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Abstract Crowdsourcing provides access to a pool of human workers who can
contribute solutions to tasks that are challenging for computers. Proposals have
been made for the use of crowdsourcing in a wide range of data management
tasks, including data gathering, query processing, data integration and cleaning.
We provide a classification of key features of these proposals, and survey results
to date, identifying recurring themes and open issues.

Keywords Data Management · Crowdsourcing

1 Introduction

In outsourcing, work is contracted out to a specific third party. In crowdsourcing,
work is made available to potentially numerous third parties, so that tasks are car-
ried out by potentially distributed networked workers, referred to as a crowd [46].
Crowdsourcing is an emerging area, with relationships to other fields, such as so-
cial computing, that combine human intelligence and computational techniques
to complete tasks that are challenging for computers [86]. As such, the potential
roles of crowdsourcing, and the most effective models for its application, remain
to be determined. Nonetheless, there has been significant interest both in generic
issues relating to crowdsourcing (such as experiment design [79], crowd market-
places [51] and information quality [52]), and in its application to different domains
(as diverse as language transcription [70] and behavioral research [71]).
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In data management, proposals have been made for crowdsourcing support for
different stages of a data management lifecycle, such as data extraction (e.g. [22]),
integration (e.g. [72]), cleaning (e.g. [100]), querying (e.g. [37]) and analysis (e.g. [65]).
As a result, there is now a significant literature describing the application of largely
independently-developed crowdsourcing techniques across a range of long-standing
data management challenges, each addressing specific features and encountering
issues that transcend individual problems. It seems timely, therefore, to take a step
back from the individual proposals with a view to characterizing contributions to
date and eliciting their distinctive features and shared concerns. We aim to review
the state-of-the-art in crowdsourcing for data management by:

1. providing a classification of features that characterize proposals for the use of
crowdsourcing in data management (Section 2);

2. applying the classification in (1) to a wide range of proposals addressing dif-
ferent parts of the data management lifecycle (Section 3);

3. providing detailed descriptions of selected proposals to illustrate the state-of-
the-art in a range of areas (Section 3); and

4. identifying areas in which the experience in (2) has yielded lessons that can be
more widely applied, and proposing areas that seem to require further investi-
gation (Section 4).

Crowdsourcing systems vary in terms of the level of skills and engagement
required from workers, the relationship between the task commissioners and the
workers, the types of task undertaken, and the forms of reward obtained. In data
management, most of the research has investigated the use of crowdsourced mi-
crotasks, as supported by platforms such as Amazon Mechanical Turk (AMT)1

and CrowdFlower2. Such platforms support tasks that may come from different
domains, come from a dynamically varying collection of commissioners, rarely
require workers to contribute specific expertise, normally require little time to
complete, and generally give rise to financial rewards. Here we focus principally
on the sort of crowdsourced microtasks that are supported by such platforms, as
these have provided the context for most work of relevance to data management.

There have been several other surveys on different aspects of crowdsourcing.
Several of these have been broader in scope. Quinn and Bederson [86] relate crowd-
sourcing to other forms of human computation, and classify proposals in terms of
the motivation for engagement, quality control techniques, ways of aggregating
results from multiple participants, and the relationship between human and com-
putational processes. Doan et al. [30] review crowdsourcing systems on the web,
classifying proposals in terms of the nature of the worker engagement with the
task, the role of the worker and the problem addressed, with additional consider-
ation of issues such as worker recruitment and evaluation. Yuen et al. [106] char-
acterize crowdsourcing systems in terms of application domain, the nature and
motivation of the worker, and quality management. Amsterdamer and Milo [5]
concentrates on theoretical foundations of crowdsourcing. The book by Marcus
and Parameswaran [67] analyses the adoption of crowdsourcing by industry and
illustrates academic proposals for a practitioner target. There have also been some
more focused surveys. Zhang et al. [111] discusses the impact of crowdsourcing on

1 www.mturk.com/mturk
2 crowdflower.com
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Fig. 1 The dimensions and their relationships.

machine learning, considering both techniques for inferring the ground truth la-
belling from crowds that contain unreliable workers, and learning models for use
with crowdsourced labeled data. Techniques for crowd labelling are also reviewed
and evaluated by Muhammadi, et al. [76]. These focused surveys drill down on
techniques that can be applied to different application domains. The survey by
Li, et al. [63] discusses how a range of cross-cutting issues such as worker mod-
elling, cost control and latency control have been applied in data management.
As such, the survey of Li, et al. [63], has a similar scope to that presented here,
but with a greater emphasis on the generic techniques that have been applied in
data management, and a particular emphasis on operators. This survey is organ-
ised around the data management task supported, is wider ranging in the types of
system considered, and provides focused case studies of state-of-the-art proposals
that support different task types.

2 Dimensions

To support the systematic comparison of proposals, this section introduces a col-
lection of dimensions (and corresponding values) in crowdsourcing for data man-
agement, thereby allowing key features of different proposals to be captured using
a consistent terminology. The dimensions are summarized in Figure 1 and their
values are listed in Table 1.

In Figure 1, the Data Management Task is the activity that is being undertaken,
to which crowdsourcing is to contribute. These activities, such as data integration
or data querying, typically pre-exist crowdsourcing, but have been adapted to
exploit the opportunities that crowdsourcing presents. A crowd worker then con-
tributes to the completion of the data management task in some way, for example
by providing or labelling data. Thus a crowd worker is contracted to play a Role

in a data management task. The Crowd Interaction Manager, has responsibility
for carrying out crowdsourcing on behalf of a Data Management Task. The Crowd
Interaction Manager must collect requests for crowd workers together into Crowd

Tasks (sometimes known as Human Intelligence Tasks, or HITs), controlling which
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Table 1 Dimensions and their values.

Dimension Values

P
r
o
b
le
m

Data Management Task Data gathering
Data integration
Data cleaning and validation
Operator evaluation
Querying
Search

Optimization Goal Cost
Latency
Quality

I
n
t
e
r
a
c
t
io
n

Role of the Crowd Supply data
Label data
Verify work

Type of Interaction Confirm value
Select value
Provide value

Noise Management Majority voting
Iterative
Error-model

Worker Scoring Constant error-rate
Control queries
Redundant queries
Worker comparison
Reputation

Task Composition Online
Offline

workers to employ and when crowd results are considered to be appropriately
reliable.

The dimensions are organized over two main categories in Table 1: problem

and interaction. The former groups features that characterize the problem that is
addressed with the support of the crowd. The latter aims at identifying character-
istics of the interaction with the crowd.

2.1 Data Management Task

The Data Management Task within crowdsourcing characterizes the broad objective
of the problem tackled by the proposal. We use the following terms to characterize
a data management task:

– data gathering: the procurement of values that contribute to the pool of in-
stances over which an application acts (e.g. this phase includes tasks such as
data extraction);

– data integration: the alignment of information from multiple data sources (e.g.
this phase includes tasks such as schema matching);

– data cleaning and validation: the refinement of the data set to address data
quality issues (e.g. this phase includes tasks such as de-duplication);

– operator evaluation: the evaluation of a data management operator, such as
counting the elements in a collection that have some property, or filtering a
collection;
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– querying: the evaluation of declarative requests where the data accessed or the
conclusions drawn are informed by the crowd;

– search: the evaluation of keyword queries, potentially over structured sources.

As such, the data management task represents the functional requirements of
the application that is making use of the crowd. Proposals have been made for
the use of crowdsourcing for all of these types of task, and thus for a wide range
of data management activities. For the most part, crowdsourcing does not carry
out complete data management tasks, but rather is used alongside computational
techniques to refine their behavior or results.

2.2 Optimization Goals

Crowdsourcing is most widely applied to address issues where humans perform
tasks that cannot be efficiently expressed as algorithms. However, designing solu-
tions that exploit crowdsourcing in a data management task is not trivial because
several aspects that deal with the involvement of humans in the process need to
be considered: (i) people can be subjective and error-prone; (ii) people take longer
than computers to perform tasks; and (iii) people are paid for their work.

Overall, crowdsourcing solutions for data management tasks trade off opti-
mization among:

– cost: the total monetary rewards for the workers;
– latency: the time interval to obtain the results from the submission of the task;
– quality: the quality of the results, such as precision and recall in an entity

resolution task, or correctness of values in a data gathering task.

As such, the optimization goals represent the non functional requirements of
the application that is making use of the crowd, and must be taken into account
by the solution. Balancing latency, cost and quality of the results is crucial to the
design of effective and efficient data processing algorithms that rely on workers
recruited by crowdsourcing platforms. It is important to observe that these three
aspects are strongly correlated, and influence the design of the crowd interaction.
For example, to reduce latency, parallel tasks can be submitted, or the reward can
be increased. However, such strategies may strongly impact on costs. Similarly, to
improve the quality of the results and overcome human errors, more workers can
be employed on the same task, but this strategy also impacts on costs.

While some solutions consider tradeoff optimizations that involve all these
three aspects, other solutions involve just a pair of them, assuming the third as
an orthogonal concern or simply ignoring it.

2.3 Role of the Crowd in the Solution

Usually a crowdsourcing task is part of a wider activity and assumes a specific
role in the data processing workflow. We consider the following roles:

– crowds supply data to a system: the provision of values that are missing in a data
set (e.g., providing or completing tuples in a table [85]);
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– crowds label data: the data to be labelled is typically produced computationally,
and the labelled data used as part of a learning process (e.g., candidate tuple
pairs are labelled as correct or incorrect matches, for training matchers in entity
resolution [42]);

– crowds verify work produced by other workers or by an algorithm: interim or candi-
date conclusions are subject to review (e.g., within schema matching to verify
inferred types or constraints [72]).

2.4 Type of Interaction

The Type of Interaction dimension indicates the type of activity carried out. Re-
flecting current practice, we use as values:

– confirm value: given a proposal from the system, the worker judges whether it
is correct (e.g. Did Bob Dylan write To Ramona?);

– select value: given a question that admits a set of answers provided by the
system, the worker is asked to select the correct answer3 (e.g. What is the

music genre of the song To Ramona? Country | Folk | Grunge);
– provide value: the worker is asked to provide a missing value (e.g. Who wrote

To Ramona?).

While the Data Management Task defines the problem addressed with the sup-
port of the crowd, the Type of Interaction defines the kind of activity that crowd
workers perform. For example, if the Data Management Task is data cleaning and

validation and the worker is shown candidate equivalent entities, then the Type of

Interaction is confirm value.

2.5 Noise Management

The benefit of crowdsourcing depends on the quality of the information obtained.
Crowd-provided information is subject to a great degree of uncertainty: workers
can be imprecise, either because they make innocent (or deliberate) mistakes, or
because they give incorrect answers to ambiguous questions. Several techniques
exist to try to manage or reduce the impact of noise resulting from crowd interac-
tions [2,52].

– Majority voting represents a simple yet popular technique to deal with mistakes
and subjectivities possibly introduced by the workers. It consists of assigning
the same task to multiple workers and choosing as correct the results returned
by the majority of them. A variant of this approach weights the votes with a
score associated with the ability of each worker to return the correct answer.

– Other approaches rely on an explicit error model, which considers the crowd’s
answer as a random variable. Simpler models assume that workers make in-
dependent random mistakes with a constant error-rate. More sophisticated
approaches estimate the error-rate by scoring the workers, or relate the error-
rate to the difficulty of the task submitted to the crowd. We describe strategies
to score the workers in the following.

3 Although confirm value can be seen as a case of select value (in which the admitted values
are true or false), we prefer to distinguish it, as it represents the simplest form of interaction.
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– A family of approaches, that we call iterative, jointly evaluates the correctness
of answers from multiple workers and the error-rate of the workers by means of
an iterative process. They exploit the mutual dependency between agreement
on the results and accuracy of the worker by interleaving, up to convergence,
two steps: first, they estimate the correct answer for each task from the results
returned by multiple workers, accounting for the quality of each worker; sec-
ond, they estimate the accuracy of the workers by comparing their answers to
the ones computed in the first step. Many iterative approaches build on the
expectation maximization (EM) algorithm [27] and try to extend it consider-
ing specific features of the crowdsourcing context. For example, Joglekar et al.

extend EM in order to compute confidence intervals of workers’ error rate [57];
Raykar et al. distinguish the error-rate for positive and negative answers [88];
Whitehill et al. consider also the question difficulty [104]; Das Sarma et al. aim
to overcome limitations of the EM algorithm, such as the convergence towards
a local maximum [25]. Other iterative approaches, such as [59–61], are based
on standard belief propagation, or on SVD [24].

Hung et al. provide an interesting evaluation of the most important majority
voting and iterative approaches [50].

2.6 Worker Scoring

In proposals for crowdsourcing for data management, worker scoring has often been
seen as extrinsic. However, several strategies have been applied for evaluating the
performance of the workers, as follows:

– Constant error-rate: this is the simplest solution. It assumes that workers pro-
vide wrong answers with a constant (and independent) error-rate.

– Control queries: a simple technique for estimating the error rate of workers
is to rely on ground truth information. The submitted tasks include some
control queries, i.e., queries whose answers are known to the system, and these
are used to score the workers. This solution impacts on costs, because of the
effort in constructing the ground truth, and because of the payments made for
answering control queries rather than real ones.

– Redundant queries: an alternative solution that does not make use of ground
truth information is based on redundant queries. A number of queries are as-
signed to several workers, and error rate estimation is then based on agreement
between workers. The approach is based on the assumption that independent
workers make independent errors, which is indeed realistic for workers recruited
on a crowdsourcing platform. Also, this solution impacts on costs, since several
workers are paid for performing the same task. As discussed in the previous
dimension, when iterative approaches are adopted to manage noisy answers,
the results of redundant queries are used both to estimate the correct answer
and to score the workers.

– Worker comparison: this strategy consists of employing several workers but
submitting different queries to them. This approach is typically applied when
the problem to be solved involves computing statistics on large item sets: it
is assumed that on average, even on different subsets, the results obtained by
multiple workers should be similar. Workers whose results greatly differ from
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the others are assigned low scores. Also this strategy, like the previous one, can
be used in conjunction with iterative approaches to manage noisy answers.

– Reputation: worker selection is based on properties of their track record; these
scores are usually provided by the crowdsourcing platform.

Observe that a correct scoring of workers is an important issue that influences
the quality, the costs and the latency of a crowdsourced solution. If a worker is
underestimated, the solution does not trust the worker’s responses, and ends up
consuming more resources, thus raising the costs and possibly the latency. Con-
versely, if the worker is overestimated, the solution trusts the worker’s responses
too much, eventually compromising the quality of the results.

2.7 Task Composition

In crowdsourcing applications, there are often numerous alternative tasks that
could be posted to the crowd, and it may not be cost-effective to post all of them.
As such, a Task Composition strategy determines which tasks are posted, or the
order in which they are presented to the crowd. Depending on when decisions are
made, Task Composition may be characterized as:

– offline: task composition decisions are made upfront and not revised in the
light of information subsequently obtained; or

– online: task composition decisions are made taking into account information
as it is obtained.

Several proposals have addressed the online task composition problem [64,113,
40,11], treating it as an orthogonal issue. All the approaches assume that the same
question is submitted to several workers, in order to overcome the imprecision
of the crowd, and that a noise management technique (e.g., majority voting or
iterative) combines the answers to produce a reliable result. The crucial point is
that some questions raise a clear agreement of the answers, while others collect
conflicting results and then need to involve more workers (for example because
the former are easier than the latter). While in offline strategies the same level of
redundancy is required for all the questions, online strategies aim at optimizing
costs, or quality under budget constraints, composing tasks on the fly by including
questions that need more evidence to converge toward a solution.

3 Survey of Proposals

This section applies the dimensions from Section 2 to survey representative pro-
posals for crowdsourcing in data management. The section is organised by the
Data Management Task supported by the surveyed proposals. In each section we
describe a range of representative systems using the dimensions, and drill down
into one or a few state-of-the-art proposals, so that key challenges, and approaches
to addressing them, can be brought to the fore. It would not have been feasible
to provide equally detailed descriptions for all the proposals, but key similarities
and differences are highlighted by the dimensions. The values of the dimensions
for representative proposals are provided in Table 2.
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Table 2 Values of the dimensions for representative proposals.

Problem Solution

Proposal
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CrowdDB Querying, Cost, Supply data, Provide, Majority voting None Online
[37,39,101] Data Gathering Quality, Label data Confirm

Latency
Deco Querying, Cost, Supply data, Provide Majority voting Reputation Offline
[82] Data Gathering Quality Label data
Qurk Querying, Cost, Supply data, Provide, Iterative Redundant queries Offline
[69,68] Data Gathering Quality, Label data Confirm

Latency
CrowdOp Querying, Cost, Supply data, Provide, Iterative Redundant queries Offline
[35,64] Data Gathering Quality, Label data Confirm

Latency
CrowdScreen Operator Cost, Label data Confirm, Error-model Control queries, Online
[81,80] (filtering) Quality, Select Redundant queries,

Latency Reputation
CrowdFind Operator Cost, Label data Confirm Error-model Control queries Offline
[90] (finding) Latency
Davidson et al. Operator Cost, Label data Confirm Error-model None None
[26] (top-k, group-by) Quality
Lofi et al. Operator Cost, Supply data Provide Majority voting Control queries Online
[65] (skyline query) Quality
Guo et al. Operator Cost, Label data Confirm Error-model Constant Online
[43] (max) Quality error-rate
Venetis et al. Operator Cost, Label data Select Error-model None Online
[98] (max) Quality (task difficulty)

Latency
Verroios et al. Operator Latency Label data Select None None Online
[99] (max)
Marcus et al. Operator Cost, Label data Confirm, Majority voting, Worker Offline
[66] (count) Quality, Select Iterative comparison

Latency
System Q Data Integration Cost, Verify work Provide None None Offline
[95] Quality
McCann et al. Data Integration Cost, Verify work Confirm, Majority voting Control queries Online
[72] Quality Select
Zhang et al. Data Integration Cost, Verify work Confirm Error-model Reputation Online
[107] Quality
Hung et al. Data Integration Cost, Verify work Select Iterative Redundant queries Offline
[48] Quality
Fan et al. Data Integration Cost, Verify work Select Iterative Redundant queries Offline
[34] Quality
Osorno-Gutierrez et al. Data Integration Cost, Verify work Confirm Majority voting Redundant queries Offline
[78] Quality
Selke et al. Data Integration Cost, Label data Confirm Majority voting, Control queries, Offline
[91] Quality Reputation Redundant queries
Data Tamer Data Integration, Quality Verify work Confirm Error-model Redundant queries Offline
[94] Data Cleaning
ZenCrowd Data Cleaning Quality Verify work Confirm Error-model Reputation Offline
[28] (entity resolution)
Silk Data Cleaning Cost, Label data Confirm None None Online
[53,54] (entity resolution) Quality
Corleone Data Cleaning Cost, Label data Confirm Majority voting None Online
[42] (entity resolution) Quality
Whang et al. Data Cleaning Cost, Open Confirm None None Online
[103] (entity resolution) Quality
CrowdER Data Cleaning Cost Open Confirm None None Offline
[100] (entity resolution)
ACD Data Cleaning Cost, Verify work Confirm Error-model Reputation Online
[102] (entity resolution) Quality
CrowdCleaner Data Cleaning Cost, Verify work Confirm Error-model Reputation, Offline
[96] Quality Worker comparison
KATARA Data Cleaning Cost, Verify work Select Majority voting None Offline
[20] Quality
Zhang et al. Data Cleaning Cost, Verify work Confirm Error-model Control queries Online
[109] Quality
TripleCheck Data Cleaning Quality Verify work Confirm, None Redundant queries Offline
Mate Provide
Mozafari et al. Data Cleaning Cost, Label data Select Majority voting Control queries, Online
[75] (entity resolution) Quality Redundant queries

Latency
CrowdFill Data Gathering Cost, Supply data, Provide, Majority voting None Online
[85] Quality, Verify work Confirm

Latency
Alfred Data Gathering Cost, Label data Confirm Iterative Redundant queries Online
[22,23] Quality
Higgins Data Gathering Quality Supply data Select Majority voting None Offline
[62]
CrowdQ Search Quality Supply data Confirm – – Online
[29] Querying Label data Select

Verify data Provide
DataSift Search Quality Supply data Confirm Majority voting – Online
[83] Label data Provide
CrowdSearcher Search Quality Supply data Select – – Offline
[12] Label data Provide
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CREATE TABLE Department (

university STRING,

name STRING,

url CROWD STRING,

phone STRING,

PRIMARY KEY (university, name) );

Fig. 2 A sample CrowdSQL DDL statement.

3.1 Querying Databases with the Crowd

The opportunity of involving humans to process large amounts of data has mo-
tivated several proposals to extend traditional DBMSs with the ability of crowd-
sourcing data processing tasks.

Some proposals present full-fledged DBMSs that aim to appear to the end user
as similar as possible to a conventional database system. They introduce SQL ex-
tensions and revisit query evaluation and query optimization techniques, hiding the
complexities of dealing with humans as data sources or evaluators of operations,
including breaking down large tasks into smaller ones, composing and submitting
tasks on a crowdsourcing platform, dealing with latency, errors and inconsisten-
cies introduced by the crowds. Other proposals focused on novel implementation
of specific data processing operators (such as selection and aggregate functions)
with tasks accomplished by humans recruited on crowdsourcing platforms. In the
following, we first illustrate crowd-powered DBMSs, then describe proposals that
concentrate on specific operators.

3.1.1 Crowd-Powered DBMSs

CrowdDB

CrowdDB adopts a relational data model: the system evaluates queries expressed
in CrowdSQL (an SQL extension) using data stored in conventional tables as well
as data acquired by crowdsourcing [37]. In CrowdDB, the database designer can
define columns (possibly all the columns of a table) whose values can be gathered
by crowdsourcing. The execution of a query that involves one (or more) of these
columns triggers a process that transparently submits the data acquisition task
to a crowdsourcing platform, treating workers as noisy data sources. The system
automatically generates forms to gather values, prepares and submits tasks to a
crowdsourcing platform.

Figure 2 shows an example of a CrowdSQL DDL statement: it defines a table,
whose column url is annotated with the CROWD keyword to specify that its values
can be acquired from a crowdsourcing platform.

Columns whose values can be crowdsourced admit CNULL values, a special
CrowdSQL type indicating that the value should be acquired by crowdsourcing
when it is first used. These columns play a role during the query processing phase:
CNULL values are requested from the crowd when they are required to produce a
result. To give an example consider the queries in Figure 3. In the first query, the
target list includes all the attributes: the result tuples whose url column is CNULL

triggers the creation of tasks to acquire the values from the crowd. Similarly, tasks



Crowdsourcing for Data Management: a Survey 11

SELECT *

FROM Department

WHERE name = "Computer Science";

SELECT name, phone

FROM Department

WHERE url LIKE "%berkeley%";

Fig. 3 Examples of CrowdSQL queries.

SELECT name FROM Department

WHERE university ~= "U of Toronto"

Fig. 4 A CrowdSQL query with the CROWDEQUAL (∼=) operator.

to crowdsource the url values are created for evaluating the second query, where
the url attribute appears in the WHERE clause.

In these tasks, workers are involved to Provide values, but CrowdDB can also
crowdsource the evaluation of comparison and sorting operators, through specific
crowd powered operators, which requires a Confirm value type of interaction with
the crowd. Figure 4 shows a CrowdSQL query to select the name of departments
from the University of Toronto, asking the crowd to match with the possibly
different names (such as, “UofT”) given for that university in the database.

CrowdDB is built on top of a traditional DBMS, and query processing follows a
classical approach: a query is parsed into an algebraic expression which is then op-
timized and eventually evaluated. The query optimizer is based on query-rewriting
rules, and adopts heuristics that aim to reorder operators in order to minimize the
cost of crowd tasks. The system adopts a practical approach for bounding costs.
First, it allows the designer to define a budget bound by specifying a limit on
the number of crowdsourced tuples. Second, it adopts a majority voting strategy
to control the quality of the results; if no majority occurs, additional workers are
involved until the majority agrees or a given number of answers are collected.

A method for executing joins specifically tailored for CrowdDB relies on a two-
phase approach [101]: first, an algorithm computes a set of candidate matching
pairs; second, crowd workers are involved to decide whether the candidate pairs
match. A further optimization step considers transitive relations among pairs. To
reduce latency, it composes tasks online, identifying and submitting sets of pairs
to be crowdsourced in parallel. The approach does not consider any technique to
score the workers, and assumes that they always provide correct answers.

It is worth observing that in the novel scenarios introduced by CrowdDB, in
which crowd workers can provide the results of a query, there is a violation of the
closed world assumption, which characterizes the traditional query semantics. To
address this issue, CrowdDB leverages statistical techniques to estimate the com-
pleteness of a query result [39,97], analyzing the cost-benefit tradeoff of acquiring
more answers.

Qurk

Qurk is a relational query processing system that includes crowd-based versions of
selection (filter), join, and sort operators [68,69]. Qurk relies on SQL standards,
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SELECT name, findInfo(name).Email,

findInfo(name).Phone

FROM restaurants

TASK findInfo(String name)

RETURNS (String Email, String Phone)

TaskType: Question

Text: "Find the Email and the Phone for

the restaurant \%s", name

Response: Form(

("Email", String), ("Phone", String))

Fig. 5 A Qurk query (and its associated UDF) for a data gathering task.

SELECT c.name

FROM celebs AS c

WHERE isFemale(c.img)

TASK isFemale(Image img)

RETURNS: BOOLEAN

TaskType: Filter

Text: "<img src="\%s"><br/>

Is this person a woman?", img

YesText: "Yes", NoText: "No"

Fig. 6 A Qurk query (and its associated UDF) for filtering tuples.

and it adopts user-defined (scalar and table) functions (UDF) to provide a mech-
anism to crowdsource data acquisition as well as data processing. Through the
UDF, the designer specifies the task type (e.g. question, comparison) and infor-
mation used by the system to generate the user interfaces (HTML forms) for the
crowd.

Figure 5 presents an example Qurk SQL query: the crowd is asked to provide

values of emails and phone numbers for a restaurants table. Observe that the
query uses a findInfo() UDF (shown in the same figure), in which the designer
has specified the details required to build the user interface.

UDFs are also used to perform the typical data processing operators used by
a DBMS, such as filtering and joins. Figure 6 shows a query which uses a UDF
to crowdsource a filtering task for selecting female celebrities from a table storing
names and photos of celebrities.

To sort tables, Qurk introduces several crowd-based algorithms. Besides tra-
ditional sort algorithms based on pairwise comparison, Qurk implements sort al-
gorithms based on rank: the workers are asked to provide a numerical ranking for
each element. This approach requires fewer tasks (and hence incurs smaller costs)
than directly comparing pairs of objects, but produces a less accurate ordering. A
hybrid algorithm uses ratings to roughly order items, and iteratively improves that
ordering by using comparisons to refine the order of objects with similar ratings.

To join tables with crowd support, Qurk generates a HIT interface to ask work-
ers whether elements from two tables satisfy the join condition. The join algorithm
is a traditional block nested loop join, which uses the results of comparisons pro-
vided by the crowd. The main issue addressed in Qurk for the implementation of
a crowd empowered join algorithm is the effectiveness of the interaction with the
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crowd. Qurk explores several approaches. An approach, called NaiveBatch, con-
sists of preparing HITs that present several pairs vertically: a Confirmation query

asks the worker whether the two items satisfy the join condition. An alternative
approach, called SmartBatch, presents two columns of items, each column from
one of the join tables, and asks the worker to select pairs of items that join. If none
of the items match the join predicate, the worker can indicate no matches. Observe

that, given two tables, R and S, NaiveBatch requires |R||S|
b

HITs, where b is the

number of item pairs per HIT, while SmarthBatch requires |R||S|
rs HITs, where r

and s are the numbers of the items in the first and second columns, respectively.
Despite their differences, the experimental activity reported in [69] concludes that
the two approaches achieve similar results for accuracy and costs.

Query planning in Qurk is similar to conventional logical-to-physical query plan
generation: a query is translated into a plan-tree that processes input tables in a
bottom-up fashion. Relational operations that do not require human intervention
are pushed down the query plan.

Redundant queries and an iterative approach are adopted to score workers and
to manage noisy answers, and the experimental results show that the iterative

approach outperforms Redundant queries. Qurk composes the tasks offline, allowing
database administrators to set the number of tuples per task. Interestingly, in their
experimental evaluation the authors observe that although large tasks can reduce
the cost of operations such as sorts and joins, larger sizes lead many workers to
refuse to perform tasks at all, thus drastically compromising the latency of the
system.

Deco

Deco builds over the relational model and offers functionalities for answering
declarative queries posed over conventional tables together with data harvested on-
demand from the crowd [82]. In Deco, the database designer specifies the database
schema as a set of conceptual relations, a set of fetch rules, and a set of resolution
rules. Conceptual relations are logical relational tables, possibly in first normal
form; the system transparently derives a normalized raw schema, and generates
the tables where data are actually stored. Fetch rules are used to specify how to
acquire more data by means of procedures that implement access to human work-
ers. In particular, a fetch rule assumes the form A1 ⇒ A2 : P , where A1 and A2 are
sets of attributes from one conceptual relation, and P abstracts a fetch procedure
that abstracts a crowd process. The execution of a fetch rule triggers a request
for new values for the right set of attributes, given values of the left one. The
acquired values are cleansed by the resolution rules, and then used to populate
the relations of the raw schema. For example, a resolution can canonicalize some
values (such as addresses or phone numbers), or either choose one among several
values introduced by the crowd based on a majority voting strategy (e.g. choose
the most-cited phone number of a restaurant) or compute an aggregate (e.g. return
the average rating of a restaurant over the crowdsourced ratings).

The Deco query language introduces an SQL extension to indicate to the query
processor when and how data should be obtained from the crowd. In particular,
Deco introduces a clause to specify the minimum number of tuples to be returned
by a query. The query processor tries to answer the query using the current content
of the local tables; in case it does not retrieve the minimum number of tuples, it
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gathers additional data from the crowd. Workers are scored by Reputation, based
on services offered by the crowdsourcing platform, or on worker history. Data gath-
ering is performed by executing the fetch rules and the resolution rules defined by
the database designer. Query optimizations in Deco aims to find the query plan
that minimizes the estimated monetary costs [84]. One of the main challenges
for the query optimizer is the estimation of the cardinalities of the fetch opera-
tors, since the database state changes at query execution time, due to the fetch
operations.

CrowdOP

CrowdOp is another crowd enhanced RDBMS [35]. It proposes an SQL like lan-
guage that provides constructs for the following crowdsourcing operators: FILL,
to gather missing values; SELECT, to filter tuples based on conditions that might
involve humans (e.g. sentiment of a review, subject of an image); and JOIN, to
match tuples according to criteria that might require human intervention (e.g. a
join based on images from a pair of relations). Overall, the data model and the
data manipulation language are similar to those offered by CrowdDB. The most
distinctive and interesting feature of CrowsOp is its cost-based query optimizer,
which allows the system to minimize latency under user defined budget constraints
for all the three crowd-powered operators. To deal with the accuracy of the work-
ers, CrowdOp relies on CDAS, an iterative approach [64]. CDAS offers an online
processing techniques, which allows for an early termination of the tasks as soon
as the system estimates that further answers will not change the results. How-
ever, CrowdOp does not consider this feature since it adopts a simpler static cost
model. As we shall discuss in Section 4, the study of more involved cost models is
an intriguing research direction.

State-of-the-art. From Table 2 it can be seen that, with the exception of Deco, all
the Crowd-Powered DBMSs aim at optimizing all the objectives (latency, cost,
quality). It is worth noting that all the proposed systems adopt an offline task
composition strategy. As we discussed in Section 2.7, the task composition problem
is mainly seen as an orthogonal issue. However, the integration of a suitable online
task composition approach in a Crowd-Powered DBMS could impact on other
design choices, and thus represents an interesting research direction.

3.2 Crowd-Based Operators

Crowdsourcing has been applied to implement specific DBMS operators over large
data sets where humans perform tasks that cannot be efficiently expressed as al-
gorithms, such as selecting or counting images of “old” persons in a photo dataset.

Maximum

Several solutions have been proposed to address the issue of computing the maxi-
mum over a set of items. Guo et al. [43] rely on confirmation queries: they propose
a solution based on a sequence of pairwise comparisons. Their approach consists
of asking human workers to pick the greater between a pair of objects. Then, given
a set of answers, they consider how to select the maximum and how to improve
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the results by requesting further votes. They prove that, although the underlying
model is relatively simple (they assume each worker has an error-rate η < 0.5,
which is unaffected by worker identities, object values, or worker behavior), an
optimal solution is NP-hard.

Venetis et al. [98] follow a different approach, which resembles the counting

strategy adopted in [66]. Here, a set of items is presented to a group of workers,
and each worker is asked to indicate the greatest one. An aggregation function
(based on the consensus of the workers) combines the responses and determines
the winner. Since the input set can be very large, and a worker can only compare
a small set of items, they organize the overall process execution in steps: in every
step, a batch of items is submitted to the crowd, with further items being requested
in successive steps. The number of steps that is necessary to obtain a reliable
result corresponds to the latency of the overall process, while the number of tasks
corresponds to the cost. Computing the max is then modeled as an optimization
problem: the quality of the result is measured as the probability of finding the
maximum item from the whole input set, constrained by cost and time bounds.
Subjectivity and mistakes of the workers are addressed by introducing a set of
error models which consider the difficulty of the task based on the size of the
set of items that compose the task and on the diversity (measured by a distance
function) of the items within each set.

Verroios et al. [99] focus on the issue of computing the maximum among a
set of items, minimizing the latency under an optimal budget allocation. Their
solution consists of partitioning the set of items. The subsets are then processed in
parallel tournaments, by asking a complete set of pairwise comparisons among the
participant items. Several rounds are necessary to compute the overall maximum
item. They assume workers always respond correctly, and consider the management
of human errors as an orthogonal issue.

Anagnostopoulos et al. [6] also present an algorithm for computing the max-
imum element among a set: they develop a model to make explicit the role of
crowdsourcing experts and show the benefit wrt a model making use only of ordi-
nary crowdsourcing workers.

Filtering and Finding

Crowdsourcing solutions have also been studied for filtering and finding items in
large data sets. The goal of the former problem, filtering, is to select items, from
a large collection, that satisfy a given property (e.g. find all the photos that show
a cat in a photo database). The latter problem, finding, consists of finding a given
number of items (not necessary all) that satisfy a given property (e.g., find 10
photos that contain a cat).

CrowdScreen [81] develops a solution for the filtering problem that aims at min-
imizing costs with constraints on the budget and on the expected error rate. The
strategy is similar to the labeling solution of Marcus et al. [66]: items are evaluated
sequentially, and the workers are asked to answer a confirmation query about the
presence of the target property (e.g. Does this picture show one dog and two cats?

y/n). In order to improve accuracy, CrowdScreen asks different humans the same
question, and develops strategies to dynamically decide whether one or more ques-
tions are needed for each item. The solutions developed in [81] assume the same
error-rate for every worker. Such an assumption is relaxed in [80], which presents
a CrowdScreen extension where the error rates of the workers are estimated either
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by control queries or by reputation (history of worker performance). This work
also relies on prior information about the likelihood that some items can satisfy
the filter more often than others, and considers the issue of ranking items.

CrowdFind [90] addresses the finding problem and concentrates on the cost-
time tradeoff. The problem of finding a given number of items in a dataset has
two extreme solutions: a sequential analysis, which consists of posing a query to
the crowd item by item, and a parallel analysis, which consists of posing in parallel
as many queries as the number of items. The former minimizes the costs because
it stops posing queries as soon as the required number of items are found, whereas
the latter minimizes the latency. Hybrid solutions pose a sequence of a number
of queries in parallel. CrowdFind develops algorithms to turn a cost-optimal se-
quential algorithm into a hybrid algorithm, with an approximation bound α, that
asks at most α more questions than the sequential algorithm, with provable guar-
antees on the latency of the solution. CrowdFind assumes that the selectivity of
the target property, i.e. the percentage of items that satisfy the target property,
is given, and develop solutions for a deterministic and for an uncertain scenario.
In the deterministic scenario, workers always provide correct answers. In the un-
certain scenario, workers can make mistakes, and CrowdFind assumes that their
error rates are given, possibly computed by a set of control queries.

Skyline and Top-k

The idea of involving the crowd for data processing is also explored in the context
of skyline queries. The goal of a skyline query is to extract relevant tuples from
multidimensional databases according to multiple criteria. Lofi et al. [65] introduce
methods to obtain from the crowd the missing information that has the largest
impact on quality of the result set; they propose prediction algorithms to provide
approximate values for all the other tuples. Majority voting is adopted to address
noisy answers; control queries are used to discard unreliable workers. Interestingly,
the authors experimentally observed that higher quality with lower costs can be
achieved by issuing smaller tasks, and then dynamically choosing further tuples
to be crowdsourced after each task.

Davidson et al. study formal properties of top-k and group-by algorithms, in a
scenario where humans are involved to determine whether a pair of items exhibit
the same property and to order the items [26]. The proposed algorithms aim at
minimizing the number of confirmation queries submitted to the crowd to find the
exact top-k elements or the exact clusters. Similar to Venetis et al. [98], this work
models the error-rate considering the difficulty of the task, and not the reliability
of the workers. However, this work does not rely on paid workers, but rather
on users from an ad hoc social network, which stores the individual history of
each user. Ciceri et al. also propose to submit confirmation queries to the crowd
for solving pairwise comparisons between tuples with an uncertain score in top-k
query processing [21].

Counting

Here the Data Management Task being undertaken is counting; specifically, this
means identifying the fraction of the elements in a collection that satisfy a given
property. The challenge is to obtain a good estimate of the count, while minimizing
latency and cost.
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Trushkowsky et al. [97] solve a variant of the counting problem, specifically
targeted for sets whose cardinality and elements are unknown and can be obtained
only with the help of the crowd. Sarma et al. [25] focuses on the problem of counting
the number of objects in a photo. They show that humans are very good at batch
counting only if the batch is not too big, and deal with the problem of segmenting
and rearranging the images so that crowd workers are shown images with an
appropriate number of objects.

As a case study, we consider Marcus et al. [66] that propose solutions for
counting items that satisfy a given property.

Case Study: Counting with the Crowd

Marcus et al. [66] propose a solution for counting items that satisfy a given prop-
erty, with the help of the crowd, through four steps: (i) designing the crowd mi-
crotasks; (ii) developing techniques for combining the results from multiple micro-
tasks; (iii) estimating the worker reliability; and (iv) applying the result of (iii) to
detect spammers and decide when to stop collecting data. In the paper, examples
include identifying the fraction of people in a collection of photographs that are
male, or red-haired.

For designing the crowd microtask, they develop and compare two alternative
strategies. The first strategy, called labeling, follows a straightforward approach: it
consists of asking the workers to confirm the presence of the desired property item
by item. For example, this could involve showing crowd workers individual images
and asking them to indicate if the person in the image has red hair. An alternative
strategy, called counting, exploits human abilities of the workers: instead of asking
the workers to label the dataset item by item, it presents the worker a group of
items and asks for a rough estimation of the number of items that exhibit the
desired property. For example, the workers are shown a collection of images, and
then are asked to indicate about how many of the images feature people with red
hair.

For combining the results from multiple microtasks, the basic formula to calculate
F̂ , an approximation of the overall fraction of items with a given property in the

population, is straightforward: F̂ =
∑

i,j Fij
∑

i,j 1
, where Fij = Cij/BC is the ratio

between the count Cij reported by worker i on j-th microtask, and BC is the
number of randomly sampled items in it.

However, there are potential issues for estimating worker reliability, which are
handled in this case by giving a weight θi ∈ [0, 1] to each worker (0 means a
spammer and 1 is an high-quality worker) based on how far their answers are from
the mean F̂ . More precisely, let Fi denote the fraction of items as estimated based
only on the responses provided by worker i; the weight θi of a worker i is computed
as follows:

θi =

{

1− |Fi − F̂ |, if |Fi − F̂ | < λ

0, otherwise
.

Since θi and Fi are mutually dependent on each other by means of F̂ , their com-
putations are interleaved, adopting an iterative approach, until a fixed point is
reached. The workers are scored essentially adopting a Worker comparison strat-
egy based on the bias of their responses.
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The authors also include a step to detect spammers, i.e., the workers whose
weights are outliers (outside a 95% confidence interval wrt other workers). This
leads to a revised formula for calculating the final result (restricted only to the

responses of workers not classified as spammer): F̂final =
∑

i,j θiFij∑
i,j θi

. �

State-of-the-art. As shown in Table 2, the role of the crowd is to label data, with a
confirmation query or a selection for the majority of the operators; this is natural as
it corresponds to the most natural and effective type of interaction for the unskilled
workers that can be recruited on online platforms. Also, it is worth observing
that noise management and worker scoring are performed mainly by the simplest
approaches: error model (typically uniform) and control queries. As crowdsourcing
evolves, the engagement of workers with different levels of expertise, and tasks
with different levels of difficulty could inspire novel strategies for implementing
data management operators.

3.3 Integration

Data integration is classically mostly a manual activity conducted with tool sup-
port. Thus it depends on expert engagement, which limits its applicability in
large-scale scenarios, or those where the dynamics of the problem require constant
adjustment and refinement. As such, an incremental approach to the problem has
been an active topic, referred to as dataspaces [38] or pay-as-you-go data integration.
Crowdsourcing intersects with this trend insofar as crowds are viable sources of in-
formation for improving integrations. Data integration typically includes matching

to identify associations between schema elements, from which mapping generation

creates views that can be used to translate between representations. In the pay-as-
you-go approach, matching and mapping generation are carried out by algorithms
in a so-called bootstrapping phase. This is followed by an improvement phase, the
most important element of which is refinement, of both matches and mappings.

We first present a detailed case study of crowdsourcing for matching schemas
and then discuss further proposals covering other data integration tasks.

Case Study: Correspondence Correctness Questions

Matching [87] is a challenging task in data integration. Support tools typically
use ensembles of matching algorithms to assign a similarity score to the corre-
spondences between schema elements identified by the tool. We describe in detail
how Zhang et al. [107,110] have explored crowdsourced feedback to reduce the
uncertainty on such schematic correspondences.

Consider the example schema matching problem in Fig. 7 (adapted from [107]).
Two schemas, A and B, both describe information about academic staff that ex-
hibit schematic correspondences (e.g., those indicated by the dotted lines in the
figure) that a matching tool could identify, for example by assigning each corre-
spondence a probability.

In Zhang et al., a matching is a set of correspondences, as exemplified by
Fig. 8 (left), where probabilities are assigned to three possible matchings, viz.,
m1,m2,m3. Then, the probability of a correspondence is obtained by summing the
probabilities of the matchings in which that correspondence occurs, as exemplified
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Fig. 7 Example Schema Matching Problem.

Fig. 8 Possible Matchings (left) and correspondences (right) of Fig. 7.

by Fig. 8 (right). Thus, correspondence c1 occurs in matchings m1 and m2, so its
probability is the sum m1 +m2 = 0.45 + 0.3 = 0.75.

Broadly speaking, Zhang et al. aim to reduce the uncertainty of the set of
correspondences that comprise the possible matchings identified by a matching
tool. In order to achieve this aim, the approach is to seek feedback from the crowd.
Each feedback instance is referred to as a correspondence correctness question (CCQ).
For example, the CCQ Qc1 associated with correspondence c1 would be posed to
a crowd worker as follows: “Is the correspondence <PROFESSOR.Name, ProfName>

correct?”.
The problem addressed by Zhang et al. can be stated more formally as follows:

Given two schemas S and T , the set RS of possible matchings and the probability

assignment Pr function computed by some matching tool, minimize the uncertainty of

RS subject to a maximum budget B of the CCQs induced by RS. The uncertainty of
RS is the Shannon entropy computed over the possible matchings in RS, i.e.

H(RS) = −
∑

mi ∈RS

Pr(mi) logPr(mi)

CCQs are published to crowd workers and return an answer. If the worker
returns true (resp., false) to a CCQ, this answer reduces to zero the probability
of all the matchings in which the associated correspondence does not (resp., does)
occur. Since the sum of the probabilities over the set of possible matchings is
equal to one, the probabilities of the possible matchings that remain valid are
redistributed.



20 Valter Crescenzi et al.

The error rate of a crowd worker can be used to adjust a crowdsourced answer.
This enables an approach in which a sequence of answers progressively reduces
uncertainty, no matter in which order the sequence is assimilated. In other words,
it is the set of CCQs that are chosen for publication that determines the quality
of the solution for a given budget.

Given this approach to modelling uncertainty and assimilating crowd feedback,
Zhang et al. compute the expected reduction in uncertainty resulting from the
answer to a given CCQ Qc in the context of a set of possible matchings RS, i.e.,
∆Hc = H(RS)−H(RS|Qc).

They first consider an approach they call Single CCQ in which one CCQ at a
time is chosen to be published to the crowd. At each pass, the CCQ that causes
the greatest expected reduction in uncertainty is greedily chosen. The feedback
is assimilated and the algorithm iterates, terminating when the budget is spent.
Computing the expected reduction in uncertainty from a CCQ is inefficient for
larger schemas, so Zhang et al. show that choosing the CCQ one is intuitively
most uncertain about (i.e., the CCQ with probability closest to 0.5) is an effective
strategy even though correspondences are not independent.

The latency of Single CCQ could be large, i.e., it fails to exploit the possibility
of many crowd workers answering CCQs in parallel. To address this shortcoming,
Zhang et al. propose an approach they call Multiple CCQ in which k CCQs are
published simultaneously. They observe the trade-off that arises in this case: rather
than publishing the best CCQ every time, they publish k good CCQs at a time.

The Multiple CCQ approach is based on the observation that a published CCQ
can be in one of three states, viz., waiting, if it has not been taken by a worker yet;
active, if it has been taken by a worker who is working on it; and answered, if its
answer is available for assimilation. The crowd platform used by Zhang et al., viz.,
Amazon Mechanical Turk, allows for the withdrawal of CCQs that are published
but waiting, thereby saving on budget depletion.

The approach is as follows: the set of best k CCQs is computed and published,
then monitored continuously up to consumption of the budget. As answers become
available, the following operations take place: (1) all waiting CCQs are withdrawn,
(2) the feedback is assimilated causing the probability distribution to be adjusted,
(3) the set of best k CCQs taking into account the active CCQs is recomputed
and its completion w.r.t. to the latter is published.

In terms of our dimensions, the work on CCQs uses the crowd to feed an
algorithm that aims to optimize quality and formalizes a trade-off with cost. The
interaction with crowd workers takes the form of tasks, which are composed online
in an adaptive fashion, that requires the workers to confirm a value, with answers
being adjusted based on their error rate as induced by their reputation. �

We now discuss other representative proposals for the use of crowds to help
perform data integration tasks.

In schema matching, automatic techniques identify candidate associations be-
tween schema elements, typically building on syntactic measures of similarity [87].
Crowdsourcing can be used to obtain human confirmation of candidate matches.
For example, McCann et al. [72] adopted a Web 2.0-style reliance on online com-
munities to reduce the schema-matching burden on what the authors refer to as
builders, defined to be a relatively small set of volunteers that largely shoulders the
task of integrating data within a community. The focus is on using a crowd of end
users to provide feedback that, upon assimilation, can improve the accuracy of the



Crowdsourcing for Data Management: a Survey 21

matches postulated by a matching tool. The tasks are confirm value ones, but users
can also be asked to confirm or deny postulated predicates or constraints (such as
whether two or more attributes stand in a relationship, functional or otherwise).
User feedback forms a stream of answers to a question (as a crowd task) posed to
users. The stream is closed when a certain number of answers have been collected
and the gap between the majority and minority answers is of a given magnitude,
in which case the answer is selected using majority voting. Algorithmically, Mc-
Cann et al. follow the common approach of using a question builder and an answer
analyzer. For a slightly more detailed description of an another example of this
approach, see our account of Hung et al.’s work on matching networks [48].

With a view to increasing the efficiency of crowdsourcing feedback on matches,
Hung et al. [48] introduce the notion of matching networks as comprising a set of
schemas (rather than a pair) with associated pairwise attribute correspondences
linking the schemas. Various constraints are identified that apply to such net-
works, that can be used to reduce the numbers of questions that need to be put to
the crowd. In more recent work [49,47], matching networks have been also shown
to have a beneficial impact on the effort required by an expert user (note, not a
crowd setting anymore) in performing the task of reconciling matches. Algorithmi-
cally, Hung et al. first use a matching platform to generate pairwise attribute-level
matches, then use crowd workers to decide whether the generated matchings are
valid. In this second stage, the matches are analyzed by a question builder that
generates the questions to the crowd. The answers undergo a probabilistic process
of aggregation that aims to take into account worker error. This provides an error
rate that, depending on a predefined threshold, may cause the system to go back
to the crowd. If all matches, are decided, the process stops.

Fan et al. [34] have focussed on matching web tables, which, the authors argue,
present particular challenges due to their being, as a rule, incomplete in two main
respects: limited instance-level information because a web table is typically ex-
tracted from a single web page, and limited schema-level information since schema
descriptions are seldom available for extracted tables. To counteract this, Fan et

al. adopt a concept-based approach (using Freebase
4). In order to decide how to

use the crowd to help algorithms infer matches the authors use a utility function
based on a column’s matching difficulty and influence: the greater the difficulty
and influence, the more likely the column is to be crowdsourced. Algorithmically,
the approach works in two phases. The first, called concept determination, aims
to use the crowd to determine the concept that best represents the values of each
column of every web table using a utility function on the information returned.
The second, called table match generation, finds all the pairs of columns from
distinct tables that are assigned to the same concept, and creates a semantic cor-
respondence between the two columns.

Crowdsourcing user feedback for mapping generation has received less attention
than for matching. Belhajjame et al. [7], describe how user feedback on the results
of queries posed against a mediated schema can be used to select which mappings
to use for answering a given query, possibly constrained to a minimum value for
precision or for recall. Users are asked to annotate a result tuple as belonging or not
to the intended answer. The empirical evaluation in [7] used synthetic feedback,
and investigated how many feedback instances sufficed to converge the mapping

4 freebase.com
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selection and refinement problem to a ground truth. Following on from that work,
[78] verified that similar convergence behaviour was observed when feedback was
crowdsourced rather than synthetically generated. One distinctive contribution
here is the more detailed, comparative approach to managing unreliable responses
using majority voting for noise management and redundant queries for worker
scoring. Algorithmically, the proposal in [78] expands on simpler applications of
majority voting to consider not just inter-work reliability but also intra-worker
reliability (i.e., the case where a worker may give different answers to the same
question at different times, due to the influence of habituation, for example).

A special case of the mapping refinement problem is addressed by the Q Sys-
tem [95,105]. Mappings are built from the result of keyword queries and then
exposed as web forms. End users can obtain results through the web forms. The
results are annotated with feedback, which is assimilated by the system to im-
prove the mappings. Algorithmically, the Q system builds a set of conjunctive
queries that, essentially, interpret the associations as opportunities for joining the
sources. The conjunctive queries are trees against the graph (where sources are
nodes and association are edges) and by summing up the edge costs in each query,
the Q system can select the top-k conjunctive queries and take their iterated outer
union.

A complementary task that can also be considered to involve data integration is
schema expansion, which supports the addition of attributes to query results. Using
an example relating to movies, Selke et al. [91] explore how a stored movie collec-
tion can be extended with genre information extracted from social web sources,
supplemented with input from crowd sourcing to train the extraction process.

Most proposals for crowdsourcing in data integration focus on a single step
within the integration process. In contrast, Data Tamer [94] is a proposal for
automating an extract-transform-load pipeline, with input from expert users or
crowds to refine the results of the automation. In particular, with allocations of
tasks to workers guided by Data Tamer Administrators, experts or crowds may
be consulted to confirm if pairs of attributes match or if pairs of entities are
duplicates. An interesting feature of the proposal is that a consistent approach
is followed for managing user features and response quality across the two data
management tasks supported by crowdsourcing. Algorithmically, Data Tamer is
a more complex proposal in that, in its data integration aspect, it supports two
approaches: top-down (where the target schema is known) and bottom-up (where
this global knowledge is missing). This leads to three knowledge-availability levels,
viz., zero, partial and complete knowledge is available, respectively. The basic
strategy in Data Tamer’s approach to integration is for it to take an attribute
from a data source and pairwise compare it to a collection of other attributes. Data
Tamer relies on a built-in collection of algorithms, which they term experts. Their
application returns scores that are weight-aggregated to yield a combined score.
For attribute mapping, Data Tamer considers the knowledge-availability level in
order to decide attribute pairings, where, for all levels, worst-case complexity is
quadratic. They propose parallelization as well as a two-pass approach that would
use more experts as filter before focussing on a subset of the initial input.

State-of-the-art. As far as data integration goes, from Table 2 it can be seen that the
crowd task is predominantly confirm value, which means that other forms of crowd
interaction have yet to be fully explored to support integration. Furthermore, there
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Algorithm 1: ActiveLearning(TrainingData t)

1 while entropy has yet to stabilise do

2 forests = LearnForests(t);
3 examples = HighEntropyExamples(forests);
4 t = t ∪ ConsultCrowd(examples);

5 return forests;

are no examples of one form of crowdsourced information being used to support
multiple data integration tasks. It is worth noting that a significant amount of
work has been done on pay-as-you-go integration (e.g. [89,55,95]) that addresses
different aspects of user feedback without using crowdsourcing as the means to
obtain such feedback. It would be interesting to explore how crowdsourcing would
enable, improve or complement this kind of dataspace task.

3.4 Cleaning and Validation

To support Cleaning and Validation, the crowd can serve as an additional source of
evidence for refining the results of automatic or manual processes, or can provide
data that can be used to inform the configuration of cleaning tasks.

Entity Resolution (ER), also known as duplicate detection, instance identification

and merge-purge, is the task of identifying different records that represent the same
real-world entity (relevant surveys include [19,32]). ER may support integration
(e.g. link discovery in linked open data [28,54]), or data cleaning within or across
data sets, but in either case the principal challenges to be addressed, and the
components in a solution, tend to be similar. As it is impractical to perform
a detailed all-against-all comparison, which is O(n2) on the number of records,
for large data sets, ER proposals tend to include: (i) blocking, whereby pairs of
records that are candidate duplicates are identified using inexpensive, approximate
comparison schemes; and (ii) detailed comparison, whereby pairs (or groups) of
records that are associated by blocking are subject to more detailed scrutiny.

A number of relevant proposals have been made that could, but do not, crowd-
source information, e.g. techniques that learn blocking schemes (such as [73,9])
use training data that could be crowdsourced. Here, we start with a detailed case
study, and move on to discuss some further representative proposals that involve
some form of community engagement.

Case Study: Corleone

Perhaps the most ambitious entity resolution proposal, in particular in terms of
the range of crowd issues addressed, is Corleone [42], which seeks to provide hands-

off crowdsourcing for entity resolution, whereby the whole entity resolution process
is automated, obtaining input from the crowd as needed. An overview of the com-
ponents of the Corleone workflow is given in Figure 9. In Corleone, blocking and
detailed comparison both involve forests of decision trees, which are learned from ex-
amples, which are principally obtained from the crowd. For example, if we assume
that Match is an operator that applies to an attribute, then Figure 10 illustrates
an example decision tree that might be used to match pairs of books. From these
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Fig. 9 Corleone workflow.

Match(title)

Match(publisher)

Match(year)

yesno

no

no

Fig. 10 Example Corleone decision tree for matching books [42].

trees, matching rules with different properties can be extracted. The steps from
the workflow in Figure 9 proceed as follows:

1. Learn Decision Trees: Decision trees are learned using the random forest learner
from the Weka data mining library [44]. In the first instance, trees are learned
from two positive and two negative examples provided by the user. Additional
positive and negative examples are obtained by active learning [92], following
Algorithm 1. In active learning, a learning algorithm identifies specific data
instances for labelling that are likely to be helpful for improving the result of
the learning process. In crowdsourcing, active learning has been widely em-
ployed with a view to reducing the number (and thus cost) of interactions with
the crowd (e.g. [31,114,54,75,108]). In Algorithm 1, LearnForests applies
the existing decision tree learning algorithm to a training data set, consisting
of labeled pairwise matches. In each iteration of the active learning, HighEn-

tropyExamples identifies unlabeled pairs over which the existing forests of
decision trees disagree the most. These pairs are then labeled by the crowd
by way of ConsultCrowd. The algorithm terminates when the entropy of
the learned forests has stabilised; in practice this means that recent rounds



Crowdsourcing for Data Management: a Survey 25

of learning have not increased the consistency of the predictions made by the
decision trees.

2. Accuracy Estimator: With its objective of performing hands-off crowdsourcing,
given a forest of decision trees, there is a need to predict how effective it is
at identifying matching records. Corleone includes a proposal that seeks to
provide accurate estimates of the precision and recall of a result without the
need to obtain large samples from the crowd. To do this, it requires samples
of labeled data that contain a large fraction of true positives, which it obtains
by learning decision trees following the approach from (1), but preferring rules
that have high precision (i.e. those that return few negative examples). Thus
crowdsourcing is also used to obtain samples that can be used to estimate the
accuracy of the precision and recall estimates for the matching rules.

3. Difficult Pairs Locator: The decision trees learned at step (1) are unlikely to cor-
rectly identify all pairs that should match, and this failure could be systematic
in some way (for example, the rules may be more effective at distinguishing
between fiction books than textbooks). Thus Corleone supports the iterative
development of matching rules by identifying examples that have proved diffi-
cult to match using the decision trees from (1), and iterating, as illustrated in
Figure 9, with a view to learning new rules for these difficult-to-match pairs.

Overall, Corleone addresses some challenges, such as the cost-effective learning
of match rules that are shared by other proposals, but is distinctive in using the
crowd to support several different tasks with a view to automating all the steps in
Figure 9. �

We now discuss other representative proposals for the use of crowds for entity
resolution and other data cleaning tasks.

ZenCrowd [28] is another proposal that includes both blocking and more de-
tailed matching of individuals, where the crowd is enlisted to contribute in specific
cases. ZenCrowd identifies pairs of instances in linked open data (LOD), with a
view to identifying where different publishers have published data about the same
entity. A central feature here is the use of a probabilistic factor graph to accumulate
evidence from different sources, which include automated analyses and responses
to crowd tasks. From this graph, a probability is derived that a candidate pair is
correct, taking into account worker reliability.

The Silk Link Discovery Workbench [54], like ZenCrowd, focuses on LOD,
with a view to generating links between data published by different publishers.
The crowd is used to judge whether candidate pairs are duplicates, and the action
taken on the basis of the feedback is to refine the collection of detailed comparison
rules: feedback provides a subset of the ground truth, which a genetic programming
approach uses to evaluate the effectiveness of comparison rules [53]. In this setting,
active learning is used to select candidate matches on which to seek feedback (viz.
those on which the current rules disagree the most), to drive rule refinement.

Active learning algorithms to support crowd-powered ER tasks have also been
developed by Mozafari et al. [75]. Even if their approach is generic w.r.t. the
learning task (they do not make any assumption on the classification algorithm
used), their experimental evaluation over an ER dataset shows competitive results
with respect to other approaches specifically devoted to solve ER problems. The
proposed algorithms consider online composition of tasks: the items to be labeled
are chosen based on previous results. Also the degree of redundancy to handle



26 Valter Crescenzi et al.

uncertainty of the answers is determined dynamically, based on the difficulty of
the task and on worker scores by means of control queries or majority voting.

More focused proposals target specific features of entity resolution. For exam-
ple, Whang et al. [103] target the selection of candidate record pairs for crowd-
sourcing. Automated methods yield probabilities for candidate pairs, which in turn
provide evidence for alternative clusters of records that represent the same real
world entity. These alternative clusters are seen as possible worlds, and the identi-
fication of pairs for which the crowd is consulted involves a search for the questions
whose answers would yield the highest expected accuracy. Several algorithms are
proposed, and empirically evaluated, for exploring this search space. Another fo-
cused proposal is CrowdER [100], which concentrates on the construction of crowd
tasks. Given candidate pairs, an algorithm is proposed that groups the candidate
pairs into tasks such that feedback is obtained on every candidate pair and each
task contains a bounded number of records. The purpose of this proposal is to
gather the required information while minimising the number of crowd tasks, and
thus the expense. In Table 1 for both of these more focused proposals we have
indicated that the Role of the Crowd is Open, as the proposals are more focused
on addressing what questions to put to the crowd than on what to do with the
answers. Where the entity resolution includes clustering, Adaptive Crowd-based
Deduplication (ACD) [102] consults the crowd for confirmation of candidate pairs
that are significant for influencing the merging or splitting of candidate clusters.

Other than in ER, there has been some work on the use of crowdsourcing
to evaluate the quality of public data resources. For example, CrowdCleaner [96]
investigates the repair of errors identified across different web sites that describe
versions of the same real world concept; examples discussed include conference
deadlines and grocery prices, where the same information may be published (and
updated) on several sites. Key features of the proposal include the use of jury

selection techniques for choosing workers [16,113], and of the use of entropy for
analysing the consistency of results. In TripleCheckMate [1], linked data quality
is assessed using a combination of stakeholders to find data quality problems in
DBpedia, and non-stakeholders to verify the presence of specific issues. In the
experiment, stakeholders who are experts on linked data participate in a contest in
which there is a prize for the participant who identifies the most quality problems.
Then non-stakeholders participate in paid microtasks to verify the results of the
stakeholders. The experiment carried out identifies various interesting features
(e.g. that different types of activity are better suited to stakeholders than to non-
stakeholders), and the details of how crowd tasks were presented and the potential
ambiguity in results had a significant impact on reliability. In addition, Mortensen
et al. [74] discuss how features of ontologies, such as the class hierarchy, can be
cast as crowd tasks for verification.

In KATARA [20], tabular data is cleaned, in the light of information in knowl-
edge bases such as DBpedia [10]. The (potentially dirty) tabular database is aligned
with a knowledge base, with crowdsourcing used to select between candidate align-
ments. The crowd is asked questions such as What is the most accurate type of the

highlighted column, on the basis of several data values from the table. Data items
that are inconsistent with the knowledge base, which essentially acts as a reference
data set, are candidates for repair. The cleaning of dirty data sets is also addressed
by Zhang et al. [109], who use the crowd to distinguish between alternative values
for attributes of uncertain tuples. In this approach, the candidate values for a tuple
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each have a probability of being correct, with such probabilities being revised in
the light of (uncertain) crowd results using Bayesian inference.

State-of-the-art. As far as crowdsourcing for cleaning goes, one can see that most
possibilities suggested by Table 1 have been explored, although most proposals
involve the Confirm value Type of Interaction. This reflects the fact that automatic
techniques are often used to generate candidate solutions, which are then labelled
or validated using the crowd. Another notable regularity is that, in data cleaning,
most crowdsourcing proposals have targeted entity resolution. In this sense, there
is considerable scope for exploring the use of crowds in other data cleaning tasks.
For example, there seems not to have been any work on crowdsourcing to support
format transformations, which are an important part of data wrangling [58], even
though there have been promising results on learning format transformations from
examples [93].

3.5 Search

Crowdsourcing has also been explored in the context of search computing and infor-
mation retrieval. Here, we focus on proposals that involve crowds in search-related
tasks from a data management rather than an information retrieval perspective
(for an appreciation of the breadth of work on crowdsourcing in information re-
trieval, [115] is a useful entry point). We discuss a few proposals that mostly
address complementary questions but share the concern with bridging the gap be-
tween classical structured queries (whose answers can be answered exactly against
data) and unstructured, keyword-based queries (for which answers are best-effort
and sometimes the result of subjective judgements).

CrowdQ [29] aims to use crowds to understand the semantics of keyword-
based queries to the extent that they can be answered against a data repository
and also give rise to templates which can be reused, possibly in composition with
other templates. The main ensuing challenges are addressed by CrowdQ as follows.
Firstly, using part-of-speech tagging (POST), named-entity recognition (NER)
and other natural-language processing techniques, CrowdQ generalizes a query
into a template (e.g., birthdate of Barack Obama may yield birthdate of [person] ).
Then, the crowd is used for two purposes: firstly, to identify the relationships
between entities, and, secondly, to identify the type of the expected answers (which
is crucial to achieve the goal of composing templates). Finally, CrowdQ derives
an executable structured query, generates the corresponding query template, and
stores and indexes the latter. The whole approach is bootstrapped by offline mining
of templates off search engine query logs to populate the template repository.

An example query (adapted from [29]) illustrates the whole process and the role
of the crowd in answering it. Let the query Q be birthdate of the main actor of forrest

gump. Q is annotated as follows: [birthdate : NOUN] [main actor of : NOUN PHRASE]

[forrest gump : ENTITY]. Let the following be a query template (in SPARQL) in
the repository

SELECT ?y ?x

WHERE {?y birthdate ?x .

?z stars ?y .
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?z label [MOVIE]

}

CrowdQ goes to the crowd to ask Is ’forrest gump’ an entity in the query Q, yes

or no?. Assume the answer is yes. CrowdQ now goes to the crowd to ask What is the

relationship between: main actor and ’forrest gump’. Assume the answer is something
like the main actor stars in a movie. Now, CrowdQ goes to the crowd to ask Is the

relationship between main actor and ’forrest gump’ the same as between Leonardo di

Caprio and Titanic, and that between Michael J. Fox and Back to the Future, yes or

no?. Assume the answer is yes. Finally, CrowdQ goes to the crowd to ask Does

the answer to the query Q include a birthdate, a main actor, ’forrest gump’, something

else? Pick one or more. Assume the answer is birthdate, main actor.
The answers from the crowd allow CrowdQ to match (type(?y) = main actor,

type(?x) = birthdate) and instantiate (MOVIE := ’Forrest Gump’) in the query
template above to yield the following executable query:

SELECT ?y ?x

WHERE {?y birthdate ?x .

?z stars ?y .

?z label ’Forrest Gump’

}

The DataSift [83] system is a response to perceived shortcomings of modern
search engines. Among those that DataSift singles out are: (a) no support for
queries that interleave text and images; (b) limited support for queries over non-
textual corpora (where, e.g., image tags are used but with less than adequate
results); (c) poor performance on queries with many keywords (because of growth
in noise levels); (d) no, or somewhat arbitrary, disambiguation (e.g., brown mustang

might refer to a car or an animal, but the major search engines are in no doubt that,
here, the car is meant, and if the user means the animal the keyword horse must
be added, and some advise this); (d) no adequate support for queries involving
human judgement.

These shortcomings impose on the user the burden to reformulate and refine
the search terms but it may happen that the user altogether lacks the knowledge to
do so. DataSift proposes to turn to the crowd to reduce the reformulation burden
and to make up for the lack of knowledge. In doing so, it aims to enable rich
queries over corpora as well as to filter the resulting answers.

DataSift relies on there being APIs into a crowdsourcing platform/market (such
as Amazon Mechanical Turk) and into a corpus (e.g., Amazon Products, Google
Images, etc.). It implements five plug-and-play components: two crowdsourced
components (called Gather and Filter) interact with the crowdsourcing platform,
four automated components (called Retrieve, Sort and Weighting) perform func-
tions that are independent of the crowd.

One example query that interleaves text and images (adapted from [83]) and
that could be grounded on Amazon Products and Google Images is type of cable

that connects to 〈 IMAGE 〉, where 〈 IMAGE 〉 is a picture of a USB B-female socket
in a printer.

DataSift makes use of configurations, which are selected compositions of the
above components, to implement workflows such as, e.g., GRFS (for gather, retrieve,
filter, sort). In this case, given a query Q, and a desired number s of reformulations
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from a desired number h of crowd workers, G goes to the market place and, posing
the question Please provide s reformulations of the following query Q, obtains h × s

reformulations of Q. Next, the retrieve component R, given a desired number n

of results and, possibly, weights on terms, goes to the corpus and returns n/(hs)
items. Next, F goes to the market place with the items returned and, posing the
question Does the item i satisfy the following query Q, yes or no?, obtains P positive
and N negative answers. Finally, the sort component S returns a range for every
item, where the higher the difference (P − N) for an item, the higher its rank.
The headline result in [83] is that the GRFW1RFS configuration produces the best
results, with 100-150% gains in precision. In this configuration, the reformulations
returned in G are weighted by the number of items for which P > N obtained in F.
This then enables the second occurrence of R to focus on the best reformulations,
the results of which are then, finally, filtered in the second occurrence of F and
ranked in S

CrowdSearcher [12] focusses on one specific shortcoming amongst those iden-
tified by DataSift, viz., the lack of adequate support for queries involving human
judgement. An example (adapted from [12]) is Which are the trendiest areas in Lon-

don?, which, if reduced to matching answers, may result in outdated answers or
answers that do not relate to the user’s sense of what trends count for them.

Unlike most other crowdsourcing proposals we survey here, CrowdSearcher
seeks human input from social networks like Facebook and Twitter. The key insight
is to combine exploratory search with crowdsourcing of information that requires
human judgement. In the following account, note that what [12] calls a query is
often best understood as a task sent to crowd.

A CrowdSearcher query is a transformation of an input model to an output
model involving a mapping scheme that selects the crowd engines to use, the query
representation for each such engine, and the resources to be used in answering the
query. The input is a triple (every component of which is optional) 〈C,N, S〉, where
C is the data collection offered for searching, N is a natural language (NL) query,
S is a collection of queries for eliciting preferences over, for tagging, for ranking, for
grouping and for manipulating elements in C. As an example (adapted from [12]),
set C to be a collection of ten football players, each of which is represented by a
name and photo, N to be the question Which players do you admire?, and S to be
the singleton containing the preference query {like}. In another example (again,
adapted from [12]), C could be a set of three new restaurants in town, represented
with name, photo and location, N the request Which restaurants serve the best fish

at the best price in town?, S = {like, tag, order}. The output is a pair 〈C′, S′〉

where C′ is the data collection returned by the crowd, and S′ contains the answers
to non-NL queries in S. Note that C′ captures the fact that some of the queries
in the input component S can result in the insertion, deletion and modification
of elements in the input component C. For the first example query above, the
output would have C = C′ and S′ the counts of likes per player. The mapping
model is a quintuple 〈E,G,H, T,D〉 where E contains the crowd engines to be
used (e.g., Facebook), G specifies the crowd workers to be used (e.g., friends of the
user), H are constraints on the execution (e.g., at least k answers from n different
workers), T is, if the query complexity demands, the method for decomposing
queries and recomposing answers, and D is the engine-specific presentation method
(e.g., tabular, pins on map, etc.). For the second example above, the mapping could
have E = {Facebook}, G the friends of the user who live in town, H might be a
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query timeout at five minute, T is not needed, and D is pins on a map denoting
restaurant locations.

Differently from crowdsourcing for integration, there is more variety, if not
complementarity among the proposals for crowdsourcing search above. Clearly,
CrowdQ is aiming to use crowds to bridge the gap between keyword search and
structured queries, with the latter very much the goal. In contrast, both DataSift
and CrowdSearcher go out to the crowd in order to acquire information that
is hard or impossible to obtain by computation (such as image identification or
judgements of merit, respectively). This last pair can also be contrasted in terms
of focus. DataSift is more focussed in tackling those shortcomings of search engines
which lead users to have to engage in a sequence of reformulations of a request
until the desired information emerges. CrowdSearcher is particularly focussed on
facilitating the collection and subsequent use of such value judgements. Notably,
since such value judgements stem from a group that shares values, it targets not
crowd market places (as do most other proposals, including DataSift) but social
networks, making use of the APIs exposed by such companies as Facebook and
Twitter.

State-of-the-art. In terms of Table 2, it seems clear that the focus on crowdsourcing
for search has been on improving quality, under the assumption that the return
on investment from much longer response times is significant given the limitations
of current search engines. It also worth noting that the surveyed proposals have
not shown much concern with noise management or worker scoring. In the case
of CrowdSearcher, this is perhaps understandable as their model presumes the
identification on the part of the user of the workers to target (e.g., followers of
someone in Twitter, friends in Facebook). In the case of DataSift, some concern
with noise management is revealed by the use of majority voting.

3.6 Data Gathering

We have seen that the languages of the Crowd-Powered DBMSs in the literature
(Section 3.1.1) include constructs to acquire data by crowdsourcing. There are
also proposals that have studied other approaches for gathering data by means of
crowdsourcing.

Higgins [62] has investigated how to apply crowdsourcing for improving the
performance of an information extraction engine to automatically acquire facts, i.e.
binary relations between named entities, from a large text corpora. In particular,
Higgins leverages the crowd to improve the results: noisy and incomplete results
are submitted to a crowd platform. HITs are composed of questions consisting
of a pair of entities and a phrase (produced by the information extraction stage)
that can suggest the context. Workers are asked to provide the relationship that
correlates the entities, by choosing from a set of candidate answers.

Another way to harvest data is to extract data from web pages by means of
wrappers. For data-intensive websites, a wrapper consists of a set of rules (e.g.
XPath expressions) that extract values of interest from the HTML code (see [18]
for a survey on wrappers). Alfred [22] is a supervised wrapper inference system
that crowdsources the production of training data with a view to reducing costs
and enabling large-scale applications. It starts by generating a pool of candidate
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candidate table

final table

Fig. 11 CrowdFill: data entry interface (left); candidate and final tables (right).

extraction rules, then it poses confirmation questions to crowd workers, in order
to rank the candidates and select the most accurate one. It also deals with the
inherent uncertainty of crowd responses, adopting an iterative strategy for noise
management combined with a Worker comparing strategy for scoring the workers.
An important aspect of the system is that it uses a probabilistic model to estimate
the quality of the candidate solutions available, so that it can decide at runtime
how many workers are needed to produce an accurate solution [23].

Foundational issues in applying crowdsourcing for mining patterns from online
users have been studied in [3,4], where a framework is developed to exploit the
crowd for learning association rules, although the focus is more on communities of
users than on paid microtasks.

Case Study: CrowdFill

CrowdFill [85] introduces an original paradigm for collecting structured data from
the crowd. Figure 11(left) shows its user interface: the same partially filled table
is shown to all the engaged workers, and they are asked to concurrently fill empty
values. By providing to every worker the same view, CrowdFill stimulates a collab-

orative behaviour of the participating workers that are required to build on other
workers’ contributions.

The users are allowed to contribute to a candidate table, such as that shown
in Figure 11(top-right), by means of the following possible operations: insert a
new empty row; fill an empty (column) value; upvote/downvote a complete row.
Every row r is then associated with a simple score f(ur, dr) based on the number
of upvotes (ur) and downvotes (dr) collected on it. CrowdFill adopts a simple
majority voting scheme requiring at least three votes:

f(ur, dr) =

{

ur − dr , if ur + dr ≥ 2
0 , otherwise

Although CrowdFill does not propose any worker scoring model, its compensa-
tion scheme, rather than being based on a fixed reward, measures the contribution
of each worker to the final table, i.e., a table built by aggregating all the contribu-
tions and by solving the conflicting and/or incomplete information accumulated
from the workers. For example, the final table in Figure 11 has been obtained by
removing all incomplete rows, omitting the Beckham row because it is scored zero,
and selecting a single Ronaldinho row with the best score.
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In order to motivate the workers, keep them engaged and focused on the enter-
ing the needed data, a reward for every column is shown to the worker, as visible
in the header row of Figure 11(left), and the rewards are given only to workers
providing contributions surviving into the final table. Two (non-exclusive) types
of contributions are considered: a direct contribution is that providing a value that
becomes part of a final row; an indirect contribution is the first to provide a new
value that occurs in the column of a final row, even if its row will not become
final. Several budget allocation schemes are presented together with a preliminary
experimental evaluation. �

State-of-the-art. As shown in Table 2, the Role of the Crowd for data gathering
is Supply data or, for papers also dealing with Querying data management task,
Label data, eventually in the context of a complete crowd-based DBMS (CrowdDB,
Deco, Qurk, CrowdOp). Exceptions to this rule are Alfred [22] and Higgins [62]
that use the crowd workers to build data extraction programs, and to improve
an information extraction system, respectively. In this sense, there is considerable
scope for exploring the use of crowds for augmenting knowledge bases by using
both data/information extraction systems working on available sources and data
directly provided by the crowd [14].

4 Discussion

The previous section has reviewed representative results from across the data
management lifecycle; this section presents a critical discussion of some of the
recurring themes and open issues encountered.

4.1 Crowdsourcing Data Management Workflows

The work surveyed uses public crowds, where workers receive financial rewards,
so there is a strong incentive to maximize the return on investment. For the full
range of data management tasks, proposals have sought to minimize the number
of crowd tasks required, by adapting query optimization algorithms (e.g. [69,84,
101]), by deploying established techniques such as active learning (e.g. [22,54]),
or by using custom techniques for predicting which crowd tasks will yield the
most valuable information (e.g [100]). The state-of-the-art is that there has been
widespread experimentation with different techniques on a range of problems, but
that the wider applicability of the individual approaches is not easy to establish
from the literature. In complex data management issues, such as entity resolution
or data integration, effective solutions consist of articulated workflows that include
different stages. There has been preliminary work on optimizing workflows, where
several of the steps in the workflow could benefit from crowdsourcing [56,42].
Here the challenge is to decide how much of the budget to assign to each of the
steps in the workflow. This raises additional questions for investigation, such as
estimating the financial return on investment that can be expected from different
crowd data management activities, so that crowdsourcing can be deployed by
an organisation in a way that yields the maximum return. For example, in the
case of pay-as-you-go data integration, there is potential benefit in seeking crowd
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feedback on the outcomes of more than one stage. Feedback on matching can be
propagated to mapping (as when a match is disconfirmed, mappings that rely on
it are disconfirmed) and vice versa (since evidence that a mapping is correct can
be used as evidence that the matches it relies on are also correct). In spite of these
opportunities, most work surveyed here has taken such subtasks in isolation. In
principle, one would wish to understand better how and when to alternate and
interleave the submission of crowdsourcing tasks for collecting feedback on related
tasks, e.g., on matches and mappings.

4.2 Leveraging Workers Expertise

Crowdsourcing platforms have started profiling workers by their expertise and
grouping tasks by categories. For example Amazon Mechanical Turk has intro-
duced workers with qualifications and similarly CrowdFlower allows workers to be-
come skilled contributors. AMT qualifications and CrowdFlower certifications are
gained by passing admission tests, and tasks that require expert workers usually
have higher wages. Also, CrowdFlower proposes templates to design tasks according
to popular categories, such as, sentiment analysis, data collection, data validation,
data categorization, image annotation. However, there is little evidence in the
literature on the different types of task that can be carried out by workers with
different levels of expertise, or on the implications of such decisions for quality and
cost-effectiveness. A few proposals (e.g. [98,75]) have developed methods to evalu-
ate the error rates based on the characteristics and the difficulties of the task. Also,
there are solutions to decide which tasks to assign to which workers (e.g. [60,45]),
as well as approaches that propose the combined use of expert and non-expert
workers (e.g. [1,6,77]). Nevertheless, there is a need for additional research to
make the process of recruiting from, and assigning tasks to, heterogeneous groups
of workers more systematic. iCrowd [33] represents a step toward this direction:
when a new task is submitted, it is assigned to known workers that performed
well on similar tasks, while the accuracy of new workers is profiled by means of
a set of suitable tasks. The presence of expert workers has also been exploited to
improve the results of complex tasks. For example, Nguyen et al. [77] study how
to leverage answers provided by expert (and costly) workers to evaluate random
workers. There has also been work on identifying when users can share subjective
feedback, by clustering workers with similar perspectives [8], but again there is a
need to generalise such work beyond a specific case study. Additional research has
investigated topics such as modeling the skills of crowd members [112], the identi-
fication of experts within social networks [13], and the identification of collections
of crowd workers that together are most likely to generate a correct outcome [16].
Results such as these could potentially be combined to improve crowdsourcing
platforms, providing comprehensive facilities for crowd workers management and
selection.

4.3 Rewarding and Engagement Models

A fundamental aspect that has been neglected in the literature is the study of
rewarding and engagement models. Setting the reward associated with a task is
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not trivial. Excessive rewards can lead to a waste of money, while low rewards
do not attract workers. Note that these factors strongly influence the latency
of a crowdsourced job, since in a crowdsourcing platform workers are limited,
and they are more likely to choose tasks with higher rewards. Iperiotis et al [36]
proposes a rewarding model based on explicit trade-off between task price and
desired completion time. More recently, Gao et al [41] have developed a more
involved model, which considers the crowd arrival rate and the probability of the
crowd to accept the tasks. These proposals adapt to the standard pricing model of
current crowdsourcing platforms; however, we believe that it is worth investigating
other scenarios. For example, COPE [15] models crowdsourcing platforms as a
trade market, where workers act as traders who aim to maximize their profit
by submitting their contribution. Another interesting scenario is that presented
by WiseMarket [17], which proposes a paradigm to recruit workers from social
media platforms in order to have a larger base of workers, including people with
variegated experiences from a broader demographic base than those usually found
on standard crowdsourcing platforms, and develops a rewarding model based on
the achievement of specific results.
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