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Abstract 30 

 31 

Crowdsourcing is traditionally defined as obtaining data or information by enlisting the services of a 32 

(potentially large) number of people. However, due to recent innovations, this definition can now be 33 

expanded to include ‘and/or from a range of public sensors, typically connected via the Internet.’  A 34 

large and increasing amount of data is now being obtained from a huge variety of non-traditional 35 

sources – from smart phone sensors to amateur weather stations to canvassing members of the public.  36 
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Some disciplines (e.g. astrophysics, ecology) are already utilising crowdsourcing techniques (e.g. 1 

citizen science initiatives, web 2.0 technology, low-cost sensors), and whilst its value within the 2 

climate and atmospheric science disciplines is still relatively unexplored, it is beginning to show 3 

promise.  However, important questions remain; this paper introduces and explores the wide-range of 4 

current and prospective methods to crowdsource atmospheric data, investigates the quality of such 5 

data and examines its potential applications in the context of weather, climate and society. It is clear 6 

that crowdsourcing is already a valuable tool for engaging the public, and if appropriate validation 7 

and quality control procedures are adopted and implemented, it has much potential to provide a 8 

valuable source of high temporal and spatial resolution, real-time data, especially in regions where 9 

few observations currently exist, thereby adding value to science, technology and society.   10 

 11 

Keywords: Internet of Things, Big Data, citizen science, sensors, amateur, applications 12 

 13 

1. Introduction 14 

 15 

Information regarding the state of the atmosphere can now be obtained from many non-traditional 16 

sources such as citizen scientists (Wiggins and Crowston, 2011), amateur weather stations and 17 

sensors, smart devices and social-media/web 2.0.  The term ‘crowdsourcing’ has recently gained 18 

much popularity; originally referring to ‘the act of a company or institution taking a function once 19 

performed by employees and outsourcing it to an undefined (and generally large) network of people 20 

in the form of an open call’ (Howe, 2006) in order to solve a problem or complete a specific task, 21 

often involving micro-payments, or for entertainment or social recognition (Kazai et al., 2013), it can 22 

now also be applied to data that is routinely collected by public sensors and transmitted via the 23 

Internet.  As such, people are no longer simply consumers of data, they can also be producers 24 

(Campbell et al., 2006). 25 

 26 

These types of crowdsourcing techniques could play a vital role in the future, especially in densely 27 

populated areas, regions lacking data or countries where traditional meteorological networks are in 28 

decline (GCOS 2010).  Fifty per cent of the world’s population now reside in urban areas, with this 29 

number expected to increase to 70% by 2050 (UN, 2009).  Although a relatively dense network of 30 

standard in situ meteorological and climatological instrumentation are located in highly populated 31 

environs, cost-limitations often mean that these are not widely available in real-time or at the range of 32 

spatiotemporal scales required for numerous applications, such as: flood-water and urban drainage 33 

management (e.g. Willems et al., 2012; Arnbjerg-Nielsen et al., 2013), urban heat island monitoring 34 

(e.g. Tomlinson et al., 2013), planning and decision-making (e.g. Neirotti et al., 2014), precision 35 

farming (e.g. Goodchild, 2007), hazard warning systems (e.g. NRC, 2007), road winter maintenance 36 

(e.g. Chapman et al., 2014), climate and health risk assessments (e.g. Tomlinson et al., 2011), 37 
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nowcasting (e.g. Ochoa-Rodriguez et al., 2013), model assimilation and evaluation (e.g. Ashie and 1 

Kono, 2011), radar and satellite validation (e.g. Binau, 2012), and other societal applications.  With 2 

extreme weather events expected to increase in frequency, duration and intensity in many regions in 3 

the future (IPCC, 2012), dense, high-resolution observations will be increasingly required to observe 4 

atmospheric conditions and weather phenomena occurring in more populous regions in order to 5 

mitigate future risks, as well as in less populated regions where essential data is often lacking.  6 

Indeed, Goodchild (2007, p.10) acknowledges that the most important value of such information may 7 

be in what it tells us about “local activities in various geographic locations that go unnoticed by the 8 

world’s media”.  9 

 10 

Computing power continues to increase, doubling approximately every two years (Moore, 1965; 11 

Schaller, 1997), and with more than 8.7 billion devices connected to the internet - expected to rise to 12 

more than 50 billion by 2020 (Evans, 2011) - the amount of accessible data is growing. The ‘Internet 13 

of Things’ (IoT) - referring to an internet that provides “any time, any place connectivity for 14 

anything” (Ashton, 2009) - is enabling accessibility to a vast amount of data, as more devices than 15 

people are now connected to the Internet. It is predicted that the IoT could add $14.4 trillion to the 16 

global economy by the end of the decade (Bradley et al., 2013), and it has great potential to improve 17 

our way of life (Gonzales, 2011).  Many projects are already sourcing, mining and utilising this ‘Big 18 

Data’, a ‘buzzword du jour’ that has become an established term over the past few years. Big Data 19 

refers to the ubiquitous, often real-time nature of data that is becoming available from a variety of 20 

sources, combined with an increasing ability to store, process and analyse such data, in order to 21 

extract information and therefore knowledge. Within the climate and atmospheric sciences - and many 22 

other scientific and mathematical disciplines - researchers are very familiar with processing and 23 

analysing large datasets, from model output to satellite datasets. However, Big Data in this sense is a 24 

term that has been created to refer to the sheer volume, velocity, variety, veracity, validity and 25 

volatility (Normandeau, 2013) of data that is now available from a range of sources.  The term has 26 

been popularised and driven forward by ‘smart’ technologies and investment in the ‘smart city’ 27 

(Holland, 2008) initiative - with the term ‘smart’ referring to advanced, internet-enabled technology, 28 

techniques or schemes that produce informed and intelligent actions based on a range of input (‘data-29 

driven intelligence’, Nielsen, 2012) - whereby populated regions are becoming equipped with various 30 

sensors (e.g. intelligent transport systems, smart (energy) grids, smart environments etc.), thereby 31 

generating a huge amount of data as well as vast scientific, operational and end-user opportunities. 32 

 33 

With these innovations, the potential to ‘source’ information about a specific, localised phenomenon 34 

or variable at a high spatiotemporal resolution is at a level not previously experienced.  Such data are 35 

already being used for the benefit of both the telecommunications and financial industries, with 36 

manufacturing, retail and energy applications also beginning to realise the potential that such data can 37 
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provide. Crowdsourcing is already being widely used for acquiring data in other subjects (e.g. 1 

astronomy, ecology, health; Cook, 2011; Nielson, 2011), yet the realisation of the potential for 2 

utilising the data in scientific research and applications (discussed in Section 4) remains in its relative 3 

infancy within atmospheric science disciplines. Such data could therefore play an important role in the 4 

next age of scientific research and have numerous societal applications, but in order to determine the 5 

extent to which these non-traditional data could be incorporated, thorough quality assessments need to 6 

be conducted.  Questions remain regarding the precise scientific and societal applications that could 7 

truly benefit from incorporating crowdsourced weather and climate data, how and where data should 8 

be crowdsourced from, and how the quality of this data (which is more likely to be prone to errors 9 

than those data provided by authoritative sources), can be assessed. Moreover, the issue of whether 10 

high-resolution data from smart devices and ‘hidden’ networks in conjunction with vast computing 11 

power, could lead to new innovations over the coming decades also needs to be addressed.  Clearly 12 

crowdsourcing has the potential to overcome issues related to spatial and temporal representativeness 13 

of observations.  14 

 15 

This paper provides an overview of crowdsourcing techniques in the context of meteorology and 16 

climatology by reviewing a number of current crowdsourcing projects and techniques, addresses 17 

uncertainties and opportunities, examines the current state of quality assurance and quality control 18 

procedures, explores future possibilities and applications, and concludes with some recommendations 19 

for these non-standard data sources that have the potential to augment and compliment existing 20 

observing systems in the future. 21 

 22 

2. Current Approaches 23 

 24 

Crowdsourcing traditionally relies upon a distributed network of independent participants solving a 25 

set problem. However, crowdsourcing has now moved beyond this basic approach to incorporate 26 

distributed networks of portable sensors that may be activated and maintained through the traditional 27 

protocol of crowdsourcing, such as an open call for participation, as well as repurposing data from 28 

large pre-existing sensor networks (i.e. a meteorologist deploying a network of low cost sensors 29 

specifically to examine urban climate is not crowdsourcing; whilst a meteorologist accessing data 30 

from existing amateur weather stations would be).  Thus, it can be broken down into several different 31 

approaches.  These can be broadly categorised as ‘animate’ and ‘inanimate’ crowdsourcing, with the 32 

primary distinction being the nature of the ‘crowd’ in question. Inanimate crowdsourcing involves 33 

obtaining or repurposing data from a range of sensors and sensor networks (e.g. sensors on 34 

streetlights, city-wide telecoms signals), whilst animate crowdsourcing requires some form of human 35 

involvement. This may result in data collection via automated (i.e. data is automatically collected via 36 

sensors and uploaded, though may require some form of human-intervention during installation for 37 
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example), semi-automated (i.e. data is collected using a sensor but uploaded manually) or manual (i.e. 1 

human-generated data that is manually collected, entered and uploaded) means.   2 

 3 

Alternatively, these methods could be thought of as active or passive: Active crowdsourcing (or 4 

‘human-in-the-loop sensing’, Boulos et al., 2011) whereby the citizen is constantly involved and is the 5 

primary processing unit that outputs data to the central node (e.g. citizen science initiatives, or 6 

utilising website, smart apps and web 2.0 platforms); Passive crowdsourcing on the other hand, is 7 

where the citizen becomes the ‘gatekeeper’ of their own individual sensor, installing it and ensuring 8 

its continued operation (e.g. amateur weather stations, mobile phone sensors or apps which “silently 9 

collect, exchange and process information” (Cuff et al., 2008)).  Thus, passive crowdsourcing 10 

requires no human interaction during the data collection or upload process, with citizens simply 11 

serving as regulators, whilst semi-passive or semi-automated crowdsourcing requires human-12 

involvement if data needs to be pushed to a central server.  Figure 1 illustrates the breakdown of these 13 

different approaches, whilst Table 1 provides an overview of some current examples of atmospheric 14 

science-related crowdsourcing approaches and projects, which are further discussed below. 15 

 16 

2.1. Citizen Science  17 

 18 

Citizen science is a form of collaborative research involving members of the public: volunteers, 19 

amateurs and enthusiasts (Goodchild, 2007; Wiggins and Crowston, 2011; Roy et al., 2012). It can be 20 

thought of as a form of animate crowdsourcing - or ‘participatory sensing’ - when it actively involves 21 

citizens collecting or generating data.  Hardware sensors can be used by citizens to collect data, but 22 

citizens themselves can also be classified as ‘virtual sensors’ by interpreting sensory data (Goodchild, 23 

2007; Boulos et al., 2011).  For example, traditional eye witness reports were recently used to assess 24 

the development and movement of a series of severe thunderstorms - including hail size - across the 25 

UK on 28th July 2012 (Clark and Webb 2013).  26 

 27 

There are many examples of citizen science projects; the Zooniverse (https://www.zooniverse.org/) 28 

and the Citizen Science Alliance (CSA; http://www.citizensciencealliance.org/) promote numerous 29 

citizen science projects, the majority of which involve data analysis rather than data creation.  Some 30 

projects have been branded ‘Extreme Citizen Science’ since participants collect, analyse and act on 31 

information using established scientific methods (Sui et al., 2013). Subjects such as ecology (e.g. 32 

NestWatch: http://nestwatch.org/; Birding 2.0: Wiersma, 2010), phenology (e.g. Natures Calendar: 33 

http://www.natuurkalender.nl/) and astronomy (e.g. Galaxy Zoo: http://www.galaxyzoo.org/) lend 34 

themselves well to such methods, with many projects finding that citizen science can generate high 35 

quality, reliable and valid scientific outcomes, insights and innovations (Trumbull et al., 2000).  36 

However, its application within atmospheric science disciplines remains very much unexplored.  37 
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 1 

‘Old Weather’ (http://www.oldweather.org/) is a ‘data mining’ citizen science project aiming to help 2 

scientists recover Arctic and worldwide weather observations made by US ships since the mid-19th 3 

century by enlisting citizens to interpret old transcriptions (e.g. track ship movements) in order to 4 

generate new data.  Such data can contribute to climate model projections and ultimately improve our 5 

knowledge of past environmental conditions. Similarly, the ‘Cyclone Centre’ project 6 

(http://www.cyclonecenter.org/) is utilising citizen scientists to manually classify 30 years of tropical 7 

cyclone satellite imagery. 8 

 9 

There are also a number of citizen science programmes that actively source data directly from 10 

members of the public. For example, the GLOBE Programme (Global Learning and Observations to 11 

Benefit the Environment; http://www.globe.gov/; Finarelli, 1998) is an established, international 12 

science and education project whereby students and teachers can take scientifically valid 13 

environmental measurements and report them to a publicly available database. Since scientists can use 14 

the GLOBE data, training programmes and protocols are provided, the instrumentation involved must 15 

meet rigorous specifications and the data follows a strict quality-control procedure.  Such protocols 16 

should be an imperative part of any citizen science project. In addition, the Community Collaborative 17 

Rain, Hail and Snow Network (CoCoRaHS: http://www.cocorahs.org/) is a non-profit, community-18 

based network of volunteers who measure and map precipitation using low-cost measurement tools 19 

with an interactive website. The aim of CoCoRaHS is to provide high quality data for research, 20 

natural resource and education applications (Cifelli et al., 2005). The project started in Colorado in 21 

1998 and now has networks across the US and Canada, involving thousands of volunteers, making it 22 

the largest provider of daily precipitation observation in the US. CoCoRaHS inspired a similar project 23 

that was trialled in the UK - ‘UK Community Rain Network’ (UCRaiN) - which showed the potential 24 

for setting up a UK-based network (Illingworth et al., 2014).  International projects are also 25 

implementing citizen observatories for collating information about specific phenomena; for example 26 

the ‘We Sense It’ project (http://www.wesenseit.com/web/guest/home) will develop a citizen-based 27 

observatory of water to allow citizens and communities to become active stakeholders in data 28 

capturing, evaluation and communication, ultimately for flood prevention.  Such networks can make 29 

real contributions to the advancement of science.  For example, the National Oceanic and 30 

Atmospheric Administration’s (NOAA) ‘Precipitation Identification Near the Ground' (PING) project 31 

(Binau, 2012) is attempting to improve the dual-polarization radar hydrometeor classification 32 

algorithm, by recruiting volunteers to submit reports on the type of precipitation that is occurring in 33 

real time, via the internet or mobile phones (mPING; Elmore et al., 2014), to allow radar data to be 34 

validated, whilst the European Severe Weather Database collates eye-witness reports of phenomena 35 

such as tornados, hail storms, and lightening  (http://www.essl.org/cgi-bin/eswd/eswd.cgi).  36 

Furthermore, there are other forms of public crowdsourcing that go beyond measurements and 37 
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observations.  For example, ClimatePrediction.net is a distributed computing, climate modelling 1 

project that utilises citizen’s computers to simulate the climate for the next century 2 

(http://www.climateprediction.net/).  3 

 4 

Overall, citizen science projects are becoming an increasingly popular means to engage the public, 5 

whilst also benefiting scientific research; indeed there has been a surge in the number of citizen 6 

science projects in recent years (Gura, 2013), due to both emerging and affordable technological 7 

advances, and also the growing ubiquity of social media and new communications platforms, which 8 

offer increased accesses to participants (Silvertown 2009) as well as providing support during such 9 

projects (Roy et al., 2012).   10 

 11 

2.2. Social Media 12 

 13 

While e-mail, SMS (Short Message Service) and web forms are the traditional means to transmit 14 

information, the recent proliferation of web 2.0 channels (e.g. the Twitter micro-blogging site, 15 

Facebook social media site, Foursquare mobile information sharing site, picture sharing sites such as 16 

Flickr and other blogs, wikis, and forums) have opened up opportunities to engage with citizens for 17 

scientific purposes, as well as for crowdsourcing data.  Volunteered Geographic Information (VGI) 18 

and ‘wikification of GIS’ are phrases previously coined to describe the array of geo-located data that 19 

is now available from a large number of internet-enabled devices (Boulos et al., 2011); social media 20 

channels are another source that can now be used to harvest an array of geo-located, date and time-21 

stamped information (e.g. data, notes, photos, videos), which can be accessed directly (e.g. using 22 

hash-tags, key words), and in real-time.   23 

 24 

For example, citizen-generated data has been used to monitor and map snow via social media 25 

channels.  The ‘UK snow map’ (http://uksnowmap.com/#/) was set up to monitor and map snowfall 26 

across the UK with citizens giving the snowfall a rating out of ten which, in conjunction with a range 27 

of specific hash-tags (e.g. #UKSnowMap, #UKSnow); Muller (2013) also used social media to obtain 28 

higher-resolution snow-depths across Birmingham, UK; and in the US, the University of Waterloo’s 29 

‘SnowTweets project’ (http://snowcore.uwaterloo.ca/snowtweets/index.html) collates information 30 

from snow-related tweets. Storms have also been mapped using Twitter (e.g. 31 

https://ukstorm2013.crowdmap.com/), with services such as ‘Twitcident’ (http://twitcident.com/) 32 

monitoring, filtering and analysing twitter posts related to incidents, hazards and emergencies in order 33 

to provide real-time signals for use by police and other members of society. Mobile applications 34 

(apps) are also providing a new means to collect a range of data.  Social apps are a means for citizens 35 

to submit information and there are several apps now sourcing local weather information. For 36 

example, Metwit (https://metwit.com/) is a social weather application that allows users to submit and 37 
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receive information about current weather conditions using a range of weather icons (e.g. sunny, 1 

rainy, foggy, snow flurries), whilst Weddar (http://www.weddar.com/) is a ‘people powered’ service 2 

which asks users to indicate how they ‘feel’ using coloured symbols (e.g. perfect, hot, cold, freezing). 3 

 4 

Social media can also be used in crisis management during extreme events (e.g. Goodchild and 5 

Glennon, 2010), since it enables situations to be monitored, and messages to reach key demographics 6 

quickly and efficiently. For example, one million tweets, text messages and other social media objects 7 

were used to track typhoon Haiyan and to map its damage (Butler, 2013), across the Philippines 8 

during November 2013. However, as indicated by the post-analysis of social media updates during 9 

Hurricane Irene in 2011, there is still a lot of research needed to better evaluate and inform the use 10 

and integration of social media into relief response during such extreme events (Freberg et al., 2013). 11 

Furthermore, social media feeds often generate a lot of ‘noise’ and invalid information (Scanfeld et 12 

al., 2010), which can result in biased information being amplified through the viral nature of social 13 

media misinformation (Boulos et al., 2011). Therefore caution is required when utilising uncontrolled 14 

social media-generated information – both human and/or machine-based quality control, filtering and 15 

validation procedures are essential (discussed further in Section 3).  16 

 17 

2.3.   In situ Sensors 18 

 19 

Whilst personal weather stations have been popular with amateur weather enthusiasts for decades, 20 

there are now an increasing number of internet-enabled, low-cost sensors and instrumentation 21 

becoming available for personal, research and operational use.  Data can now be crowdsourced from 22 

dedicated sensors that are found at home, or on buildings and roadside furniture (e.g. lighting 23 

columns: Chapman et al. (2014); Smart Streets: http://vimeo.com/80557594) that form part of 24 

research, public or private sensor networks. These data can be transmitted via a range of 25 

communication techniques, such as Wi-Fi, Bluetooth and machine-to-machine SIM cards, 26 

contributing to the IoT and making available a large amount of data. 27 

 28 

For example, Air Quality Egg (http://airqualityegg.com) is a community-led, air quality-sensing 29 

network that allows citizens to participate in the monitoring of nitrogen dioxide (NO2), carbon 30 

monoxide (CO), temperature and humidity using a low-cost, internet-enabled sensor and web 31 

platform. Other low-cost sensors include Bluetooth and internet-enabled sensors - for example, 32 

infrared sensortag (Shan and Brown, 2005), rainfall disdrometers (e.g. Minda and Tsuda, 2012; Jong, 33 

2010), air quality monitoring (e.g. Honicky et al., 2008) and other sensors modified to connect to 34 

Raspberry Pi and Arduino boards (e.g. Goodwin, 2013).  Numerous websites have been set up to 35 

crowdsource data from these devices – for example, tweets can be generated automatically from Air 36 

Quality Egg data, whilst websites such as Weather Underground 37 
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(http://www.wunderground.com/personal-weather-station/signup), the UK Met Office ‘Weather 1 

Observation Website’ (WOW: http://wow.metoffice.gov.uk; Tweddle et al., 2012) and the NOAA 2 

Citizen Weather Observer Program (CWOP: http://wxqa.com/) harvest amateur weather data from 3 

thousands of sites - vastly outweighing standard measurement sites - and provide hubs for the sharing 4 

and archiving of real-time and historic data (Bell et al., 2013). Some of these even provide the ability 5 

to upload supplemental data (‘metadata’) about the location, equipment and/or data. For example, 6 

WOW uses a star rating system based on user-supplied information to indicate the quality of the data, 7 

equipment and exposure, whilst other schemes have implemented badges in recognition of expertise 8 

or data quality (Tweddle et al., 2012).  Furthermore, there is also freely available software (e.g. 9 

Weather Display: http://www.weather-display.com/index.php; Cumulus: 10 

http://sandaysoft.com/products/cumulus), which can display live data from a variety of low-cost 11 

sensors, as well as stream data via websites. 12 

 13 

As a result of technological advances and the continued miniaturisation of technology, low-cost 14 

sensors are being increasingly and routinely incorporated into devices such as mobile phones, 15 

vehicles, watches and other gadgets; they are even being attached to animals (e.g. pet cameras). 16 

However, as for all forms of crowdsourcing, caution must be exercised when utilising data from such 17 

low-cost devices; analysis, calibration and inter-comparisons are required to investigate the accuracy 18 

and sensitivity of sensors rather than simply relying on the information supplied by the manufacturer. 19 

 20 

2.4.   Smart devices  21 

 22 

Worldwide, one in every five people owns a smartphone (Heggestuen, 2013), and this figure is even 23 

higher in more economically developed countries.  A large number of sensors are now being designed 24 

for connection to smart devices - for example, BlutolTemp Thermometer (EDN, 2013); iCelsius 25 

thermistor (Aginova, 2011); Plus Plugg weather sensors (http://www.plusplugg.com/en/#!); iSPEX 26 

aerosol measuring sensor (www.ispex.nl); AirCasting Air Monitor (http://aircasting.org/); Netatamo 27 

weather stations (e.g. http://www.netatmo.com/) - with projects already set up to utilise these 28 

pervasive devices.  For example the N-Smarts pollution project is using sensors attached to GPS-29 

enabled smart phones to gather data, in order to help better understand how urban air pollution 30 

impacts both individuals and communities (Honicky et al., 2008).  31 

 32 

GPS have been embedded in mobile phones for some time (since Benefon Esc in 1999) and hold 33 

much potential for applications such as distributed networks for traffic monitoring and routing 34 

(Krause et al., 2008). Additional sensors are increasingly being built into these devices as standard 35 

(e.g. smart phones, tablets). For example, the Galaxy S4 contains geomagnetic positioning, as well as 36 

a gyrometer, accelerometer, barometer, thermometer, hygrometer, RGB light sensor, gesture sensor, 37 
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proximity sensor and microphone (Nickinson, 2013).  Data collected by these sensors can be 1 

harvested via the Internet, with this form of crowdsourcing often referred to as ‘human-in-the-loop 2 

sensing’ (Boulos et al., 2011). For example, Overeem et al. (2013a) recently crowdsourced battery 3 

temperature data from mobile phones using the OpenSignal app (http://opensignal.com/). Utilising a 4 

heat transfer model, a relationship was found between daily-averaged ambient air temperatures and 5 

mobile phone battery temperatures for several cities. In addition, WeatherSignal is a smart phone app 6 

that collects live weather data by making use of the range of sensors pre-built into smart phones. 7 

PressureNet (http://pressurenet.cumulonimbus.ca/) is another app that collects atmospheric pressure 8 

measurements from its users, with the aim of using this data to help understand the atmosphere and 9 

better predict the weather. However, temperatures and other weather variables can vary significantly 10 

over small distances, especially over the heterogeneous morphology found in urban areas.  This is 11 

clearly an advantage of using such sources of data, yet simultaneously highlights the potential for 12 

issues regarding data quality and reliability (e.g. errors, validations and scaling up data – discussed 13 

further in Section 3). 14 

 15 

2.5. Moving  platforms  16 

 17 

Many different types of platforms are traditionally used to conduct scientific research and collect data, 18 

so the use of moving platforms is far from a new concept. What is novel is the potential for any 19 

moving platform to routinely collect information and potentially make use of existing sensors that are 20 

already built-in. The low-cost sensors mentioned above are essentially portable sensors, for example 21 

the Air Project (Costa et al. 2006) used citizens equipped with portable air monitoring devices to 22 

explore their neighbourhoods for pollution hotspots.  Other moving platforms can also be used to 23 

collect non-fixed data.  Bikes are one potential platform for crowdsourcing data (e.g. Melhuish and 24 

Pedder 2012; Brandsma and Wolters 2012). For example, Cassano (2013) used a ‘weather bike’ 25 

(fitted with a Kestrel 400 hand-held weather station and GPS logger) to collect temperature 26 

measurements across Colorado, finding variations of up to 10°C over a distance of 1 km, whilst the 27 

Common Scents project uses bicycle-mounted sensors to generate fine-grain air quality data to allow 28 

citizens and decision-makers to assess parameters in real-time (Boulos et al., 2011).   Indeed, the use 29 

of bicycles as vehicles for hosting air quality monitoring devices is becoming increasingly popular. 30 

Work by Elen et al. (2012) presents an air quality monitor equipped bicycle, Aeroflex, which records 31 

black carbon and particulate matter measurements as well as the geographical location. Aeroflex is 32 

also equipped with automated data transmission, pre-processing and visualisation. 33 

 34 

Boats and ships have a long history of providing meteorological data; Since the 1940s ships have 35 

routinely collected sea surface temperature observations.  Therefore all boats - commercial, military, 36 

private - provide opportunities for crowdsourcing, especially if linked to low-cost technology.  For 37 
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example, the International Comprehensive Ocean-Atmospheric Data Set (ICOADS) collates 1 

extensive data spanning three centuries from a range of evolving onboard observation systems, which 2 

is critical for data-sparse marine regions (Woodruff et al., 1987; Worley et al., 2005; Berry and Kent, 3 

2006).  Oceanographic science applications are being further explored through data obtained from 4 

low-cost, homemade conductivity, temperature and depth instruments (Cressey, 2013).  A large range 5 

of atmospheric data could also be crowdsourced if other low-costs sensors were installed on ships, or 6 

by utilising data from smart devices and/or citizens on board. For example, the TeamSurv (Thornton, 7 

2013) project is enabling mariners to contribute to the creating of better charts of coastal waters, by 8 

logging depth and position data whilst they are at sea, and uploading the data to the web for 9 

processing and display. Similarly, data can be crowdsourced from other transportation such as 10 

commercial airplanes, with further potential for emergency service helicopters, and public trains.  A 11 

significant amount of data is routinely collected by aircraft, but as noted by Mass (2013) a large 12 

proportion of this potentially valuable data is currently not being used.  TAMDAR (Tropospheric 13 

Airborne Meteorological Data Reporting) is collected by short-haul and commuter aircrafts, and low-14 

level atmospheric data collected during take-off and landing could significantly benefit the 15 

forecasting of thunderstorms and other weather features, in a similar manner to AMDAR (Aircraft 16 

Meteorological DAta Relay) which is utilised for forecasting, warnings and aviation applications. 17 

 18 

One of the most mature versions of a moving platform, in terms of crowdsourcing, research and 19 

exploration, are road vehicles. Commercial, public and personal road vehicles are beginning to 20 

contain Internet-connected sensors and have the potential to make high-resolution surface 21 

observations (Mahoney and O’Sullivan, 2013; Mahoney et al., 2010), with research exploring data 22 

collected from such road vehicles already being undertaken. For example, Inrix 23 

(http://www.inrix.com/) collects data from trucks and other fleets as a source of real-time information 24 

about congestion and other issues affecting travel, whilst the Research and Innovative Technology 25 

Administration’s (RITA) connected vehicle research initiative is encouraging the use of data from 26 

vehicle sensors (e.g. temperature, pressure, traction-control, wiper speed: Haberlandt and Sester, 27 

2010; Rabiei et al., 2013; Drobot et al., 2010). Other studies (e.g. Aberer et al., 2010;  Devarakonda et 28 

al., 2013; Ho et al., 2009; Rada et al., 2012) have used vehicles and other moving platforms to host 29 

sensors for monitoring air quality.  Overall, miniaturisation of the sensors used in these studies creates 30 

opportunities for smaller mobile platforms to be used for traditional observations as well as 31 

crowdsourcing (e.g. commercial/private Unmanned Aerial Vehicles (UAVs), hot air balloons).  32 

 33 

2.6. ‘Hidden’ networks 34 

 35 

Finally, it is important to highlight the potential for repurposing data from ‘hidden’ networks, as a 36 

form of inanimate, passive crowdsourcing.  Numerous municipal networks exist, out of sight, quietly 37 
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collecting routine data for various applications (e.g. transmitting mobile phone signals, sensors on 1 

lighting columns to control light levels, city-wide traffic sensors for transport management, in-built 2 

mobile sensors for monitoring the performance of the handset). However, these have the potential to 3 

be used as proxies for monitoring other variables. For example, Overeem et al. (2013b) used received 4 

signal level data from microwave links in cellular communication networks to monitor precipitation in 5 

the Netherlands (Messer et al., 2006; Leijnse et al., 2007; Overeem et al., 2013b). Other work that has 6 

used sensors for monitoring environmental variables for which they have not specifically been 7 

designed includes the use of GPS measurements from low earth orbiting satellite and ground-based 8 

instruments for monitoring atmospheric water vapour (e.g. Bentsson et al., 2003; de Haan et al., 2009) 9 

and Mode-S observations from air traffic control radars to observe wind and temperatures (e.g. de 10 

Haan and Stoffelen, 2012; Overeem et al., 2013b).  It is therefore likely that there are many other 11 

environmental uses for instruments or sensor networks that have been designed and implemented for 12 

other purposes.   13 

 14 

3. Quality Assurance / Quality Control  15 

 16 

Arguably the biggest challenge in incorporating crowdsourced data in the atmospheric sciences - as 17 

for other disciplines - is overcoming the barriers associated with utilising a non-traditional source of 18 

data, i.e. calibration and other quality assurance/quality control (QA/QC) issues. Clearly 19 

crowdsourcing has the potential to overcome the spatial and temporal representativeness of standard 20 

data.  However, whereas the measurement quality of traditional data is not often an issue due to the 21 

use of rigorously calibrated instrumentation located in sites that adhere to strict standards, can 22 

crowdsourced data provide an acceptable level of accuracy, certainty and reliability?   23 

 24 

Cuff et al. (2008) previously noted issues related to ‘observer effect’ and bad data processing, 25 

highlighting the need for verification when utilising public sensor data. Whilst Dickinson et al. (2010) 26 

stated - in reference to the ecological uses of citizen science - it “produces large, longitudinal 27 

datasets, whose potential for error and bias is poorly understood” and is “best viewed as 28 

complementary”. Is this true for all crowdsourced data, or do certain types of crowdsourced data or 29 

techniques show more potential?  It is likely that the utility of such data is both application and 30 

parameter-specific.   In order to assess the true accuracy and value of crowdsourced data, it is clear 31 

that the quality and accuracy must therefore be assessed, particularly if is to be applied to extreme 32 

events that affect property, infrastructure and lives in the future. But how can this be achieved on a 33 

routine basis? At what spatial and temporal resolution must these studies be conducted? Is there an 34 

optimal density of ‘crowdsourcing sites’, after which statistical analyses and filtering can be used to 35 

extract a signal from the noise? And how much does quality vary with source or product? 36 

 37 
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The great potential of crowdsourcing as a source of data is strongly tempered by concerns with its 1 

quality. The latter arises mainly because the data are typically not acquired following ‘best practices’ 2 

in accordance to authoritative standards, and may come from a variety of sources of variable and 3 

unknown quality. In the absence of information on the quality of crowdsourced data it may be 4 

tempting to use inputs from a large number of contributors, as a positive relationship between the 5 

accuracy of contributed data and number of contributors has been noted in the literature (e.g. 6 

Raymond, 2001; Flanagin and Metzger, 2008; Snow et al., 2008;  Welinder et al., 2010; Girres and 7 

Touya, 2010;   Haklay et al., 2010; Heipke, 2010; Goodchild and Glennon, 2010; Goodchild and Li, 8 

2012; Basiouka and Potsiou, 2012; Neis et al., 2012; Comber et al., 2013; Foody et al., 2013; See et 9 

al., 2013).  This may not, however, always be appropriate as the accurate contributions may be lost 10 

within a large volume of low quality contributions. Indeed, there is some evidence that indicates that 11 

it can be unhelpful to have too many contributors, with accuracy declining as more data are made 12 

available (Foody et al., 2014). This issue has some similarity to the curse of dimensionality which is 13 

widely encountered in satellite remote sensing, which often leads to a desire to reduce the size of the 14 

data sets in order to achieve high accuracy (Pal and Foody, 2010). The ability to rate sources of data 15 

may allow a focus on the higher quality contributions that result in the production of more accurate 16 

information (Foody et al., 2014).   17 

 18 

A variety of methods have been applied to assess the accuracy of crowdsourced data (Raykar and Yu, 19 

2011, 2012; Foody et al., 2014). In relation to crowdsourced data on geographical phenomena, a 20 

range of approaches to quality assurance are possible (Goodchild and Li, 2012). For example, the 21 

contributions from highly trusted sources or selected gatekeepers might be used to support quality 22 

assurance. Furthermore the geographical context associated with contributions may be used to check 23 

the reasonableness of the data provided by a source given existing knowledge (Goodchild and Li, 24 

2012). There is also considerable interest in intrinsic measures of data quality that indicate features 25 

such as its accuracy, which can be obtained from the data set itself (Hacklay et al., 2010; Foody et al., 26 

2014).  These approaches can, in certain circumstances, allow the accuracy of the individual data 27 

sources to be assessed (Foody et al., 2013, 2014). They have, however, typically been based on 28 

categorical data, therefore research into methods more suited to higher level, more quantitative data, 29 

such as that used in characterising atmospheric properties, would be required.  30 

 31 

For temperature studies, such as detailed investigation of the Urban Heat Island (UHI) effect, it is 32 

important to have a good spatiotemporal coverage, but it is also imperative that the data is accurate 33 

and representative.  For example, existing, in-built car thermometers have the potential to provide 34 

high spatiotemporal resolution data, however the accuracy of this data is questionable since quality 35 

will vary between vehicles (e.g. variety of car makes, models, and ages; different sensors of varying 36 

precision and quality, located in different parts of the vehicle; varying microscale morphological 37 
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information).  However, by using smart technologies and standardising instrumentation, the utility of 1 

such data appear to show potential. For example, the NCAR (National Centre for Atmospheric 2 

Research) Vehicle Data Translator (VDT) has started to extract and process data from vehicular 3 

sensors with the long-term aim to obtain data from millions of connected vehicles in an operational 4 

setting. The VDT is a modular framework designed to ingest observations from vehicles, combine it 5 

with ancillary data, conduct quality checks, flag data, compute statistics and assess weather conditions 6 

(Drobot et al., 2009; 2010).  Anderson et al. (2012) recently tested air temperature measurements 7 

from 9 vehicles (two vehicle models) over a 2-month period, these data were then run through the 8 

VDT and a 2 °C difference between the vehicle data and the measurement from the nearest (<50 km 9 

radius) ASOS (Automated Surface Observing System) station reading was used to flag suspect data, 10 

the outcome of which was that a consistent agreement with weather stations was found at this 11 

relatively coarse spatial scale. This also highlights the issue of scale and the importance of 12 

understanding what data is actually being crowdsourced (e.g. microclimate vs. local-scale vs. 13 

mesoscale; Oke, 2004; Muller et al., 2013a) in order to utilise data for appropriate applications. 14 

 15 

Furthermore, as mentioned, smart phones have also been used to indirectly estimate temperature data 16 

at high-resolutions. However, the relationships Overeem et al. (2013a) found  between ambient air 17 

temperatures and smart phone battery temperatures were averaged across entire cities and over whole 18 

days, therefore the utility of smart phones for higher resolution UHI analysis, for example, is still to 19 

be explored. Indeed, initial analyses in Birmingham, UK, indicated that using more appropriate 20 

representative local data for validating crowdsourced data shows promise since the accuracy of 21 

mobile temperature data that were validated using local urban weather stations showed improvement 22 

over readings validated using data from a more remote, less representative climate station (figure 2). 23 

However, this may also be due to using higher-precision data for the validation.  Therefore, in order to 24 

fully explore this, a larger number of participants are needed to supply data before higher-resolution 25 

(in both time and space) investigations can be conducted using a high-resolution urban meteorological 26 

testbed for validation (Chapman et al., 2012).   27 

 28 

For parameters such as precipitation - which can vary significantly over short distances (e.g. 30-40% 29 

over 1-2 miles: Doesken and Weaver, 2000) particularly for convective rainfall - extra information 30 

gained from crowdsourcing could indeed provide essential data to supplement global in situ rainfall 31 

networks (figure 3), many of which are on the decline (Walsh, 2012; Lorenze and Kunstmann, 2012; 32 

Yatagai et al., 2012; Tahmo, 2013; Kidd et al., 2014). For example, in the US the CoCoRaHS and 33 

PING programmes provide high quality data used for research, natural resource and education 34 

applications (Cifelli et al., 2005); indeed data from PING are already being used to improve the dual-35 

polarization radar hydrometeor classification algorithm.  Moreover, there is potential for more 36 

unusual-yet-pervasive platforms to be utilised for monitoring rainfall; umbrellas with built-in piezo 37 
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sensors that measure raindrop vibrations on the canvas and transmit data to smart phones via 1 

Bluetooth - or ‘smart brollies’ - are being explored for crowdsourcing rainfall data at ground-level 2 

(Hut et al., 2014). 3 

  4 

Wind can also vary significantly over short distances, particularly in areas with high roughness length 5 

(e.g. street canyons, forests) and crowdsourcing may prove useful. However, as was found to be the 6 

case for amateur weather stations, in order for data to be reliable, details about the site of the 7 

instrumentation need to be known (Steeneveld et al., 2011; Wolters and Brandsma, 2012; Bell et al., 8 

2013), although Agüera-Pérez et al. (2014) did find that useful wind descriptions could be generated 9 

using high-density stations - run by various public institutions - based on quantity rather than quality. 10 

Other variables may only benefit significantly from supplementary crowdsourced data for certain 11 

applications; for example pressure does not tend to vary significantly over short distances except 12 

during the passage of a front or convective bands.  Madaus et al. (2014) recently found that 13 

assimilating additional pressure tendency data from privately owned weather stations reduced forecast 14 

error for mesoscale phenomena, offering potential for other crowdsourced data such as dense 15 

barometric readings from smart phones for the real-time tracking of storms.  Therefore extreme 16 

weather phenomena that exhibit significant pressure and wind variations (e.g. tornados, hurricanes) 17 

could perhaps benefit from other forms of crowdsourced data, but at present it is difficult to determine 18 

which particular technique would be most suitable for observing such an extreme event. 19 

 20 

Concentration of atmospheric pollutant species can also vary significantly. Very low-cost air quality 21 

sensors, such as the Air Quality Egg, iSPEX aerosol measuring sensor and AirCasting Air Monitor, 22 

are becoming more popular with members of the public. However, due to their low-cost nature, trade-23 

off between quality and quantity is often necessary.  For example, Air Quality Egg does not calibrate 24 

all of the sensors prior to shipping; instead they rely on making use of the potentially large network of 25 

sensors to compensate for a large range of readings from individual sensors (AirQualiyEgg, 2014). 26 

However, the problem with this is that it is difficult to determine whether the sensors are measuring 27 

extreme values (due to its location next to a pollutant source, for example) or whether there is a 28 

problem with the sensor. 29 

 30 

Evidently, methods for assessing crowdsourced data are beginning to emerge (e.g. Honicky et al. 31 

(2008) discussed a Gaussian, process-based noise model for handling non-uniform sampling and 32 

imprecision in mobile sensing) but there are also many techniques and lessons that can be learned 33 

from other fields and disciplines. For example, satellite validation techniques, model performance 34 

evaluation methods, calibration techniques for in situ instrumentation (e.g. Young et al., 2014).  35 

Furthermore, different crowdsourcing techniques each have their own issues, for example human 36 

error or bias, low-cost instrumentation precision and accuracy, amount of data/coverage/spatial 37 
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heterogeneity (bias towards populous areas), differing amount of metadata that can be provided, 1 

varying level of data-processing, network issues (e.g. stability, availability, time-delay), varying data 2 

types and descriptions, and privacy. Metadata is therefore important for interpreting data. It is already 3 

collected for standard meteorological stations and UMNs (e.g. Muller et al., 2013a; 2013b) and it is 4 

logical that metadata would also accompany crowdsourced data. However, standards and protocols for 5 

this do not currently exists; at most it is simply geographic and timestamp information that is provided 6 

with data, whereas for atmospheric variables and applications, information (e.g. local and microscale 7 

conditions, sensor details etc.) are useful or even essential for evaluation purposes.  Some amateur 8 

observations website have started to encourage contributors to supply detailed supplementary 9 

information (e.g. UKMO WOW; Meteoclimatic: http://www.meteoclimatic.com/), however it is not 10 

usually obligatory to supply complete metadata. Metadata is especially important for moving sensors, 11 

and location sensing is a developing technology. The potential for sensor combination is evolving, 12 

e.g. by allowing the mobile phone itself to identify its context through the use of multiple sensors. For 13 

example, Google have a new API called ‘Activity Recognition’ that recognises whether the user is 14 

walking, cycling or in a vehicle, using the movement pattern recorded by the accelerometer and other 15 

sensors (Robinson, 2013).  Other applications include using light sensors on mobiles to determine 16 

outdoor readings (Johnston, 2013), and the use of barometer readings to determine change in height.  17 

Thus, sensors or devices could simultaneously collect data and metadata, allowing for more effective 18 

cleaning of the dataset. To this end, timestamps and geo-location data are crucial. 19 

 20 

4. Applications and Potential Innovations 21 

 22 

If indeed the accuracy of a range of crowdsourced data can be assessed for different types, scales and 23 

quantities of data, and if protocols are put in place to monitor data quality and ensure that all the 24 

relevant supplementary information is supplied, what, therefore, is the value and utility of 25 

crowdsourced data?  As discussed earlier, there are a number of applications that may indeed benefit 26 

from the increased spatiotemporal resolution and real-time nature of measurements made available by 27 

these forms of data-sourcing techniques; whereas other applications may find the quality and 28 

reliability of the data to be too poor and/or may not provide any further benefit to the standard 29 

techniques that are already utilised. An overview of some of the potential applications of 30 

crowdsourced data are outlined in table 2. 31 

 32 

Weather forecasting models have already been developed to utilise a range of crowdsourced data in an 33 

attempt to provide highly localised, minute-by-minute forecasts (‘nowcasts’).  For example, the IBM 34 

‘Deep Thunder’ micro forecasting technology (http://www-35 

03.ibm.com/ibm/history/ibm100/us/en/icons/deepthunder/) is a targeted weather forecasting program 36 

which uses a range of public weather data from NOAA, NASA, the U.S. Geological 37 
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Survey, WeatherBug and other weather sensors. Other similar apps include SkyMotion 1 

(http://skymotion.com), Dark Sky (http://darkskyapp.com/), RainAware (http://www.rainaware.com/), 2 

Nooly (http://www.nooly.com/) and TruPoint (http://www.weather.com/encyclopedia/trupoint.html).   3 

However, the accuracy of models and other products utilising amateur, crowdsourced data are very 4 

much reliant on the quality of the observations, reemphasising the need for quality control.  There are 5 

many potential societal, environmental and economic applications of crowdsourced data (table 2) - 6 

including public health (e.g. OpenSense air quality monitoring: Aberer et al., 2010), infrastructure 7 

(e.g. Climate resilience: Chapman et al., 2013), education (e.g. DISTANCE IoT project: 8 

www.iotschool.org; Pham, 2014), transportation (e.g. Ad hoc networks for urban routes: Ho et al. 9 

2009), winter road management and flood management (e.g. Smart Streets project: 10 

www.smartstreethub.com; Chapman et al., 2014); energy (e.g. Farhangi, 2010; Agüera-Pérez et al., 11 

2014); other societal uses (e.g. Urban Atmospheres: http://www.urban-atmospheres.net) – and 12 

therefore real opportunities for utilising it to improve our way of life. Indeed, with continuous 13 

technological advances, miniaturisation of sensors, improvements to hardware and software involved 14 

in data transmission, processing and storage, and availability of ‘free’ internet connections (Muller et 15 

al., 2013a), infrastructure and devices are becoming even smarter, which will result in a multitude of 16 

future possibilities. For example, the possibility of crowdsourcing weather using Google glass 17 

(Sheehy, 2013) or webcams; the potential to utilise data from sensors built into smart lighting 18 

columns (e.g. LUX sensors on modern lampposts) or even the use of Wi-Fi within city-wide 19 

infrastructure to upload data (e.g. the use of Smart bus-stops); routine upload of data from cars (e.g. 20 

windscreen wipers, brake pads etc) and smart phones.  21 

 22 

Furthermore, there will be scope for utilising other forms of platforms in the future. For example, 23 

Unmanned Aerial Vehicles (UAVs), once the preserve of targeted meteorological research, are 24 

another platform that may be increasingly used since they show potential for various applications such 25 

as CCTV, filming sporting events, delivery vehicles (e.g. ‘Prime Air’: Amazon, 2013). They are 26 

becoming increasingly sophisticated and miniaturised, with much potential for hosting a range of 27 

sensors. If they are used more routinely in the future, these platforms and others (e.g. hot air balloons: 28 

de Bruijn, 2013) hold further potential for crowdsourcing data (e.g. for use in real-time monitoring, 29 

management, planning) in a similar way to vehicles and other moving platforms.  30 

 31 

5. Conclusions and Recommendations 32 

 33 

Some traditional meteorological networks are in decline (GCOS 2010), yet the demand for real-time, 34 

high spatiotemporal resolution data is increasing; therefore there is a clear need for crowdsourcing 35 

weather and climate data.  Non-traditional data are now being harvested from a large number of 36 

sources at high resolutions, and the amount of crowdsourced data is only going to increase with time. 37 
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As computing power increases, our ability to process and utilise this Big Data will also increase, 1 

therefore we must explore its potential. Whilst some fields (e.g. land mapping) have already shown 2 

evidence of the value of crowdsourcing, for the atmospheric science community, in the near future at 3 

least, it will rarely be a replacement for traditional sources of atmospheric data. It could, however, 4 

become a useful, cost-effective tool for obtaining supplemental, higher-resolution information for a 5 

range of applications, especially in economically developing countries or areas containing few 6 

weather stations.  In order to determine the precise benefit of utilising such data as well as the amount 7 

of validation needed, a thorough analysis of the spatiotemporal scales required and the acceptable 8 

precision and accuracy for a range of parameters, applications and/or geographic regions is required.   9 

For example, what are the spatial and temporal scales and errors required for monitoring the UHI 10 

compared to pluvial flash flooding?  Five-minute resolution data may be required for urban 11 

hydrological applications, whilst hourly data may be acceptable for other regional hydrological 12 

applications. Similarly, the density of air temperatures measurements needed for observing the UHI 13 

will vary according to the urban morphology of a city (Stewart and Oke, 2013).  A comprehensive 14 

assessment of this is beyond the scope of this paper, but would be extremely useful for future 15 

crowdsourcing endeavours.    16 

 17 

However, in order for progress to be made, thorough verification and quality-checking procedures 18 

must be in place.   To-date only a few studies have begun exploring the accuracy and quality of 19 

crowdsourced atmospheric data, and even fewer at high spatiotemporal resolutions.  In order to 20 

validate such crowdsourced data at a high spatiotemporal scale, standardised, calibrated and quality-21 

checked, high resolution UMNs and air quality networks are required. Such test beds may only be 22 

required in a small number of regions in order to verify crowdsourced data prior to use elsewhere. 23 

Others have also highlighted this need; for example, Boulos et al. (2011) stated that eradicating or 24 

lessening the issues related to crowdsourced data can be achieved by the verification of data with 25 

other sensor nodes, but acknowledged that this would depend on the density of network and the 26 

existence of other related data, which in turn depends on the requirements for each parameter or 27 

application.  In a recent study, Young et al. (2014) installed a network of low-cost air temperature 28 

sensors within an urban weather station test bed in Birmingham, UK (Chapman et al., 2012).  This 29 

test bed was designed for UHI analysis, so is ideal for assessing the ability of this sensor for UHI 30 

monitoring.   31 

 32 

Furthermore, in order to achieve a high-level of reliability, specific guidelines, standards and 33 

protocols are required to enable interoperability and in order to quantify the reliability of 34 

crowdsourced data (e.g. metadata protocols: Muller et al., 2013b; QA/QC procedures: Boulos et al., 35 

2011).  Current crowdsourcing projects could act as catalysts for such an international movement and 36 

encourages the use of such data by a range of end-users.  Indeed, national meteorological services 37 
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could even collect, verify and distribute crowdsourced data (and metadata) from separate projects and 1 

eventually integrate data via a co-ordinated initiative in order to encourage open data sharing and 2 

standardisation. Such schemes may indeed set the foundation for a future ‘data web’ (Nielsen, 2012). 3 

 4 

It is also important to acknowledge the ethical implications of crowdsourcing, which depend heavily 5 

on the type of crowdsourcing in action, and the extent to which the data could be used to individually 6 

identify either the contributor or individuals exposed to the sensor network. In participatory 7 

crowdsourcing there is often a distinct contract between the individual and the organisers therefore 8 

many of the usual concerns about data collection, storage and dissemination do not apply since there 9 

is specific consent by the user to provide data to a central location for processing.  However, there are 10 

a few issues related to user privacy, primarily the ability to identify people by very few location points 11 

(Montjoye et al., 2012). It is therefore necessary to keep raw data private, and only publish data that 12 

does not show which device is contributing (and perhaps apply some small degree of distortion to 13 

location, whilst keeping information such as device type). Nevertheless, since crowdsourcing from 14 

members of the public is such a specific transaction that relies on participation and comprehension, it 15 

means that most privacy concerns are reduced to basic data security – provided that the organisers 16 

make clear the type of data that is being collected and its intended purpose or future use, as well as 17 

making a commitment to only making publicly available non-identifying data.  A full examination of 18 

this is beyond the scope of this paper, but readers are referred to Nissenbaum (2004) for a discussion 19 

about how expectation of privacy is dependent upon the transactional context, including the ways in 20 

which it is disseminated post-transaction. 21 

 22 

Public engagement is also a positive side effect of many types of crowdsourcing.  Indeed, the 23 

contribution to science and society as well as the appreciation, wonder and connection to the natural 24 

world are key motivations for many people to become involved in such projects (Roy et al., 2012). 25 

However, some schemes further incentivise people by using rewards (e.g. monetary payment), or by 26 

using ‘gamification’ devices such as league tables to appeal to the competitiveness of participants 27 

(Hochachka et al., 2012) 1. Therefore, at the very least crowdsourcing is a tool to engage the general 28 

public; at most it is an important source of valuable, real-time, high-resolution information where 29 

none previously existed.     30 

 31 

Nevertheless, with improving technology and connectivity, the miniaturisation of devises and lower-32 

costs, the ‘Internet of Everything’ is inevitable; We need to determine how we can take advantage of 33 

this source of data for a variety of applications such as scientific research, education, policy 34 

                                                           
1
 It is worth noting, however, that the different motivations of contributors can impact on accuracy; for 

example, there is some evidence that those motivated by money are more accurate - if the amount is 
sufficient - than those who contribute out of enjoyment (Kazai et al., 2013). 
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generation, environmental monitoring, and societal applications.  Crowdsourcing as a research field 1 

has great potential to bridge the gap between the social scientists, computer scientists and physical 2 

and environmental scientists, thereby encouraging interdisciplinary working and enhancing 3 

knowledge exchange and scientific discovery (Wechsler, 2014).  However, due to the immature 4 

nature of this source of data, this review has inevitably raised more questions than answers.  It is 5 

expected that over the coming years, the field will move on considerably and more of these queries 6 

will be resolved in due course.  Is this truly the start of a new and valuable age of ‘society in science’, 7 

or is crowdsourcing simply an en vogue technique? For atmospheric science disciplines, time will tell 8 

whether or not it is just a lot of ‘hot air’. 9 

 10 
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Tables 1 

 2 

Table 1: Examples of current atmosphere, weather and climate-related crowdsourcing projects and techniques 3 

Project Type Data Summary Reference/URL 

UKSnowMap Web 2.0, citizen 

science 

Snow rating, location UK citizens tweet a snow rating (out of 10) which 

are shown on map 

http://uksnowmap.com/ 

Snow Tweets Web 2.0, citizen 

science 

Snow depths, location World-wide citizens tweet snow depths which are 

shown on map? 

http://www.snowtweets.org 

CoCoRaHS Web 2.0, citizen 

science, amateur 

weather stations  

Rainfall amount, location US citizens upload information about precipitation 

amount as measured by manual gauges 

http://www.cocorahs.org/Cifelli et al., 

2005 

UCRaiN Web 2.0, citizen 

science, amateur 

weather stations 

Rainfall amount, location UK citizens upload information about precipitation 

amount as measured by manual, home-made 

gauges 

Illingworth et al. (2014) 

Global Learning and 

Observations to Benefit 

the Environment 

(GLOBE) 

Citizen science, 

amateur 

weather stations 

and other 

environmental 

sensors 

A range of environmental data , inc. 

weather data 

The GLOBE Programme is an established, 

international science and education project 

whereby students and teachers can take 

scientifically valid environmental measurements and 

report them to a publicly available database.  

www.globe.gov/ 

 

Finarelli (1998) 

WeatherSignal Smart device, 

mobile app 

Location, temperature, pressure, 

humidity, weather reports, 

acceleration, magnetic flux, light 

A mobile phone application for obtaining weather 

data from mobile phone users 

http://weathersignal.com/ 

 

PressureNet Smart device, 

Mobile app 

Pressure App automatically collects atmospheric pressure 

measurements using barometers in Android devices. 

http://pressurenet.cumulonimbus.ca/ 

Birmingham snow 

depth 

Web 2.0, citizen 

science 

Snow depth, location Birmingham citizens tweet snow depths  Muller (2013) 

City temperatures from 

smart phone battery 

temperatures 

Smart device, 

mobile app 

Mobile phone battery temperature; 

Air temperature proxy, location 

Temperature data derived from smart phone 

batteries sensors (not specifically designed for 

crowdsouricng the weather) are fed into a heat 

transfer model to produce daily air temperatures 

averaged over a city. 

Overeem et al. (2013); 

http://www.opensignal.com 

IntelliDrive/Vehicle 

Data Translator 

Vehicle sensors Temperature, position Data from vehicle sensors are obtained and 

processed 

Drobot et al. (2009; 2010),  Anderson et 

al. (2012) 

Birmingham car Web 2.0, citizen Air temperature, location Birmingham citizens tweet car thermometer Muller et al. (pers comms.) 
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temperatures science, vehicle 

sensors 

temperature readings 

Old Weather Citizen science Archive weather data Citizens transcribe mid-19
th

 century ship logs  http://www.oldweather.org/ 

OPAL contrail Citizen science Contrail length survey UK citizens noted the length of any contrails they 

could see over a fixed campaign period for 

comparison with data at aircraft altitude.  

http://www.opalexplorenature.org/clima

tesurvey 

Cyclone Centre Citizen science Archive Citizen scientists manually classifying 30 years of 

tropical cyclone satellite imagery. 

http://www.cyclonecenter.org 

TeamSurv Ship sensors, 

Citizen science 

Water depth and position Mariners help create better charts of coastal waters 

by logging depth and position whilst at sea and 

uploading data to the web for processing and 

display. 

http://www.teamsurv.eu/ 

 

Precipitation Intensity 

Near the Ground (PING) 

/ meteorological 

Phenomenon 

Identification Near the 

Ground (mPING) 

Citizen science Rainfall amount, rainfall type, 

location 

Citizens upload information about precipitation 

amount and type, as well as the type of weather 

that is occurring 

Binau, 2012 

Elmore et al., 2014 

http://www.nssl.noaa.gov/projects/ping/ 

European Severe 

Weather Database 

Citizen Science Tornados,  severe wind, large hail, 

heavy rain, funnel cloud, gustnado, 

dust devil, heavy snowfall / 

snowstorm, ice accumulation, 

avalanche, damaging lightning 

Eye-witness reports and mapping of severe weather 

across Europe 

http://www.essl.org/cgi-

bin/eswd/eswd.cgi 

UK Storm 2013 

crowdmap 

Web 2.0, citizen 

science 

Location, information about storm 

damage 

Map showing location and storm-related updates https://ukstorm2013.crowdmap.com/ 

Twitcident Web 2.0, citizen 

science 

Geo-located information about a 

range of hazards / emergency 

incidents  

Tweeted information for a range of applications in 

the public safety domain. 

 

http://www.twitcident.org 

Air Quality Egg Citizen science, 

amateur 

weather stations 

NO2, CO, temperature, humidity Low-cost, WiFi-enabled air quality sensor http://airqualityegg.com/ 

IBM Deep Thunder Amateur 

weather stations 

Range of weather data Targeted weather forecasting program providing 

minute-by-minute, highly localized forecasts, using a 

combination of public weather data from NOAA, 

NASA, the U.S. Geological Survey, WeatherBug, and 

http://www-

03.ibm.com/ibm/history/ibm100/us/en/i

cons/deepthunder/ 
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other weather sensors. 

Metwit Mobile app, 

citizen science 

Weather conditions Real-time weather information via smart app https://metwit.com/ 

UK Met Office ‘Weather 
Observation Website’ 
(WOW) 

Amateur 

weather stations 

Range of weather data and 

metadata 

Amateur weather observers website for visualising 

data (including metadata and quality flags) 

Bell et al. (2012) 

Tweddle et al. (2012) 

http://wow.metoffice.gov.uk 

Meteoclimatic Amateur 

weather stations 

Range of weather data and 

metadata 

A large real-time network of amateur automatic 

weather stations covering the Iberian Peninsula 

http://www.meteoclimatic.com/ 

Weather Underground Amateur 

weather stations 

Range of weather data Amateur weather observers website for archived 

data 

http://www.wunderground.com/persona

l-weather-station/signup 

Citizen Weather 

Observer program 

(CWOP) 

Amateur 

weather stations 

Range of weather data Amateur weather observers website for archived 

data 

http://www.wxqa.com 

Weather Bike Bicycle platform, 

Amateur 

weather stations 

Location, temperature, wind Low-cost sensors attached to a bicycle Cassano (2013) 

AirPi Low-cost sensors Temperature, humidity, air 

pressure, light levels, UV levels, 

carbon monoxide, nitrogen dioxide, 

smoke level  

A Raspberry Pi shield kit that can record a range of 

data and upload to the internet 

http://airpi.es/ 

Measuring rain using 

microwave links from 

cellular communication 

networks 

Hidden networks Rain Utilising received signal level data from microwave 

links in cellular communication networks to monitor 

rainfall  

e.g. Messer et al. (2006), Leijnse et al., 

(2007), Overeem et al. (2013b) 

 1 

  2 
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Table 2: Potential uses and applications of a variety of crowdsourced data 1 

Application Examples of crowdsourced data type Examples of potential uses 

High-resolution, localised 

observations 

 Sensor data from mobiles, vehicles, trains, bikes (e.g. GPS, 

signal, other sensor and proxy data) 

 Smart  meters in homes and offices 

 Citizen science and web 2.0 

Tracking thunder and lightning, tornadoes, hurricanes; monitoring, 

forecasting and managing flooding; heatwaves; air pollution events; 

societal applications (e.g. health, infrastructure management, city-

planning, risk assessment) 

Decision-making  All types Real-time, high spatiotemporal to inform decision-making for 

planning, adaptation, mitigation, management 

Risk Assessment  Low-cost citizen sensors and weather stations 

 Smart phone sensors 

 Citizen science data 

Better monitoring and assessment of hazard risks and vulnerabilities. 

Modelling  Low-cost citizen sensors and weather stations 

 Smart phone sensors 

 Citizen science data  

Higher resolution data for model evaluation and assimilation 

Forecasting/nowcasting   Low-cost citizen sensors and weather stations, mobile phone 

sensors, citizen science data 

Higher resolution data than standard in situ measurements; use of 

real-time data 

Ground-truth remote 

sensing data (satellite, 

radar)  

 Low-cost/citizen measurements of rainfall, air quality, snow 

etc  

Increase data-availability in data sparse areas (e.g. low-income 

countries, less-accessible areas); Improve retrieval algorithms; 

Production of new combined data products. 

Scientific research  All types Higher spatiotemporal data could provide new scientific insights 

where data is lacking 

Climate monitoring  All types Higher spatiotemporal observations for long-term climate monitoring, 

particularly useful for exploring variability in morphologically 

heterogeneous areas such as cities 

Infrastructure (e.g. roads, 

rails, cycle paths, 

pedestrian routes, energy, 

ICT) 

 Sensor data from mobiles, vehicles, trains, bikes (e.g. GPS, 

signal, other sensor and proxy data) 

 Smart  meters in homes and offices 

 Mobile/WiFi signal strength 

Real-time, high spatiotemporal to inform decision-making, re-routing 

traffic, informing gritting routes, clearing gutters during flash flooding, 

better control of energy use, understanding resilience of networks 

under different weather conditions. 

Emergency services (fire; 

police; 

hospitals/ambulance) 

 Sensor data from mobiles, vehicles, trains, bikes (e.g. GPS, 

signal, other sensor and proxy data) 

 Smart  meters in homes and offices 

 Citizen science and web 2.0 

Could assist with predicting/identifying areas at risk (e.g. anti-social 

behaviour, thefts, illness during heatwaves, road accidents, illness 

caused by snow/ice/flood) 

Health  Sensor data from mobiles, vehicles, trains, bikes (e.g. GPS, 

signal, other sensor and proxy data) 

 Smart  meters in homes and offices 

Predicting/identifying patterns during outbreaks and identifying areas 

at risk (e.g. seasonal illness such as hay fever, disease outbreaks, 

accidents and illness during extreme events) 
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 Citizen science and web 2.0 

Agriculture  Low-cost citizen sensors and weather stations 

 

Monitoring of annual and seasonal variability for economic and 

production applications; microscale variability across small geographic 

areas (e.g. soil moisture) for increasing productivity. 

Insurance and post-event 

analysis 

 Low-cost/citizen measurements of rainfall, air quality, snow 

etc 

 Citizen science and web 2.0 

For example, identifying flood damage; flood depth/occurrence; 

advising appropriate engineering solutions 

Knowledge transfer – 

private / public sector use 

 All types More open, cost-effective data for use in industrial applications 

Public engagement / 

science communication 

 All types, particularly citizen science and web 2.0 Engages people with their local neighbourhood and involves them in 

science/data applications for public benefit 

Education  All types, particularly citizen science and low-cost sensors More data for use in education, without the need for expensive 

equipment; engaging students with scientific research; encouraging 

science, technology, engineering, mathematics (STEM) uptake 

 1 

  2 
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List of Figures 1 

 2 

Figure 1: Venn diagram showing the interaction of animate and inanimate crowdsourcing components, including active and passive techniques. 3 

 4 

Figure 2: Estimation of air temperature from smartphone battery temperatures: comparison with data from (top) WMO Birmingham airport site (located just 5 

outside the city) and (bottom) two central Birmingham UKMO sites (which are located in the vicinity of a large number of battery readings): (a) Map of 6 

Birmingham (UK; ©OpenStreetMap contributors; openstreetmap.org) showing locations of selected smartphone battery temperature readings (blue dots) 7 

from 1st June to 31st August 2013 and location of WMO and UKMO weather stations (red ovals) (b) Time series of daily averaged observed and estimated air 8 

temperatures, as well as battery temperatures in Birmingham for same period. (c) Scatter plot of estimated daily air temperatures against observed daily air 9 

temperatures based on data from Birmingham for1st June to 31st August 2013. Grey line is y = x line. ME denotes mean error (bias), MAE is mean absolute 10 

error, CV is coefficient of variation, 2 is coefficient of determination. CAL and VAL stand for calibration and validation data set, respectively. WMO nr. is 11 

World Meteorological Organization station index number. 12 

 13 

Figure 3: Map showing the sparse global distribution of stations included in the Monthly Climate Data for the World report for July 2013 (Source: NOAA 14 

National Climatic Data Centre, http://www1.ncdc.noaa.gov/pub/data/mcdw/) 15 

 16 
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