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Abstract

Mobile ads are plagued with fraudulent clicks which is a major challenge for the advertising community. Although
popular ad networks use many techniques to detect click fraud, they do not protect the client from possible collusion
between publishers and ad networks. In addition, ad networks are not able to monitor the user’s activity for click fraud
detection once they are redirected to the advertising site after clicking the ad. We propose a new crowdsource-based
system called Click Fraud Crowdsourcing (CFC) that collaborates with both advertisers and ad networks in order to
protect both parties from any possible click fraudulent acts. The system benefits from both a global view, where it
gathers multiple ad requests corresponding to different ad network-publisher-advertiser combinations, and a local
view, where it is able to track the users’ engagement in each advertising website. The results demonstrated that our
approach offers a lower false positive rate (0.1) when detecting click fraud as opposed to proposed solutions in the
literature, while maintaining a high true positive rate (0.9). Furthermore, we propose a new mobile ad charging model
that benefits from our system to charge advertisers based on the duration spent in the advertiser’s website.
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1 Introduction
With the increasing number of free apps in the app

stores (as high as 95.2% of the total available apps in

Google Play Store according to a recent study [1]), in-

app ads are gaining more popularity among developers

who wish to generate revenues from their free apps. In

fact, according to statistics published by Statistica, it is

predicted for worldwide mobile app store revenues in

2020 to reach around $71.7 billion [2].

The term “in-app ads” represents ads that are dis-

played in mobile applications, whereas the term “mobile

ads” actually represents ads that are displayed on smart-

phones in general (in both applications and mobile web-

sites). Similarly to the literature, we will be using these

terms interchangeably.

There are four main components in the mobile adver-

tising community (Fig. 1):

1) Advertisers: individuals (not necessarily technical

experts) or companies who are willing to pay to

have their ads displayed.

2) Publishers: app developers who wish to generate

revenues by displaying ads in their applications.

3) Ad network: a company specialized in mobile

advertising, which works as a relay between

advertisers and publishers. Advertisers contact the

ad network and specify the ads to be displayed.

Publishers also contact the ad network and follow

an integration process (explained in Section 3).

4) Users: individuals that use a mobile application and

interact with ads featured in their application

(interaction types are explained below).

1.1 Mobile ad click fraud detection

Mobile ad click fraud is a major concern in the advertis-

ing community. Click fraud, also known as click spam, is

when the user clicks on an ad in a mobile application

not because of interest in the ad, but rather to generate

a revenue from the associated ad network or, in some

cases, to inflict losses on a competitor advertiser by con-

suming the advertiser’s allowed ads per day [3]. Re-

searchers estimate advertisers’ loss caused by click fraud

at $1 billion in 2013 [4] and at $7.2 billion in 2016 [47].

Furthermore, in [5], the author describes a $7.5 billion

scandal in the click fraud domain, where ad networks con-

spired with publishers, by selling bots to publishers who

used them in order to generate higher revenues (for both

publisher and ad network) at the expense of the advertiser.
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Although most of the ad networks use many click

fraud detection techniques to protect their reputation as

a secure advertising medium, they do not offer guaran-

tees to the client from a potential conspiracy between

publishers and ad networks. In addition, ad networks are

not able to monitor the users’ activities once redirected

to the advertising site. Thus, a click fraud detection

mechanism that protects the advertiser from potential

malicious ad network–publisher collaboration is needed.

Many researchers investigated existing click fraud at-

tacks [6–12] and proposed new click fraud detection sys-

tems for ad networks without collaborating with

advertisers [13–17]. Other studies proposed systems that

enable advertisers to detect click fraud without collaborat-

ing with ad networks [18–20]. Nonetheless, these adver-

tisers’ click fraud systems are prone to a high false positive

rate since they do not offer a global view (many clicks

from one application), but instead they judge click fraud

on a per click basis.

In the first part of this paper, we propose a new click

fraud detection system that adapts a crowdsource-based

approach to detect click spam by collaborating with the

different advertisers that wish to display their ads in a se-

cure and reliable way. In fact, our findings show that a

crowdsource approach can lower the false positive rate.

We make two main contributions in the click fraud detec-

tion domain since our work is (1) the first crowdsource-

based click fraud detection system and (2) the first

approach that protects both advertisers and ad networks.

In the second part of the paper, we propose a new mobile

ad charging model that benefits from our CFC system to

charge advertisers based on the duration spent in the ad-

vertiser’s website. Our proposed model in this paper is an

enhancement of our previous work [48] where we briefly

introduced our model and compared multiple classifica-

tion methods; our model since then has matured and is

following a different click fraud detection analysis method.

1.2 Mobile ad charging models

There are currently three main mobile ad charging models

used in the market: (1) cost per thousand impressions

(CPM from cost per mille in Latin), (2) cost per click

(CPC), and (3) cost per action (CPA). These charging

models determine how for each ad display and interaction,

the ad network charges the advertisers and how it pays

the publishers. Although the exact pricing differs among

ad networks (i.e., how much they pay the publisher and

charge the advertiser), the action that triggers this transac-

tion depends on the adopted charging model.

To better understand each charging model, we need

first to explain the term “conversion,” which is used in

the mobile advertising community to express a success-

ful advertising transaction, i.e., whenever an ad display

leads to the desired output (the type of the output de-

pends on the charging model) [21].

In the cost-per-thousand impressions (CPM) charging

model, the conversion is an ad view: The advertiser pays

for each 1000 ad displays; the publisher is paid in return

a percentage of the ad network’s profit whenever a user

views an ad in their application.

In the cost-per-click (CPC) charging model, the con-

version is an ad click: The advertiser pays for each per-

formed ad click; the publisher is paid in return whenever

a user clicks on a displayed ad.

In the cost-per-action (CPA) model, the conversion is

an action: The advertiser pays for each performed action.

Once the user clicks on a mobile ad, they will be redir-

ected to the advertiser’s website where they might

complete an action. An action can be a simple registra-

tion by the user, a purchase, a file download, etc. The

publisher is paid in return for each action performed.

The CPA model is also known as the pay-per-action

(PPA) model or cost-per-acquisition (CPA) model.

The CPC and CPM models are usually more desirable

by publishers [22] for many reasons:

1) CPA model is considered a new model in the mobile

advertising community and is not as popular as

CPC and CPM.

2) In CPC and CPM models, publishers have more

control on the enhancement of conversions, since they

can change how and when to display ads (to a certain

extent because they have to respect ad-display rules

imposed by ad networks). For example, they can

Fig. 1 Mobile advertising main components
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display ads on main pages usually accessed by users,

whereas, in the CPA model, the conversion is beyond

their control and is based on the quality of the adver-

tiser’s website or service.

3) Many users, after being redirected to the

advertiser’s website, show interest in the website by

browsing it for a certain duration. However, it is

possible that although they are interested in the

website, they will not complete any of the actions

determined by current CPA models. In fact, in [21],

the authors explained a “click to conversion delay”

phenomenon in the mobile advertising industry,

where the action performed by the user is not

directly performed after clicking on an ad, making it

harder to track CPA conversions. For example, a

user interested in cosmetic products clicks on a

cosmetic ad and browses the advertiser’s website

without completing any purchases. The next week,

after they had become aware of this website, they

browse the cosmetics website again directly and

make a purchase. In this case, it is hard to

accurately associate the conversion to the triggering

event. Furthermore, many websites’ main goal is

brand awareness where no action is needed by the

user. Thus, CPA models require a metric that

efficiently reflects the user’s interest in the

advertised website such as the duration spent on

the website.

On the other hand, advertisers tend to prefer the CPA

model because they pay only for the desired actions once

completed. In the CPC and CPM models, the advertisers

pay for the ad views and clicks regardless of whether it

generates users interests (conversions in this context),

making the CPA model less risky for them.

We propose a new mobile ad charging model that bene-

fits from our CFC system to charge advertisers based on

the duration spent in the advertiser’s website.

This new mobile ad charging model is transparent to ad-

vertisers, since it does not require any integration steps to

be performed from their part on their website. It also pre-

sents a secure framework in which the action to be charged

for (such as the duration) is measured by a trusted party as

opposed to current CPA systems that rely on the adver-

tisers to report the action.

The rest of this paper is organized as follows: in Section

2, we discuss the related work highlighting the proposed

click fraud detection systems in the literature and the re-

lated work of the CPA domain. In Section 3, we present the

architecture of our proposed system. In Section 4, we ex-

plain the experimental setup. In Sections 5 and 6, we

present the results of our implementation and analyze the

obtained results. Section 7 concludes the paper and offers

suggestions for future work.

2 Related work
2.1 Click fraud detection

In recent studies, three approaches have been followed

in terms of evaluating different click fraud techniques,

impact, and solutions.

2.1.1 Click fraud investigation and analysis

The first approach investigates and measures the preva-

lence of existing click fraud attacks and threats. How-

ever, none of these studies proposed a tool that can be

used to defend against click spam.

Dave et al. conducted a click fraud measurement ana-

lysis where they showed that for a certain ad network,

over 95% of users redirected to their website after click-

ing on an ad, spent less than 1 s on their landing page

[3]. Kshitri et al. presented an overview of click fraud

from an economical perspective and explained different

existing click fraud detection mechanisms [34]. Zhu et

al. listed several available commercial tools used to de-

tect and prevent ad fraud. They briefly described the ap-

proaches followed by these tools [40]. Berrar et al.

evaluated several techniques in supervised learning by

adopting click fraud as a case study [39]. Cho et al. cre-

ated an automated click fraud tool that generates virtual

ad clicks while changing the device identifier to a ran-

dom value with each request and proved that six out of

eight ad networks were actually vulnerable to this attack.

Furthermore, they explained how ad networks might not

actually be motivated to fight against click fraud since

click fraud inflicts loss on the advertiser’s side only,

whereas ad networks might actually profit from the

fraudulent traffic that is generated by malicious bots [6,

46]. Wen et al. created an emulator-based device capable

of conducting a large-scale click fraud attack that ran suc-

cessfully on over 280 applications downloaded from the

Google Play Store [49]. Liang et al. studied the difference

between click fraud generated by publishers and click

fraud generated by ad networks [52]. Their study showed

a correlation between a decrease of fraud committed by

ad networks when facing long contractual advertising

agreements with advertisers. Dmytro et al. evaluated the

performance of an existing signaling processing known as

“Caterpillar-SSA” on a real-life case study [58].

Following a machine learning approach while testing

over 165 K apps for click fraud, Crussell et al. showed

that 30% of apps requested ads while in the background

and 27% of apps generated clicks without any user inter-

action [7]. Blizzard et al. studied an existing malware on

ad websites that generates fraudulent clicks by redirect-

ing the user to an intermediate page where the user has

to click again on the ad (to double the revenue) [8]. Alr-

wais et al. conducted a detailed investigation of a large-

scale cybercriminal attack known as “Operational Ghost

Click,” where attackers used a DNS changer malware to
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hijack ad impressions and ad clicks from victim pub-

lishers [9]. Kayalvizhi et al. presented a survey on click

fraud by comparing the advantages and disadvantages of

several fraud detection tools [51].

Stone-Gross et al. presented a detailed analysis of how

ad exchange (where ad networks sell/buy their pub-

lisher’s ad space to/from another ad network) actually

works and what are the different ad fraud threats in ad

exchange [10]. Pearce et al. used real ad traffic traces

provided by an ad network to study the behavior of a

famous large-scale click fraud botnet called “ZeroAc-

cess.” Based on the analyzed behavior of this botnet, they

estimated the loss of revenues from the advertiser’s side

to be around 100 K per day [11]. Miller et al. operated

two families of bots in a controlled environment to

monitor how botnet ad fraud, also known as clickbot,

works in action [12].

Based on data collected from 155 subjects, Midha de-

veloped an ethical behavioral model that analyzes the

reasons for which malicious users commit click fraud in

web advertising [36]. Dinev et al. also conducted a study

of advertiser’s behavior towards the pay-per-click model

in web advertising, based on data collected from 118 ad-

vertisers and highlighted the importance of hiring third

party tools to manage the advertising model [38]. Zhu et

al. presented a comprehensive review of ad fraud in gen-

eral and explained the different ad fraud prevention and

detection approaches and tools that are currently being

used in the market [43]. Kshetri et al. explained how a

blockchain-based solution might be a new solution for

click fraud [55]. Dong et al. studied different ad fraud

types and proposed a detection technique for fraud re-

lated to placement ads [57].

2.1.2 Click fraud detection—ad network’s side

The second category in the literature focuses on click

fraud detection on the ad network’s side without collab-

orating with advertisers: Liu et al. created a tool that de-

tects click fraud attacks known as “placement ads” such

as hidden ads, ads out of context, and numerous ads per

page [13]. Juels et al. proposed a new ad fraud mitigation

technique that protects the pay-per-click charging model

by cryptographically authenticating legitimate users [14].

Vasumati et al. used a data mining classification algo-

rithm to identify fraudulent clicks [15]. Li et al. proposed

a new ad framework that uses ARM Trustzone services

to securely fetch ad placement and application-related

information, and then signs this information with the

user’s signature [16]. Haddadi et al. proposed a new click

fraud detection technique where they fabricated random

ads, known as bluff ads, with the assumption that a non-

malicious user would not normally click a random ad

when its content is not relevant to them [17]. Asdemir

et al. highlighted the benefits of adopting a prescreening

approach in web advertising by obligating publishers to

provide to search engines (ad networks) proof of good

content such as third party audience reports and website

visit analytics data [37]. Faou et al. conducted a study

based on 7months of data collected from a known click

fraud malware, to identify the key actors of the fraud in-

dustry and proved that the malware can be seriously dis-

rupted by removing a limited subset of the identified

actors [35]. Zhang et al. presented their click fraud de-

tection algorithm that detects coalition attacks in web-

sites where a group of attackers share their resources to

hide their trace while performing click fraud [41]. Using

real-life data set from ad data management platforms in

China, Jianyu et al. performed a supervised learning clas-

sification method to determine the key attributes that

should be taken into consideration when detecting ad

fraud such as IP address, cookie, and user-agent with

their frequency [44]. Nagaraja et al. leveraged timing

patterns of click traffic to identify fraudulent acts [54].

Haider et al. proposed an ensemble-based classifier that

detects fraudulent acts in impression ads [59].

2.1.3 Click fraud detection—advertiser’s side

The third category of literature addresses click fraud de-

tection on the advertiser’s side without collaborating

with ad networks. Dave et al. proposed a new framework

that enables advertisers to detect potential spam clicks

on their ads based on several criteria such as the dur-

ation spent by the user on their websites [3]. Xu et al.

proposed a new ad fraud detection mechanism deployed

and managed by the advertisers. First, they identify bots

by checking browser-related information of the user

after clicking an ad and landing on the advertiser’s page,

and then they identify sophisticated bots or human

clickers, by monitoring user behavior such as the dur-

ation spent on the advertiser’s website and mouse events

[18]. Vani et al. used network ad traces collected from

the advertiser’s side to extract click-related information

(such as user IP address, user agent values, and time of

access) and employed a node-tag-based algorithm to dif-

ferentiate spam and non-spam applications [19].

Iqbal et al. created a tool integrated within the operat-

ing system’s anti-virus that detects click fraud in web-

sites by analyzing HTTP requests that are not associated

to real human behavior such as mouse events. Although

their detection method is applied from the user side, it is

not currently applicable to mobile in-app ads [42, 45].

Gabryel presented a fraud detection algorithm based on

criteria collected from the advertiser’s websites through a

special Javascript component; these measured features try

to capture the end user interaction with the website such

as the number of pages visited, page scrolling, keystroke

data, and other client side information [50]. Fallah et al.

built a KNN-based click fraud classification technique
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with an introduction of a counter field to overcome the

high memory consumption associated with this classifica-

tion method [53]. They evaluated the performance of their

algorithm on a data set collected from a search engine

called parsiijoo and focused on user session information

such as user clicks in the search engine and his IP address

[53]. Almeida et al. followed a set of verification rules,

such as not having an IP from blacklisted IPs, having valid

HTTP headers and other criteria, to flag publishers as

fraudulent if they do not pass these set of rules [56].

While these studies proposed many solutions for click

fraud detection, they did not offer a crowdsource-based

approach that can benefit from the large-scale crowd-

sourcing view to accurately detect malicious publishers

and victim advertisers attacked by their competitors. In

addition, some of these methods are managed by ad net-

works without collaborating with advertisers, whereas

others are managed by advertisers without collaborating

with ad networks.

Unlike previous works that offer a solution either

managed by advertisers or ad networks, our work fea-

tures a new fourth party called CFC (Click Fraud

Crowdsourcing), trusted by both ad networks and adver-

tisers, which main objective is to detect malicious clicks

by crowdsourcing multiple ad click requests from differ-

ent advertisers. Table 1 summarizes the key features in

the click fraud literature and compares them to our

work (CFC). Although our approach does not investigate

existing click fraud attacks and threats, it offers a solu-

tion that protects both advertisers and ad networks.

2.2 CPA charging model literature

In recent studies, two approaches have been followed in

terms of evaluating the CPA charging model, its advan-

tages, concerns, and possible enhancements.

2.2.1 CPA—general overview

The first approach presents an overview of the CPA

charging model, its advantages and disadvantages, and

compares it with the CPC and CPM model. Studies in

this category did not address security concerns in the

CPA model, but rather economic concerns.

Pechuán et al. [22] presented an overview of the CPA

model, its advantages and disadvantages. Mahdian et al.

[23] also explained how the CPA model works, its

framework, its advantages, and the challenges that it

faces (in terms of feasibility, user privacy, and so on).

Rosales et al. [24] provided an analysis of conversion

rates in CPA or CPC models (where conversion is not

guaranteed as opposed to CPM). By analyzing ad traffic

logs from an ad exchange company called YAHOO’s

Right Media Exchange (RMX), they proved how the ad

size directly affects the click-through-rate CTR (rate of

ads being clicked after display) but not the conversion-

rate CVR (rate of users performing actions in CPA),

whereas the parameters age and gender affect CVR but

do not affect the CTR.

Many studies addressed the CPA charging model from

an economical approach: Hu et al. [25] evaluated from

an economical point of view, the benefits and costs of

the CPC and CPA model to both advertisers and pub-

lishers, by applying an economic framework that mea-

sures many key elements such as the ratios of purchases

to clicks. Ross et al. [26] proposed a new approach that

follows a combined contract of CPA (including CPC)

and CPM models that can be financially beneficial to

both publishers and advertisers. Dellarocas et al. [27]

also explained several economic concerns of the CPA

model. Hu et al. [28] suggested that the optimal contract

between the advertiser and publisher that encourages

them both to enhance their advertising efforts should be

a combination of the CPM, CPC, and CPA model.

2.2.2 CPA—security overview

The second approach addresses different security concerns

of the CPA model, and some studies propose solutions to

these threats. Pechuán et al. [22] presented briefly many

types of CPA scams such as cookie stuffing where in the

context of web advertising, the publisher leaves cookies in

the user’s browser without the consent of the latter, in order

to falsify a user’s visit to the advertiser’s website. They also

Table 1 Literature review summary vs. our work

Ref. Offer click fraud
tool trusted by
ad networks

Offer click fraud
tool trusted by
advertisers

Investigate existing
click fraud attacks
and threats

Offer click fraud tool managed by a party
trusted by both ad networks and advertisers

[6, 7–11, 12, 18, 34, 36, 38, 40, 43, 46, 49, 51, 52,
55, 57, 58, 59]

No No Yes No

[3] No Yes Yes No

[13, 14–16, 17, 35, 37, 41, 44, 54] Yes No No No

[18, 19, 42, 45, 50, 53, 56] No Yes No No

CFC Yes Yes No Yes
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proposed possible solutions/improvements for CPA scam

detection; however, they did not present any detailed ex-

planation to support their proposed solutions. A major con-

cern in the CPA security field is the possible misreports of

actions by advertisers: Agarwal et al. [29] highlighted sev-

eral risks of using CPA pricing model, including the misre-

ports of actions by advertisers to reduce advertising

campaign costs.

Studies in this domain primarily focused on the bidding

auction system employed in this charging model to deter-

mine the ad to be shown for a given ad slot. Mahdian et al.

[23] explained a rank-by-revenue bidding model used to

determine which advertiser’s ad will be displayed in an ad

slot. The advertiser’s chance of winning an ad bid increases

whenever he reports an action, although he is charged for

each reported action, it might reduce his incentive of misre-

porting actions. Nazerzadeh et al. [21] proposed a mathem-

atical bidding representation that can be used in the CPA

pricing model. Similarly to [23], they demonstrated how

their approach limits the incentive of dishonest advertisers

when reporting actions.

Ding et al. [20] proposed a simple solution for detecting

advertisers who under-report actions on their websites (to

reduce their campaign costs in the CPA model). Their

approach is based on a comparison between the adver-

tisers’ reported actions, and feedback from volunteered

users who performed actions on these websites after click-

ing on their ads.

While the rank-by-revenue bidding model potentially re-

duces the advertisers’ incentive of under-reporting, it does

not offer a guaranteed metric to determine how much an

advertiser should be charged (and thus how much a pub-

lisher should be paid), since the advertiser might preserve a

balance between his campaign costs and his ranking, by

reporting some actions and neglecting to report others.

Therefore, a secure measuring system that does not rely

on the advertiser’s input is required. Furthermore, as ex-

plained earlier, the actions used in the current CPA model

might not reflect true users’ interests in many cases, thus we

propose a new mobile ad charging model that benefits from

our CFC system to charge advertisers based on the duration

spent in the advertiser’s website. Table 2 compares our pro-

posed CPA model with the literature.

3 Proposed solution
Our proposed system adopts a client-server architecture.

It is composed of four components as shown in Fig. 2.

The first component represents the client side, which

consists of ad banners that are shown in mobile applica-

tions. Since they are accessed via mobile phones, we rep-

resented them as mobile devices in Fig. 2. We will refer

to this component as “ad banner component.”

The server side contains three components: the first

server side component consists of ad network APIs that

handle the ad selection and billing for both publishers

and advertisers. We will refer to this component as the

“ad network component.” The second server side com-

ponent consists of advertisers’ websites. We will refer to

this component as “advertiser component.” The third

server side component consists of our online server that

works as a click fraud detection engine. We will refer to

this component as “CFC component—server side.”

3.1 Ad banner component

This client side component is added to the publishers’

applications by publishers that wish to generate revenues

from ad clicks. These applications represent any applica-

tion that can be downloaded and used by end users

(usually via Play Stores).

In order to add the ad banner component to a mobile

application, the publisher should sign up on an ad net-

work website that he chooses and follow the instructions

explained by the ad network to integrate this component

in his application. This integration might vary from one

ad network to another, but in general, it consists of

downloading a jar file and adding it to the application

with the publisher’s credentials for this ad network ser-

vice. This integration process is common for all ad net-

works; however, the only difference in our proposed

model is that the downloaded jar file will actually con-

tain, not only the ad network ad managing logic, but also

our own CFC click fraud detection logic (which is ex-

plained in detail in Section 3.4). Furthermore, this

addition to the CFC model is transparent to the pub-

lisher since no additional steps are required from him

compared to ad banner integration with traditional ad

networks that do not offer the CFC component as part

Table 2 CPA literature vs our work

Ref. Present CPA overview
(no security)

Present CPA
overview
(security)

Present solution
controlled by
advertiser

Present solution controlled
by party trusted by advertiser
and publisher

[25] Yes No No No

[23, 24] Yes Yes Yes No

[30] No Yes No No

[21, 22] No Yes Yes No

CFC Yes No No Yes
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of their ad banner logic. It does not impose as well any

extra effort on the end user side when viewing or click-

ing the ad banner in the mobile application.

Once added to the application, the ad banner will use

APIs provided by the ad networks, to fetch ads and dis-

play them in the banner. The ads are then visible to end

users who are using the publisher’s application. Once

the end user clicks on a banner ad, he will be redirected

to the advertiser’s website. At the same time, the ad ban-

ner component will be sending click information to the

CFC server side component. These click information are

explained in detail in Section 3.4.

3.2 Ad network component

Similarly to traditional ad networks currently in the mar-

ket, this component acts as a relay between different

publishers and advertisers, by selecting which ads to

send to the publisher for display, charging advertisers for

each ad click and paying the publisher a percentage of

the charged money.

In order to give more assurance to the advertisers that

the clicks to their websites are actually legitimate clicks,

it is in the interest of ad networks to inform advertisers

that they are using the CFC detection mechanism. To

achieve this CFC protection, ad networks can request

from the CFC party this service. This request can be

made by email or using a website built by the CFC for

this purpose. The CFC party will then send an encrypted

jar file to the ad network, which can then be added by

the ad network to the existing ad banner jar file that

they offer to the publisher. Both files will be sent to the

publisher. In other words, the ad network will merge the

logic that they normally use to display ads in ad banners

with the CFC logic that detects malicious activities. Al-

though the CFC logic is not built and managed by the

ad network, it will host it in its own ad banner. The im-

plementation of the jar file that contains the ad banner

logic is explained further in detail in Section 4 below.

3.3 Advertiser component

After a user clicks on an ad featured by the ad banner com-

ponent, she will be redirected to the advertiser’s website,

which represents the advertiser component. No modifica-

tion will be made to this component in our proposed model

in comparison to traditional advertiser’s websites.

3.4 CFC component (server side)

Similar to companies that offer anti-virus malware de-

tection services, this component is managed by another

party that does not benefit from clicks but rather present

for the advertiser as a safety control mechanism. After

collecting a large enough number of clicks from different

ad banner components using the CFC service, a

crowdsource-based calculation is performed. We will

refer to this click fraud crowdsourcing algorithm as

“CFCA.” This calculation is following a crowdsource ap-

proach by building its analysis results on a large number

of clicks in order to reduce false positives for a given

user. For example, if the user in question is practicing

suspicious behavior on several applications or on several

Fig. 2 CFC proposed solution overview
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occasions, it is highly possible that he is in fact mali-

cious. The more we have records of his suspicious activ-

ities, the more our judgement can be certain, and this is

where we benefit from our crowdsource approach.

In addition to following a crowdsource approach, the

motivation behind our approach is based on two main

needs: on the one hand, an ad network is able to moni-

tor and assess many clicks from different apps; however,

it is not able to monitor the user’s activity for click fraud

detection once she is redirected to the advertising site;

on the other hand, while an advertiser is able to monitor

the user activity on her site (for example the duration

spent on the site), the judgment is done per click and is

therefore prone to a high false positive rate [3]. Accord-

ingly, if a user clicks on an ad and she shows no interest

in the ad website, she will be flagged as malicious for

quickly exiting the website. Our proposed solution ad-

dresses these two shortcomings by combining both the

click information provided by the ad networks and the

user activity information provided by the advertiser. In

addition to the CFCA, the CFC party manages several

APIs that communicate with the CFC ad banner compo-

nent and a corresponding online database.

3.5 CPA enhanced model

Our proposed mobile ad charging model benefits from

our CFC system to charge advertisers based on the dur-

ation spent in the advertiser’s website. As opposed to

current CPA systems that rely on the advertisers to re-

port the actions to be charged for, our CFC model pre-

sents a secure framework in which the duration is

measured by a trusted party. In addition, our system re-

duces the work load on the advertisers since they are

not required to perform any integration on their web-

sites or perform any action reporting to the ad network.

For billing purposes, the CFC must send the captured

actions (ad request with duration information) to the

corresponding ad network. The ad network can define

the pricing scheme for different durations, for example,

charge the advertisers if the duration spent on the adver-

tiser’s website by the user is more than 1 min or even

charge as a function of the time spent.

Although this new mobile ad charging model is repre-

sented as an enhancement to the CPA model, it can also

support the CPC and CPM models: The CFC system reg-

isters whenever an ad is clicked, which can be used as a

CPC model. In addition, it can keep track whenever a new

ad is shown in the application, which can be used as a

CPM model. In fact, the CFC system could be used as a

combination of the three models (CPA, CPC, and CPM).

3.6 Ad banner component CFC steps

Although the application can be used by the publisher,

the CFC steps are applied to any user that uses the

application and interacts with the ad banner component

(as explained in this section); we will refer to this user

with the mobile phone symbol in Fig. 3. When the appli-

cation starts, our library requests an ad to show from

the ad network by sending the publisher’s ID (Fig. 3—

step 1). Unlike traditional ad fetching systems where

each ad network manages its own publishers’ identifica-

tion system, this ID is generated by the CFC party and

given to the publisher by the ad network. This is to en-

sure that each publisher has a unique identifier among

all the ad networks registered with the CFC services.

As a response to the ad request, the ad network

returns information about a selected ad. The ad banner

component then displays the ad in a simple banner.

When the user clicks on an ad, the CFC ad banner

component performs several sequential requests (Fig. 3):

In steps 3–4, for billing purposes, the library informs

the ad network that an ad is clicked, by sending the pub-

lisher’s ID and the ad ID (Fig. 3—step 3). After confirm-

ing this publisher-ad ID combination, the ad network

returns a confirmation billing response to the publisher

(Fig. 3—step 4).

Steps 1, 2, 3, and 4 are performed similarly to existing

ad fetching systems. However, the following steps are

added in our system:

In steps 5, 6, and 7 (ad clicked challenge), we consider, in-

tuitively, an ad click as potentially fraudulent, if after clicking

on the ad and being redirected to the advertiser’s landing

webpage, the user spends less than a certain time before

exiting the advertised website. Therefore, the CFC ad banner

component sends a request to the CFC server to indicate

that an ad view session has begun on the client side. This re-

quest takes as input in step 5, the publisher’s ID and the

user’s IP address, a timestamp (of when the ad was clicked),

and a state integer of value 1. This non-local IP address is

fetched on the client side using an online service called

“ipify” [32]. The CFC server saves this information in its on-

line database with a state field of value 1 and a timestamp.

The server saves the timestamp for future reference.

In step 6, and to verify that the extracted IP is not

spoofed, the CFC server challenges the client side by

sending a random token and a created session ID. To

prove its IP address legitimacy (step 7), the client sends

back the challenge token with a state equal to 2, and the

session ID. The state field identified by the returned ses-

sion ID is updated to 2 in the online CFC database (after

verifying that the previous state value of this session is

1). The state field is used to keep track of the actions

performed by the client side; for example, a state of

value 2 means that the user has clicked on the ad but

has not exited the advertised website yet.

In step 8 (ad view), after receiving a confirmation of

the ad click challenge from the server, the user is redir-

ected to the advertised website.
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In steps 9, 10, and 11 (ad closed challenge), once the

webview is closed, or the application is no longer visible

(by detecting when it is no longer in foreground after

clicking the exit button), the client library informs the

CFC server of the ad view session ending, by sending the

session’s ID, publisher’s ID, user’s IP address, the new

timestamp (of when the ad was closed), and state of value

3 (step 9). The CFC server then updates state value of the

record identified by the session’s ID to 3 (after verifying

that the previous state value of this session is 2).

Similarly to the ad clicked challenge explained in steps

6 and 7, to check if the client’s IP is spoofed, the server

generates a new random challenge token and sends it

back to the client in step 10. To prove that its IP is not

spoofed, the client sends back the new challenge token

with the session’s ID, publisher’s ID, IP address, and a

state of value 4.

After verifying that the credentials sent by the client

are correct and that the previous session state value is 3,

the CFC server decides whether to consider this ad ses-

sion as potentially malicious or not based on one/mul-

tiple criteria set by the CFC admin such as the

difference between the previous saved timestamp and

the current received timestamp, which represents the

duration spent on the advertiser’s website. The ad re-

quests that are flagged as potentially malicious, are up-

dated in the database with a state value of 5. The ad

requests that are flagged as non-malicious are updated

in the online database with a state of value 4. Ad re-

quests saved in the online database of both states 4 and

5 are added to the CFCA for analysis.

3.7 CFCA component (server side)

Besides managing the APIs and the online database, the

server performs the CFCA in order to identify malicious

publishers. The intuition behind our algorithm is based

on the following idea: It is likely that a legitimate app

(associated with a publisher) will have many non-

malicious users that clicked on an ad and exited the ad

webpage simply because they were not interested any-

more in the landing page. However, it is unlikely that a

non-malicious app has a high number of these suspi-

cious requests. To reduce the false positive rate, we

compare the percentage of malicious clicks per publisher

to a starting point determined by the CFCA admin.

This system benefits from both a global view, where it

gathers multiple ad requests data corresponding to dif-

ferent ad network-publisher-advertiser combinations,

and a local view, where it is able to track the user’s en-

gagement in each advertising website.

3.8 Attacker’s model

To evaluate the robustness of our click fraud detection

system, we tested many different attackers’ models whose

goal is to generate high revenues from ad networks:

Fig. 3 CFC steps
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� Type A: A malicious publisher (without IP spoofing)

creates a repetitive click automated tool that does

not spend a long time on the advertiser’s website,

since it is forced to exit the ad to open another ad

immediately. This attack is easily detected by the

proposed system since the duration spent on the

advertiser’s website is calculated and it is used to

determine whether the publisher is malicious or not.

� Type B: A malicious publisher (without IP spoofing)

places ads next to buttons in order to trick user into

clicking them. This fraudulent act is known as

placement ads in the literature. Since such a user is

not necessarily interested in the ad, she will most

likely exit the ad webpage directly, and thus this

small session duration will be flagged by the

proposed system as potentially malicious. However,

there is a slight chance that, although tricked into

clicking it, the user spends more than minimum

required time on the advertised website. We

consider these redirected ad requests as non-

malicious since the users could become customers

from the advertiser’s point of view.

� Type C: A malicious publisher (without IP

spoofing), after completing the ad clicked challenge,

closes the webview in less than the minimum

number of seconds, to be able to open a new ad

session. However, being on the client’s side, she is

able to drop the request generated by the CFC ad

banner component when the ad is closed (when the

duration spent is less than the minimum number of

seconds), and fabricate this request later, after the

minimum number of seconds has passed. The goal

of this attack is to be able to repeatedly click on ads

to generate higher revenues without spending the

required duration on the advertiser’s website and

without being detected. Although the attacker is

able to drop the legitimate ad closing request and

fabricate it, and by that falsify the duration spent on

the advertiser’s website, however, since the IP is not

spoofed, the CFC server can identify the user and

therefore limit this attack to just one undetected ad

request. If the malicious publisher fabricates many

falsified ad requests, the CFC can detect abnormal

entries of the same IP. For example, it is not feasible

for the same user identified by IP, to spend more

than a minimum number of seconds on 3 different

websites in a short time interval.

� Type D: A malicious publisher uses a spoofed IP

address to be considered as a new user with each ad

request. Whether this publisher fakes IP before or

after completing the first ad clicked challenge (steps

5, 6, 7), since she did not complete both challenges,

her state in the online database will not be updated

to the final state of the ad requests considered as

non-malicious. As explained in Section 3.7, the

CFCA can simply time-out the ad requests with a

state different than the final state and a reasonably

old timestamp (to take into consideration honest

sessions that still have not completed both

challenges).

� Type E: A malicious publisher hires multiple human

clickers to imitate the normal user’s behavior by

clicking on the ad and spending enough time to

avoid being detected by our system. In addition to

being forced to spend a significant number of

seconds on each advertising website, the proposed

system is able to identify the human clicker by her

IP address that is sent with each ad click. When a

high number of click requests with the same IP

address is detected, the CFC server will flag the

publishers using this IP address as potential threats.

This limits the number of fraudulent clicks per

human clicker before being detected as malicious

by our system.

4 Implementation
4.1 Ad banner component CFC steps

Using Android Studio, we built the CFC ad banner com-

ponent as an exported jar file. We used an obfuscation

tool, “Proguard” [30] that obfuscates the jar file targeting

for example class and variable names. We inspected the

effect of this obfuscation using the decompiler tool, “Java

Decompiler” [31]. As expected, we were not able to re-

construct the classes in our jar file by reverse engineer-

ing. To test its functionalities, we created a sample

publisher’s Android application (Fig. 4) that hosts ads

using this library, in order to generate a revenue on

every ad click.

Using the LAMP server [23], We built the API re-

quest_ad(publisher_id), managed by the ad network, that

takes as input the publisher’s ID and returns information

about a selected ad in JSON format (Fig. 3—step 2).

After fetching the ad, the library parses the JSON re-

sponse and displays the ad on the publisher’s application

in a simple banner (Fig. 3—step 2).

In current ad fetching systems, ad networks follow an

ad selection process where they decide which ad to send

for display based on factors such as the bidding placed

on the ad by the advertiser, application specific targeting

mechanism, whether the ad was already displayed in the

corresponding application, etc. However, this ad selec-

tion process is beyond the scope of this paper. For sim-

plicity, we are generating a generic ad in the form of a

textual title, a textual descriptive content, an ad ID, and

a corresponding ad URL.

To redirect the user to the advertised website after an

ad is clicked, we used the Android native component
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known as a webview. This webview is called and man-

aged by the phone CFC component. The benefit of using

a webview in this proposed system is the ability to detect

when the user exits the advertiser’s website, by either

clicking the native Android back button, or by clicking

the exit button. Webview requests the corresponding ad

URL and loads the advertised website. We created a

sample advertiser’s website to test this step.

4.2 CFCA dataset

To evaluate the performance of our algorithm, we gener-

ated the following dataset using MATLAB: a population of

ad clicks of size N in a given period. An ad click in this con-

text represents a session in which the user clicked on an in-

app ad, viewed the advertiser’s website for a certain

duration, and closed the ad webview after performing the

handshake, i.e., ad request that completed the 11 CFC steps

with state = 4 (duration > 5 s) or state = 5 (duration < 5 s).

By detecting publishers who used spoofed IPs based on the

saved state in the online database (state = 1, 2, or 3), we are

able to immediately filter these suspicious publishers.

Therefore, we do not need to take them into consideration

in our CFCA duration-based algorithm.

The created N ad requests correspond to a total number

of publishers, TNP. We set a fixed percentage of malicious

publishers, MPP. We consider a publisher to be malicious

if she performs any type of click fraud by repeatedly click-

ing on ads and exiting the advertiser’s website to generate

further revenue. We consider an ad request to be suspi-

cious if the state saved in the online database corresponding

to this instance is equal to 5, which means the duration

spent on the advertiser’s website is less than or equal to 5 s.

For each of these malicious publishers, we set a random

percentage of suspicious clicks, RMC, such that RMC is lar-

ger or equal to a truth starting point:

TrustST RMC >¼ TruthSTð Þ

This TruthST is the lower limit used to classify pub-

lishers as honest or malicious in the created dataset. In

other words, if 30% of a publisher’s clicks are suspicious,

then this publisher is malicious (30% > TruthST). This

classification is considered as the ground truth definition

which can be configured to be different. The total num-

ber of ad requests per malicious publisher is TNMP.

For each of the honest publishers, we set a random

percentage of suspicious clicks, RHC, such that RHC is

less than the truth lower limit TruthST (RHC <

TruthST). The RHC number shows the number of clicks

clicked by a valid user who had the intention of viewing

the advertiser’s website but did not spend more than the

minimum number of seconds in the website. The total

number of ad requests per honest publisher is TNHP.

4.2.1 CFCA classification

To simulate ad traffic in a real setting, we performed

multiple iterations; each iteration corresponds to a time

slot in which a random number NR of samples (ad re-

quests) is taken from the total population N without re-

placement. In a real scenario, each iteration corresponds

to an instance when the CFC administrator fetches ad

requests from the online database. These samples are

used as input to CFCA in order to classify the publishers

as honest/malicious.

In each iteration, we classify each publisher based on a

CFCA starting point CFCAST as follows: (1) honest, if

the percentage of suspicious clicks from the total ad

Fig. 4 CFC client and online database
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requests of this publisher does not exceed the CFCAST,

(2) malicious, if the percentage of suspicious clicks from

the total ad requests of this publisher exceeds the

CFCAST, and (3) not classified, if the total number of ad

requests of this publisher is less than MinNbre (to have

statistically significant data).

4.3 CFCA dataset evaluation

To evaluate the efficiency of our method under different

scenarios, we created the following base set: the total

number of ad requests N = 500,000, the total number of

publishers TNP = 500, and the truth lower limit used for

classification TruthST = 25 (different than CFCAST).

We used a total number of requests per malicious

publishers 5000 < TNMP < 6000, and a total number of

requests per honest publishers 1 < TNHP < 1500, with a

minimum number of request to be able to classify a

publisher as MinNbre = 100. Note that TNMP is higher

than TNHP because clicking on an ad is considered as a

rare event in the mobile advertising industry [33], which

makes the number of expected clicks to be low. There-

fore, if the total number of clicks is high, then it is most

likely that a high percentage of it is malicious.

We evaluated our model under different scenarios: we

tested three different percentages of malicious publishers

MPP = 5, MPP = 10, and MPP = 15. For each of these

scenarios, we tested our CFCA using different CFCA

starting points, CFCAST = [10, 20, 30, 40, 50, 60, 70,

80]. We calculated the false positive rate (FPR) (Fig. 5),

true positive rate (TPR) (Fig. 6), and accuracy (ACC)

(Fig. 7) in each iteration.

As part of their proposed methodology, the authors of

[3] used the duration spent on the advertiser’s website to

detect malicious clicks on a per click basis, which means

that every ad request that results in an advertisement view

of less than 5 s for example is considered as malicious.

This duration is calculated by the advertiser and thus can-

not be trusted by the publisher. In addition, as mentioned

before, it is likely that a legitimate app generates an honest

ad click request without spending more than 5 s on the

advertising website because the user lost interest in the

landing page. However, it is unlikely that a non-malicious

app has a high number of these requests.

We compared our proposed method with the ap-

proach proposed in [3] by using our CFCA algorithm

with our base set, different CFCA starting points,

CFCAST = [10, 20, 30, 40, 50, 60, 70, 80], and a starting

point of 1 for their results (to simulate their per-click

approach). We calculated for the different starting

points, the FPR (Fig. 5), TPR (Fig. 6), and ACC (Fig. 7)

in each iteration.

5 Results
The results presented in Figs. 5, 6 and 7 correspond to

the iteration number I = 25.

Fig. 5 FPR CFCA vs FPR literature at iteration I = 25
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Fig. 6 TPR CFCA vs TPR literature at iteration I = 25

Fig. 7 Accuracy CFCA vs accuracy literature at iteration I = 25
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Based on the results in Fig. 6, for a percentage of

malicious publishers (MPP) = 10, our model presents

a low false positive rate starting from FPR = 0.21

when using a CFCA starting point of CFCAST = 20,

and it decreases to FPR = 0 with the increase of the

CFCA starting point to CFCAST = [30, 40, 50, 60, 70,

80]. As expected, the FPR calculated based on the

starting point of 1 used in [3] by adopting a starting

point = 1 presents a very high false positive rate with

an average of FPR = 0.964 for the different CFCAST

scenarios.

Based on the results in Fig. 7, our model presents a

high true positive rate, TPR = 1, when using a CFCA

starting point of CFCAST = 10 or CFCAST = 20. The

TPR is reduced to TPR = 0.937 with the increase of

the starting point to CFCAST = 30. As expected, it

decreases with the increase of the CFCAST continu-

ously, whereas the TPR calculated based on the start-

ing point of 1 used in [3] remains TPR = 1 for all the

different scenarios.

Based on the results in Fig. 8, our model presents a

high accuracy, ACC = 0.82, when using a CFCA starting

point of CFCAST = 20, and it increases to ACC = 0.98

with the increase of the CFCA starting point to

CFCAST = 30. It maintains this high level of accuracy

for the rest of the CFCA starting points.

6 Analysis
Based on the results, we can conclude that changing the

MPP did not highly affect the results, except when

measuring the accuracy in each iteration, whereas the ef-

fect of changing the CFCAST is visible in the figures.

Therefore, in order to determine the appropriate

CFCA starting point to use, we generated the ROC

curve for iteration I = 25 using our base set with a mali-

cious publisher percentage of MPP = 10 (Fig. 7). De-

pending on how aggressive we would like our model to

be, we can select between two CFCA starting points,

CFCAST = 20 (TPR = 1, FPR = 0.21) or CFCAST = 30

(TPR = 0.93, FPR = 0). Another method to determine

which starting point to use is the F-measure (also known

as F1 score) that takes into consideration the precision

(also known as positive predictive value) and the recall

(also known as the sensitivity or TPR). The F1 score

when using CFCAST = 20 is F1Score = 0.6532 whereas it

is F1Score = 0.967 when using CFCAST = 30.

To evaluate how fast our proposed model is able to

achieve a high true positive rate while maintaining a low

false positive rate and a high accuracy level, we tested it

at different iterations (I = 5, I = 6, I = 7, I = 8, I = 10 … ).

We concluded that our system converges starting at iter-

ation I = 7 (Figs. 9, 10 and 11), whereas it presents Null

FPR values at earlier iterations (I < 7). It is expected not

Fig. 8 CFCA ROC curve
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Fig. 9 FPR CFCA vs FPR literature at iteration 7

Fig. 10 TPR CFCA vs TPR literature at iteration 7
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to have any FPR values at very low iterations (I < 7) be-

cause FP = TP = 0 in this case since we set a minimum

of 100 requests per publisher to be able to classify him.

To measure the accuracy of the duration captured by

the CFC ad banner component, we clicked on the ad web-

view in our Android application (Fig. 4), closed the ad

after registering manually the duration of this ad view (not

using CFC), and compared it with the duration saved in

the online database (calculated by the CFC ad banner

component). We repeated this experiment 30 times for a

duration less than 5 s, and 30 times for a duration higher

than 5 s and calculated the accuracy of the duration in

each of these experiments. As shown in Table 3, the accur-

acy of the duration measured by CFC in both types of the

experiments is very high (85.46% and 90.73%).

To measure the resource consumption of our CFC ad

banner component, we created a sample Android applica-

tion that displays a white background in our CFC banner

ad. At run time, the ad banner component fetches an ad

and displays it in the banner ad. We clicked on the ad,

spent 5 s on the advertiser’s website, and closed the ad.

The goal of this experiment is to measure the bandwidth

and battery consumption caused by the CFC ad open/

close challenges or any other component implemented in

our system that are not adopted by traditional ad net-

works such as the opening/closing of webview. Therefore,

we used an experiment duration of 30 s that is sufficient

to be able to achieve these two handshakes, ad webview

opening and ad webview closing, regardless of the dur-

ation spent on the advertiser’s website. We do not address

the resource consumed while browsing the advertiser’s

website since it depends on the content delivered by each

advertiser’s website. To have a more accurate result, we

repeated the experiment 10 times (30 s duration each).

We created another Android application that inte-

grates AdMob [33] banner ads. We repeated the same

experimental procedure by clicking on the ad in each ex-

periment. Unlike our CFC system, after clicking an ad,

AdMob [33] either opens the Google Play Store in case

the ad is an Android application ad or opens the default

web browser in the phone such as Google Chrome.

Fig. 11 ACC CFCA vs ACC literature at iteration 7

Table 3 CFC duration accuracy

Duration Average
accuracy (%)

Average (s) STDEV (s)

Less than 5 s (30 experiments) 85.461 0.497 0.0896

More than 5 s (30 experiments) 90.737 0.799 0.0653

Table 4 Resource consumption comparison

Ad network Bandwidth (kb/30 s) Battery (J/30 s)

Average STD Average STD

CFC 18.494 5.098 0.7851 0.213

AdMob [14] 385 26.13 12.13 2.24

Google Play Store 144.44 154.68 3.03 1.348
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Therefore, we evaluated also the bandwidth and battery

consumption in Google Play Store or the default web

browser (depending on the ad clicked) during these ex-

periments. To have a more accurate result, we repeated

the experiment 10 times (30 s duration each).

As shown in Table 4, our proposed model consumes, in

30 s, an average of 0.7851 J, whereas AdMob [33] consumes

on average 12.13 J, and 3.03 J to display the advertiser’s ap-

plication in the Google Play Store.

Concerning bandwidth, Table 4 shows our proposed

model consumes, in 30 s, an average of 18.494 kb,

whereas AdMob [33] consumes on average 385 kb, and

144.44 kb to display the advertiser’s application in the

Google Play Store. Based on these experiments, we can

conclude that both bandwidth and battery consumptions

in CFC are very minimal compared to the popular ad

network AdMob [33].

7 Conclusions and future work
We proposed a new crowdsource-based system that collab-

orates with both advertisers and ad networks in order to

protect both parties from click fraudulent acts. This system

manages ad fetching and ad clicks and monitors the activity

of redirected users on the advertiser’s website. It is able to

track the user’s duration in each advertising website and at

the same time to gather multiple ad requests data corre-

sponding to different ad network-publisher-advertiser com-

binations. In addition, the information gathered securely in

our proposed model can be used as an enhancement to the

CPA model.

Our results showed that our proposed method is able to

lower the false positive rate (FPR = 0 with CFCAST = 30)

when detecting click fraud as opposed to proposed solu-

tions in the literature (FPR = 1) while having a high true

positive rate (TPR = 0.93 with CFCAST = 30). Our system

is transparent to both the publisher and the advertiser.

However, our framework suffers from three main limi-

tations: it requires an additional step to be performed by

the ad network to merge its library with the phone CFC

library, it presents a privacy concern since the IP associ-

ated with the used application and timestamp is sent to

the CFC server, and it requires the advertisers and ad

networks to trust the CFC party.

In future work, we will implement a crowdsource-

based algorithm that detects whether an advertiser is

attacked by its competitors, and whether the user in-

stalled an advertised application in case she is redirected

after clicking the ad, to an application download page in-

stead of an advertising website.
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