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SUMMARY

Identification of pregnancies at risk of pretermbirth (PTB), the leading causeof newborn deaths, remains chal-

lenging given the syndromic nature of the disease. We report a longitudinal multi-omics study coupled with a

DREAM challenge to develop predictive models of PTB. The findings indicate that whole-blood gene expres-

sion predicts ultrasound-based gestational ages in normal and complicated pregnancies (r = 0.83) and, using

data collected before 37 weeks of gestation, also predicts the delivery date in both normal pregnancies

(r = 0.86) and those with spontaneous preterm birth (r = 0.75). Based on samples collected before 33 weeks

in asymptomatic women, our analysis suggests that expression changes preceding preterm prelabor rupture

of the membranes are consistent across time points and cohorts and involve leukocyte-mediated immunity.

Models built from plasma proteomic data predict spontaneous preterm delivery with intact membranes with

higher accuracy and earlier in pregnancy than transcriptomic models (AUROC = 0.76 versus AUROC = 0.6 at

27–33 weeks of gestation).

INTRODUCTION

Early identification of patients at risk for obstetrical disease is

required to improve health outcomes and develop new therapeu-

tic interventions. One of the ‘‘great obstetrical syndromes,’’1 pre-

term birth, defined as birth before the completion of 37 weeks of

gestation, is the leading cause of newborn deaths worldwide. In

2010, 14.9 million babies were born preterm, accounting for
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11.1%of all births across 184 countries, the highest pretermbirth

rates occurring inAfrica andNorthAmerica.2 In theUnitedStates,

the rate of prematurity remains fundamentally unchanged in

recent years,3 and it has an annual societal economic burden of

at least $26.2 billion.4 The high incidence of preterm birth is con-

cerning, as 29% of all neonatal deaths worldwide, �1 million

deaths in total, can be attributed to complications of prematu-

rity.5 Furthermore, children born prematurely are at increased

risk for several short- and long-term complications that may

include motor, cognitive, and behavioral impairments.6,7

Approximately one-third of preterm births are medically indi-

cated for maternal (e.g., preeclampsia) or fetal conditions (e.g.,

growth restriction); the other two-thirds are categorized as spon-

taneous preterm births, inclusive of spontaneous preterm labor

anddeliverywith intactmembranes (sPTD), andpretermprelabor

rupture of the membranes (PPROM).8 Preterm birth is a syn-

drome with multiple etiologies,9 and its complexity makes accu-

rate prediction by a single set of biomarkers difficult. While

genetic risk factors for preterm birth have been reported,10,11

the two most powerful predictors of spontaneous preterm birth

are a sonographic short cervix in the midtrimester and a history

of spontaneous preterm birth in a prior pregnancy.12 As for pre-

vention of the syndrome, vaginal progesterone administered to

asymptomatic women with a short cervix in the midtrimester re-

duces the rate of preterm birth before 33 weeks of gestation by

45%and decreases the rate of neonatal complications, including

neonatal respiratory distress syndrome.13–15

To compensate for the suboptimal prediction of preterm birth

by currently used biomarkers, alternative approaches to iden-

tify biomarkers have been proposed, such as focusing on fetal

and placenta-specific signatures,16 with the latter eventually

refined by single-cell genomics,16,17 and by expanding the

types of data collected via multi-omics platforms.10,18,19 While

molecular profiles have been shown to be strongly modulated

by advancing gestation in the maternal blood proteome,20,21

transcriptome,16,22 and vaginal microbiome,23–25 the timing of

delivery based on such molecular clocks of pregnancy is still

challenging.16 A recent meta-analysis26 suggests that specific

changes in the maternal whole-blood transcriptome associated

with spontaneous preterm birth are largely consistent across

studies when both symptomatic and asymptomatic cases are

involved and when the samples collected at or near the time

of preterm delivery are also included. However, the accuracy

of transcriptomic predictive models to make inferences in

asymptomatic women early in pregnancy has not been evalu-

ated, and aptamer-based high-throughput plasma proteomics

patterns,27 shown to be comprehensive indicators of

health,28,29 were not assessed in the context of spontaneous

preterm birth. This topic is important, since identification of

early biomarkers, along with the associated robust assay plat-

form, are necessary to develop treatment strategies that

reduce the impact of prematurity.

Therefore, we generated longitudinal whole-blood transcrip-

tomic data at exon-level resolution and plasma proteomic data

on 216 women and leveraged the Dialogue for Reverse Engi-

neering Assessments and Methods (DREAM) crowdsourcing

framework30 to engage >500 members of the computational

biology community and to robustly assess the value of maternal

blood multi-omics data in two sub-challenges. In sub-challenge

1, we assessed maternal whole-blood transcriptomic data for

prediction of gestational age in normal and complicated preg-

nancies using the last menstrual period (LMP) and ultrasound es-

timate as the gold standard, and showed that predictions are

robust to disease-related perturbations. To avoid potential

biases in the gold standard, in a post-challenge analysis, we

also predicted delivery dates in women with spontaneous birth

(Figure 1) and found similar prediction performance. In sub-chal-

lenge 2, we evaluated within- and cross-cohort prediction of

preterm birth leveraging longitudinal transcriptomic data in

asymptomatic women generated herein and by Heng et al.31 in

a cohort in Calgary, Canada. The separate consideration of

both spontaneous preterm birth phenotypes (i.e., sPTD and

PPROM), allowed us to pinpoint that previously reported leuko-

cyte activation-related RNA changes preceding pretermbirth are

shared across the racially diverse cohorts for the PPROMpheno-

type but not for sPTD. Moreover, the evaluation of highly repro-

ducible plasma proteomic assays32 and blood multi-omics data

to determine the earliest stage in gestation when biomarkers

have predictive value (Figure 1) also make this study unique

and led to the conclusion that changes in plasma proteomics

can be detected earlier and are more accurate than whole-blood

transcriptomics for prediction of preterm birth. In addition to the

transcriptomic signatures of gestational age and the multi-omics

signatures of preterm birth that were identified here, this work

sets a benchmark for the evaluation of longitudinal omics data

in pregnancy research. The computational lessons and algo-

rithms for risk prediction from longitudinal omics data can be

used to develop future studies.

RESULTS

Prediction of gestational age by maternal whole-blood

transcriptomics

We have generated and shared with the community exon-level

gene expression data profiled in 703maternal whole-blood sam-

ples collected from 133women enrolled in a longitudinal study at

the Center for Advanced Obstetrical Care and Research of the

Perinatology Research Branch, National Institute of Child Health

and Human Development/National Institutes of Health/Depart-

ment of Health and Human Services (NICHD/NIH/DHHS); the

Detroit Medical Center; and the Wayne State University School

of Medicine. The Human Transcriptome Arrays platform was

chosen based on its favorable performance compared to RNA

sequencing (RNA-seq), especially for quantifying short and low

abundant genes,33 and it was previously used for detecting

gestational age- and parturition-related changes in maternal

whole blood.22 The patient population included women with a

normal pregnancy who delivered at term (R37 weeks) (controls,

N = 49), women who delivered before 37 completed weeks of

gestation by sPTD (N = 34) or PPROM (N = 37) , and women

who experienced an indicated delivery before 34 weeks due to

early preeclampsia (N = 13) (Figure 2A). After including data

from 16 additional normal pregnancies obtained from the same

population22 and using the same microarray platform (Gene

Expression Omnibus: GSE113966, 32 transcriptomes), the re-

sulting set of 149 pregnancies (see demographic characteristics
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in Table S1), totaling 735 transcriptomes, was divided randomly

into training (N = 367) and test (N = 368) sets; the latter set ex-

cludes publicly available data to avoid the possibility that the

models are trained with data to be used for testing (Figure S1).

All of the longitudinal samples for the same patient were as-

signed to the training set or the test set; thus, samples were

not split between training/test sets (see Figure S1 and Video

S1). The research community was challenged to use data from

the training set to develop gene expression prediction models

for gestational age, as defined by the LMP and ultrasound fetal

biometry, and to make predictions based only on gene expres-

sion in the test set. The clinical diagnosis and sample-to-patient

assignments were not disclosed to the challenge participants,

while gestational age at the time of sampling was also blinded

for the test set. Teamswere allowed to submit up to 5 predictions

using the test samples, and the best submission (smallest root

mean square error [RMSE]) was retained for each unique team.

We received 331 submissions for this sub-challenge from 87

participating teams, 37 teams of which provided the required de-

tails on the computational methods used to be qualified for the

final team ranking in this sub-challenge (Table S2).

Robustness analysis of team rankings (see STAR Methods)

suggested that the predictions of the top-ranked team (authors

B.A.P. and I.C., abbreviated as team 1) were significantly better

(Bayes factor >3) than those of the second- (author Y.G., abbre-

viated as team 2) and third-ranked teams (Figure S1). Among the

top 20 teams, the most frequent methods used to select predic-

tor genes included univariate gene ranking andmeta-gene build-

ing via principal-component analysis, as well as literature-based

gene selection. Common prediction models included neural net-

works, random forest, and regularized regression (LASSO and

ridge regression), with the latter being used by the top-ranked

team in this sub-challenge.

The model generated by team 1 in sub-challenge 1 predicted

gestational ages at blood draw with an RMSE of 4.5 weeks in the

test set (Pearson correlation between actual and predicted

values, r = 0.83, p < 0.001) (Figure 2B). The correlation between

predicted and actual gestational ages was also significant after

accounting for repeated observations from the same patients

in the test set via linear mixed-effectsmodeling (slope 0.76, likeli-

hood ratio test p < 0.001; see STAR Methods). The prediction

model of team 1 (M_GA_Team1) was based on ridge regression,

Figure 1. Study overview

Whole-blood transcriptomic and/or plasma proteomic profiles were generated from 216 women with either normal pregnancy, spontaneous preterm birth with

intact (sPTD) or ruptured membranes (PPROM), or preeclampsia. Sub-challenge 1: transcriptomic data were generated from samples collected in normal

pregnancies without labor at term (black dots) and spontaneous labor at term (gray dots), and those complicated by sPTD (red dots), PPROM (orange dots), or

preeclampsia (blue dots). Participating teams were provided gene expression data to develop prediction models for gestational age at blood draw defined by last

menstrual period (LMP) and ultrasound (gold standard). Participants submitted predictions on a blinded test set (see Figure S1 for training/test partition). In a post-

challenge analysis, the approach of the top team (smallest test set root mean square error [RMSE]) was applied to predict time to delivery. Sub-challenge 2:

participants submitted risk prediction algorithms designed to use as input omics data atR2 time points and patient outcomes (control, sPTD, or PPROM) for a

subset of them (training set), and return disease risk scores for women with blinded outcomes (test set). The algorithms were applied to 70 training/test pairs of

datasets (see Figure 4A and Table S5) to assess within- and across-cohort predictions of preterm birth by transcriptomics and within-cohort prediction by multi-

omics data. Predictions were assessed by area under the receiver operating characteristic and area under the precision recall curves and aggregated across

datasets and prediction scenarios (see STAR Methods).
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and the predictors were meta-genes derived by principal-

component analysis from the expression data of 6,106 genes.

As shown in Figure 2B, the gestational age predictions showed

little bias in the second trimester (14–28 weeks) samples (mean

error 0.6 weeks); however, gestational ages of first-trimester

samples were overestimated (mean error 3.7 weeks), while the

third-trimester samples were underestimated (mean error

�1.96 weeks). This finding can be understood, in part, by the

larger number of second-trimester samples relative to first-

and third-trimester samples available for training of the model.

Of interest, the prediction errors for complicated pregnancies

were similar to those of normal pregnancies (ANOVA, p > 0.1),

suggesting that this model of gestational age, in general, was

robust for obstetrical disease- and parturition-related perturba-

tions in gene expression data (Figure S2).

To identify a core transcriptome predicting gestational age in

normal and complicated pregnancies that captures most of

the predictive power of the full model (M_GA_Team1) that

involved >6,000 predictor genes, in a post-challenge analysis,

we combined linear mixed effects modeling for longitudinal

data34 to prioritize gene expression and then used these fea-

tures as input in a LASSO regression model. The resulting 249

gene regression models (M_GA_Core) (Figure S2; Table S3)

had an RMSE of 5.1 weeks (r = 0.80) and involved 2 tightly con-

nected modules related to immune response, leukocyte activa-

tion, inflammation- and development-related Gene Ontology

biological processes (Figure 2C; Table S4). We previously re-

ported that several member genes of these networks (e.g.,

A B

C

Figure 2. Prediction of gestational age by

whole-blood transcriptomics

(A) Detroit cohort transcriptomics study design.

Each line corresponds to 1 patient and each dot to

1 sample. Gestational ages at delivery are marked

by a triangle. The set includes 703 samples from

133 women: controls (N = 49), women who deliv-

ered before 37 completed weeks of gestation by

sPTD (N = 34) or PPROM (N = 37) and women who

experienced an indicated delivery before 34weeks

due to early preeclampsia (N = 13).

(B) Test set prediction of gestational age by the

model of the top-ranked team (M_GA_Team1).

The 368 samples are colored according to the

phenotypic group of patients. r, Pearson correla-

tion coefficient. RMSE: root mean squared error.

(C) Protein-protein interaction network modules

for genes part of the 249-gene core transcriptome

predicting gestational age (M_GA_Core). A select

group of biological processes enriched among

these genes are shown in the pie charts.

MMP8, CECAM8, and DEFA4) were

most highly modulated in the normal

pregnancy group used here,35 and

others have shown the same to be true

at a cell-free RNA level in a Danish

cohort.16 In addition, these data are

consistent with the concept that preg-

nancy is characterized by a systemic

cellular inflammatory response.36–40 In

this study, we also show that these mediators correlate with

gestational age in both normal and complicated pregnancies,

and the latter group contributed more than half of the transcrip-

tomes used to fit and evaluate the models (Figure S1; Table S1).

Comparison of gene expression models and the clinical

standard in predicting time to delivery (TTD) in women

with spontaneous term or preterm birth

To enable a direct comparison with a previous landmark study

of pregnancy dating by targeted cell-free RNA profiling,16 in a

post-challenge analysis, we used the same methods as

described above for model M_GA_Team1 (see STAR Methods),

except for the use of a time variable defined backward from de-

livery, hence, independent of LMP and ultrasound estimations

as response [TTD = date at sample � date at delivery, (weeks)].

As in the study by Ngo et al.,16 only those patients with sponta-

neous term delivery were included in this analysis, thus omitting

the subset of normal pregnancies that had been truncated by

elective cesarean delivery. The training set in this analysis

included 74 transcriptomes from 18 women and the test set

included 64 transcriptomes from 11 women with a spontaneous

term delivery based on the original data split (Figure S1). As

shown in Figure 3A, the gene expression model significantly

predicted TTD with the same accuracy (RMSE, 4.5 weeks, r =

0.86, p < 0.001) as when predicting LMP and ultrasound-based

gestational age in the full cohort of normal and complicated

pregnancies. The predicted TTD values were then averaged

over multiple samples per patient in a given gestational age

4 Cell Reports Medicine 2, 100323, June 15, 2021
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interval to calculate accuracy, defined as predicting delivery

within 1 week of the actual date and previously reported to be

55.1%.41 Results were also compared to the LMP and ultra-

sound fetal biometry, with the latter predicting delivery at

40 weeks of gestation. The test set accuracy of the gene

expression model was 45% (5/11) based on third-trimester

samples, which is comparable to the LMP and ultrasound esti-

mate based on first- or second-trimester fetal biometry (55%)

(Figure 3A, bottom panel). Of note, 45% accuracy was also re-

ported by Ngo et al.16 using cell-free RNA based on second-

and third-trimester samples.

When data from all of the pregnancies with spontaneous term

delivery were used to train a transcriptomic model of time to de-

livery and the model was applied to data fromwomen with spon-

taneous preterm birth, the predictionwas found to be statistically

significant. However, the error increased (RMSE = 5.6) (Fig-

ure 3B) relative to the estimate (RMSE = 4.5) for prediction of

TTD in women with spontaneous term delivery (Figure 3A). The

additional preterm parturition-specific perturbations in gene

expression explain, in part, the added uncertainty in prediction

estimates of TTD in spontaneous preterm birth cases compared

to spontaneous term pregnancies. Moreover, as expected, the

term pregnancy TTD model overestimated the duration of preg-

nancy of women who were destined to experience preterm birth

(Figure 3B). The overestimation (mean prediction error) was

2.3 weeks compared to the 5-week gap between the LMP and

ultrasound-based gestational ages at delivery in the term

(mean = 39 weeks) and preterm (mean = 34 weeks) birth groups.

The significant correlation of predicted and actual delivery dates

in spontaneous preterm birth (sPTB) cases suggests that the

M_sTD_TTD model captured both gene expression changes

related to immune- and development-related processes estab-

lishing the age of pregnancy and the effects of the common

pathway of parturition.42,43Hence, the predictionmodel general-

ized to the set of women with spontaneous preterm birth when

samples at or near delivery were included and genome-wide

gene expression data were available.

Prediction of preterm birth by maternal blood omics

data collected in asymptomatic women (sub-challenge

2)

Post-challenge analyses of sub-challenge 1 demonstrated that a

whole-blood transcriptomic model derived from the data of

women with spontaneous term delivery (M_sTD_TTD) predicted

delivery date in spontaneous preterm birth cases based on data

collected throughout pregnancy, including near or at the time of

preterm parturition up to 37 weeks. With sub-challenge 2 of the

DREAM Preterm Birth Prediction Challenge, we addressed the

more difficult task of predicting preterm birth from data collected

up to 33 weeks of gestation, while the women were asymptom-

atic. Of importance, the development of interventions to prevent

preterm birth requires pregnant women at risk to be identified as

early as possible before the onset of preterm parturition. More-

over, to enable future targeted studies of candidate biomarkers,

we limited the maximum number of molecular predictors in this

sub-challenge to be 50 per outcome considered (see Figure 4A).

We drew from the Detroit cohort longitudinal study (Figure 2A)

only samples collected at specific gestational age intervals while

women were asymptomatic (i.e., before an eventual diagnosis of

sPTD or PPROM). Two scenarios of prediction of preterm birth

were devised: (1) to include cases and controls with available

samples collected at 17–23 and 27–33 weeks (Figure S3A),

and (2) to include patients with available samples collected at

3 gestational age intervals (17–22, 22–27, and 27–33weeks) (Fig-

ure S3B). The selection of the 17- 23- and 27- 33-week intervals

enabled cross-study model development and testing, with the

microarray gene expression study of Heng et al.31 derived from

a cohort in Calgary, Canada. Furthermore, we also included

the profiles of 1,125 maternal plasma proteins measured by us-

ing an aptamer-based technology27,44 in samples collected at
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A B Figure 3. Prediction of time to delivery

(TTD) by whole-blood transcriptomics

(A) The top panel shows the test set TTD estimates

from theM_sTD_TTDmodel plotted against actual

values for 64 transcriptomes from 11 women. The

bottom panel shows the distribution of prediction

errors (TTD observed–TTD predicted). A negative

error means that delivery occurred sooner than

expected/predicted, while positive values indicate

the opposite. TTD was estimated using RNA

measurements from the first- (T1), second- (T2),

and third- (T3) trimester samples separately. For

comparison, trimesters are defined as in Ngo et

al. 16 T1: <12 weeks; T2 = 12–24 weeks, and T3 =

24–37 weeks of gestation.

(B) Prediction of TTD in women with spontaneous

preterm birth by a gene expression model estab-

lished in women with spontaneous term delivery

(M_sTD_TTD). Predictions are shown for 355 lon-

gitudinal transcriptomes from 71 women with

preterm prelabor rupture of membranes (PPROM,

N = 37) and spontaneous preterm delivery with

intact membranes (sPTD, N = 34). r, Pearson

correlation coefficient. RMSE: root mean squared

error.
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17–23 and 27–33 weeks of gestation from 66 women before the

diagnosis of preterm birth (62 sPTD and 4 PPROM). These sam-

ples were profiled in the same experimental batch with samples

from 39 normal pregnancies that we previously described,21,45

which served here as controls (Figure S3C). The characteristics

of pregnancies with available proteomics profiles are shown in

Table S1.

The prediction algorithms generated by 13 teams that partici-

pated in sub-challenge 2 were applied by the Challenge orga-

nizers to train and testmodels on70pairs of training/test datasets

generated under 7 scenarios (Figure 4A; Table S5; Video S1). The

scenarios differed in terms of omics data type, number of longitu-

dinal measurements per patient, the outcome being predicted,

and the patient cohorts used for training/testing (Figure 4A). In

all of the cases, there were no differences in terms of number of

samples and gestational age at sampling between the cases

and controls (Figure S3).

To assess the prediction performance in each of the 70 test

sets in sub-challenge 2, we used both the area under the receiver

operating characteristic curve (AUROC) as well as the area under

the precision-recall curve (AUPRC), the latter being especially

suited to imbalanced datasets (e.g., the proteomics set that fea-

tures more cases than controls) (Figure S3C).

AUROC and AUPRC metrics were averaged over the 10 test

sets of each prediction scenario and the result for each team

was converted into a Z score. Final team rankings were obtained

by aggregating the ranks over all of the scenarios and outcome

combinations that were significant, according to at least one

team, after multiple testing correction (Table S6; see STAR

Methods). Robustness analysis of team ranks (Figure S3D) deter-

mined that the top-ranked team (authors B.A.P. and I.C., abbre-

viated as team 1) outperformed the second-ranked team (author

Y.G. abbreviated as team 2) and that the second- and third-

ranked teams outperformed the fifth-ranked team (Bayes factor

> 3). For all of the scenarios (Figure 4A), the models of team 1

involved data from 50 molecules (RNA or proteins) collected at

the last available measurement (closest to delivery), while team

2useddata collected at the last 2 available timepoints for 50mol-

ecules selected based on overall expression as opposed to cor-

relation with the outcome. Among other differences in their ap-

proaches, team 1 treated the outcome as a binary variable,

while team 2 used a continuous variable derived from gestational

age at delivery (see STARMethods). Of note, the two top-ranked

teams were the same in both sub-challenges 1 and 2.

A summary of prediction scenarios and outcome combina-

tions with significant predictions based on the approach of at

least one team in sub-challenge 2 is depicted in Figure 4B. These

results suggest overall higher prediction accuracy based on pro-

teomics compared to transcriptomic data. We next highlight

some of the prediction results for the top team.

With the approach of team 1, one transcriptomic profile at

27–33 weeks of gestation from asymptomatic women predicted

A B

Figure 4. Sub-challenge 2 design and results

(A) Scenarios of spontaneous preterm birth model training and testing using multi-omics data. *Subjects in the original cohort were randomly split into equally

sized groups that were balanced with respect to the phenotypes. **One-fifth of patients from the Detroit cohort (balanced with respect to the phenotypes) were

randomly selected in the training set, while the remaining four-fifths were used as the test set. +Training set subjects were sampled with replacements from the

original cohort to create different versions of the training set, and the trained model was then applied to the original test cohort. Sample sizes of training and test

sets are shown in Table S5.

(B) Prediction performance for preterm birth-related outcomes based on algorithms submitted by 13 teams. AUROC values were converted into Z scores and

shown as a heatmap for scenarios/outcome combinations shown in (A) that led to a significant prediction. sPTB, spontaneous preterm birth.
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PPROM across the cohorts and microarray platforms with an

AUCROC of �0.6, depending on the prediction scenario (Fig-

ure 5A). Although separate differential expression analyses of

the data from each cohort and time point failed to reach statisti-

cal significance after multiple testing correction, the consistency

across cohorts and time points of gene expression changes pre-

ceding the diagnosis of PPROM was demonstrated by a post-

challenge individual patient meta-analysis, which identified 402

differentially expressed genes after adjusting for cohort and

time point (moderated t test; q < 0.1) (Figure 5B; Table S7). A

highly connected protein-protein interaction sub-network corre-

sponding to genes significant in this meta-analysis is shown in

Figure 5C, and it illustrates some of the GeneOntology biological

processes significantly enriched in PPROM. These included

vesicle-mediated transport and leukocyte- (myeloid and

lymphocyte) mediated immunity, among others (Table S4).

Enrichment analysis based on canonical pathways and custom

gene sets curated in the Molecular Signatures database

A B

C

Figure 5. Prediction of preterm prelabor rupture of the membranes from samples collected in asymptomatic women

(A) Receiver operating characteristic (ROC) curve representing prediction of PPROM by 50 genes across the cohorts and microarray platforms using the team 1

approach. Sample sizes of test sets used to derive the ROC curves are shown in Table S5. AUC: area under the curve is given with 95% DeLong confidence

intervals.

(B) Heatmap of 402 genes differentially expressed in PPROM across the cohorts and time points. Bars on the left indicate gene inclusion as a predictor by the

methods of the top 3 teams in sub-challenge 2.

(C) STRING network constructed from among the 402 genes with differential expression in PPROM. Select significantly enriched biological processes are

highlighted.
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(MSigDB)46 revealed perturbations associated with PPROM in

59 pathways such as interleukin-12 (IL-12), membrane traf-

ficking, cytokine signaling in immune system, cellular senes-

cence, and integrin cell surface interactions, among others (q <

0.1; see Table S4). These data are consistent with the hypothesis

that circulating myeloid (monocytes and neutrophils) and

lymphoid (T cells) cells are especially activated in women who

experience pregnancy complications such as preterm labor47–

50 and PPROM.51

Although participating teams in sub-challenge 2 did not have

access to the longitudinal preterm birth plasma proteomics

when they developed prediction algorithms, their algorithms re-

sulted in prediction performances that surpassed those obtained

by using transcriptomic data (Figures 4 and 6A; Table S6) when

applied to training and test sets derived from the plasma prote-

omics set (Figure S3C). Prediction of sPTD by the approach of

team 1 involved 50 plasma proteins selected by random forest

model importance from the panel of 1,125 available proteins.

A B

C

D

Figure 6. Prediction of spontaneous preterm delivery by plasma proteomic data

(A) ROC curve for sPTD and sPTB (which includes sPTD and PPROM) for team 1. The ROC curves were obtained from pooled predictions over 10 test sets each

test set including 20 controls versus 31 sPTD cases and 20 controls versus 33 sPTB cases (see Table S5). AUC: area under the curve is given with 95% DeLong

confidence intervals.

(B) Plasma protein abundance for all proteins deemed significant according to a moderated t test (q < 0.1); those selected as predictors by the top teams in their

models are marked on the left side of the heatmap.

(C) Overlap of protein changes with sPTD at 17–22 and 27–33 weeks, and with PPROM at 27–33 weeks. See also Table S8.

(D) Network of proteins among those shown in (B): each protein node is annotated to biological processes based on corresponding Gene Ontology.
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The test set accuracy was the highest when using data collected

at 27–33 weeks of gestation (AUROC = 0.76 [0.72–0.8]). Howev-

er, importantly, even one proteome profile at 17–22 weeks of

gestation predicted spontaneous preterm delivery significantly

(AUROC = 0.62 [0.58–0.67]) (Figure 6A), suggesting that this

approach has value in the early identification of women at risk.

The addition of four cases with PPROM to those with sPTD did

not affect the prediction performance of the proteomics models

of team 1, suggesting that this approach could generalize to both

preterm birth phenotypes. The increase in plasma protein abun-

dance of PDE11A and ITGA2B preceded the diagnosis of both

sPTD and PPROM in the Detroit cohort at 27–33 weeks of gesta-

tion (Figures 6B and 6C). The tightly interconnected network of

proteins built from differential profiles with sPTD in asymptom-

atic women at 27–33 weeks of gestation (q < 0.1; Figure 6B; Ta-

ble S8) included not only several previously known markers of

preterm delivery (IL-6, ANGPT1) but also MMP7 and ITGA2B,

which we previously described as dysregulated in women with

preeclampsia.52 Member proteins of this network perturbed

before a diagnosis of spontaneous preterm delivery are anno-

tated to biological processes such as regulation of cell adhesion,

response to stimulus, and development (Figure 6D). Differentially

expressed proteins preceding diagnosis with sPTD also included

mediators annotated to biological processes found by transcrip-

tomic analysis in PPROM, such as leukocyte-mediated immunity

(AGER, PDPK1, LAG3, HAVCR2, IL-6, FCER2, CADM1), neutro-

phil-mediated immunity (PLAUR, IMPDH2, PRDX6, PA2G4, F2,

IL-6, PPIE, GDI2), and regulation of vesicle-mediated transport

(NAPA, PDPK1, MFGE8, ANGPT1, CAMK2A); however, enrich-

ment of these biological processes did not reach statistical sig-

nificance. In contrast, the pathway enrichment analysis based on

MSigDB identified AMB2 neutrophils and cell surface interac-

tions at the vascular wall pathways as significantly enriched

based on plasma proteomic dysregulation preceding diagnosis

with sPTD (q < 0.1; Table S4). Other top-ranked pathways

included nervous system development, developmental biology,

focal adhesion, VEGFA/VEGFR2 signaling, and membrane

trafficking pathways (p < 0.05; Table S4), with the latter two being

in common with those involved in PPROM (Table S4).

Given that differences in the patient characteristics could have

contributed to the higher prediction performance of sponta-

neous preterm delivery by plasma proteomics as compared to

maternal whole-blood transcriptomics, the approach of team 1

was also evaluated via leave-one-out cross-validation on a sub-

set of 13 controls and 17 sPTD cases for which both types of

data originated from the same blood draw. The prediction perfor-

mance for spontaneous preterm delivery by plasma proteomics

remained high (AUROC = 0.86 [0.7–1.0]), while prediction by

transcriptomic data remained non-significant (Figure 7), confirm-

ing the superior value of proteomics relative to transcriptomics

for this endpoint. Of note, for a fixed number of 50 predictors al-

lowed, a stacked generalization53 approach combining predic-

tions from individual platform models via a LASSO logistic

regression led to a higher leave-one-out cross-validation perfor-

mance estimate (AUROC= 0.89 [0.78–1.0]) compared to building

a single model from the combined transcriptomic and proteomic

features (Figure 7).

To extract further insights from the computational approaches

best suited to predict preterm birth from longitudinal omics data

in sub-challenge 2, we investigated which computational as-

pects explained the higher performances of the top two teams.

Given that team 1 relied only on omics data at the last available

time point (T2), we kept all of the aspects of this method except

for the temporal information considered among the following: (1)

first point (T1), (2) change in expression between T2 and T1

(slope), or (3) a combined approach in which slopes for all genes

and measurements at T2 compete for inclusion in the 50 allowed

predictors for a given outcome (PPROM or sPTD) (see STAR

Methods). As shown in Figure S4, none of these approaches

would have improved prediction performance relative to the

baseline approach of team 1, which considered only the data

from the last time point (T2). We then considered several key as-

pects of the approach of team 2 and have subsequently incorpo-

rated them in the approach of team 1 to determine whether such

hybrid approaches could translate into higher performances

relative to the baseline approach. In particular, we have modified

the approach of team 1: (1) to start with only the top half of the

most highly abundant features on each platform, (2) to convert

the binary classification (preterm versus term) into a regression

of gestational age at delivery, and (3) given the selected 50 pre-

dictor genes based on the correlation of T2 expression values

with the outcome, to add the expression of those genes at the

previous time point as independent predictors in the random
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Proteomics AUC = 0.86(0.7−1)

Multi−omics AUC = 0.69(0.49−0.88)

Multi−omics Stacked AUC = 0.89(0.78−1)

Figure 7. Comparison of prediction performance of spontaneous

preterm delivery between platforms

ROC curve for prediction of sPTD by models obtained with the approach of

team 1 based on a subset of samples for which data from both platforms were

available. Leave-one-out cross-validation was used to generate the ROC

curves from a set of 13 controls and 17 sPTD cases. The multi-omics model

was obtained by applying the same approach on a concatenated set of pro-

teomic and transcriptomic features. The multi-omics stacked generalization

approach involved combining predictions from models based on each plat-

form via LASSO logistic regression. AUC: area under the curve is given with

95% DeLong confidence intervals.

Cell Reports Medicine 2, 100323, June 15, 2021 9

Article
ll

OPEN ACCESS



forest model. Of these three scenarios, the last, which expands

the number of predictors from 50 to 100 without increasing the

number of molecules, slightly outperformed the approach of

the overall prediction performance of team 1 across scenarios

(Figure S4) and led to the consistent prediction of PPROM in

all cross-study analyses (see improvement in prediction from

Figures 5A to S4). Interestingly, simply doubling the number of

molecules profiled at T2 that were allowed as predictors in the

model (from 50 to 100) led to a worse overall prediction perfor-

mance relative to the approach of team 1 that used only 50 mol-

ecules at T2 (Figure S4). This finding suggests that for preterm

birth prediction, it is more important to measure the right bio-

markers at one additional time point than to double the number

of markers at the most recent time point.

DISCUSSION

In this study, we evaluated maternal blood omics data to predict

gestational age in normal and complicated pregnancies, as well

as the risk of preterm birth. Although the main interest here was

the prediction of spontaneous preterm birth, the correlation of

omics data with advancing gestation was relevant not only to

serve as a positive control for the evaluation of omics data but

also to possibly provide relevant information for the development

of more affordable tools to date pregnancy. We chose the

DREAM collaborative competition framework30 to identify the

best computational methods for making inferences and to

assess them in an unbiased and robust way based on longitudi-

nal omics data that we and others have generated. DREAMChal-

lenges have been used to establish unbiased performance

benchmarks across a wide array of prediction tasks.54–58 More-

over, the results gained from these challenges define community

standards and advancements in many scientific fields.59,60

Collectively, sub-challenge 1 and the additional post-chal-

lenge analyses demonstrated thatmodels based on thematernal

whole-blood transcriptome (1) significantly predict LMP and ul-

trasound-defined gestational age at venipuncture in both normal

and complicated pregnancies (RMSE = 4.5) and (2) predict a

delivery date within ±1 week in women with spontaneous term

delivery with an accuracy (45%) comparable to the clinical stan-

dard (55%). The accuracy of gestational age prediction was

likely understated based on sub-challenge 1 results due to the

inclusion of caseswith early preeclampsia and spontaneous pre-

term birth atmuch higher rates than expected in the general pop-

ulation. Disease-specific perturbations, especially close to the

time of delivery in early preeclampsia and spontaneous preterm

birth cases, are expected to have contributed additional varia-

tion to gene expression patterns establishing gestational age.

Of interest, the accuracy of dating gestation in women with

spontaneous term delivery was similar to the report by Ngo

et al.,16 who used cell-free RNA profiling in a Danish cohort,

although that study involved more frequent (weekly) sampling

of fewer genes (about 50 immune, placental, and fetal liver spe-

cific) instead of the genome-wide data used here. In the study by

Ngo et al.,16 the TTD transcriptomicmodel derived from samples

of women with normal pregnancy failed to predict delivery dates

on independent cohorts of women with preterm birth, while in

this study, such a model resulted in the significant prediction

of delivery dates in cases with spontaneous preterm birth (r =

0.75; Figure 3B). A possible explanation, in addition to the cohort

differences between the training and testing sets in the previous

study, is that our model of normal pregnancy captured not only

gene changes establishing the gestational age but also those

changes involved in the common pathway of labor. While the

prediction of the delivery date of women with spontaneous pre-

term birth by omics data collected up to <37 weeks, including

samples taken when women were symptomatic, was demon-

strated above without using any data from preterm birth cases

to establish the model, it was also previously shown by others

who used data from both cases and controls.10,19,61,62

In the context of sub-challenge 2, we tackled the issue of pre-

dicting spontaneous preterm birth from samples collected while

womenwere asymptomatic before 33weeks of gestation.Overall,

transcriptomic-based prediction performance for PPROM was

low (AUROC = 0.6 at 27–33 weeks of gestation); however, the

sub-challenge and post-challenge analyses provided evidence

of changes in maternal whole-blood gene expression that pre-

cede a diagnosis of PPROM and are shared across gestational

age time points and racially diverse cohorts and different microar-

ray platforms. These transcriptomic changes involved immune-,

inflammation-, and metabolism-related biological processes and

pathways (Table S4). Plasma protein changes preceding a diag-

nosis with sPTDwere larger at 27–33 weeks and led to higher pre-

diction performance (AUROC=0.76). The 90proteins differentially

abundantwith sPTD (Table S8) were encodedbygenes annotated

to someof the samebiological processes found by transcriptomic

analysis in PPROM, with vascular endothelial growth factor A/

VEGF receptor 2 (VEGFA/VEGFR2) signaling and membrane traf-

ficking pathways being top-ranked pathways based on both pro-

teomics changes with sPTD and transcriptomic changes with

PPROM. The involvement of membrane trafficking within the

secretory membrane system, which includes the endoplasmic re-

ticulum (ER), is in line with previous observations that ER stress is

increased after spontaneous labor in gestational tissues, where it

regulates the expression of prolabor mediators.63,64 The involve-

ment of the VEGF family of proteins in early placentation and of

the abnormalities in maternal plasma and placental expression

of angiogenic factorswas also reported in adverse pregnancy out-

comes.65 Moreover, proteins annotated to endocrine system

development (PDPK1, IL-6), a pathway associated with parturi-

tion,66 were increased in the maternal plasma before the onset

of sPTD. The inflammatory cytokine IL-6, known to play a central

role during pregnancy and its complications,67,68was increased in

the amniotic fluid of women having a preterm labor with intra-am-

niotic infection.69 IL-6 and ANGPT4, a member of the angiopoie-

tins family, were highlighted as predictors of preterm birth based

on proteomics analysis of maternal plasma at 8–20 weeks of

gestation in a population of women from low- and middle-income

countries.70

Regarding the comparison between omics platforms for the

prediction of preterm birth, this study demonstrated evidence

of superior performance by plasma proteomics compared to

whole-blood transcriptomics in the prediction of spontaneous

preterm delivery (AUROC = 0.76 versus 0.6 at 27–33 weeks)

(see Figure 7 for analyses in the same samples). This is in line

with a recent multi-omics analysis in preterm birth using cell-
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free RNA and plasma proteomics in preterm birth.70 After we and

other investigators reported the value of aptamer-based Soma-

Logic assays to predict early52 and late preeclampsia,45 in this

study, we evaluated this platform to predict preterm birth and

found the SomaLogic assay to be of superior value when

compared to whole-blood transcriptomics in predicting sponta-

neous preterm delivery. The plasma proteomics signatures of

spontaneous preterm birth identified here have direct implica-

tions for the development of future SomaSignal Tests that were

demonstrated in other health applications by combining repro-

ducible proteomic signals with machine learning.28,29

The use of crowdsourcing to evaluate computational ap-

proaches and longitudinal multi-omics data to predict preterm

birth is a major strength of this study. Many independent ap-

proaches to solve this challenge were implemented by the data

science community. Coincidentally, the first and secondbest-per-

forming teams were the same for both sub-challenges, which is

indicative of the team’s skill, as opposed to chance, a fact that

has been observed in several other crowdsourcing initiatives

(e.g., sbv IMPROVER,22,71,72 CAGI,73–76 and DREAM55,77,78).

Another advantage of the DREAM Challenge framework is that

the model development and the prediction assessment are sepa-

rate; thus, the risk of overstating the prediction performance is

reduced. Aswith other similar crowdsourcing initiatives, we inves-

tigated the key factors that could explain the higher predictionper-

formance of the top teams relative to the other teams. Given the

multitude of differences in prediction pipelines among teams, it is

challenging to single out individual key components that explain

prediction performance variability. Therefore, in post-challenge

analyses of sub-challenge 2, we modified the approach of team

1 to include a single new element borrowed from the approach

of team 2. Based on this strategy, we have identified that the reli-

ance of team 1 on the last-available snapshot of molecular activity

was a keymethodological aspect thatwas superior to the useof all

of the available time points or the rate of change across points as

implementedbyother lower-ranked teams.Thisfinding is inagree-

mentwithpreviousobservations that thecloser thesampling to the

clinical diagnosis, the higher the predictive value of the bio-

markers.45,52,79 Once the molecular signature was reliably

selected based on the last available time point, also including the

measurements at the second-to-last available time point as inde-

pendent predictors into the model would have been beneficial to

improve prediction of preterm birth (Figure S4).

This robust evaluation of prediction performance, combined

with a separate consideration of preterm birth phenotypes

(sPTD and PPROM), of time points at sampling, and multi-omic

platforms, makes this work one of the most comprehensive longi-

tudinal omics studies in preterm birth. Importantly, this study pro-

vides omics data in a majority African-American cohort in which

the rate of prematurity is higher than that observed in other popu-

lations80andomicsdataare scarce.Datacollected indiversepop-

ulations are needed since some disease-related molecular

changes can be cohort specific, as it was reported for other preg-

nancy complications such as preeclampsia.81 Finally, the work

herein has resulted in computational algorithms with associated

code made available to the community with an open-source li-

cense, allowing for reproducible research and applications to

other similar researchquestionsbasedon longitudinal omicsdata.

Limitations of the study

Two possible limitations of the comparison between omics plat-

forms are the lower sample size used to analyze the same blood

draws and the much larger number of transcriptomic than prote-

omic features, whichmade the ‘‘needle in the haystack’’ problem

more difficult for the transcriptomic platform. This curse of

dimensionality was noted when transcriptomic and proteomic

features were combined, resulting in a lower performance

estimate for the multi-omics model obtained with the approach

of team1, than for proteomics data alone. Although here the rem-

edy to this issue was to combine the predictions of each platform

into a meta-model (stacked generalization) (Figure 7), alternative

approaches focus on biologically plausible sets of features

derived by single-cell genomics. This latter category of methods

was demonstrated to predict preeclampsia79,82 and to distin-

guish between women with spontaneous preterm labor and the

gestational age-matched controls.49,50 Another limitation of the

study is that theRNAdata collectionwas limited to genes present

on the Human Transcriptome Array 2.0 microarray platform as

opposed to sequencing-based methods that could provide a

more comprehensive snapshot of the transcriptome.83
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Adi L.

Tarca (atarca@med.wayne.edu).

Materials availability

This study did not generate new unique reagents.

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human whole blood and plasma samples Perinatology Research Branch, an

intramural program of the Eunice Kennedy

Shriver NICHD, NIH, DHHS, Wayne State

University (Detroit, MI, USA), and the Detroit

Medical Center (Detroit, MI, USA)

N/A

Critical commercial assays

GeneChip WT Pico Reagent Kit Affymetrix (Thermo Fisher Scientific) P/N 703262 Rev. 1

Human Transcriptome Arrays (HTA 2.0) Affymetrix (Thermo Fisher Scientific) P/N 902162

SOMAmer proteomic assays and profiling

services (1,125 proteins)

SomaLogic, Inc. Gene Expression Omnibus: GPL28509

Deposited data

Raw and preprocessed transcriptomics

data

This paper Gene Expression Omnibus:: GSE149440

Raw and preprocessed proteomics data This paper Gene Expression Omnibus:: GSE150167

Software and algorithms

oligo Carvalho and Irizarry84 https://www.bioconductor.org/packages/

release/bioc/html/oligo.html

limma Smyth85 https://www.bioconductor.org/packages/

release/bioc/html/limma.html

lme4 Bates et al.34 https://cran.r-project.org/web/packages/

lme4/index.html

glmnet Friedman et al.86 https://cran.r-project.org/web/packages/

glmnet/index.html

Cytoscape Otasek et al.87 https://cytoscape.org/

GOstats Falcon and Gentleman88 https://bioconductor.org/packages/

release/bioc/html/GOstats.html

Predictive modeling; Sub-challenge 1,

Team 1

This paper https://www.synapse.org/#!

Synapse:syn20684755

Predictive modeling; Sub-challenge 2,

Team 1

This paper https://www.synapse.org/#!

Synapse:syn21443858

MSigDB curated gene sets Liberzon et al.46 http://www.gsea-msigdb.org/gsea/

msigdb/collections.jsp#C2

Other

Calgary cohort transcriptomics data Heng et al.31 GEO: GSE59491

Resource website for the DREAM Preterm

Birth Prediction Challenge, including data,

software code, and vignettes

This paper https://www.synapse.org/pretermbirth
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Data and code availability

The accession number for the transcriptomic and proteomic data from the Detroit cohort described herein are Gene Expression

Omnibus super-series GSE149440 and GSE150167, respectively. They were also submitted to the March of Dimes repository

(https://www.immport.org/shared/study/SDY1636).

Analysis scripts for transcriptomic data preprocessing and for building prediction models based on the approaches of the partici-

pating teams in sub-challenges 1 and 2 are available from the Challenge website (https://www.synapse.org/pretermbirth). Direct

links to method write-ups and computer code for prediction of gestational age and preterm birth are also available in Tables S2

and S6, respectively. Moreover, R code vignettes demonstrating the use of participant methods and key post-challenge analyses

were also provided at https://www.synapse.org/pretermbirth.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects, clinical specimens, and definitions

Womenwho provided blood samples included in the transcriptomic (n = 149) and proteomic (n = 105) studies described in the Results

sectionwere enrolled in a prospective longitudinal study at theCenter for AdvancedObstetrical Care andResearchof thePerinatology

Research Branch, NICHD/NIH/DHHS; theDetroit Medical Center; and theWayneState University School of Medicine. Blood samples

werecollectedat the timeofprenatal visits, scheduledat four-week intervals fromthefirst or early second trimester until delivery, during

the followinggestational-age intervals: 8-<16weeks, 16-<24weeks, 24-<28weeks, 28-<32weeks, 32-<37weeks, and>37weeks.

Collection of biological specimens and the ultrasound and clinical data was approved by the Institutional Review Boards of Wayne

State University (WSU IRB#110605MP2F) and NICHD (OH97-CH-N067) under the protocol entitled ‘‘Biological Markers of Disease

in the Prediction of Preterm Delivery, Preeclampsia and Intra-Uterine Growth Restriction: A Longitudinal Study.’’ Cases and controls

were selected retrospectively and sample size was determined based on sample availability and cost of experiments.

The first ultrasound scan during pregnancy was used to establish gestational age if this estimate was more than 7 days from the

LMP-based gestational age. The first ultrasound scan was obtained before 14 weeks of gestation for 70% of the women, and 95%of

the women underwent the first ultrasound before 20 weeks of gestation. Preeclampsia was defined as new-onset hypertension that

developed after 20 weeks of gestation (systolic or diastolic blood pressure R 140 mm Hg and/or R 90 mm Hg, respectively,

measured on at least two occasions, 4 hours to 1 week apart) and proteinuria (R300 mg in a 24-hour urine collection, or two random

urine specimens obtained 4 hours to 1 week apart containingR 1+ by dipstick or one dipstick demonstratingR 2+ protein).89 Early

preeclampsia was defined as preeclampsia diagnosed before 34 weeks of gestation, and late preeclampsia was defined by diag-

nosis at or after 34 weeks of gestation.90 The diagnosis of PPROMwas determined by a sterile speculum examination with documen-

tation of either vaginal pooling or a positive nitrazine or ferning test.91 Spontaneous preterm labor and delivery was defined as the

spontaneous onset of labor with intact membranes and delivery occurring prior to the 37th week of gestation.92 Demographic char-

acteristics of the study population are summarized in Table S1, and they are available for each individual patient in the GEO datasets

(see Data and code availability).

METHOD DETAILS

Maternal whole blood transcriptomics

RNA was isolated from PAXgene� Blood RNA collection tubes (BD Biosciences, San Jose, CA; Catalog #762165) and hybridized to

GeneChip Human Transcriptome Arrays (HTA) 2.0 (P/N 902162), as previously described.35Microarray experiments were carried out

at the University of Michigan Advanced Genomics Core, a part of the Biomedical Research Core Facilities, Office of Research (Ann

Arbor, MI, USA).

Maternal plasma proteomics

Maternal plasma protein abundancewas determined by using the SOMAmer (SlowOff-rateModified Aptamer) platform and reagents

to profile 1,125 proteins.27,44 Proteomic profiling services were provided by SomaLogic, Inc. (Boulder, CO, USA). As we previously

described,21 plasma samples were diluted and then incubated with SOMAmer mixes pre-immobilized onto streptavidin-coated

beads. The beads were washed to remove non-specifically bound proteins and other matrix constituents. Proteins that remained

bound to their cognate SOMAmer reagents were tagged using an NHS-biotin reagent. After the labeling reaction, the beads were

exposed to an anionic competitor solution that prevents non-specific interactions from reforming after disruption. Pure cognate-SO-

MAmer complexes and unbound (free) SOMAmer reagents are released from the streptavidin beads using ultraviolet light that

cleaves the photo-cleavable linker used to quantitate protein. The photo-cleavage eluate, which contains all SOMAmer reagents

(some bound to a biotin-labeled protein and some free), was separated from the beads and then incubated with a second strepta-

vidin-coated bead that binds the biotin-labeled proteins and the biotin-labeled protein-SOMAmer complexes. The free SOMAmer

reagents were then removed bywashing. In the last elution step, protein-bound SOMAmer reagents were released from their cognate

proteins using denaturing conditions. SOMAmer reagents were then quantified by hybridization to custom DNA microarrays. The

Cyanine-3 signal from the SOMAmer reagent was detected on microarrays.27,44
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Sub-challenge 1 organization

For sub-challenge 1, aimed at predicting gestational age at sampling from whole blood transcriptomic data in normal and compli-

cated pregnancies, a training set and a test set were generated (Figure S1; Video S1). Transcriptomic gene expression data were

made available to participants for both the training and test sets. Gestational age was provided for the training set and participants

were required to submit predicted gestational-age values for the test set, which were compared in real time against the gold stan-

dard; the RMSE was posted to a leaderboard that was live from May 22, 2019, to August 15, 2019. Up to five submissions per team

were allowed, and they were ranked by the RMSE, and the smallest value was retained as entry for each unique team (Table S1). Only

the teams who described their approach and provided the analysis code were retained in the final team rankings.

Sub-challenge 2 organization

In the first phase of sub-challenge 2, participants were invited to develop preterm birth prediction algorithms using gene expression

data from longitudinal transcriptomic data collected from 17 to less than 37 weeks of gestation from women with a normal preg-

nancy and from cases of preterm birth (sPTD and PPROM) illustrated in Figure 2. The training set was composed of data from the

Calgary cohort and a fraction of the Detroit cohort (Figure 2), while the test set comprised the remainder of the Detroit cohort.

Teams were requested to submit a risk value (probability) for all samples when classifying test samples as sPTD versus Control,

and as PPROM versus Control. The AUROC and AUPRC were calculated separately for each prediction task and the ranks for each

of the resulting four performance measures were calculated for each team and aggregated by summation. Two predictions per

team were allowed and performance results on the test set were posted to a live leaderboard from August 15, 2019, to December

5, 2019.

Because the prediction models developed in the first phase of sub-challenge 2 could have captured eventual differences between

the cases and controls in terms of the timing and number of samples, a second phase of the sub-challenge 2 was organized

(December 5, 2019 to January 3, 2020) for which teams were asked to provide prediction algorithms (computer code) instead of pre-

dictions of a given test dataset.

QUANTIFICATION AND STATISTICAL ANALYSIS

Transcriptomics data preprocessing

Raw intensity data (CEL files) were generated from array images using the Affymetrix AGCC software. CEL files from this study and

those for the Calgary cohort were preprocessed separately for each platform. ENTREZID gene level expression summaries were ob-

tained with Robust Multi-array Average (RMA)93 implemented in the oligo package84 using suitable chip definition files from http://

brainarray.mbni.med.umich.edu. Since samples in the Detroit cohort were profiled in several batches, correction for potential batch

effects was performed using the removeBatchEffect function of the limma85 package in Bioconductor.94 Cross-study/platform an-

alyses were performed on a combined dataset after quantile normalizing data across all samples for the set of common genes, fol-

lowed by platform effect-removal.

Proteomics data preprocessing

The protein abundance in relative fluorescence units was obtained by scanning the microarrays. A sample-by-sample adjustment in

the overall signal within a single plate was performed in three steps per manufacturer’s protocol, as we previously described.21,45

Outlier values (larger than 2 3 the 98th percentile of all samples) were set to 2 3 the 98th percentile of all samples. Data was log2
transformed before applying machine learning and differential abundance analyses.

Sub-challenge 1 robustness analysis of team ranks

To determine whether differences in gestational-age prediction accuracy between the different teams were robust, we have simu-

lated the challenge by drawing 1000 bootstrap samples of the test set. RMSE values were calculated for each submission (1 to at

most 5) for each team, and we retained the submission with the smallest RMSE. Team ranks were calculated and the Bayes factors

were then calculated as the ratio between the number of iterations in which the team k performed better than the team ranked next

(k+1) relative to the number of iterations when the reverse was true. A Bayes factor > 3 was considered a significant difference in

ranking (see Figure S1B).

Sub-challenge 1 top two algorithms

Team 1: The first-ranked team in this sub-challenge (authors B.A.P. and I.C.) used gene-level expression data after filtering out sam-

ples considered as outliers, followed by the standardization of gene expression for each microarray experiment batch separately.

Genes were ranked by using singular value decomposition, and those genes having higher dot products with singular vectors that

correspond to large singular values across the training samples were assigned a higher score.

In the next step,�6000 genes were selected based on the described ranking, which was based on cross-validation results on the

training set using a ridge regression model. Ridge regression95 models were fitted using the Sklearn package in Python (version 3).

Team 2: The second-ranked team in this sub-challenge (author Y.G.) applied quantile normalization to gene level expression data,

followed by the modeling of the gestational-age values using Generalized Process Regression and Support Vector Regression.
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Model tuning parameters were optimized using a grid search, and predictions by the two approaches were weighted equally. Models

were fit using Octave.

Sub-challenge 2 team ranking

The algorithms submitted by participants in the final stage of sub-challenge 2 were applied as implemented by the participants

without any tuning to the 70 pairs of training and test datasets described in Figure 4A, Table S5, and Video S1. In each of the 7 sce-

narios in Figure 4A, there were 2 outcomes predicted (sPTD versus Control; and PPROM versus Control), except for proteomic data

(scenario DP2), where the feasible comparisons were sPTD versus control and sPTB versus control; the sPTB group was defined as

the union of sPTD and PPROM cases. The AUROC and AUPRC were used to assess predictions for each outcome based on pre-

dictions on each of the 10 test sets for each scenario, and then were averaged over the 10 tests sets. The resulting 28 prediction

performance averages (7 scenarios x 2 outcomes x 2 metrics) for each team were converted into Z-scores by subtracting the

mean and dividing by the standard deviation of these metrics obtained from 1,000 random predictions (random uniform posterior

probabilities). Further, only the combinations of scenarios and outcomes resulting in a significant prediction performance (False Dis-

covery Rate-adjusted p value derived from Z-scores, q < 0.05) for at least one of the 13 teams, were considered for team ranking,

resulting in 20 performance criteria for each team. Teams were ranked by each of the 20 prediction performance criteria, and a final

rank was generated based on the sum of the ranks over all criteria (Table S6).

Sub-challenge 2 robustness analysis of team ranks

To assess the significance of the differences in prediction performance of preterm birth among the teams based on omics data, we

used the same ranking procedure described above inmore than 1,000 simulated iterations of the sub-challenge. At each iteration, the

rankings were calculated by using prediction performance results that corresponded to a bootstrap sample of the 10 train/test pairs

pertaining to each scenario and, at the same time, taking a bootstrap sample of the prediction criteria (columns in Table S6). Bayes

factors were then calculated as the ratio between the number of iterations in which the team k performed better than the team ranked

next (k+1) relative to the number of iterations when the reverse was true. A Bayes factor > 3 was considered a significant difference

among rankings (Figure S3B).

Sub-challenge 2, the top three algorithms

Team 1: The algorithm of the first-ranked team in this sub-challenge (authors B.A.P. and I.C.) starts with standardizing the input omics

data so that they have a zero mean and a standard deviation of 1 for each omics platform (if more than one in an input set, which was

the case while training and testing across the platforms). A random forest classifier with 100 trees was fit to each prediction task

(sPTD versus Control and PPROM versus Control). The top 50 features, ranked by importancemetric derived from the random forest,

were selected for each task separately and used to fit a final model on the training data. Random forest models were fitted using the

Sklearn package in Python (version 3).

Team 2: The approach of the second-ranked team in this sub-challenge (author Y.G.) first centers the data of each feature around

the mean for each platform (if more than one) in a given input set. Then, data is quantile normalized to make identical the distributions

of feature data across the samples. Next, the top 50 features with the highest average over all samples are retained, and the feature

values for the last-available two time points for each subject are used as predictors (100 predictors) in a Generalized Process Regres-

sion model, a Bayesian non-parametric regression technique. The two parameters of GPR regression were preset to an eye value of

0.75, which represents how much noise is assumed in the data, and a sigma of 10, a data normalization factor. Models were fitted

using Octave.

Team 3: The approach of the third-ranked team in this sub-challenge (author R.K.) starts with the selection of the top 50 features

ranked by statistical significance p value derived from a t test or Wilcoxon test, depending on the normality of the data, and deter-

mined by a Shapiro test. Then, using the selected features, linear, sigmoid and radial Support Vector Machines models are fitted and

compared via 5-fold cross validation, and the predictions for the best method were averaged over the five trained models. Models

were fit using the e1071 package96 in R.

Assessing significance of gestational age prediction

The correlation between gestational ages predicted by the transcriptomics model of Team 1 in sub-challenge 1 (M_GA_Team1) and

actual gestational ages at blood drawwas assessed using a naive Pearson correlation test, but also via linear mixed-effectsmodeling

to account for repeated-measurements frompatients in the test set. This latter analysis involved fitting a linearmixed-effects model in

which the dependent variable was the transcriptomics predicted gestational age and the independent variable was the actual gesta-

tional age. The patient identifier was included as a random effect in this model. A likelihood ratio test implemented in the lme4 pack-

age34 was used to determine the significance of the linear relation between actual and transcriptomics-predicted gestational ages.

Identification of a core transcriptome predicting gestational age

To identify a core transcriptome that can predict gestational age in normal and complicated pregnancies, linearmixed-effectsmodels

with splines were applied to prioritize genes that changewith gestational agewhile accounting for the possible non-linear relation and

for the repeated observations from each individual, as we previously described.35 Of note, participating teams could have not used
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such an approach given that sample-to-patient annotations were not provided on the training data. Then, the genes that did not

change in average expression by at least 10% over the 10-40-week span were filtered out, and the remaining genes were ranked

by p values from the linear mixed-effects models. The top 300 genes were then used as input in a LASSO regression model (elastic

net mixing parameter alpha = 0.01) for which the shrinkage coefficient (lambda) was determined by cross-validation, leading to 249

genes with non-zero coefficients in the model (Table S3). Of note, using more than 300 genes as input in the ridge regression model

did not further reduce the RMSE on the test set. LASSO models were fit using the glmnet package86 in R.

Differential expression and abundance analyses

Differences in gene expression or protein abundance between the cases and controls were assessed based on linear models imple-

mented in the limma package97 in Bioconductor. When data across time points and/or cohorts were combined, these factors were

included as fixed effects in the linear models. Downstream analyses of the differentially expressed genes involved enrichment anal-

ysis via a hypergeometric test implemented in the GOstats package88 to determine the over-representation of Gene Ontology98 bio-

logical processes among the significant genes. Additional enrichment analyses for both transcriptomics and proteomics platforms in

sub-challenge 2 were based on a hypergeometric test with pathway definitions extracted from the C2 collection of theMSigDB data-

base. The C2 collection in MsigDB includes pathways from the Pathway Interaction Database,99 Kyoto Encyclopedia of Genes and

Genomes,100 Reactome database,101 and Wiki Pathways,102 among other sources. The background list in the enrichment analyses

featured all genes profiled on the microarray platform. For proteomic-based enrichment analyses for sub-challenge 1, protein-to-

gene annotations from the manufacturer (SomaLogic) were used as input in the stringApp version (1.5.0)103 in Cytoscape (version

3.7.2)87 using the whole genome as background. A false discovery rate adjusted q < 0.1 was used throughout enrichment analyses

to infer significance. Networks of high-confidence protein-protein interactions (STRING confidence score > 0.7) were constructed

from the lists of significant genes/proteins using stringApp in Cytoscape. For visualization, the most interconnected sub-networks

were displayed and nodes were annotated to significantly enriched biological processes.
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