
jl∈Tij

(
E[Xij ]

d
(2prjl (i)[H]− 1)

)
− (1− prj(i)[H])

]
,
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where the expectation is over any randomness in the strategy of i as well as randomness in i and rj(i)’s evaluations
for each task j, and we rearrange to collect Xij terms in the last step.

Now, agent i can receive different reference raters and task sets Sij in different assignments. So to compute her
expected reward, agent i will also take an expectation over the randomness in the assignment of reference raters to
tasks and the sets Sij , which appear in the summation above via Tij .

Recall the condition that E[prj(i)] = Ejl∈Tij
[prjl (i)] , p̄i. Using this condition and taking the expectation over

the randomness in the assignments of rj(i) and Sij , the expected reward of i is

E[Ri] =

D∑
j=1

[
E
[
XijXrj(i)j + (1−Xij)(1−Xrj(i)j)

]
−
∑
jl∈Tij

(
E[Xij ]

d
(2p̄i[H]− 1)

)
− (1− p̄i[H])

]

=

D∑
j=1

[
E
[
XijXrj(i)j + (1−Xij)(1−Xrj(i)j)

]
− dij

d
E[Xij ](2p̄i[H]− 1)− (1− p̄i[H])

]
,

where p̄i[H] = E[prj(i)[H]] = Ejl∈Tij
[prjl (i)[H]].

The expected reward to agent i, when she makes evaluations with proficiency qj for task j and truthfully reports
these evaluations (Xij = X̂ij), is then

E[Ri] =

D∑
j=1

[
qj p̄i + (1− qj)(1− p̄i)−

dij
d
qj [H](2p̄i[H]− 1)− (1− p̄i[H])

]

=

D∑
j=1

[
qj p̄i + (1− qj)(1− p̄i)−

dij
d

(qj [H]p̄i[H] + (1− q[H])(1− p̄i[H]))− (1− dij
d

)(1− p̄i[H])
]

=

D∑
j=1

[
f dij

d

(qj , p̄i) + (
dij
d
− 1)(1− p̄i[H])

]
. (3)

where the expectation is taken over randomness in all agents’ evaluations, as well as over randomness in the choices
of rj(i) and Sij .

We can now show that choosing full effort and truthtelling on all tasks is a best response when all other agents use
[(1, X)] if dij = d. First, by Lemma 4, f dij

d

(qj , p̄i) is increasing in qj provided dij
d ≤ 1, so agent i should choose

full effort to achieve her maximum proficiency pi on all tasks. Next, note that in terms of the expected reward, using
proficiency qj and reporting Xc is equivalent to using proficiency 1 − qj and reporting X . So again by Lemma 4,
deviating to Xc, i.e., (1− qj), on any task is strictly dominated by X for qj > 1/2 and p̄i > 1/2.

Finally, if agent i chooses fij as the function which reports the outcome of a random cointoss with probability r
of H for any task j, the component of E[Ri] contributed by the term corresponding to Xij becomes

E
[
XijXrj(i)j + (1−Xij)(1−Xrj(i)j)

]
− dij

d

(
E[Xij ]prj(i)[H] + (1− E[Xij ])(1− prj(i)[H])

)
= rprj(i)[H] + (1− r)(1− prj(i)[H])− (rprj(i)[H] + (1− r)(1− prj(i)[H])))

= 0,

which is strictly smaller than the reward from fij = X in (3) if qj > 1/2 and dij
d ≥ 1, since f(qj , p̄i) is strictly

positive when qj , p̄i > 1/2 by Lemma 4.
Since we need dij

d ≤ 1 to ensure that (1, Xc) is not a profitable deviation, and dij
d ≥ 1 to ensure that (0, r) is not a

profitable deviation, requiring dij = d simultaneously satisfies both conditions. Therefore, if dij = d, deviating from
(1, X) on any task j leads to a strict decrease in reward to agent i. Since the total reward to agent i can be decomposed
into the sum of D terms which each depend only on the report Xij and therefore the strategy for the single task j, any
deviation from [(1, X)] for any single task or subset of tasks strictly decreases i’s expected reward.

Therefore, the rewards Ri =
∑
j∈J(i)Rij can always be scaled appropriately to ensure that [(1, X)] is an equilib-

rium ofMd.

Other equilibria. While [(1, X)] is an equilibrium,Md can have other equilibria as well— for instance, the strategy
[(0, r)], where all agents report the outcome of a random cointoss with bias r on each task, is also an equilibrium of
Md for all r ∈ [0, 1], albeit with 0 reward to each agent. In fact, as we show in the next theorem, no equilibrium,
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symmetric or asymmetric, in pure or mixed strategies, can yield higher reward6 to agents than [(1, X)], as long as
agents ‘treat tasks equally’ (for example, while an agent may choose to shirk effort on one task and work on all others,
each of her tasks is equally likely to be the one she shirks on). We will refer to this as tasks being ‘apriori equivalent’,
so that agents cannot distinguish between tasks prior to putting in effort on them (or equivalently, the assignment of
reference raters is such that agents will not find it beneficial (in terms of expected reward) to use a different strategy
for a specific task). Note that this assumption is particularly reasonable in the context of applications where agents
are recruited for a collection of similar tasks as in crowdsourced abuse/adult content identification, or in peer grading
where each task is an anonymous student’s solution to the same problem.

Theorem 7. Suppose pi > 1/2, and tasks are apriori equivalent. Then, the equilibrium where all agents choose
[(1, X)] yields maximum reward to each agent.

Proof. Consider a particular agent i and task j, and a single potential reference rater rj(i) for (i, j). Recall from the
preliminaries that agent i’s choice of fij can be described via a matrix M = α1MX + α2MXc + α3MH + α4ML,
and that we denote i’s evaluation via a vector o, where o = [1 0]T if i observes H and o = [0 1]T if i observes
L. Similarly, let us describe rj(i)’s choice of reporting function via the matrix M ′ with corresponding coefficients α′i,
and denote rj(i)’s evaluation by o′.

Since tasks are apriori equivalent, each player i (hence rj(i) too) uses strategies such that E[Xij ] = E[Xik] for all
j, k ∈ J(i). Then, we can rewrite the expected reward for agent i on task j, when paired with reference rater rj(i), as

E[Rij ] = 2(E[XijXrj(i)j ]− E[Xij ]E[Xrj(i)j ]).

Using the matrix-vector representation, substituting M,M ′ with their representations in terms of the basis matrices
and expanding, and evaluating the matrix-matrix products, we have

XijXrj(i)j = o′TM ′TMo = o′TRMo,

where

RM = (α1α
′
1 + α2α

′
2)I + α2α

′
1MXc + α1α

′
2M

T
Xc + (α3α

′
3 + α4α

′
4)1 + (α3α

′
1 + α4α

′
2)MH + (α1α

′
3 + α2α

′
4)MT

H

+ (α4α
′
1 + α3α

′
2)ML + (α1α

′
4 + α2α

′
3)MT

L ,

and I,1 denote the identity matrix and the matrix of all ones inR2×2 respectively, and we useMT
XMX = MT

XcMXc =
I , MT

HMH = MT
LML = 1, MT

XcMH = ML, MT
XcML = MH , and MT

HML = 0. Similarly,

E[Xij ]E[Xrj(i)j ] = E[o′TM ′T ]E[Mo] = E[o′T ]RME[o],

where RM is as defined above.
Now, note that MHo = [o1 + o2 0]T = [1 0]T since o1 + o2 = 1 for any evaluation vector o by defini-

tion, so that E[o′TMHo] = E[o′T ]E[MHo], since MHo is a constant. The same is the case for each of the terms
E[o′T1o], E[o′TMT

Ho], E[o′TMT
L o], E[o′TMLo]. Therefore, these terms cancel out when taking the difference

E[XijXrj(i)j ]−E[Xij ]E[Xrj(i)j ] (corresponding to the reward from either agent choosing to reportXij independent

of her evaluation being 0). Also note that E[oij ] =
[
p[H] p[L]

]T
if agent i makes evaluations with proficiency p.

Suppose the agents use effort leading to proficiencies p and p′ respectively. Then, we have

E[XijXrj(i)j ]− E[Xij ]E[Xrj(i)j ] = (α1α
′
1 + α2α

′
2)(E[o′T o]− E[o′]TE[o]) + α2α

′
1(E[o′TMXco]− E[o′T ]MXcE[o])

+ α1α
′
2(E[o′TMT

Xco]− E[o′T ]MT
XcE[o])

= (α1α
′
1 + α2α

′
2)(E[o′1o1 + o2o

′
2]− E[o′1]E[o1]− E[o2]E[o′2])

+ (α2α
′
1 + α1α

′
2)(E[o′1o2 + o1o

′
2]− E[o′1]E[o2]− E[o1]E[o′2])

= (α1α
′
1 + α2α

′
2)
(
pp′ + (1− p)(1− p′)− p[H]p′[H]−

(1− p[H])(1− p′[H])
)

+ (α2α
′
1 + α1α

′
2)
(
p(1− p′) +

(1− p)p′ − p[H](1− p′[H])− (1− p[H])p′[H]
)
.

6We note that another equilibrium which achieves the same maximum expected reward is [(1, Xc)], where all agents put in full effort to make
their evaluations, but then all invert their evaluations for their reports. However, [(1, Xc)] is a rather unnatural, and risky, strategy, and one that
is unlikely to arise in practice. Also, as we will see later, [(1, Xc)] can also lead to lower rewards when there are some agents who always report
truthfully.
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Now, note that multiplier of (α1α
′
1 + α2α

′
2) is precisely f(p, p′), which by Lemma 4 is nonnegative if p, p′ ≥ 1/2,

and strictly positive if p, p′ > 1/2. Also, for p, p′ ≥ 1/2, note that p[H] ≤ p and p′[H] ≤ p′. Now, the function
g(x, y) = x(1− y) + y(1− x) is decreasing in both x and y for x, y ∈ [ 12 , 1] (taking derivatives), so the multiplier of
(α2α

′
1 + α1α

′
2) is non-positive, and negative if p, p′ > 1/2.

So the maximum value that E[XijXrj(i)j ]−E[Xij ]E[Xrj(i)j ] can take for nonnegative coefficients with
∑
αi =∑

α′i = 1, is f(p, p′), which is obtained by setting α3 = α4 = 0, α′3 = α′4 = 0 (i.e., with no weight on random
independent reporting), and a1 = α′1 = 1, α2 = α′2 = 0 (or viceversa): this is because the maximum value of term
(α1α

′
1 + α2α

′
2) when α2 = 1 − α1 and α′2 = 1 − α′1 is 1 and is achieved with these values, which also minimize

the value of the term (α2α
′
1 + α1α

′
2) with the non-positive multiplier, since (α2α

′
1 + α1α

′
2) ≥ 0 and is equal to 0 for

these values of αi, α′i. Also, since f(p, p′) increases with increasing p and p′, it is maximized when agents put in full
effort and achieve their maximum proficiencies pi, prj(i).

Therefore the expected reward for the single component of E[Rij ] coming from a specific reference rater achieves
its upper bound when both agents use [(1, X)]. The same argument applies for each reference rater, and therefore to
the expected reward E[Rij ], and establishes the claim.

We next investigate what kinds of Nash equilibria might exist where agents use low effort with any positive prob-
ability. Apriori, it is reasonable to expect that there would be mixed-strategy equilibria where agents randomize
between working and shirking, i.e., put in effort (choose eij = 1) sometimes and not (choose eij = 0) some other
times. However, we next show that as long as tasks are apriori equivalent and agents only randomize between reporting
truthfully and reporting the outcome of an independent random cointoss (i.e., they do not invert evaluations), the only
equilibrium in which any agent uses any support on (0, r) is the one in which all agents always use (0, r) on all their
tasks. To show this, we start with the following useful lemma saying that an agent who uses a low-effort strategy any
fraction of the time will always have a beneficial deviation as long as some reference agent plays (1, X) with some
positive probability. Roughly speaking, this is because as long as there is some probability that an agent’s reference
rater plays (1, X) rather than (0, r), the agent strictly benefits by always playing (1, X) to maximize the probability
of both agents playing (1, X), which is the only time the agent obtains a positive reward.

Lemma 8. Suppose the probability of agent i using strategy (1, X) is δ and strategy (0, ri) is 1 − δ for each task
j ∈ J(i). Suppose i’s potential reference raters rj(i) use strategies (1, X) and (0, rrj(i)) with probabilities εrj(i) and
1− εrj(i) respectively, for each task j ∈ J(i). If εrj(i) > 0 for any reference rater with proficiency prj(i) > 1/2, then
agent i has a (strict) profitable deviation to δ′ = 1, i.e., to always using strategy (1, X), for all values of ri ∈ [0, 1].

Proof. Consider a particular task j, and let k = 1, . . . ,K be the potential reference rater for (i, j). Let ak denote the
probability that k is the reference rater for agent i for task j. By linearity of expectation, i’s expected reward for j can
be written as

E[Rij ] =

K∑
k=1

ak
[
δεk(pipk + (1− pi)(1− pk)− (pi[H]pk[H] + (1− pi[H])(1− pk)))

+ (1− δ)εk(ripk[H] + (1− ri)(1− pk[H])− (ripk[H] + (1− ri)(1− pk)))

+ δ(1− εk)(pi[H]rk + (1− pi[H])(1− rk)− (pi[H]rk + (1− pi[H])(1− rk)))

+ (1− δ)(1− εk)(rirk + (1− ri)(1− rk)− (rirk + (1− ri)(1− rk)))
]

= δ
∑
k

akεk(pipk + (1− pi)(1− pk)− (pi[H]pk[H] + (1− pi[H])(1− pk[H])))

= δ
∑
k

akεkf1(pi, pk).

Now, E[Rij ] is linear in δ, and by Lemma 4, the coefficient of δ is nonnegative for all εk and pk ≥ 1/2, and strictly
greater than 0 if εk > 0 for some k with pk > 1/2. Therefore, i can strictly increase her expected reward E[Rij ] by
increasing δ for any δ < 1, as long as there is some reference agent k with εk > 0 and pk > 1/2.

The same argument holds for each task j ∈ J(i), and therefore to strictly improve i’s total reward E[Ri], we only
need one reference rater across all tasks to satisfy εk > 0 and pk > 1/2 to obtain a strictly beneficial deviation (recall
that we assumed pi ≥ 1/2 for all i).

This lemma immediately allows us to show that the only low-effort equilibria ofM that we reasonably7 need to
7(We say reasonably because of the technical possibility of equilibria where some agents mix over (1, Xc) as well.)
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be concerned about is the pure-strategy equilibrium in which eij = 0 for all i, j. Note that different agents could use
different ri (or even rij) in such equilibria, but all agents will receive reward 0 in all such equilibria.

Theorem 9. Suppose every agent can be a reference rater with some non-zero probability for every other agent, and
tasks are apriori equivalent. Then, the only equilibria (symmetric or asymmetric) in which agents mix between (1, X)
and any low-effort strategy [(0, rij)] with non-trivial support on [(0, rij)] are those where all agents always use low
effort on all tasks.

Eliminating low-effort equilibria. Our final result uses Lemma 8 to obtain a result about eliminating low-effort
equilibria. Suppose there are some trusted agents (for example, an instructor or TA in the peer-grading context or
workers with long histories of accurate evaluations or good performance in crowdsourcing platforms) who always
report truthfully with proficiency t > 1/2. Let εt denote the minimum probability, over all agents i, that the reference
rater for agent i is such a trusted agent (note that we can ensure εt > 0 by having the trusted agent randomly choose
each task with positive probability). Lemma 8 immediately gives us the following result for Md, arising from the
fact that the reward from playing a random strategy (0, r) is exactly 0—the presence of trusted agents with a non-zero
probability, however small, is enough to eliminate low-effort equilibria altogether.

Theorem 10. Suppose εt > 0. Then [(0, rij)] is not an equilibrium ofM for any rij ∈ [0, 1].

Proof. Suppose all agents except the trusted agent use the strategy (0, rij), and εt is the probability that the trusted
agent is the reference rater for any agent-task pair. Then, since agent i reports Xij according to a random coin toss
independent of the actual realization of j, the payoff from any reference rater, whether the trusted agent or another
agent playing (0, r) is 0. For notational simplicity, let r = rij , r′ = rrj(i)j .

E[Rij ] = εt(rt[H] + (1− r)(1− t[H])− (rt[H] + (1− r)(1− t[H]))

+ (1− εt)(rr′ + (1− r)(1− r′)− (rr′ + (1− r)(1− r′)))
= 0.

By deviating to (1, X), agent i can strictly improve her payoff as long as εt > 0 and t, p > 1/2, since her expected
reward from this deviation is

E[Rij ] = εt(pt+ (1− p)(1− t)− (p[H]t[H] + (1− p[H])(1− t[H]))

+ (1− εt)(rr′ + (1− r)(1− r′)− (rr′ + (1− r)(1− r′))
> 0,

since the coefficient of εt is positive for t, p > 1/2 by Lemma 4. Therefore, there is a strictly beneficial deviation to
(1, X), so there is a choice of multiplier for the reward such that the payoff to agent i, which is the difference between
the reward and the cost of effort c, is strictly positive as well. So (0, rij) is not an equilibrium ofM when εt > 0.

This result, while simple, is fairly strong: as long as some positive fraction of the population can be trusted to
always report truthfully with proficiency greater than 1/2, the only reasonable8. equilibrium ofM is the high-effort
equilibrium [(1, X)], no matter how small this fraction. In particular, note thatM does not need to assign a higher
reward for agreement with a trusted agent to achieve this result, and therefore does not need to know the identity of
the trusted agents. In contrast, the mechanism which rewards agents for agreement with a reference rater without
subtracting out our statistic term must use a higher reward w(εt) for agreement with the trusted agents which increases
as 1

εt
to eliminate low-effort equilibria9— this, in addition to being undesirably large, also requires identification of

trusted agents.

8Again, we say reasonable rather than unique because (1, Xc) does remain an equilibrium ofM for all εt less than a threshold value— however,
in addition to being an unnatural and risky strategy, this equilibrium yields strictly smaller payoffs than [(1, X)] when εt > 0. Note also that the
introduction of such trusted agents does not introduce new equilibria, and that [(1, X)] remains an equilibrium ofM.)

9The same is the case for a mechanism based on rewarding for the ‘right’ variance, which does retain [(1, X)] as a maximum reward equilibrium,
but still requires identifying the trusted agents and rewarding extra for agreement with them.
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5 Creating the Task Assignment
While in some crowdsourcing settings, agents choose tasks at will, there are also applications where a principal can
potentially choose an assignment of a collection of her tasks among some assembled pool of workers. In this section,
we present a simple algorithm to design assignment of tasks to agents such we can satisfy the condition in Theorem 6
for mechanismMD−1, i.e., when d = D−1. We note that with this assignment of tasks to agents, choosing reference
raters appropriately is trivially feasible for d = 1, i.e., forM1, and ensuring dij = d is also easy as described in §3.

We start out by randomly permuting all agents using a permutation π. For simplicity of presentation we assume
that mD (= n

T ) is an integer. The m tasks are divided into m
D task-blocks, each containing D tasks. Similarly, the n

agents are divided into T agent blocks, each containing n
T agents. We number the task-blocks by b = 1, . . . , mD and

the agent blocks by a = 1, . . . , T . The agents in block a are thus (a − 1) nT + 1, . . . , a nT and the tasks in block b are
(b− 1)D + 1, . . . , bD.

We first describe the algorithm and then show that it produces an assignment that satisfies the conditions required
in the definition ofMD−1, in particular that for each agent-task pair, it is possible to choose a reference rater who has
only that task in common with this agent. The algorithm works as follows: we assign tasks for agents starting from
the agent block a = 1 onwards. For block 1, each agent i′ in the block is assigned all the tasks corresponding to the
task block i′ (recall that number of agents in a block equals n

T = m
D , the number of task-blocks). This completes fills

up the capacity of the agents in block 1. For blocks a = 2, . . . , T , consecutively, the agent (a− 1) nT + i′ is assigned
D tasks {i′, i′ + m

D , . . . , i
′ + m

D (D − 1)}, for i′ = 1, . . . , nT .
The above assignment completely describes the sets J(i) and I(j) for every agent i and task j. For each task j,

let i∗j denote the unique agent in block 1 who works on task j. We define the reference raters as follows: for each
agent-task pair (i, j), if i lies in blocks {2, . . . , T}, define the reference rater rj(i) = i∗j . If i lies in block 1, define the
reference rater to be any other user who is working on this task. Note that for d = D − 1, the sets Sij and Srj(i)j are
exactly Sij = J(i) \ {j} and Srj(i)j = J(rj(i)) \ {j}.

The following lemma proves two things— first, the assignment above is actually feasible under fairly mild condi-
tions, and second, that the choice of reference raters satisfies the conditions in the definition ofM and those required
by Theorem 6.

Lemma 11. If m ≥ D2, the above algorithm generates a feasible assignment, i.e. every agent is assigned exactly D
tasks and every task to T agents. Also, for agent-task pair (i, j), the reference rater rj(i) satisfies J(rj(i)) ∩ J(i) =
{j}. Furthermore, E[prj(i)] = Ejl∈Tij

[pi′jl
].

Proof. Agents in block 1 are clearly assigned to their full capacity. For blocks a = 2, . . . , T , for every agent i =
(a− 1) nT + i′, the set I(i) = {i′, i′ + m

D , . . . , i
′ + m

D (D − 1)}. Note that for each i, the above values are all distinct,
and that i′ + m

D (D − 1) ≤ n
T + m

D (D − 1) = m. Thus every agent’s assignment is feasible. Since the total capacity
of agents equals the total capacity of the tasks, the tasks are also assigned completely, and to distinct agents.

In order to see that the choice of reference raters is feasible, note that if D2 ≤ m, then m
D ≥ D, and hence the

tasks for each agent belong to distinct blocks. For agent-task pairs (i, j) where the agents are in blocks 2, . . . , T , the
reference rater rj(i) = i∗j , the unique agent in block 1 who worked only on the task-block that j belongs to. By the
above argument, i does not work on any other task from this block, and hence J(i∗j ) ∩ J(i) = {j}. By the same
argument, i is also a feasible reference rater for i∗j on task j. Thus, the choice of reference raters satisfies the condition
forMD−1.

Finally, the expectation condition follows simply from the random permutation applied to the set of agents at the
beginning of the construction.

6 Discussion
In this paper, we introduced the problem of information elicitation when agents’ proficiencies are endogenously de-
termined as a function of their effort, and presented a simple mechanism which uses the presence of multiple tasks
to identify and penalize low-effort agreement to incentivize effort when tasks have binary types. Our mechanism has
the property that maximum effort followed by truthful reporting is the Nash equilibrium with maximum payoff to all
agents, including mixed strategy equilibria. In addition to handling endogenous agent proficiencies, to the best of our
knowledge this is the first mechanism for information elicitation with this ’best Nash equilibrium’ property over all
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pure and over mixed strategy equilibria that requires agents to only report their own evaluations (i.e., without requiring
‘prediction’ reports of their beliefs about other agents’ reports), and does not impose any requirement on a diverging
number of agent reports per task to achieve its incentive properties. Our mechanism provides a starting point for
designing information elicitation mechanisms for several crowdsourcing settings where proficiency is an endogenous,
effort-dependent choice, such as image labeling, tagging, and peer grading in online education.

We use the simplest possible model that captures the complexities arising from strategically determined agent pro-
ficiencies, leading to a number of immediate directions for further work. First, our underlying outcome space is binary
(H or L)— modeling and extending the mechanism to allow a richer space of outcomes and feedback is one of the
most immediate and challenging directions for further work. Also, our model of effort is binary, where agents either
exert full effort and achieve maximum proficiency, or exert no effort to achieve the baseline proficiency. While our
results extend to a model where proficiency increases linearly with cost, a natural question is how they extend to more
general models, for example, with convex costs. Finally, a very interesting direction is that of heterogenous tasks with
task-specific priors and abilities. In our model, tasks are homogenous with the same prior P[H], and agents have the
same cost and maximum proficiency for each task. If tasks differ in difficulty, and agents can observe the difficulty of
a task prior to putting in effort, there are clear incentives to shirk on harder tasks while putting in effort for the easier
ones. While tasks are indeed apriori homogenous (or can be partitioned to be so) in some crowdsourcing settings, there
are other applications where some tasks are clearly harder than others; also, agents may have task-specific abilities.
Designing mechanisms with strong incentive properties for this setting is a very promising and important direction for
further work.
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tation of the paper.
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