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Abstract

In this paper we address the following density esti-
mation problem: given a number of relative similarity
judgements over a set of items D, assign a density value
p(x) to each item x ∈ D. Our work is motivated by hu-
man computing applications where density can be inter-
preted e.g. as a measure of the rarity of an item. While
humans are excellent at solving a range of different vi-
sual tasks, assessing absolute similarity (or distance) of
two items (e.g. photographs) is difficult. Relative judge-
ments of similarity, such as A is more similar to B than
to C, on the other hand, are substantially easier to elicit
from people. We provide two novel methods for density
estimation that only use relative expressions of similar-
ity. We give both theoretical justifications, as well as
empirical evidence that the proposed methods produce
good estimates.

Introduction

A common application of crowdsourcing is to collect train-
ing labels for machine learning algorithms. However, human
computation can also be employed to solve computational
problems directly (Amsterdamer et al. 2013; Chilton et al.
2013; Trushkowsky et al. 2013; Parameswaran et al. 2011;
Bragg, Mausam, and Weld 2013). Some of this work is
concerned with solving machine learning problems with
the crowd (Gomes et al. 2011; Tamuz et al. 2011; van der
Maaten and Weinberger 2012; Heikinheimo and Ukkonen
2013).

In this paper we focus on the problem of nonparametric
density estimation given a finite sample from an underly-
ing distribution. This is a fundamental problem in statistics
and machine learning that has many applications, such as
classification, regression, clustering, and outlier detection.
Density can be understood simply as “the number of data
points that are close to a given data point”. Any item in a
high density region should thus be very similar to a fairly
large number of other items. We argue that in the context
of crowdsourcing, density can be viewed for instance as a
measure of “commonality” of the items being studied. That
is, all items in a high density region can be thought of as
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having a large number of common aspects or features. Like-
wise, items from low density regions are outliers or in some
sense unusual.

To give an example, consider a collection of photographs
of galaxies (see e.g. (Lintott et al. 2008)). It is reasonable to
assume that some types of galaxies are fairly common, while
others are relatively rare. Suppose our task is to find the
rare galaxies. However, in the absence of prior knowledge
this can be tricky. One approach is to let workers label each
galaxy as either common or rare according to the workers’
expertise. We argue that this has two drawbacks. First, eval-
uating commonality in absolute terms in a consistent manner
may be difficult. Second, the background knowledge of the
workers may be inconsistent with the data distribution. Per-
haps a galaxy that would be considered as rare under general
circumstances is extremely common in the given data. We
argue that in such circumstances density estimation may re-
sult in a more reliable method for identifying the rare galax-
ies. A galaxy should be considered as rare if there are very
few (or none) other galaxies that are similar to it in the stud-
ied data.

The textbook approach for nonparametric density estima-
tion are kernel density estimators (Hastie, Tibshirani, and
Friedman 2009, p. 208ff). These methods usually consider
the absolute distances between data points. That is, the dis-
tance between items A and B is given on some (possibly
arbitrary) scale. Absolute distances between data points are
used also in other elementary machine learning techniques,
such as hierarchical clustering or dimensionality reduction.
However, in the context of human computation, it is consid-
erably easier to obtain information about relative distances.
For example, statements of the form “the distance between
items A and B is shorter than the distance between items
C and D” are substantially easier to elicit from people than
absolute distances. Moreover, such statements can be col-
lected in an efficient manner via crowdsourcing using ap-
propriately formulated HITs (Wilber, Kwak, and Belongie
2014). It is thus interesting to study what is the expressive
power of relative distances, and are absolute distances even
needed to solve some problems?

A common application of relative distances are algo-
rithms for computing low-dimensional embeddings (rep-
resentations of the data in R

m) either directly (van der
Maaten and Weinberger 2012) or via semi-supervised
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Figure 1: Left: Example of the TDE1 estimator we propose.
Right: Example of the TDE2 estimator that we propose.

metric-learning (Schultz and Joachims 2003; Davis et al.
2007; Liu et al. 2012) if features are available. While em-
beddings can be used for various purposes, including also
density estimation, we are more interested in understanding
what can be done using relative distances directly, without
first computing a representation of the items in some (ar-
bitrary) feature space. This is because despite embeddings
being powerful, they can be tricky to use in practical situa-
tions, e.g. if the true dimensionality of the data is unknown.
Moreover, an embedding may have to be re-computed when
new data is added to the model. We hope to avoid this by
operating directly with relative distance judgements.

Our contributions

We consider two approaches for density estimation using
relative distances. In particular, we provide the following
contributions:

1. We describe how a standard kernel density estimator can
be expressed using relative distance judgements, and de-
scribe how embeddings to R

m can be used to construct
this estimator.

2. We propose a second estimator that is explicitly designed
for human computation. The main upside of this estima-
tor is that it is easier to learn and use. While the estima-
tor is biased, the amount of the bias can be reduced at
the cost of using more work to build the estimator.

3. We conduct experiments on simulated data to compare
the two methods, and show that the second estimator is
in general easier to learn than the first one, and that it
produces better estimates.

High-level overview of the proposed methods

We propose two methods for density estimation using rel-
ative distances. The first is a simple variant of a standard
kernel density estimator, while the other is a novel method
that has some practical advantages over the first one. We call
our estimators “triplet density estimators”, because the rela-
tive distance judgements they use are defined on sets of three
items.

Our input is a dataset D, assumed to have been sampled
iid. from some unknown density p, and we want to estimate
the density p(x) at an arbitrary point x. Both of the proposed

methods are based on the observation that the density at a
given point x is proportional to the number of close neigh-
bours of x that belong to D. If there are many other points
in D that are at a close proximity to x, we say that x is from
a high-density region. The question is thus how to identify
and count the points that are close to x without measuring
absolute distances.

The basic idea of the first method, called TDE1, is illus-
trated in the left panel of Figure 1. Suppose we have placed
a circle with a short radius at every observed data point
ui ∈ D. Given x, we can count how many of these circles
cover x, i.e., the number of ui that are close to x. Observe
that to do this we only need to know whether the distance
between x and some ui is shorter or longer than the radius
of the circle around ui. This is a problem of comparing two
distances, and does thus not require to know the absolute
distances.

We can thus pair every ui ∈ D with a reference point
u′
i ∈ D so that the distance between ui and u′

i equals the
radius of the circle. However, as the circles at every ui must
have at least roughly the same radius, finding an appropriate
reference point for every ui can be difficult. We also need a
means to find the reference points without access to absolute
distances. This problem can be solved to some degree using
a low-dimensional a embedding, but it adds to the complex-
ity of the method.

The second method we propose, called TDE2, is simpler
in this regard. Rather than having to find a reference point
for every ui ∈ D, it only uses a random set of pairs of
points from D. The only constraint is that the pairs should
be “short”. We say a pair is short if it is short in comparison
to all possible pairs of items from D. The intuition is that
short pairs occur more frequently in high density regions of
the density function p. The second method thus counts the
number of short pairs that are close to x.

Here the notion of “closeness” also depends on the length
of the pair. This is illustrated in the right panel of Figure 1.
The pairs are shown in red, with gray circles around their
endpoints. The radius of the circles is equal to the length of
the respective pair. The pair is considered to be close to x if
x is covered by at least one of the circles that are adjacent to
the pair. Very short pairs must be very close to x in order to
cover it, while longer pairs also cover points that are further
away.

It is easy to see that TDE1 is essentially a standard kernel
density estimator that uses the uniform kernel. The TDE2

estimator is designed for relative distances from the ground
up and has thus some advantages over TDE1. In particular,
TDE2 is simpler to construct.

TDE1: A simple triplet density estimator
Our first method can be viewed as a standard kernel den-
sity estimator that does not use absolute distances. First,
we recall the basic definition of a kernel density estimator
as originally proposed (Rosenblatt 1956; Parzen 1962), and
as usually given in textbooks, e.g. (Hastie, Tibshirani, and
Friedman 2009, p. 208ff). Then, we describe how a simple
instance of this can be implemented only using relative dis-
tances.



Basics of kernel density estimation

Let D = {u1, . . . , un} denote a data set of size n drawn
from a distribution having the density function p. For the
moment, assume that D consists of points in R

m. Given D,
the kernel density estimate (KDE) of p at any point x is given
by

KDEn(x) =
1

nhm

n
∑

i=1

K(
1

h
(x− ui)), (1)

where K is the kernel function and h is the bandwidth pa-
rameter. Fairly simple conditions on the kernel function K
and the bandwidth h are sufficient to guarantee that the ker-
nel density estimate is an unbiased and consistent estimate
of p. That is, as the size of D increases, we have

lim
n→∞

ED∼p[KDEn(x)] = p(x), (2)

where the expectation is taken over random samples from
p of size n. Most importantly, the kernel function K must
satisfy

K(y) ≥ 0 ∀y and

∫

Rm

K(y)dy = 1. (3)

In this paper we consider radial-symmetric kernels. In addi-
tion to Equation 3 these satisfy K(y) = K(y′) ⇔ ‖y‖ =
‖y′‖. That is, the kernel is a function of only the length of
its input vector. Also, we want K(y) to be non-increasing in
‖y‖. Now, assume that there exists a distance function d be-
tween the items in D. For the moment, let d(x, y) = ‖x−y‖.
We can rewrite Equation 1 as follows:

KDEn(x) =
1

nhm

n
∑

i=1

K(
d(x, ui)

h
). (4)

The bandwidth h is a parameter that must be specified
by the user. There are a number of methods for choos-
ing h in an appropriate manner. In practice the bandwidth
h should decrease as n increases. In fact, we must have
limn→∞ h(n) = 0 for Eq. 2 to hold. In the experiments we
use cross validation to select an appropriate value of h when
needed.

Normalised densities and relative distances

Before continuing, we point out a property of density func-
tions and relative distances. Recall that the integral of a den-
sity function over its entire domain must by definition be
equal to 1. This means that the value p(x) is not scale in-
variant: the precise value of p(x) depends on the “unit” we
use to measure distance. If we measure distance in different
units1, the absolute value of p(x) must change accordingly
as well. This is reflected in Equation 1 through the band-
width parameter h that must have the same unit as the dis-
tance d(u, v).

However, when dealing with relative distances there is
no distance unit at all. We only know that some distance
is shorter (or longer) than some other distance, but the unit
in which the distances are measured is in fact irrelevant.

1Concretely, suppose we use feet instead of meters.

An important consequence of this is that it is not possible
to devise a normalised density estimator based on relative
distances. In other words, Equation 2 can not hold with
equality. The best we can hope for is to find an estimator
that is proportional to p(x). Later we show how to derive
a normalised estimator for one-dimensional data, but this
makes use of absolute distances in the normalisation con-
stant, much in the same way that h appears in the normali-
sation constant of Equation 1. In practice we must thus con-
sider non-normalised estimates of p(x) when using relative
distances.

Uniform kernel with relative distances

The simplest kernel function K that satisfies the require-
ments given above is the uniform kernel. It takes some con-
stant positive value if x is at most at distance h from the data
point ui ∈ D at which the kernel is located, and is otherwise
equal to zero. Formally the m-dimensional uniform kernel
is defined as

Kunif(y) =

{

V (m)−1 : y ≤ 1,
0 : y > 1,

(5)

where V (m) is the volume of the m-dimensional unit-

sphere. This is defined as V (m) = π
m

2

Γ(m

2
+1) , where Γ is the

Gamma function.
In this case the density estimate at x is simply propor-

tional to the number data points that are at most at a distance
of h from x. We say the point u covers x with bandwidth h,

whenever Kunif(d(x,u)
h

) ≤ 1, This can be seen as a straight-
forward generalisation of a histogram that has unspecified
bin boundaries. In Figure 1 (left) we can say that the density
at x is proportional to the number of “discs” that cover x.
It is easy to see that as n increases and h goes to zero (i.e.,
there are more points covered by smaller and smaller discs),
this quantity will indeed approach the underlying density p.

We continue by designing a triplet density estimator that
uses the uniform kernel Kunif . To compute Kunif , we must
only determine if a data point ui near enough to x. How-
ever, we cannot evaluate d(u, v) explicitly for any u, v ∈ D.
Instead, we only have access to an “oracle” that can give
statements about the relative distance between items. That
is, we can issue tasks such as

“Is the distance d(u, x) shorter than the distance
d(u, v)?”

Or, in more natural terms:

“Of the items x and v, which is more similar to u?”

We can use this task to compute the uniform kernel as
follows. Suppose that for every ui ∈ D, we have found some
other u′

i ∈ D, so that d(ui, u
′
i) is equal to h. Denote this

pairing by P(h). Note that several u ∈ D can be paired with
the same u′, P(h) is not required to be a proper matching.
Given P(h), by the definition of the uniform kernel given in
Equation 5, we have

Kunif

(

d(x, ui)

h

)

= V (m)−1 I{d(ui, x) ≤ d(ui, u
′
i)}.

(6)



This, together with Equation 4 gives the triplet density esti-
mator

TDE1n(x) =
1

V (m)nhm

∑

(u,u′)∈P(h)

I{d(u, x) < d(u, u′)}.

(7)
This simply counts the number of u ∈ D that cover x with
the specified bandwidth h. As we only need an oracle that
can provide relative distance judgements to evaluate the in-
dicator function above, Equation 7 provides a kernel density
estimator that is suitable for human computation. Moreover,
all known results that apply to Equation 1 (e.g. the one of
Equation 2) directly carry over to Equation 7.

There are some issues with this result, however. As dis-
cussed above, in practice we cannot evaluate the normalisa-
tion constant: both m and the exact value of h are unknown
if our input only consists of relative distance comparisons.

More importantly, it is unlikely that for a given D we
would find a pairing P(h) where the distances between all
pairs are exactly equal to h. It is more realistic to assume

that we can find a pairing P̃(h) where this holds approxi-

mately. That is, for (almost) every (u, u′) ∈ P̃(h), we have
d(u, u′) ≈ h. This implies that results about unbiasedness
and convergence that hold for Equation 1 are no longer ob-
viously true. While variable bandwidth density estimators
have been proposed in literature, our problem differs from
those in the sense that we do not try to select an optimal lo-
cal bandwidth around each u ∈ D, but the bandwidth at u
randomly varies around h. In general it is nontrivial to even
quantify this variance, or show how it affects the resulting
estimator.

This raises one important question, however. If we are not
able to evaluate the absolute value of d(u, v), how can we
find pairs that are (at least approximately) of length h?

Using an embedding to find P̃(h)
As mentioned in the Introduction, by embedding the items
to a low-dimensional Euclidean space, we can trivially es-
timate density using existing techniques. Such embeddings
can be computed from relative distances e.g. using the algo-
rithm described in (van der Maaten and Weinberger 2012).
This has the downside that to estimate density at a new point
x, we in general must recompute the embedding to see where
x is located. Using the technique described above, however,
it is possible to estimate density directly, provided we have
the set of pairs P(h).

Therefore, we use the embedding only for constructing

the set P̃(h) as follows:

1. Embed all items in D to R
m using some suitable algo-

rithm. We use the method proposed in (van der Maaten
and Weinberger 2012). This results in a set of points X .
Note that the dimensionality m of the embedding is a
parameter that must be specified by the user.

2. Use any existing technique for bandwidth selection to
find a good h given the points X ∈ R

m. We use cross
validation in the experiments later.

3. For every item u ∈ X , find the item v ∈ X so that the
distance between u and v is as close to h as possible.

This yields the set P̃(h).

The pairs (u, v) in P̃(h) have all approximately length h
in the embedding. Of course this length is not the same as the
unknown distance d(u, v), but we can assume that d(u, v) is

approximately the same for every (u, v) ∈ P̃(h).

TDE2: A second triplet density estimator

The density estimator proposed above (Equation 7) must
construct a low dimensional embedding of the items to find

the pairs P̃(h). While there are a number of techniques for
finding such embeddings, they are not necessarily optimal
for density estimation. Their objective may be to create vi-
sually pleasing scatterplots, which requires to introduce ad-
ditional constraints that will favor embeddings with certain
properties. For instance, the methods may aim to focus on
short distances so that the local neighbourhood of each data
point is preserved better. This emphasises clusters the data
may have. As a consequence the resulting distances may
become disproportionally skewed towards short distances.
However, for the bandwidth selection process to produce
good results, we would prefer the resulting distances to be
as truthful as possible, possibly at the cost of the embedding
resulting in a less clear visualisation. Moreover, the embed-
ding algorithms tend to be sensitive to initialisation.

Motivated by this, we propose a second triplet density es-
timator that does not need an embedding. In particular, we
show that it is possible to produce good density estimates,
provided we can find a sufficient number of short pairs. Un-
like in the method proposed above, they do not all have to
be approximately of the same length h. Instead, it is suffi-
cient to find pairs that are all at most of a certain length that
we will denote by δmax. We first describe the estimator and
prove some of its properties, and continue by discussing the
problem of finding short pairs without an embedding.

Basic idea

This variant of the density estimator uses a slightly different
human intelligence task:

“Which of the three items x, u, and v is an outlier?”

The worker must identify one of the three items as the one
being the most dissimilar to the other two. In (Heikinheimo
and Ukkonen 2013) this task was used to compute the cen-
troid of a set of items.

We model this HIT by a function Ω that takes as input
the item x and the pair (u, v), and returns 1 if the distance
between x and u or v is shorter than the distance between u
and v, and 0 otherwise. That is, we have Ω(x, (u, v)) = 0 if
x is chosen as the outlier and Ω(x, (u, v)) = 1 if either u or
v is chosen as the outlier. More formally, we have

Ω(x, (u, v)) = I{min(d(x, u), d(x, v)) ≤ d(u, v)},

and we say that the pair (u, v) covers the item x whenever
Ω(x, (u, v)) = 1.

Our method is based on the following observation. Let
P = {(ui, vi)}

l
i=1 denote a set of pairs, where every ui

and vi is drawn from D uniformly at random. Moreover, let
Pδmax ⊂ P denote the set of “short pairs”, meaning those



for which we know the distance d(u, v) to be below some
threshold δmax. Now, fix some x ∈ D, and consider the num-
ber of short pairs (u, v) ∈ Pδmax that cover x. If x resides
in a high density region of p, we would expect there to be
many short pairs that cover x, while there are less of such
pairs if x is from a low density region. This is illustrated in
the right panel of Fig. 1.

The estimator that we propose, called TDE2, is defined
as described above. We first draw an iid. sample of pairs P
from p, and then remove all such pairs from P that are longer
than δmax to obtain Pδmax . As we discuss in the remainder
of this section, we can estimate density p(x) at any given x
by computing the number of pairs in Pδmax that cover x and
taking a simple transformation of the resulting number.

Preliminary definitions and some simple results

As discussed above, the estimate that TDE2 gives for p(x)
is based on the number of short pairs that cover x when the
pairs are drawn independently from p. Suppose x is fixed,
and we obtain the pair (u, v) by first drawing u according to
p, and then draw v independently of u also from p. Let δmax

denote some distance. Consider the events

A = “the item x is covered by the pair (u, v)“, and

B = “the distance d(u, v) is at most δmax“.

Let q(x, δmax) denote the probability Pr[A∩B]. The TDE2

estimator actually estimates q(x, δmax). Observe that we
have

q(x, δmax) = Pr[A ∩B] = Pr[A | B] Pr[B]. (8)

Now, let P be a set of pairs sampled iid. from p, and denote
by Pδmax the subset of P that only contains pairs up to length
δmax, i.e., Pδmax = {(u, v) ∈ P | d(u, v) ≤ δmax}. Observe

that
|Pδmax |

|P| is an unbiased and consistent estimate of Pr[B],

i.e., we have

lim
|P|→∞

|Pδmax |

|P|
= Pr[B]. (9)

To estimate Pr[A | B], we define the triplet score of the
item x given set of pairs P as

S(x,Pδmax) =
∑

(u,v)∈Pδmax

Ω(x, (u, v)), (10)

and find that
S(x,Pδmax )
|Pδmax |

is an estimate of the probability

Pr[A | B], i.e.,

lim
|P|→∞

S(x,Pδmax)

|Pδmax |
= Pr[A | B]. (11)

By combining equations 8, 9 and 11, we obtain the follow-
ing:

Proposition 1. Given the set P of pairs sampled indepen-
dently from p, we have

lim
|P|→∞

S(x,Pδmax)

|P|
= q(x, δmax).

This shows that TDE2 is an unbiased and consistent esti-
mate of q(x, δmax).

Results for 1-dimensional data

Next, we discuss the connection between q(x, δmax) and
p(x). Our objective is to show that by taking a suitable trans-
formation of our estimate for q(x, δmax) we can obtain a rea-
sonable estimate for p(x).

For one-dimensional data it is fairly easy to see when
events A and B happen simultaneously and derive an ex-
pression for q(x, δmax). Consider all pairs of length δ start-
ing from δ = 0 up to δ = δmax. For every such pair (u, v) of
length δ, item x is covered by (u, v) exactly when u is con-
tained in the interval [x− 2δ, x+ δ], and v is at u+ δ. (Thus
v must be in the interval [x− δ, x+ 2δ].) If this happens we
have min{d(x, u), d(x, v)} ≤ d(u, v) and Ω(x, (u, v)) = 1.
Next, suppose the midpoint of the pair (u, v) is at j. Clearly
we must have u = j− δ/2 and v = j+ δ/2. Using these we
can write q(x, δmax) as

q(x, δmax) = 2

∫ δmax

δ=0

∫ x+ 3

2
δ

j=x− 3

2
δ

p(j −
δ

2
)p(j +

δ

2
) dj di.

(12)
The constant 2 is needed because we can obtain (u, v) by
first drawing u and then v, or vice versa. The following
proposition shows how q(x, δmax) is connected to p(x).

Proposition 2. Let the function q(x, δmax) be defined as in
Equation 12. We have

lim
δmax→0

√

q(x, δmax)

3δmax
2 = p(x). (13)

Proof. See Appendix.

This shows that by choosing a sufficiently small δmax, we
can obtain approximate estimates for p(x) by taking a sim-
ple transformation of the estimate for q(x, δmax). We con-
clude this section by combining this observation with propo-
sitions 1 and 2 to the following result.

Corollary 1. Let p be a univariate density function, and
let P be a set of pairs sampled independently from p. Let
Pδmax ⊆ P contain those pairs in P having length at most
δmax. For a sufficiently small δmax we have

p̂(x, δmax) =

√

S(x,Pδmax)

3δmax
2|P|

≈ p(x).

Observe that p̂(x, δmax) as defined above yields estimates
that are appropriately normalised. The estimates are guaran-
teed to converge to q(x, δmax), and have a bias wrt. p(x) that
depends on δmax. By “sufficiently small” we mean that δmax

should be as small as possible without making the set Pδmax

too small. We continue with a simple study of the effect of
δmax on the bias and variance of p̂(x, δmax).

Bias and variance of the 1-dimensional estimator,
an empirical study

The estimator p̂(x, δmax) (Corollary 1) is biased, with the
bias increasing as δmax increases. We studied the effect of
the bias empirically. The top panel in Fig. 2 shows the shape

of

√

q(x,δmax)
3δmax

2 for different values of δmax when p is the



-4 -2 0 2 4

δmax = 0.5

δmax = 1

δmax = 2

-6 -4 -2 0 2 4 6

true

estim

500 pairs

5000 pairs

Figure 2: Top: Examples of the estimator p̂(x, δmax) for dif-
ferent values of δmax when the underlying density is a stan-
dard normal distribution. Bottom: Examples of estimating a
bimodal distribution from a sample of 500 data points with
500 and 5000 pairs (dashed lines) when δmax = 1.0.

standard normal distribution. These are what p̂(x, δmax) will
converge to as the size of P increases. On the other hand, for
“small” δmax the estimate for q(x, δmax) will have a high
variance as there are only few pairs of length at most δmax.
The top panel of Fig. 3 shows how the errors behave due
to bias and variance as a function of δmax. The estimate is
computed from 200 points sampled from a standard normal
distribution. For small δmax the total error consists mainly of
variance due to the small size of Pδmax . As δmax increases
the variance component diminishes, and most of the remain-
ing error is due to bias.

In practice it is possible to set δmax so that the estima-
tor will produce useful results. The bottom panel of Fig. 2
shows an example of a mixture of two normal distributions
(black curve), the limit to which p̂(x, 1.0) would converge
(blue curve), as well as two estimates computed with 500
and 5000 pairs in P , respectively (the red dashed curves).
We can observe that even 500 pairs are enough to obtain
a reasonable estimate. Finally, the bottom panel of Fig. 3
shows how the estimation accuracy (correlation between the
estimate and the true density) behaves as the number of pairs
in P is increased from 250 to 2500.

Generalisation to higher dimensions

Above we showed that for one-dimensional data the square
root of q(x, δmax) is proportional to p(x) as δmax ap-
proaches zero. We can show a similar result also for arbitrary
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Figure 3: Top: Estimation error (MSE, wrt. the true density)
as a function of δmax when the estimate is computed using
1000 pairs drawn from a data of 200 data points sampled
from a standard normal distribution. Bottom: Correlation of
the estimate (δmax = 0.5) with true density (the bimodal
distribution shown on the left) as a function of the number
of pairs in P . The inset shows the number of short pairs that
remain in Pδmax after removing those longer than δmax.

dimensional inputs.

Proposition 3. Let q(x, δmax) be defined as in Equation 8,
and let C(δmax) be some function of δmax. We have

lim
δmax→0

√

q(x, δmax)

C(δmax)
= p(x). (14)

Proof. See Appendix.

This result is important because in general we cannot
know the true, underlying dimensionality of the data. Hence,
our estimator should be independent of the dimensionality,
and Proposition 3 shows this to be the case. Finally, since
q(x, δmax) is in practice proportional to the triplet score
S(x,Pδmax) (Eq. 10), our estimator can be defined simply

as
√

S(x,Pδmax), because both C(δmax) as well as |P| are
constants that do not depend on x.

Finding short pairs without embeddings

Above we showed how the length of the pairs that are used
to compute p̂(x, δmax) affects the quality of the estimate.
In particular, we should only use pairs that are “short” in
comparison to the average length of the pairs. In practice
we do not have the absolute lengths of the pairs, however.



We can only obtain relative distance information, and cannot
thus simply filter the pairs based on their absolute length.
Instead, we must find short pairs by some other means. Next
we discuss a simple method for doing this.

Let Pδmax denote the set of pairs that are at most of length
δmax. Since all pairs in P are drawn uniformly at random

from p, we know that
|Pδmax |

|P| is an unbiased estimate of the

probability Pr[d(u, v) ≤ δmax] as was discussed above. In-
versely, by fixing some value α ∈ [0, 100], we can consider
all pairs in P for which the length falls below the α:th per-
centile of the length distribution of all pairs in P . By setting
α to some small value, e.g. α = 10, we obtain pairs that
correspond to some unknown “small” value of δmax, so that
α
100 = Pr[d(u, v) ≤ δmax]. Let Pα denote the set of pairs
selected for a given α. This is simply an alternative formula-
tion for “short” pairs without considering absolute distances.

Finding the α:th percentile of a set of values can be done
efficiently using a selection algorithm. In general, these find
the i:th largest value in a given list of values without sorting
the values. They commonly run in linear time in the size
of their input, which is |P| in this case. Note that e.g. the
Quickselect algorithm (Hoare 1961) (and its variants, e.g.
the Floyd-Rivest algorithm (Floyd and Rivest 1975)) also
find all pairs that are below the percentile as a simple side-
effect. No separate filtering step is thus needed.

Most selection algorithms are based on pairwise compar-
isons, and can thus be implemented without explicitly evalu-
ating d(u, v) for any (u, v) ∈ P . We only need an oracle that
can evaluate the indicator function I{d(u, v) < d(u′, v′)}.
This is easily expressed as the following human intelligence
task:

“Which of the two pairs, (u, v) or (u′, v′), are more
similar?”

Moreover, by definition of the percentile, we will select
α
100 |P| pairs. This can be used to control the size of the
resulting estimator (the set Pα). The TDE1 estimator pro-
posed above uses by definition n = |D| pairs. To make the
TDE2 estimator of comparable in complexity, we should use
100n
α

pairs in P to have Pα of the desired size. Note that
both P and Pα are in this case linear in n. This is a desir-
able property as the number of pairs will directly translate to
the number of HITs needed to construct as well as to eval-
uate the estimator. For this it is crucial that we do not need
all pairs that are shorter than δmax, but a uniform sample of
these is sufficient.

Using a standard selection algorithm for finding Pα has
the downside that the necessary HITs cannot be solved in-
dependently. E.g. Quickselect operates in the same way as
Quicksort by placing items to either side of a pivot item.
This creates dependencies among the tasks, where one task
must be solved before others can even be submitted to the
workers. Developing a selection algorithm without such de-
pendencies is an interesting open question.

Experiments

In this Section we compare the proposed density estimators,
TDE1 and TDE2, using simulations.

Experimental setup

We measure cost as the number of HITs that are needed to
construct the estimator. The methods are implemented as
follows:

• TDE1: The estimator is constructed by first embedding a
set of items into R

2 with the method of (van der Maaten
and Weinberger 2012). (In practice we have to make some
guess about the input data dimensionality when using this
method. In these experiments we assume a fixed dimen-
sionality of 2 independently of the true data dimensional-
ity.) Given the embedding, we find an optimal bandwidth
h using cross validation, and select the set P(h) by pair-
ing every u ∈ D with the v ∈ D so that the distance
between u and v in the embedding is as close to h as
possible (see Section ). The estimates are computed with
Equation 7 (by omitting the normalisation).

• TDE2: We use the selection algorithm based method of
Section to compute the set Pα. To make the cost of
computing an estimate for a single x equal to the cost of
TDE1, we let |P| = 100

α
|D|. This will result in Pα = |D|.

We used α ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35}.

The estimates are computed as
√

S(x, α) where S(x, α)
is defined analogously to S(x, δmax).

We use a separate training data Dtrain to learn the esti-
mator, and evaluate it on the test data Dtest that is drawn
from the same distribution as Dtrain. In all cases we let
|Dtrain| = |Dtest| = 200 items sampled iid. from the den-
sity in question. We use the following synthetic datasets that
are mixtures of multivariate normal distributions:

Gaussian-5D : A single standard multivariate normal distri-
bution in a 1-dimensional space.

Gaussian-5D : A single standard multivariate normal distri-
bution in a 5-dimensional space.

2Gaussians-3D : Two standard multivariate normal distri-
butions in a 3-dimensional space, located at (0, 0, 0) and
(3, 3, 3).

2Gaussians-5D : As 2Gaussians-3D but in a 5-dimensional
space.

4Gaussians-2D : Four standard multivariate normal distri-
butions in a 2-dimensional space, located at (0, 0), (0, 5),
(5, 0) and (5, 5).

4Gaussians-3D : Four standard multivariate normal distri-
butions in a 3-dimensional space, located at (0, 0, 0),
(5, 0, 0), (0, 5, 0) and (0, 0, 5).

We only consider fairly low-dimensional data with k ≤ 5.
This is because density estimation becomes less meaningful
for high-dimensional data due to the curse of dimensionality.
We think this is a sufficient study of the problem also from
a practical point of view. In crowdsourcing applications we
do not expect the workers to use more than a few dimensions
when giving similarity judgements.

Also, we assume that computation is noise-free. That is,
we obtain consistent and correct answers to each HIT. In
practice some quality control mechanism such as (Dawid
and Skene 1979; Raykar and Yu 2012) can be used to re-
duce the effect of erroneous solutions to tasks. We assume
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Figure 4: Experimental results. Estimation error (MAE) as a function of the number of HITs used to construct the estimator.
TDE1 is shown in red, TDE2 is shown in black.

this can be taken care of by the crowdsourcing platform, and
may increase the costs by a small constant factor.

Both methods use |D| HITs to compute a single estimate.
We first run TDE2 100 times for every value of α. Then, we
compute the average number of HITs (pairwise comparisons
of two item pairs) that were needed to find Pα. Then, we
allow TDE1 to the same number of HITs to compute the
embedding. This way we can compare the methods given
the same amount of work. We report the amount of work as
the number of HITs per data point in Dtrain.

We measure the quality of the resulting estimates using
mean absolute error, defined as

MAE =

∑

x∈Dtest | estimate(x)− p(x)|

|Dtest|maxx{p(x)}
,

where p(x) is the true density at x. The estimate and
p are both normalised so that

∑

x∈Dtest estimate(x) =
∑

x∈Dtest p(x) = 1. We also normalise the error with

maxx{p(x)} so that it can be understood a fraction of the
largest density value in Dtest.

Results

Results are shown in Figure 4. We show how the error be-
haves as a function of the number of HITs required per data
item to build the estimator. (Here the largest amount of work
corresponds to using α = 0.05 with TDE2.) In this plot we
show TDE1 in red, and TDE2 in black. We observe that
both methods perform better when they are allowed to use
more work. Increasing the amount of work starts to have di-
minishing effects after some point. TDE1 performs slightly
better than TDE2 when only a very small amount of work is
used. However, as the number of HITs is increased, TDE2

tends to perform better than TDE1. This is mainly because
TDE2 makes no assumptions about the dimensionality of

the input unlike TDE1. Notice that with 4Gaussians-2D the
methods perform almost equally well. Of course in practice
the dimensionality of the input data is unknown, and making
an educated guess about this can be difficult.

Conclusions

In this work we presented methods, TDE1 and TDE2, for
density estimation using judgements of relative similarity.
TDE1 is an implementation of a standard kernel density es-
timator with relative distances. TDE2 is a novel method that
has some practical advantages over TDE1. In particular, our
experiments suggest that TDE2 is more robust when the true
dimensionality of the input is unknown.

There are multiple avenues for further research. Both
TDE1 and TDE2 currently use |D| HITs to estimate den-
sity at a single point x. It seems likely that this could be im-
proved by optimising the pairs against which x is compared.
Another interesting question is whether we could learn esti-
mators like TDE1 without embeddings? That is, can we find
pairs of approximately the same length directly with e.g. the
kind of pairwise comparisons as used for TDE2. One possi-
ble solution to this are partial orders with ties (Ukkonen et
al. 2009). Also the theoretical results presented in this pa-
per could be improved. In particular, proving bounds on the
estimation error as a function of α would be interesting.
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Ukkonen, A.; Puolamäki, K.; Gionis, A.; and Mannila, H.
2009. A randomized approximation algorithm for comput-
ing bucket orders. Inf. Process. Lett. 109(7):356–359.

van der Maaten, L., and Weinberger, K. 2012. Stochastic
triplet embedding. In Machine Learning for Signal Process-

ing (MLSP), 2012 IEEE International Workshop on, 1–6.
IEEE.

Wilber, M. J.; Kwak, I. S.; and Belongie, S. J. 2014. Cost-
effective hits for relative similarity comparisons. In Second
AAAI Conference on Human Computation and Crowdsourc-
ing.

Appendix

Proof of Proposition 2

Proof. We first upper bound q(x, δmax) by letting

q(x, δmax) ≤ q′(x, δmax)

= 2

∫ δmax

δ=0

∫ x+ 3

2
δ

j=x− 3

2
δ

p(u∗)p(u∗ + δ∗) dj di,

where u∗ and δ∗ are the solution to argmaxu,δ p(u)p(u+ δ)
st. u ∈ [x − 2δmax, x + δmax] and δ ≤ δmax. Since u∗ and
δ∗ only depend on δmax and not on δ or j, p(u∗)p(u∗ + δ∗)
can be taken out from the integrals, and we have

q′(x, δmax) = 2p(u∗)p(u∗ + δ∗)

∫ δmax

δ=0

∫ x+ 3

2
δ

j=x− 3

2
δ

1 dj di.

A straightforward calculation reveals that the integrals sim-

plify to 3
2δmax

2, and we obtain

q′(x, δmax) = 3δmax
2p(u∗)p(u∗ + δ∗).

Now, as δmax → 0, the x ± 2δmax interval becomes tighter
and tighter around x. It follows that u∗ → x and δ∗ → 0,
and thus p(u∗)p(u∗ + δ∗) → p(x)2. By combining these
observations we find that

lim
δmax→0

q′(x, δmax)

3δmax
2 = lim

δmax→0

3δmax
2p(u∗)p(u∗ + δ∗)

3δmax
2

= lim
δmax→0

p(u∗)p(u∗ + δ∗) = p(x)2.

An upper bound of q(x, δmax) thus approaches p(x)2 from
above as δmax → 0. We can make a similar reasoning in
terms of the pair (u∗, u∗+δ∗) that has the lowest probability
in the interval x± 2δmax. This will show that a lower bound
to q(x, δmax) approaches p(x)2 from below. By combin-

ing these we obtain that q(x, δmax)/3δmax
2 must approach

p(x)2 as δmax → 0.

Proof of Proposition 3

Proof. We present the proof for 2-dimensional data, but the
argument generalises to k-dimensions in a fairly straightfor-
ward manner. Fix some point x with density p(x), and con-
sider a random pair (u, v) drawn from p given that d(u, v) is
fixed to some δ ≤ δmax. We sample the pair by first draw-
ing u from p, and then draw v given u so that d(u, v) = δ.
The point x is covered by the pair (u, v) when one of the
following events happens:

Uδ : d(x, u) ≤ δ

Vδ : δ < d(x, u) < 2δ and d(x, v) ≤ δ.



Now we can write q(x, δmax) in terms of Uδ and Vδ by inte-
grating over all values of δ up to δmax:

q(x, δmax) =

∫ δmax

0

(Pr[Uδ] + Pr[Vδ]) dδ.

The proof relies on a similar argument as the proof of Propo-
sition 2. We show that q(x, δmax) can be both upper and
lower bounded so that these upper and lower bounds both
go to C(δmax)p(x)

2 as δmax → 0 for some C(δmax).
We proceed to derive upper bounds for Pr[Uδ] and Pr[Vδ].

Let V (y, δ) denote the area of a disc centered at point y with
radius δ. Also, let E(y, δ) denote the 1-dimensional circular
subspace centered at point y with radius δ. That is, the set
E(y, δ) is the “edge” of the set V (y, δ). Next, let pδmax(x)
denote the maximum density inside the set V (x, 2δmax), that
is,

pδmax(x) = max
y∈V (x,2δmax)

p(y). (15)

Observe that the probability of event Uδ is the total density
inside V (x, δ) (so that the point u is close enough to x) times
the probability that v is drawn from the circle around u with
radius δ, i.e., the set E(u, δ) (so that we have d(u, v) = δ as
required). That is,

Pr[Uδ] =

∫

V (x,δ)

p(u)

(

∫

E(u,δ)

p(v) dv

)

du.

Also see left side of Figure 5. Since δ ≤ δmax and d(x, u) ≤
δ, we have d(x, v) ≤ 2δ, and we can thus upper bound
Pr[Uδ] by replacing both p(u) and p(v) with pδmax(x). This
yields

Pr[Uδ] ≤ pδmax(x)2
∫

V (x,δ)

(

∫

E(u,δ)

1 dv

)

du.

The value of the integrals no longer depends on the density
p, only on the length δ of the pair (u, v). We can thus replace
those with a function of δ and obtain

Pr[Uδ] ≤ pδmax(x)2C1(δ).

Next, consider the event Vδ . It happens when u falls in
the “ring” around x, defined as the set R(x, δ) = V (x, 2δ) \
V (x, δ), and v falls on the segment of E(u, δ) that intersects
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Figure 5: For the proof of Proposition 3. Left: Example of
deriving Pr[U ]. Right: Example of deriving Pr[V].

with V (x, δ). We have thus

Pr[Vδ] =

∫

R(x,δ)

p(u)

(

∫

E(u,δ)∩V (x,δ)

p(v) dv

)

du.

Also see the right side of Figure 5. Like above with Uδ , we
upper bound Pr[Vδ] by replacing p(u) and p(v) both with
pδmax(x). This is allowed as d(x, u) ≤ 2δ and d(x, v) ≤ δ.
We obtain

Pr[Vδ] ≤ pδmax(x)2
∫

R(x,δ)

(

∫

E(u,δ)∩V (x,δ)

1 dv

)

du.

As above with Uδ , the value of the integrals only depends on
δ and not p. We get the upper bound

Pr[Vδ] ≤ pδmax(x)2C2(δ).

Next we combine these results to obtain a simple upper
bound for q(x, δmax):

q(x, δmax) =

∫ δmax

0

(Pr[Uδ] + Pr[Vδ]) dδ

<

∫ δmax

0

(

pδmax(x)2C1(δ) + pδmax(x)2C2(δ)
)

dδ

=

∫ δmax

0

pδmax(x)2 (C1(δ) + C2(δ)) dδ

= pδmax(x)2
∫ δmax

0

(C1(δ) + C2(δ)) dδ

= pδmax(x)2C(δmax).

The C(δmax) that appears above is the one we use in the
claim (Eq. 14) of the proposition. Now, we can replace
q(x, δmax) with this upper bound in Equation 14, and ob-
serve that

lim
δmax→0

pδmax(x)2C(δmax)

C(δmax)
= lim

δmax→0
pδmax(x)2 = p(x)2.

Here the second equality simply follows from the definition
of pδmax(x) as given in Equation 15 above. As δmax goes
to zero, the area from which we take pδmax(x) shrinks until
only x is left. The upper bound of q(x, δmax)/C(δmax) thus
approaches p(x)2 from above as δmax → 0. We can do the
same reasoning in terms of a lower bound of q(x, δmax), by
replacing max with a min in Equation 15, i.e.,

pδmax(x) = min
y∈V (x,2δmax)

p(y).

This lower bound will approach p(x)2 from below as
δmax → 0 in the same manner.

Finally, notice that the argument used in this proof, while
described for k = 2, generalises to arbitrary k. We only
redefine the set V (y, δ) as the volume of a k-dimensional
sphere with radius δ, and E(y, δ) as the k − 1 dimensional
surface of V (y, δ). It follows that we can always derive a
C(δmax) that is independent of p(x) which is enough to
complete the proof.


