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ABSTRACT The number of available indoor location solutions has been growing, however with insufficient

precision, high implementation costs or scalability limitations. As fingerprinting-based methods rely on

ubiquitous information in buildings, the need for additional infrastructure is discarded. Still, the time-

consuming manual process to acquire fingerprints limits their applicability in most scenarios. This paper

proposes an algorithm for the automatic construction of environmental fingerprints onmulti-storey buildings,

leveraging the information sources available in each scenario. It relies on unlabelled crowdsourced data

from users’ smartphones. With only the floor plans as input, a demand for most applications, we apply

a multimodal approach that joins inertial data, local magnetic field and Wi-Fi signals to construct highly

accurate fingerprints. Precise movement estimation is achieved regardless of smartphone usage through

Deep Neural Networks, and the transition between floors detected from barometric data. Users’ trajectories

obtained with Pedestrian Dead Reckoning techniques are partitioned into clusters withWi-Fi measurements.

Straight sections from the same cluster are then compared with subsequence Dynamic Time Warping

to search for similarities. From the identified overlapping sections, a particle filter fits each trajectory

into the building’s floor plans. From all successfully mapped routes, fingerprints labelled with physical

locations are finally obtained. Experimental results from an office and a university building show that this

solution constructs comparable fingerprints to those acquired manually, thus providing a useful tool for

fingerprinting-based solutions automatic setup.

INDEX TERMS Crowdsourcing, fingerprinting, indoor location, inertial tracking, magnetic field, multi-

storey, unsupervised, Wi-Fi.

I. INTRODUCTION

Nowadays, the use of Global Positioning System (GPS) has

become vulgar and it is around us during our everyday lives.

Using a global network of satellites, a user or an object can be

located with at least four different satellites through the pro-

cess of trilateration. This technology has become extremely

reliable and accurate, but it does not work inside buildings or

underground. This is due to the loss of the satellite signal as

The associate editor coordinating the review of this manuscript and

approving it for publication was Cesar Vargas-Rosales .

it has to go through solid structures, such as walls. To further

increase the losses, buildings with metallic structures in their

foundations will see an increased decline in signal strength or

even total loss due to the Faraday cage effect. This problem

can affect potential applications for indoor location such as

tracking automated cars inside warehouses, locating patients

and visitors in healthcare facilities, keep track of inventory in

smart offices, among other applications.

To solve this problem, two major groups of Indoor Posi-

tioning Systems (IPS) arose, those that require the installation

of additional infrastructure and infrastructure-free solutions.
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The former usually resorts to beacons capable of emitting

signals that are received and re-transmitted back. By using

similar techniques to trilateration, these methods can locate

the receiver. The drawbacks of such solutions are the high

costs associated with the installation and maintenance of the

required infrastructure, while the main advantage is their

higher accuracy [1]–[4].

Regarding the infrastructure-free IPS, the most common

type utilises one or more sources of information, such as

Wi-Fi and magnetic field signals. These are possible given

the embedding of several sensors in smartphones, from Iner-

tial Measurement Units (IMU) to radio antennas. To exploit

such information, the most common approach is the use of

fingerprints on fingerprinting-based solutions. A fingerprint

is the mapping of a building with the desired sources of

information, collected by sensors across the area. At the end

of the data collection process, after saving to each position the

corresponding sensor reading, a map is constructed using the

gathered information and a schematic. This fingerprint can be

used to compare real-time data with the one in the fingerprint

to help locate the user [5]–[7].

As mentioned, most infrastructure-free methods use fin-

gerprints as the basis for storing information. However, they

require a time-consuming construction process, as the entire

area has to be covered by the sensors.

To avoid this problem, new approaches have been tried

and one of the most promising is crowdsourcing. This tech-

nique has been used in numerous areas, such as outdoor

navigation or collaborative translation. Crowdsourcing is a

method to solve complex problems with help from a group

of users who, whether actively or opportunistically, assist on

simpler tasks [8]. Thus, crowdsourcing comes as a solution

to address the initial setup burden of fingerprinting-based

IPS [9]. Leveraging the sensing capabilities of smartphones,

anonymous users can support the fingerprints construction

process.

For this purpose, in an initial phase, crowdsourcing con-

tributors naturally walk over the area of interest while their

smartphones’ sensors collect data opportunistically. Then,

with further processing after the collection campaign, a fin-

gerprint can be built automatically and maintained when

buildings change. However, existing algorithms present lim-

itations, either regarding their results, limited application or

the need for manual input of a set of parameters.

To address these limitations, we present an innova-

tive approach to automatically construct fingerprints with

crowdsourcing, for the desired environmental sources. After

the initial data collection campaign, which may be defined

according to the use case needs and complemented in later

iterations, the construction process can be triggered. Given

the floor plans for the different floors, users’ trajectories are

reconstructed with Pedestrian Dead Reckoning (PDR) and

iteratively fitted to the correct locations with a particle filter,

aided by a barometer-basedmodule to detect floor transitions.

When compared to the literature, the great innovative aspect

of our solution is its unique multimodal approach, taken

to enhance the mapping accuracy. Depending on scanning

restrictions from users’ devices, trajectories are firstly parti-

tioned intoWi-Fi similar areas with an unsupervisedMachine

Learning (ML) algorithm. Straight segments of the same

group andwith approximate orientation are compared with an

adaptive distance measure based on the perceived magnetic

field, to identify overlapping areas with high confidence.

With the proper fitting of each route into the correct floor

plan frommapped overlaps in previous iterations, fingerprints

are obtained. To assert the validity of the proposed solution,

evaluation tests were performed in two different settings,

a single-floor office building, and a larger multi-storey uni-

versity, using crowdsourced data from one user left out of the

construction process. The crowdsourcing fingerprints were

compared to those obtained by the traditional method and the

signal differences were computed to verify their similarity.

Also, the acquisitions from the test user were submitted to an

IPS using both the crowdsourced and traditional fingerprints.

The attained results on the test conditions assert the quality

of the algorithm.

The innovative aspects of this work for the automatic

fingerprints construction based on crowdsourcing are the

following:

• Leverage different pervasive sources depending on the

use case;

• Improved accuracy through multimodal validation of

crowd contributions;

• Accurate step detection based on Deep Learning;

• Mapping of multi-storey buildings from floor transitions

detection;

• Unconstrained by buildings dimensions, fitting any

indoor environment.

This paper is organised as follows: Section II discusses the

literature review and the previous work of our team on this

topic. The detailed description of the proposed approach is

available in Section III. In Section IV we present and discuss

the performance of our solution on the evaluation tests on two

distinct environments. At last, in Section V the conclusions

are taken and the future directions envisioned.

II. RELATED WORK

Indoor location solutions often rely on fingerprinting tech-

niques to decrease implementation costs related to the

acquisition and maintenance of radio equipment. However,

such infrastructure-free solutions need the manual labour

of acquiring fingerprints, either during the initial setup and

whenever the venue’s characteristics change. Especially in

large environments, this effort may suppress the benefits of

fingerprinting-based solutions.

Works have been proposed to address this issue, resorting

to crowdsourcing to tackle the labour-intensive fingerprints

construction process. Crowdsourcing is thus used in this

context to acquire a significant amount of data from large

groups of users. Therefore, the need for an expert is dismissed

thanks to the participation of ordinary users [10]. Providing
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a comparable level of accuracy on fingerprints construction

will contribute to decreasing the costs of deployment and

maintenance, crucial to widen the usage scenarios of indoor

localisation.

Depending on the use case, different approaches to crowd-

sourcing may be deployed. While in some cases users may

need to take active action while participating in the data

collection, in others the acquisition may take place oppor-

tunistically. As an example, in [11], crowdsourcing users

need to annotate when passing by specific landmarks, so the

system can use these predetermined positions to adjust

the localisation estimations. On the other hand, in [12],

users only need to normally walk throughout the venues,

while smartphones collect data opportunistically from the

available sources, dismissing any further effort from the

crowd. When crowdsourcing-based solutions are deployed

into production through marketable products, considerations

regarding incentive mechanisms and privacy issues must be

taken into account to ensure adherence from data collection

contributors [10], [13].

Throughout the literature, different approaches relying on

the use of crowdsourcing have been considered. Depending

on the use-case, different sources of information and pro-

cessing techniques are leveraged. Furthermore, while some

solutions require buildings’ floor plans to start fingerprints

mapping, others dismiss this requirement, demanding instead

additional input parameters.

A. FLOOR PLAN-INDEPENDENT CROWDSOURCING

Some authors ground their efforts on the premise that floor

plans are not available in specific contexts, and the manual

mapping process may imply prohibitive costs. Therefore,

some solutions seek for the mapping process automation

[14]–[16], which often rely on inertial sensing to apply on

PDR techniques, together with additional sources as the

Wi-Fi distribution or local magnetic field.

Other works complement the floor plan mapping process

with the further construction of fingerprints for different lay-

ers. Li et al. [17] leverage users’ inertial data, where they split
trajectories into segments, the corridors. Magnetic features

are retrieved from such segments, which are clustered to iden-

tify similar sequences. Collected Wi-Fi measurements are

assigned to a final position after obtaining the final corridor

map. Luo et al. [18] developed PiLoc, a system that constructs

Wi-Fi fingerprints by segmenting users’ trajectories into sets

of curves with adjacent straight sections. The authors find

similar curves by evaluating their shape and Wi-Fi trend,

which are merged into a final floor plan and fingerprints.

With SmartSLAM, Shin et al. [19] employ a Simultaneous

Localisation and Mapping (SLAM) approach to construct

floor plans with Wi-Fi fingerprints based on Hidden Markov

Models (HMM), which leverage inertial sensing and Wi-Fi

measurements to expand the inferred trajectories.

In a previous approach to this topic, our group proposed in

[12] the use of crowdsourcing on an algorithm to construct

indoor floor plans and geomagnetic and Wi-Fi fingerprints

effortlessly. The solution leverages inertial sensing to infer

crowdsourcing users’ trajectories, from which straight seg-

ments are retrieved and clustered, to divide venues into areas

with similar Wi-Fi pattern. Same cluster segments are com-

pared with an adaptive distance measure to identify which

are overlapping. The floor plans are constructed by perform-

ing geometric transformations to routes, so similar sections

are mapped into the same locations. Finally, fingerprints

are retrieved by matching the collected sources into each

position.

Although these solutions fit specific use cases where

obtaining a floor plan is not feasible, they present lower

accuracy due to lacking reference points or map constrains.

Furthermore, in most scenarios, a map is necessary to display

the localisation information to the systems’ users, so they can

navigate throughout a mall or an airport, for example.

B. FLOOR PLAN-DEPENDENT CROWDSOURCING

When the venues’ floor plans are given, the fingerprints

construction process is constrained by the possible locations

where users may be, which limits the error possibilities. From

crowdsourcing data, different approaches may use floor plans

as the only requirement for the fingerprints construction or

use them together with additional inputs.

Trogh et al. [20] optimiseWi-Fi signal maps with the input

of a set of APs’ locations, to calculate an initial simulated

fingerprint.With new data, radio values are corrected with the

Viterbi algorithm, used to estimate the most likely path, con-

sidering both the movement information and the similarity

between Wi-Fi measurements and preliminary fingerprints.

In another approach, Ahn et al. [21] use as landmarks the

location of payment terminals in a shopping mall, to estimate

an initial radio map and correct the users’ locations. Then, the

authors update the fingerprint with the collected Wi-Fi data

while crowdsourcing users walk throughout the building.

With no further inputs, Wu et al. developed LiFS [22],

a solution that resorts to Multi-Dimensional Scaling (MDS)

to create a stress-free floor plan that reflects real walking

distances between locations. By evaluating distances between

Wi-Fi measurements, the authors measure spatial similarity

to obtain their locations and construct the Wi-Fi fingerprints.

The floor plan is used by Zhou et al. [16] to extract the pos-

sible paths that users may take. If in vertexes activities such

as turns happen, an activity recognition algorithm is applied,

together with users’ trajectories inference, to compute the

corresponding positions and obtain the Wi-Fi fingerprints.

A different approach is taken by Rai et al. with Zee [23],

where a particle filter is applied to the collected inertial data,

to expand the possible positions of each step, constrained by

the floor plan. If a trajectory converges into a single location,

a backward propagation process labels theWi-Fi acquisitions

to the inferred locations.

C. LITERATURE COMPARISON

Different approaches try to automatise the fingerprints

construction process leveraging crowdsourcing. However,
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as limitations can be pointed out, a sufficiently scalable

solution is still needed. Most solutions demand annotated

landmarks as inputs or take advantage of a limited group of

information sources, which independently present cumulative

errors due to low-accuracy sensors and non-linear signal

distribution. Furthermore, most solutions only focus on map-

ping Wi-Fi fingerprints to be deployed on smartphones. With

increasing throttling and restrictions on Wi-Fi scans from

Android and iOS, such solutions may stop working in real

contexts.

To address these limitations, the proposed solution maps

fingerprints of different sources depending on the use case

andwith the available data collected by crowdsourcing volun-

teers. The full process is done automatically without explicit

manual effort from users during the collection campaign

as, contrarily to most available solutions, there is no need

to previously define any landmarks or to install additional

equipment. Also, in a real deployment setting, users are not

constrained by the crowdsourcing device usage and do not

have to input any information or manual annotation, as the

full process is done unsupervisedly. These reasons may have

a positive impact on users’ adherence to the data collection.

Although our approach is based on particle filtering as some

previous works, it improves the traditional inertial sensing-

based mapping process with more layers of information,

as the geomagnetic field and the Wi-Fi network if avail-

able. Leveraging these sources, we can identify similarities

between acquisitions, discoveringwhichwere collected in the

same locations and therefore should bemapped together. This

innovative process eliminates any ambiguity regarding the

possible fitting of each trajectory within themaps, common in

traditional approaches, and which escalates in buildings with

similar floor plans in different storeys. In this sense, the pro-

posed solution also addresses multi-storey buildings, while

most literature solutions only consider one floor without the

possibility of transitions.

The innovative aspects proposed in our solution ensure the

accurate fingerprints construction, which is verified in the

experiments we conducted in two different venues.

III. MULTI-LAYER CROWDSOURCED FINGERPRINTS

CONSTRUCTION

This work addresses current literature limitations with

an innovative approach that leverages multiple sources

depending on their availability from crowdsourced data,

to autonomously construct environmental fingerprints for

fingerprinting-based IPS.

Figure 1 presents an overview of the proposed multi-layer

fingerprints construction process, which can be divided into

five different modules. After the crowdsourced collection

period, the first module deals with the processing of inertial

data to understand users’ motion while they move throughout

the indoor environments. When Wi-Fi information is avail-

able from smartphones, a second module resorts to ML tech-

niques to cluster such data, dividing buildings into smaller

areas with similar radio patterns. An important step for the

FIGURE 1. System overview.

accurate mapping is applied in the algorithm’s third module,

where geomagnetic data from different contributions is com-

pared, to identify which were collected in the same locations.

From that, the fourth module applies an iterative method

to accurately map the estimated trajectories into the correct

location of the floor plan, and into the correct floor on multi-

storey buildings. After processing all crowd contributions,

with all floor plans populated, fingerprints are constructed in

the fifth and final module of this solution.

A. HUMAN MOTION ANALYSIS

The first module of the fingerprints construction process

deals with the processing of inertial data, collected with-

out any explicit effort from crowdsourcing users. IMUs

embedded in most smartphones contain increasingly accurate

accelerometers, gyroscopes and magnetometers. From such

devices, we leverage pervasively collected linear accelera-

tion, angular velocity and local geomagnetic field data, that

is processed to analyse the crowd behaviour and understand

their trajectories across the building. Different stages con-

tribute to the movement inference of this module.

Magnetometers aim to locally register the Earth’s mag-

netic field. Although smartphones apply a calibration mech-

anism to eliminate the soft and hard iron distortions, this

process often fails to remove brief distortions caused by

ferromagnetic materials, which enables us to leverage them

in our algorithm (Section III-C). As sometimes sensors get

severely uncalibrated, an initial process removes unreliable

acquisitions, from the accuracy status provided by Android

smartphones.

1) SENSOR FUSION

To crowdsource data from smartphones, it is essential to

widen the devices’ usage scenarios, independently of how

users place them. Sensor fusion algorithms translate the
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inertial and magnetic data from the reference frame of the

device to the reference frame of the Earth, which is important

for three reasons. Firstly, it allows the decomposition of

geomagnetic field data into East, North and Up directions,

allowing the generation of geomagnetic fingerprints for each

axis. Secondly, it assists in obtaining the heading of the user at

each step. Finally, it allows the application ofmore robust step

detection algorithms. To achieve this translation, accelera-

tion, rotation and magnetic data are combined through sensor

fusion employing a complementary filter.

A complementary filter tracks the rotation of the user with

the gyroscope while using the magnetometer and accelerom-

eter as absolute references for stabilisation of North and

Up directions, respectively. This is achieved by combining

the high-frequency component of the gyroscope with the

low-frequency components of the magnetometer and the

accelerometer. The contribution of each of these components

is determined by the parameter α according to the following

Equation:

α =
τ

τ + dt
(1)

where τ is the time constant for the split between rela-

tive (gyroscope) and absolute (accelerometer and magne-

tometer) references and dt the sample interval. A value of

τ = 0.5s was chosen, equal to the inverse of the typical

walking frequency upper bound of 2 Hz [24].

2) PEDESTRIAN DEAD RECKONING

The movement of pedestrians is characterised using PDR

techniques, where the motion of the user is evaluated at

each step. This can be split into three distinct problems: step

detection, step length and heading variation estimation.

TABLE 1. Architecture of the Deep Convolutional Network for step
detection.

Step detection is achieved through the use of a Deep Con-

volutional Neural Network whose architecture is presented

in Table 1. The network takes as input a sliding window of

1.28 seconds of acceleration data transposed to the reference

frame of the user using the method proposed in [25]. The

output is a time series bounded by the interval [0, 1] and can

be interpreted as the probability of there being a step at each

instant. This time series is filtered using a fifth-order low-pass

filter with a cut-off frequency of 2 Hz. Steps are detected in

this signal by identifying peaks with values above 0.1.

The Neural Network is trained using as ground truth the

result of the step detection algorithm described in [5], which

is developed for a specific device placement, namely held in

the hand as if the user was looking at the screen. Following

the sensor fusion processing, together with the transposition

of the reference frame of the device to the user’s, described

in [25], all contributions are aligned into the same reference,

regardless of the device usage. As such, we can use the inertial

data in a reference frame independent from the placement of

the device, to train a Neural Network and create a step detec-

tion algorithm independent of this placement. Moreover, the

adjustment of the aforementioned threshold allows obtaining

an ideal threshold between sensitivity and specificity. Further

developments on this algorithm will be addressed in future

work.

The length of each step is computed using the method

proposed by Weinberg [26]:

d = K 4
√

Amax − Amin (2)

where Amax and Amin are the maximum and minimum values

of the vertical acceleration in the Earth reference frame for

that step and K is a calibration constant, here set to 0.45.

Finally, the heading variation at each step is computed

through the numerical integration of the z component of

the gyroscope in the reference frame of the Earth. With all

movement parameters obtained, it is possible to estimate

consecutive positions between steps.

Although PDR can be affected by problems due to noise

accumulation on inertial sensors, often causing drift on the

heading or erroneous displacement estimation, our multi-

layer solution mitigates these errors.

3) FLOOR TRANSITIONS

The path estimation is done across a two-dimensional plane,

where the vertical movement of users is ignored by the

employed methods. Therefore, considering the demand for

a solution that works in multi-storey buildings, a floor transi-

tion detection mechanism was developed.

To efficiently detect when crowdsourcing users change

floor, without any specific user annotation, we leverage the

pressure data collected by devices’ barometer. The atmo-

spheric pressure is essentially stable at the same altitude,

varying at different heights. However, in practice, unstable

atmospheric conditions and factors such as the indoor humid-

ity and temperature may affect the local pressure reading.

Also, different sensors between devices may produce incon-

sistent readings. These reasons hinder the usage of the abso-

lute pressure values to identify the floors where users are.

Still, between devices, when the altitude of the sensing device

changes, either in the upward or downward direction, the

pressure reading changes accordingly, being lower in higher

altitudes.

Therefore, we propose a threshold mechanism that pro-

cesses the relative variations in barometric data for the detec-

tion of floor transitions. As the atmospheric pressure is

affected by the momentary conditions of the venue, as its

room temperature, initial filtering is applied to the collected

signal, to remove the expected noise. Then, the smoothed
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signal is normalised by its mean and standard deviation,

followed by a peak detection mechanism of values above

0.1. The relative differences of the smoothed pressure value

between those peaks are computed, and if any surpass the

lower threshold of 0.25 hPa, the floor of the user changed.

This thresholdwas defined from experiments in the university

venue and may need to be adjusted when deploying our

solution in other venues with different floor heights. Also,

by the evaluation of the transition duration, it is possible to

infer with high confidence the type of transition.

With this mechanism, in the university setting, we are

able to detect when a user transitions one floor, its direction

and type (stairs, lifts or ramps). In our study, the trajecto-

ries performed by participants only had at most one floor

transition, so our algorithm only considers this scenario.

However, as transitions of more than one floor will result

in proportional multiples of pressure differences, we believe

that our algorithm can be adapted for such scenarios, to be

addressed in future work. Moreover, with drastic changes in

the indoor atmospheric conditions, high variations in the local

pressure readings maymislead to erroneous detection of floor

transitions. The current mechanism does not deal with this

problem, as during experiments it was not verified, but future

developments will take it into consideration. Nevertheless,

as our solution relies on crowdsourcing with multiple layers

and a particle filter to expand particles into the floor plan,

erroneous trajectories will likely not be mapped. If eventually

they are, constructed fingerprints will not be affected given

the large volume of data leveraged throughout this process.

4) DOMAIN CONVERSION

The final step of the motion analysis addresses the high

variability of walking patterns between humans. People of

different ages or in distinct contexts display different walking

speeds, which greatly impacts signals acquisition. Consider-

ing the importance of having comparable magnetic andWi-Fi

signals in the nextmodules of our solution, we apply a domain

conversion mechanism. The collected signals, originally in

the time domain and referenced to a timestamp, are converted

to the distance domain, with sensor readings indexed to a spe-

cific distance travelled by the user. Knowing both the times-

tamps of each sample and the walking parameters obtained

with PDR, we apply a linear interpolation to estimate values

between displacements.

For the collected geomagnetic field data, as sensors collect

with high sampling rates, a fixed interpolation value can be

chosen with negligible risk of deviated estimations. Consid-

ering both the needs for the accurate representation of the

original signal and computational efficiency requirements,

we selected an interpolation value of 10 cm.

On the other hand, Wi-Fi measurements consist of

packages of information, received after requests from smart-

phones, which have a low sampling rate. For this rea-

son, the domain conversion of Wi-Fi is done by estimating

the displacement corresponding to the timestamp of each

package, considering the steps before and after the reply

timestamp.

B. WI-FI CLUSTERING

The second module of the presented algorithm clusters Wi-

Fi data into groups of similar information, only possible

in close areas of some location. Depending on the Wi-Fi

readings restrictions from collection devices, this mechanism

processes reply packages following device requests for sur-

rounding Access Points (APs), to divide a floor plan into

smaller areas of similar radio patterns.

For this purpose, the specifications of Wi-Fi networks are

leveraged. Ubiquitous in indoor environments, such networks

are employed in several IPS [5], [7], [16] and consist of multi-

ple APs distributed throughout buildings. Each AP may have

defined several Wireless Local Area Networks (WLANs),

each one characterised by a unique Basic Service Set Identi-

fier (BSSID). This important feature is registered in the reply

packages received by the devices, together with the Received

Signal Strength Indicator (RSSI), which allow the association

of an AP to a specific location.

The use of radio signals for positioning presents some

challenges, ranging from signal attenuation due to buildings’

constructionmaterials, to signal fluctuations and noise related

to the dynamic changes in the environment, such as the

human body itself or the device heterogeneity [9], [27]. These

challenges affect the accuracy of IPS based only on Wi-Fi

signals. Nevertheless, Wi-Fi networks still provide important

information that, if available, we use to divide the floor plans

into smaller areas, aiming to lower the errors of following

modules and to optimise the computational efficiency.

Contrarily to IPS solely based on Wi-Fi, the aforemen-

tioned challenges do not greatly impact our unsupervised

fingerprints construction solution. In this scenario,Wi-Fi data

is used in the clustering to divide buildings into smaller

areas, to facilitate further modules. Still, before clustering

Wi-Fi data, an initial pre-processing step is applied to reduce

signal’s noise due to interferences and devices’ variability.

Although APs are fixed in the same location and work gen-

erally with the same transmitting power, the produced signal

is highly variable due to interferences. As such, we apply a

noise removal mechanism to increase trust in the clustering

mechanism. Firstly, a search over all replies from previously

crowdsourced acquisitions removes APs that never register

RSSIs above −50 dBm neither have a variation between

collected values higher than 30 dBm, as they have low

discriminative power. An additional process eliminates all

RSSIs below −80 dBm, as low values present ambiguous

information since they can either be due to far distances from

the AP or shorter distances with high attenuation from thick

walls, for example. TheWLANs operating in the 5 GHz radio

band are also eliminated from the clustering mechanism,

since older devices cannot detect them. Each reply package

is an individual object to be clustered, containing as features

the information of all APs ever detected in the building.
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Regarding device heterogeneity between collection devices,

which results in variations in the signal strength measured at

the same time and place, each reply package is individually

normalised by the maximum and minimum values. All previ-

ously removed or non-existing RSSIs assume the value of−1,

contrarily to remaining RSSIs that take values in the interval

[0, 1]. With this pre-processing step we address most issues

that can jeopardise the use of Wi-Fi signals.

The applied clustering algorithm is described in detail in

[12]. Due to factors such as the computational complexity

given the high number of features, the K-Means algorithm

was chosen. This unsupervised ML algorithm optimises clus-

ters by assigning each object to its closest centroid. In an

iterative process until reaching convergence, the centroids are

recomputed and objects reassigned. K-Means is a partitional

clustering algorithm, which requires setting K, the number

of clusters. As we aim to build an unsupervised algorithm,

such information is not available. Therefore, we employ the

method of Zhang et al. [28], which uses the sum of the

squared distances between each object and its centroid for the

different number of clusters, to compute, from the obtained

graph, the maximum curvature point. This value is the ideal

number of clusters, therefore the selected K. Due to Wi-Fi

throttling in some devices, sampling rates are decreasing to

as low as four Wi-Fi scans in each two-minute period. Conse-

quently, the outliers removal mechanism of [12] is dismissed,

as it is not possible to ensure that between two consecutive

replies, the user did not pass in a different cluster area.

The automatic clusters selection process enables the appli-

cation of this method in different scenarios, since the number

of identified Wi-Fi patterns will increase with the size of the

building. Although the maximum K value is set at 10 due to

the algorithm limitations when testing in more clusters, this

value is reasonable for most scenarios. If in future work we

face cases where 10 clusters are insufficient, new methods

for the automatic selection will be researched. Also, with the

expansion of the crowdsourcing datasets in such scenarios,

the clustering algorithm may take more resources to reach

a convergence point. Nevertheless, as our solution will run

offline after an initial collection campaign, no major prob-

lems are expected to come with the increased complexity.

C. GEOMAGNETIC SIMILARITIES

Before applying a particle filter to fit crowdsourced acqui-

sitions to a building’s floor plans, the third module of our

algorithm ensures the process is done with high accuracy. The

Earth’s magnetic field is thus used in this context to identify

which acquisitions were collected in the same location.

Although the geomagnetic field is essentially stable around

the same region, it is highly affected by constructionmaterials

and electrical equipment. These cause specific and persistent

interferences on the field, that produce unique patterns on the

collected signals. With this useful information, we can iden-

tify precise locations within the crowdsourced data. As such,

we apply a comparison mechanism to identify similarities

between acquisitions.

1) TRAJECTORIES SEGMENTATION

The amount of data generated with crowdsourcing poses a

problem to extensively compare individual signals to each

other. The quadratic complexity of the problem requests the

limitation of the comparisons set. Considering this, we apply

a segmentation mechanism to the inferred trajectories, so it is

possible to only retrieve signals that provide the most useful

information for the similarities identification process.

From the Wi-Fi clustering results, if available, an initial

segmentation splits trajectories into sections that have con-

secutive Wi-Fi reply packages with the same cluster label.

This is done to ensure that each new section fully belongs to

the same area of the building.

A second segmentation step evaluates the shape of each

section. The process to infer trajectories from inertial data is

sometimes sensible to device movements that do not relate to

the users’ motion. Although sensor fusion aligns the devices

to the Earth’s reference, sudden and brief tilts on the phone

may not be recognised and produce mistaken turns. As such,

further segmentation extracts from the initial segments the

straight portions, which do not suffer from this problem.

Based on the premise that longer similar magnetic

sequences are more reliable regarding their uniqueness,

a minimum threshold for the segment size is defined. This

value results of a balance between the approximate length

of the corridors of a building and the process efficiency.

In both use cases we present, an office and a university, for

generalisation, a minimum length of 5 meters was set. Still,

the threshold for the university venue, as it is larger, could be

more restrictive.

2) NOTABLE INSTANTS DETECTION AND SIMILARITIES

IDENTIFICATION

When a segment does not vary much within itself, no inter-

ferences produced the unique patterns we aim to find, so it

has insufficient information to produce a robust compari-

son. As such, to ease the process of comparisons between

previously segmented sections, geomagnetic similarities are

only computed using segmented magnetic field signals that

present a magnitude standard deviation higher than a thresh-

old, defined to be 1 µT in both use cases.

After this selection process, the most notable instant

of each segment is calculated using a self-similarity cost

matrix that comprises the multidimensional Euclidean dis-

tance between each instant of the segment and its remaining

instants. Themultidimensional distance includes the intensity

value and the first derivative of the three axes of the magnetic

signal resulting in a 6-dimensional vector. The first derivative

is used to capture the shape of the signal, since different

smartphones have usually different offsets in the magnetic

field readings. Inspecting the self-similarity cost matrix, the

most notable instant is the one that produces the maximum

cost compared to the rest of the segment. This process is

exemplified in Figure 2, where the self-similarity cost matrix

from a 1-axis signal is drawn, together with resulting summed
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FIGURE 2. Process of the most notable instant detection, for a 1-axis
signal, which corresponds to the instant of the maximum sum of costs,
obtained from the self-similarity cost matrix.

costs (in green), from which the identified maximum repre-

sents the signal’s most notable instant (in red).

Next, the identification of segments that were collected in

the same location is achieved by comparing pairs of signals

from straight segments that present the same Wi-Fi cluster.

Furthermore, with the absolute orientation known after sen-

sor fusion, the process will also only match segments with

concordant directions, with a maximum difference of 45◦.

Since the obtained segments have different lengths,

depending on the performed trajectories, the comparison

between segments is done with the combination of two mod-

ifications of the Dynamic Time Warping (DTW) algorithm:

the subsequence DTW [29] and the derivative DTW [30].

From a first signal, the subsequence to be searched among

the segments that fit the previous conditions is retrieved

from a pre-defined window size around its identified notable

instant. In an iterative process, where the window size of the

subsequence is progressively increased, the modified DTW

algorithm is applied to obtain the warping path distances.

Depending on both the resulting alignment and the computed

distance value, the overlap of a subsequence to other seg-

ment is accepted or rejected, and the optimal window size

is selected. Figure 3 depicts the resulting alignment from the

comparison process between two magnetic sequences from

different contributions, collected in the same location.

D. AUTONOMOUS FLOOR PLANS MAPPING

The innovative fourth module of the presented solution deals

with the accurate mapping of crowd contributions into the

correct locations, from the outputs of previous modules,

which will be used to obtain environmental fingerprints. This

fully unsupervised process only takes as inputs the floor plans

of buildings, with only the annotation of floor transitions,

as stairwells or lifts.

FIGURE 3. Alignment of two magnetic sequences from the similarities
detection process between two contributions.

To achieve this, this module is divided into two different

components, which recursively interact together until achiev-

ing an optimal convergence point. One of such components

consists of a particle filter, which maps crowd contributions

into possible locations of available floor plans, from the ini-

tial trajectories reconstruction information. Considering that

multi-storey buildings often have overlapping characteristics

between floors, a second component then ensures that routes

are fitted into the correct location of the correct floor.

1) TRAJECTORIES MAPPING WITH PARTICLE FILTERING

The identification of possible locations for each acquisition

is achieved by constraining PDR data to a floor plan using a

variation of a Condensation particle filter, where each particle

constitutes a set of four variables: position x, position y,
heading y and significance s [31].

At each step, a step length l ′ and a heading variation dθ ′

are sampled for each particle from Gaussian distributions L
and d2 as such:

L ∼ N (l, l × σ 2
l ) (3)

d2 ∼ N (dθ, σ 2
θ ) (4)

where l is the length of the step as determined by Equation 2

and dθ the original difference between the heading of the

current step and the heading of the previous step. These are

applied to the position of the particle as such:

pi,th = pi,t−1
h + dθ ′

pi,tx = pi,t−1
x + l ′ cos(pi,th )

pi,ty = pi,t−1
y + l ′ sin(pi,th )

pi,ts = (pi,t−1
s × P(L = l ′) × P(d2 = dθ ′))

1
3 (5)

where pi,t is particle i at step t . If the position (pi,tx , pi,ty ) is not

a walkable position, the particle is removed.

To counteract sample redundancy, particles are penalised

for occupying the same grid square as other particles. This is
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achieved by applying the following Equation:

pi,ts =
pi,ts

C0.5 exp(−0.5NA )
(6)

where C is the number of particles in the same grid square as

pi,t , A the total number of occupied grid squares and N the

maximum number of particles.

Finally, the particles are resampled with replacement. The

probability of each particle being sampled is proportional to

its significance. Therefore, at each new step from the pedes-

trian, a new generation of particles is created from the pre-

vious generation, considering for each particle the estimated

step length and heading change, obtained from Equations 3

and 4, together with the introduction of random noise from

Equation 5.

When the full route is expanded after the last step is pro-

cessed, the resulting particles are clustered using DBSCAN.

In each cluster the particle closest to its centroid is selected

and a path is created by recursively tracing back its expansion

history. Each path is compared to the path obtained by PDR

using the following Equation:

D = minθ∈[0, 360[
1

T

T
∑

t=0

(xpf ,t − (cos θxdr,t + sin θydr,t ))2

+ (ypf ,t − (sin θxdr,t + cos θydr,t ))2 (7)

where xpf and ypf are the x and y positions of a path from the

particle filter, xdr and ydr are the x and y from dead reckoning

and T is the number of steps. The path from the cluster with

the lowest D value is chosen as the path reconstruction.

To deal with multi-floor mappings, the initial distribution

of particles across the floor plans accounts for the detected

floor transitions from the first module. Based on the premise

that the existence of a transition restricts the possible posi-

tions within the building where the user was in that specific

moment, such trajectories are expanded from an initial dis-

tribution of particles around the specific transition locations,

as shown in Figure 4a. For example, if the floor transition

detector outputs that the user went up a stairwell, then the

algorithm will place particles around the stairwell locations,

from which is possible to go up, as well as on their cor-

responding ends. From there, the particle filter expands the

trajectory backwards, for the portion before the transition,

and forwards for the portion after. If multiple transitions had

occurred in the same acquisition, then the previous expansion

would be performed until the next transition moment. Here,

a further mechanism verifies if the last position is close to

the corresponding transition type, whichmeans the expansion

was successful and can be continued in the other end of the

stairwell, for example.

Contrarily, when a contribution was fully collected within

the same floor, as the system cannot restrict the possible loca-

tions to start the expansion, particles are distributed across the

full area of the floor plans and expanded forward from the

initial moment. In order to automatically scale the system to

the size of the considered floor, instead of setting an initial

FIGURE 4. Difference between initial particles distribution from
single-floor and multi-floor contributions.

number of particles, we distribute the necessary particles in a

regular gridwith a spacing of 0.6m between them, as depicted

in Figure 4b.

2) ITERATIVE ACCURATE TRAJECTORIES MATCHING

While the particle filtering component has a central role in

mapping users trajectories into buildings floor plans, it alone

cannot provide adequate accuracy to construct in an unsuper-

vised way fingerprints for IPS.

As such, we deployed an iterative method that progres-

sively maps users contributions to their correct locations,

relying on the geomagnetic similarities identification from

Section III-C.

Algorithm 1 describes the developed iterativemethod. Dur-

ing this process, depending on the particle filter expansion

results, trajectories can be stored in three different categories.

When the algorithm is certain that some acquisition is accu-

rately mapped, it stores the trajectory as a final mapping in

mappedList , and can be used to aid the mapping of others.

If a trajectory could be fitted into one or more floor plans,

the algorithm classifies the mapping as ambiguous, so it will

be stored in completeQueue, as further validation is needed.

At last, usually due to dead reckoning problems, the particle

filter may fit trajectories incompletely on the floor plan.

If they are long enough and got the major part mapped,

incompleteQueue stores such trajectories to be verified later.
Firstly, based on the retrieved segments’ length and the

number of detected floors, trajectories are classified into three

score levels of decreasing relevance (cl value in Algorithm 1).

This process orders which acquisitions have more informa-

tion for the initial mapping with the particle filter.

Starting with acquisitions with the lowest score level, i.e.,

when cl is equal to 1, the particle filter tries to map them into

the available floor plans. The successful mappings are stored

in completeQueue, to be then tested to verify if previously

identified magnetic similarities exist among them and if the

corresponding locations are close enough. In that case, such

trajectories are considered to be mapped and those crowd

contributions are accepted and stored in mappedList . When

no overlaps are confirmed, acquisitions are maintained in

completeQueue until a new verification is conducted in a sub-

sequent iteration. Depending on the existence of successfully

mapped routes inmappedList , the next step uses geomagnetic

similarities to map new trajectories using Algorithm 2. After
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this, or if mappedList remains empty, the classification score

increases and the process is repeated until the maximum

classification score is processed, i.e., when cl is equal to 3.

After this moment, this method cannot accept as final any

more complete mappings, so Algorithm 3 will verify if it is

possible to use incomplete routes from incompleteQueue for
the future fingerprints.

Algorithm 1 InitialFullMapping

Result: mappedList , completeQueue, incompleteQueue
for cl = 1 to 3 do

for acquisition with classification == cl do
map trajectory with particle filter;

if mapping successful then
update completeQueue;

end

else if mapping incomplete then
update incompleteQueue;

end

end

verify existence of similarities between

completeQueue mappings;

if similarities confirmed then

update mappedList;
run MapFromSimilarities;

end

end

run MapIncompleteTrajectories;

With a previous set of acquisitions successfully mapped

in mappedList , Algorithm 2 maps new trajectories, from the

existing geomagnetic similarities between them and the ones

already mapped. Firstly, all similarities in similaritiesList
are ordered by the optimal window size from the extension

process and the lower distance value, obtained from the mod-

ified DTW described in Section III-C. Then, iteratively all

similarities from similaritiesList are verified and when one is
found between an already mapped and a new trajectory, the

overlapping section is taken as the start, and from there the

particle filter maps the remaining positions of the new acqui-

sition. Since the algorithm is certain about the location of the

already mapped acquisition, we can take the outputs of the

particle filter as the accurate mapping of the new, to be stored

in mappedList . If the particle filter outputs an incomplete

mapping that meets theminimum requirements, the trajectory

is added to incompleteQueue. Finished the process, a new

search verifies if, among the mapping in completeQueue,
it is possible to verify from the overlaps, the mapping of any

acquisition with the ones recently mapped.

When Algorithms 1 and 2 reach a convergence point

where no more trajectories can be added to mappedList ,
a further search in Algorithm 3 verifies if it is possible

to add stored incomplete routes from incompleteQueue to

the final mappings, from the remaining similarities. If some

incomplete mappings are accepted, they are transferred to

Algorithm 2MapFromSimilarities

Result: mappedList , completeQueue, incompleteQueue
sort similaritiesList;
while similaritiesList not empty do

nMappings = len(mappedList);
for similarity in similaritiesList do

if both acquisitions mapped then

erase similarity;

end

else if one acquisition mapped then
map new trajectory with particle filter from

overlap;

if mapping successful then
update mappedList;
erase similarity;

break;

end

else if mapping incomplete then
update incompleteQueue;

end

end

end

verify existence of similarities with completeQueue
mappings;

if similarities confirmed then

update mappedList;
end

if len(mappedList) == nMappings then
break;

end

end

mappedList and Algorithm 2 will verify if it is possible to

expand unmapped trajectories from the overlaps with the

new additions. This process is repeated until reaching a new

convergence point, where no more incomplete mappings can

be accepted with certainty.

Algorithm 3MapIncompleteTrajectories

Result: mappedList , completeQueue, incompleteQueue
while incompleteQueue not empty do

verify existence of similarities with

incompleteQueue mappings;

if similarities confirmed then

update mappedList;
run MapFromSimilarities;

else

break;

end

end

After convergence of all processes, no more acquisitions

can contribute to the crowdsourced buildings’ fingerprints.

Although some remaining trajectories in the queues may

be correct, its accuracy cannot be assured by the solution.

With this, the cost of discarding some users’ contributions is
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assumed, to ensure that all accepted mappings are done with

high confidence, from which the necessary fingerprints may

be constructed.

E. FINGERPRINTS CONSTRUCTION

With the results from the trajectories mapping process, each

crowd contribution now has the information of its real loca-

tion on the building. From the set of acquisitions collected

on each floor, the last module of our solution is able to

autonomously produce the environmental fingerprints for

fingerprinting-based IPS. Although in our use case, the

geomagnetic field and the Wi-Fi are the leveraged sources,

the process is extensible to more sources of information.

The fingerprints construction process is essentially similar

for both sources. Fingerprints consist of maps resembling the

floor plans of a building, with the annotation of the expected

readable value of each source at each position. These maps

have a predefined resolution, which is chosen depending on

the desired localisation resolution and the source sampling

rate.

The process takes an empty map of all walkable locations

of the building, one for each magnetometer axis and one

for each Wi-Fi BSSID. Then, each map position will get

the reading values of all previously mapped acquisitions that

pass by. As magnetometers collect with high sampling rates,

it is possible to retrieve a reading from almost any resolu-

tion. In the case of Wi-Fi signal, the empty maps receive

the readings from the mapped positions that correspond to

all received packages. After this annotation process, each

fingerprint position may have several values from different

contributions. Considering that some acquisitions may be

influenced by anomalous fluctuations, each fingerprint posi-

tion assumes the median value from all that were registered.

As a result of this process, some positions may not be

mapped as no accepted acquisitions passed by. We then

apply a further interpolation to minimise this problem using

a Gaussian kernel around each unmapped position with a

predefined interpolation window. The interpolation process

iterates over all possible positions of the fingerprint that do

not possess a previously mapped value. Then, the value for

the current unmapped position is the average of the mapped

positions within the kernel weighted by their distance to the

unmapped positions using the Gaussian kernel. If there is

only one mapped value, then, the new value will be equal.

If there are no previously mapped values within the kernel,

the position will remain unmapped. This process is repeated

for all unmapped positions. In the end, a smoothing algorithm

is applied. It iterates over all fingerprints positions, and using

the previous kernel dimensions, the mean of all values within

the range is calculated, which will be assumed as the new

value.

The large range of available Wi-Fi equipment works

under international standards, but manufacturers can change

some devices’ settings, which affect networks configurations.

As an AP may have different BSSIDs, even working on the

same radio band, the size of such data, especially in large

buildings, may be impracticable in terms of computational

costs. As it is not possible to unambiguously define which

BSSIDs belong to the same AP, we apply an unsupervised

ML process to cluster all Wi-Fi fingerprints into a smaller set

that contains all information.

To cluster the obtained fingerprints, we begin by defining a

suitable distance metric. First, the RSSI values are rescaled to

be bound by the interval [0, 1]. Assuming a minimum value

of −100 dB and a maximum value of 0 dB, this is achieved

by applying the following Equation:

RSSI r,ix,y = (RSSI ix,y + 100)/100 (8)

where RSSI ix,y is the RSSI value of fingerprint i at the position

x, y and RSSI r,ix,y the re-scaled value. The distance metric is

then defined as such:

d i,j =

∑

‖RSSI r,ix,y − RSSI
r,j
x,y‖ × (RSSI r,ix,y + RSSI

r,j
x,y)

∑

(RSSI r,ix,y + RSSI
r,j
x,y)

(9)

The resulting distance matrix is then used with DBSCAN

to cluster the fingerprints, and outliers are removed. Finally,

the fingerprints of each cluster are combined by taking the

median value at each coordinate.

The presented solution outputs environmental fingerprints

that follow the provided floor plans’ of buildings. In our use

case, fingerprints for all geomagnetic field axes and clustered

fingerprints for the detected Wi-Fi APs are produced. The

first are collected with a resolution of 20 centimetres, while

the second have a resolution of 1 meter, given the lower

sampling of Wi-Fi measurements.

IV. SYSTEM EVALUATION

This Section deals with the validation of the proposed

method, to assert its applicability in any indoor scenario.

For this purpose, two validation strategies were implemented.

Firstly, the crowdsourcing fingerprints obtained with our

solution were compared to those obtained from traditional

methods. The point-by-point differences provide an insight

of how similar both types are, and if changes in localisation

are to be expected when replacing the manual fingerprints.

Next, in order to deeply understand the impact of the crowd-

sourcing fingerprints in a real setting, we used a set of test

acquisitions as the input for a fingerprinting-based IPS [5].

By evaluating the localisation performance attained by the

same data but using the different types of fingerprints, we can

verify the potential of crowdsourcing for this purpose. At last,

we asserted the computational complexity of the presented

solution, with tests regarding the time and memory require-

ments considering different use cases.

We tested our solution in two different settings, a single-

floor smaller office building and a larger multi-floor uni-

versity. These two distinct environments aim to verify the

achieved results in different deployment use cases. In both

settings, with a crowdsourcing-based approach, groups of

users with different Android smartphones collected data

while walking throughout the buildings. A logger app was
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FIGURE 5. Example set of six routes designed for the office building.
Crowdsourcing users were instructed to start the trajectories at the green
circle and finish at the red circle.

provided to register the available data. A set of routes was

predefined in both venues, to provide ground truth infor-

mation for the evaluation. Figure 5 schematises six of such

routes on the office building, from the total of 51 routes

designed for both venues. The test routes cover the entire

buildings area, considering that some locations should be

crossed in different directions and different times of the day,

to ensure data variability. The crowdsourcing volunteers were

then instructed to start at the green circle and finish at the

red circle. Also, the moments of each change of direction

were annotated on the logger app, to provide ground truth

information for the localisation results evaluation. In each

venue, the data of one user was excluded from the proposed

fingerprints construction process, so validation tests do not

produce biased results against repeated movement patterns or

behaviours.

The first setting is an office building with a single-floor

and an accessible area of 205 m2 (Figure 6a). In this dataset,

six users collected data over 22 predefined trajectories,

totalling 135 acquisitions for 95 minutes. From this set, 22

(16.3%) contributions from a user were left out for further

validation. Two smartphones were used for the acquisitions

(LGNexus 5 and Huawei Nexus 6P), being handled in texting

position. From the geomagnetic similarities identification

process, 68 of total contributions (60.2%) had overlaps iden-

tified. From all similarities, 79.6% were effectively collected

in the same sections of the building. From those possible

to be mapped acquisitions, 66 (97.1%) were fitted into the

floor plan and contributed to the fingerprints. This represents

58.4% of the total usable dataset. All routes were mapped into

the correct locations, although 15 had minor fails, as in the

case of expanding to a near parallel corridor. Nevertheless,

this reduced number of errors is not expected to greatly affect

the results of the crowdsourced fingerprints.

The second venue is a university with two interconnected

buildings, from which we collected data over three differ-

ent floors, with transitions of different types (Figure 6b).

This setting extends the results from the previous venue

as it resembles more common use cases with the inclusion

of some open spaces. For a total area of 3900 m2, six

users collected 167 acquisitions with seven smartphones (LG

Nexus 5 and G7, Google Pixel and Pixel 3, Samsung S9,

Huawei Nexus 6P and Xiaomi Mi8), placed either on the

FIGURE 6. Buildings floor plans.

hand in texting position, or in the pocket. 52 acquisitions

were excluded by the uncalibration detection process. From

the remaining set of 115 contributions, totalling 351 min-

utes, 17 of such acquisitions (14.8%) were not used, for

further validation. As this building contains larger open space

areas, to ensure covering the full space, the 29 designed

routes included free movement areas. Resulting from our

solution, in this venue 66 acquisitions entered the mapping

process (67.3%), as they had identified similarities. 54.2%

of all similarities were collected in overlapping locations,

a lower value justified by the standard similarity threshold. 48

(65.8%) of usable acquisitions were mapped, totalling 49.0%

of processed contributions. From the mapped set, three routes

were mapped in the wrong floor and minor mistakes were

identified only in six acquisitions, with the major part in

the correct locations. Again, this is often due to erroneous

expansion to parallel areas, caused by undetected steps or

inaccurate stride length estimation.

From the presented numbers, the number of crowd contri-

butions that were effectively used to construct the required

environmental fingerprints may seem quite low. However,

with users freely moving with the smartphone in not com-

pletely fixed positions, the acquisitions may be affected by

some errors, which in the end diminishes the confidence

that the system has in such contributions, being discarded

throughout the process. This ensures that the produced finger-

prints present a competitive accuracy for a system like ours

to be deployed in any indoor setting.

A. FINGERPRINTS COMPARISON

To compare the results between crowdsourced fingerprints

and traditional ones, we computed the absolute differences

point by point, for all magnetic axes and Wi-Fi APs.
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FIGURE 7. Constructed magnetic fingerprints before any interpolation,
obtained by the traditional and crowdsourcing methods, respectively.
Both fingerprints show the magnitude of the three axes of the magnetic
field.

Traditional fingerprints were collected by the method

described in [5], on which a user manually collects data

throughout the buildings with a smartphone. Although this

method provides ground truth coordinates for fingerprints

construction, due to its time-consuming procedure, the data

collection process is performed by a single device in a pre-

defined time of the day. On the other hand, crowdsourced

fingerprints include contributions from multiple users over

different moments and using different devices. However, they

lack ground truth coordinates, which can contribute to erro-

neous mappings.

Therefore, in this comparison, we are only interested in

evaluating the differences between both methods of finger-

prints construction. Since crowdsourced fingerprints rely on

human motion analysis, contrary to traditional fingerprints

that use ground truth coordinates, the distribution of sensed

values will not necessarily be concordant. This increases the

difficulty of the comparison process. For this reason, before

computing the absolute differences point by point, unmapped

areas in the fingerprints are interpolated using the methods

described in Section III-E.

To schematise this process, Figure 7 shows the constructed

geomagnetic fingerprints of the magnitude of all axes from

both processes, before any interpolation. While Figure 7a

has the data collected throughout the ground truth positions,

which the expert provided to the system, Figure 7b has

the crowdsourcing fingerprint, automatically constructed by

our solution. In the last, each position, represented by each

small square, contains the median between all contributions

mapped into it.

On the other side, Figure 8 shows the same fingerprints

after the interpolation process. While Figure 8a contains

the interpolation output corresponding to the traditional fin-

gerprint, Figure 8b includes the interpolation result from

FIGURE 8. Interpolated magnetic fingerprints for the magnitude of the
three axes, collected, respectively, by the traditional and crowdsourcing
methods.

TABLE 2. Statistical metrics of values differences between traditional and
crowdsourced fingerprints.

the crowdsourcing method. After the interpolation process,

we can provide a more complete point-by-point compari-

son between both types of fingerprints. Furthermore, these

results allow for a visual comparison between both methods.

Although some differences can be denoted, the general colour

pattern is very similar, as most contributions were mapped

into the correct locations.

The results of the fingerprints comparison process are

available in Table 2. These metrics were computed from

the point-by-point absolute differences between the three-

axes magnitude values in the case of geomagnetic field, and

between the mean differences of all APs in the case of Wi-

Fi. The presented performance metrics allow concluding that

the signal differences between traditional and crowdsourced

construction processes are relatively low, which supports the

applicability of our solution in real settings. Nevertheless, the

fingerprints differences are generally higher in the university

venue than in the office. This is due to the data variability

originated by the larger set of acquisition devices in the uni-

versity, which creates higher differences when compared to

the traditional fingerprints with a single device, even though

the positioning results may actually be improved. Also, the

amount of acquisitions that finished the mapping process

and contributed to the fingerprint is comparably lower to the

office building.
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FIGURE 9. ECDFs resulting from the comparison processes between
original and crowdsourced fingerprints, where the point-by-point signal
differences were computed for the presented venues.

Figure 9 represents the Empirical Cumulative Distribu-

tion Functions (ECDF) that sum up the presented metrics.

In Figure 9a, the ECDFs for the magnetic fingerprints com-

parison for all axes of the available floors are displayed, while

Figure 9b presents the ECDFs for theWi-Fi fingerprints com-

parison for all APs. The better results of the office building

can be here denoted too.

B. LOCALISATION PERFORMANCE

Next, to understand the performance of crowdsourcing fin-

gerprints in real scenarios, we relied on the fingerprinting-

based IPS developed by Guimarães et al. [5], which tested the
positioning results with the crowdsourced fingerprints against

the traditional ones. This system relies on inertial, magnetic

and Wi-Fi data, collected from smartphones, to locate users

using a particle filter. By expanding the particles across the

floor plan at each detected step, considering the match of

sensor readings with the fingerprints, this solution is able to

locate users in real-time. For the purpose of this evaluation

experiment, we relied on the also available offline mode,

which takes previously acquired data and applies the same

techniques as in real-time. To allow the system evaluation,

this IPS can check some positions of the designed trajectory,

annotated by the user during the acquisition. These expected

locations are compared with the positions achieved by the

system, given by the centroid of all particles at each step.

The closer each centroid is to the expected location, the

higher is the system performance. As such, to evaluate the

quality of crowdsourcing fingerprints, we submit a set of test

acquisitions to this IPS, using each type of fingerprint, and

TABLE 3. Summary of characteristics of the test set for both the office
and the university venues.

compare the difference between the expected and computed

positions.

As the acquisitions of one contributor were left out from the

construction process in each venue, we used their data in this

evaluation, to ensure unbiased results. Table 3 summarises the

main characteristics of the test sets for both venues, including

the number of tested acquisitions, together with their average

length and average number of evaluation positions. Although

the trajectories made by the users are from the previously

designed routes, it does not have influence in the results,

as the continuous relation between consecutive sensed values

is lost when constructing fingerprints. Each tested acquisition

was run six times with both types of fingerprints, to accom-

modate the random factor in particles distribution.

We present the results through three metrics, namely the

average error of the centroid throughout the ground truth

evaluation positions, the final centroid error, and the final

error of the particle with the highest probability. For each

metric, the mean value of all runs from all tested acquisitions

was computed.

For the office building, 22 different routes across the space

were tested from one user, and Table 4 presents the com-

parative results. For the university venue, the contributor

performed 17 acquisitions with different trajectories, and the

localisation performance is available in Table 5. Each value in

Tables 4 and 5 was obtained by performing the average error

between all acquisitions, with the error of each acquisition

achieved by averaging all six runs on the system.

In the first building, the initialisation of the IPS on each

acquisition was achieved through the automatic distribution

of particles, around the most similar area, from the Wi-Fi

fingerprints comparison with the first received scan. Due

to Wi-Fi acquisition constraints on the smartphones used in

the second venue, which will be discussed below, here the

initial position of each test was given to the system. Although

different initial conditions are applied between buildings, the

remaining localisation process runs similarly, which do not

greatly affect the final results.

Regarding the office building, we verified that for the

crowdsourcing fingerprints, constructed with the proposed

method, the localisation performance actually exceeds the

traditional method. This may be explained by the fact that

the new fingerprints are constructed with more information,

either due to the more data included, or the higher variability

achieved by the different collection devices. These character-

istics approximate the new fingerprints to reality.

On the other hand, the localisation performance of the

university venue is lower, when compared to the office
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TABLE 4. Localisation performance of the test set on the office building
with the crowdsourcing fingerprints, compared to those collected by the
traditional methods.

building, even though the initial position of the user was

given. These generally worse results are verified in both

traditional and crowdsourcing fingerprints. Different reasons

explain this difference and are related to the inner character-

istics of the utilised IPS. Firstly, the system was until this

moment never tested in such a large venue. The inherent

sensor errors accumulate over time, and although correction

mechanisms address some of them, problems such as missing

steps or heading drift may still happen, which in a larger

environment can affect the localisation process. Secondly,

in this venue, we came across unusual Wi-Fi network set-

tings. Fingerprinting-based IPS often rely on Wi-Fi maps,

where one is obtained for each AP, with a specific signal

decay pattern, continuously descending from the AP loca-

tion. However, this venue’s network works under a Single

Channel Architecture (SCA), in which multiple APs operate

in the same frequency channel and present to clients a single

BSSID. Throughout the building, devices sense a stable sig-

nal strength, as a central controller decides which AP each

device connects to. Although this setting provides a better

user experience, it clearly causes problems in systems that

expect to match Wi-Fi readings to specific areas of different

fingerprints, so they can then be combined to contribute with

a restrict possible location for the particle filter expansion.

Together with this issue, most of the used smartphones run

on Android versions that already constrain Wi-Fi scans to

the limit of four requests in every two-minute period, which

in the end provided fewer data to be used, the reason why

we gave the initial position of each tested acquisition to

the localisation system. This is a problem that, as addressed

in Section II, will limit Wi-Fi-based IPS. However, as our

solution proposes, the construction of multi-layer fingerprints

helps in overcoming these issues. As the tested IPS relies on

different sources of information, namely the inertial tracking,

Wi-Fi and magnetic field [5], the system is still able to work

and obtain a continuous location for the user, with an error in

a range that fits most localisation scenarios.

Nevertheless, when evaluating the results of the crowd-

sourcing fingerprints by comparing relative differences

between both methods, we conclude that the presented

method achieves slightly better results, with performance

errors generally lower than the ones achieved with traditional

fingerprints. This proves that even though the university

venue includes less mapped acquisitions than the office build-

ing, especially if we consider the area difference, 3900 m2

to 205 m2, respectively, the constructed fingerprints are well

TABLE 5. Localisation performance of the test set on the university venue
with the crowdsourcing fingerprints, compared to those collected by the
traditional methods.

suited for the deployment on a real localisation application.

As such, with more available contributions from more users

and devices, the method is expected to produce more accurate

fingerprints, that may even exceed the results of the tradi-

tional construction methods, as verified in the office building.

We believe that the two presented scenarios provide a broad

representation of the use cases that can benefit from this

type of solution. Both the office and the university venues

include several features that are present inmost buildings, and

account for their challenges, such as multiple floor transitions

and open spaces. Nevertheless, more use cases could be tested

to confirm the attained results, which will be considered in

future work.

C. SYSTEM COMPLEXITY

To verify that our solution is deployable in most indoor local-

isation scenarios, we performed a study of the computational

complexity of all modules. This estimation is not trivial, as the

presented system contains several procedures that depend on

a large number of variables and often in the outcomes of

previous steps. Nevertheless, we can estimate which modules

can escalate in larger venues and with more data.

Regarding the human motion analysis module of

Section III-A, it has a complexity of O(n), where n is the

number of available acquisitions. Still, depending on the

length of the acquisition, the processing time will also vary.

Next, the module of Section III-B, which performs the

clustering of Wi-Fi data, presents a complexity of O(r .s
k+2
p ),

where s represents the number of Wi-Fi scans to be clustered,

k the number of clusters and p the number of features. In our

automatic selection of the number of clusters, we extend the

computational complexity of the K-Means algorithm [32],

with an iteration over r , the number of clusters to test. This

variable should not exceed 10 clusters, which will not have a

great impact on the complexity.

The thirdmodule of our solution, described in Section III-C,

has a greater impact on the system complexity. While the

trajectories segmentation process has linear complexity,O(n),
as it varies with the number of acquisitions, the notable

instants detection algorithm is applied to each segment, hav-

ing a complexity of O(s), where s is the number of segments.

In larger venues, where more and longer acquisitions can be

potentially acquired, the number of segments will increase.

This will have an impact on the similarities identification,

which presents a worst case complexity of O(l.s2), with
s the number of segments and l the length of the shorter

VOLUME 9, 2021 31157



R. Santos et al.: Crowdsourcing-Based Fingerprinting for Indoor Location in Multi-Storey Buildings

TABLE 6. Computational costs of the presented solution in the two
presented venues, the office with one floor and the university with three
floors, using 10 and 100 (98 in the university) acquisitions.

segment between each pair to be compared, included due to

the iterative process of increasing the window length. Our

modification to the DTW itself presents a complexity of

O(w2), with w representing the size of the window. As such,

longer segments will have more windows tested, which are

iteratively extended, thus impacting in the cost of the algo-

rithm. These complexity limitations support the need for the

reduction of the number of compared segments, either by the

Wi-Fi clusters identification and the verification of segments’

absolute orientation.

The mapping of trajectories into the floor plans, presented

in Section III-D, can be divided in different processes. Firstly,

in Algorithm 1, trajectories are mapped into the floor plans,

having a complexity of O(n.f ), with n the number of acquisi-

tions and f the number of floors. Next, the iterative accurate

trajectories mapping from similarities, presented in Algo-

rithm 2, has a complexity that tends to O(o2), with o the

number of overlapping pairs of segments from the previous

module. Algorithm 3 depends on the number of incomplete

routes, i, presenting a complexity of O(i).
Finally, the complexity of the fingerprints construction is

O(f .a), which linearly depends on the number of floors of the

venue, f , together with their area, a.
To verify these complexity estimations, we present in

Table 6 the computational costs regarding time and memory

of our solution, for the two presented venues, with 10 and

100 acquisitions. We performed these tests in a laptop with

an Intel Core i7-10750H processor with 12 cores at 2.60 GHz

and 32 Gb of RAM memory.

From the results, it is clear that the university venue has

a higher computational cost than the office building, both

in terms of memory and time. This difference is visible

even within the same dataset size. As explained, besides the

number of acquisitions, the number of floors and the area of

the buildings highly affect the cost. With longer acquisitions

from contributors, more straight segments will be retrieved,

which will be longer given the long corridors. Therefore, both

the geomagnetic similarities and the floor plans mapping will

take more time and memory to process.

Although the complexity of the presented solution is not

ideal, it does not greatly affect its scalability to other sce-

narios, as the overall process will run on the cloud after

a data collection period with crowdsourcing. Nevertheless,

in the future, the complexity of these innovative algo-

rithms can be improved before the deployment in real use

cases.

Regarding the acquisition costs on the crowdsourcing con-

tributors’ devices, it is limited to the collection process. A log-

ger app running ideally on the background will pervasively

collect readings from the required sensors, with a sampling

rate that can be optimised considering the device characteris-

tics. Then, when the device is connected to a Wi-Fi network,

the collected data will be sent to a server to be processed.

An accurate estimation of the performance and battery costs

on the smartphones will be conducted once our solution is to

enter production.

V. CONCLUSION

This paper presents an innovative method for the automatic

construction of environmental fingerprints for infrastructure-

free fingerprinting-based IPS. We rely on crowdsourcing to

collect large volumes of data, from a higher set of users

and devices. Without any annotation from the contributors,

we rely on the processing of multiple layers of information,

to increase the confidence of the solution.

Through the integration of inertial tracking with the mag-

netic field and Wi-Fi data, we identify highly specific simi-

larities that allow the identification of acquisitions collected

in the same location. Taking advantage of buildings’ floor

plans, we apply a particle filtering approach, to expand each

trajectory into the correct placement. A transitions detection

mechanism detects when users change floors, so the mapping

algorithm can use that information to construct fingerprints

of multi-storey buildings. While our solution focuses on Wi-

Fi and geomagnetic fingerprints, it can be easily adapted

to produce maps for other environmental sources, such as

Bluetooth.

While across the literature there are works in this topic,

there is a lack of benchmark mechanisms to evenly com-

pare solutions. Therefore, we evaluate our system on two

different venues, by comparing at each position the values

of the constructed fingerprints with the proposed method,

to those obtained from the traditional manual collection pro-

cess. Also, we verify the localisation performance using both

types of fingerprints on the two presented buildings. With the

obtained results, we ensure that our solution is able to provide

effortless fingerprints mapping in real scenarios. As such, the

deployment costs of fingerprinting-based IPS can be lowered,

extending the usage scenarios of location-based services.

With the different sources of information leveraged in this

work, we address the Wi-Fi scans limitation in smartphones.

The restrictions applied tend to increase, which will limit the

usability of current Wi-Fi-only solutions.

Regarding future work, the presented step detection mech-

anism and further stride length estimation process will be

improved and validated with standard methods. Also, we will

address the limitations of the current solution for the floor

transitions detection, namely the susceptibility of the baro-

metric data to unstable atmospheric conditions and the adjust-

ment of the transition threshold in different venues and

for multiple floor transitions. In this sense, an innovative

algorithm based on deep learning for the floor transitions
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detection is being developed, by using the discriminative

power of Deep Convolutional Neural Networks to identify

these transitions. In order to reach an even broader range

of smartphones, this new module is being designed to work

both with inertial and barometer data together, or inertial data

alone. This module will infer the type of transition and its

duration, allowing its segmentation and further use within

the proposed system. This way, we believe that the technical

challenges of using barometric data will be overcome.

Furthermore, as our work provides an automatic method

for fingerprints construction when buildings change through

time, the constructed maps may lose localisation accuracy.

While in a real setting, a verification mechanism may trig-

ger the automatic reconstruction of fingerprints, an update

method to increasingly add informative data to the existing

maps may be more optimal. As such, we leave this extension

of our solution for future work.

At last, to reassure the achieved experimental results and

to test the future developments, more use cases will be lever-

aged, and new trials will be conducted in different conditions.
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