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Abstract

We present a novel method for obtain-

ing high-quality, domain-targeted multi-

ple choice questions from crowd workers.

Generating these questions can be difficult

without trading away originality, relevance

or diversity in the answer options. Our

method addresses these problems by lever-

aging a large corpus of domain-specific

text and a small set of existing ques-

tions. It produces model suggestions for

document selection and answer distractor

choice which aid the human question gen-

eration process. With this method we have

assembled SciQ, a dataset of 13.7K mul-

tiple choice science exam questions.1 We

demonstrate that the method produces in-

domain questions by providing an analysis

of this new dataset and by showing that hu-

mans cannot distinguish the crowdsourced

questions from original questions. When

using SciQ as additional training data to

existing questions, we observe accuracy

improvements on real science exams.

1 Introduction

The construction of large, high-quality datasets

has been one of the main drivers of progress in

NLP. The recent proliferation of datasets for tex-

tual entailment, reading comprehension and Ques-

tion Answering (QA) (Bowman et al., 2015; Her-

mann et al., 2015; Rajpurkar et al., 2016; Hill

et al., 2015; Hewlett et al., 2016; Nguyen et al.,

2016) has allowed for advances on these tasks,

particularly with neural models (Kadlec et al.,

*Work done while at the Allen Institute for Artificial In-
telligence.

1Dataset available at http://allenai.org/data.
html

2016; Dhingra et al., 2016; Sordoni et al., 2016;

Seo et al., 2016). These recent datasets cover

broad and general domains, but progress on these

datasets has not translated into similar improve-

ments in more targeted domains, such as science

exam QA.

Science exam QA is a high-level NLP task

which requires the mastery and integration of in-

formation extraction, reading comprehension and

common sense reasoning (Clark et al., 2013;

Clark, 2015). Consider, for example, the ques-

tion “With which force does the moon affect tidal

movements of the oceans?”. To solve it, a model

must possess an abstract understanding of nat-

ural phenomena and apply it to new questions.

This transfer of general and domain-specific back-

ground knowledge into new scenarios poses a

formidable challenge, one which modern statisti-

cal techniques currently struggle with. In a re-

cent Kaggle competition addressing 8th grade sci-

ence questions (Schoenick et al., 2016), the high-

est scoring systems achieved only 60% on a mul-

tiple choice test, with retrieval-based systems far

outperforming neural systems.

A major bottleneck for applying sophisticated

statistical techniques to science QA is the lack of

large in-domain training sets. Creating a large,

multiple choice science QA dataset is challeng-

ing, since crowd workers cannot be expected to

have domain expertise, and questions can lack rel-

evance and diversity in structure and content. Fur-

thermore, poorly chosen answer distractors in a

multiple choice setting can make questions almost

trivial to solve.

The first contribution of this paper is a general

method for mitigating the difficulties of crowd-

sourcing QA data, with a particular focus on mul-

tiple choice science questions. The method is

broadly similar to other recent work (Rajpurkar

et al., 2016), relying mainly on showing crowd
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Example 1 Example 2 Example 3 Example 4

Q: What type of organism is
commonly used in preparation of
foods such as cheese and yogurt?

Q: What phenomenon
makes global winds blow
northeast to southwest or
the reverse in the northern
hemisphere and northwest
to southeast or the reverse
in the southern hemisphere?

Q: Changes from a less-ordered
state to a more-ordered state
(such as a liquid to a solid) are
always what?

Q: What is the
least danger-
ous radioactive
decay?

1) mesophilic organisms 1) coriolis effect 1) exothermic 1) alpha decay
2) protozoa 2) muon effect 2) unbalanced 2) beta decay
3) gymnosperms 3) centrifugal effect 3) reactive 3) gamma decay
4) viruses 4) tropical effect 4) endothermic 4) zeta decay
Mesophiles grow best in mod-
erate temperature, typically be-
tween 25�C and 40�C (77�F
and 104�F). Mesophiles are often
found living in or on the bod-
ies of humans or other animals.
The optimal growth temperature
of many pathogenic mesophiles is
37�C (98�F), the normal human
body temperature. Mesophilic
organisms have important uses
in food preparation, including
cheese, yogurt, beer and wine.

Without Coriolis Effect the
global winds would blow
north to south or south
to north. But Coriolis
makes them blow north-
east to southwest or the re-
verse in the Northern Hemi-
sphere. The winds blow
northwest to southeast or
the reverse in the southern
hemisphere.

Summary Changes of state are
examples of phase changes, or
phase transitions. All phase
changes are accompanied by
changes in the energy of a sys-
tem. Changes from a more-
ordered state to a less-ordered
state (such as a liquid to a gas)
are endothermic. Changes from
a less-ordered state to a more-
ordered state (such as a liquid to
a solid) are always exothermic.
The conversion . . .

All radioactive
decay is dan-
gerous to living
things, but al-
pha decay is the
least dangerous.

Figure 1: The first four SciQ training set examples. An instance consists of a question and 4 answer op-

tions (the correct one in green). Most instances come with the document used to formulate the question.

workers a passage of text and having them ask

a question about it. However, unlike previous

dataset construction tasks, we (1) need domain-

relevant passages and questions, and (2) seek

to create multiple choice questions, not direct-

answer questions.

We use a two-step process to solve these prob-

lems, first using a noisy classifier to find relevant

passages and showing several options to workers

to select from when generating a question. Sec-

ond, we use a model trained on real science exam

questions to predict good answer distractors given

a question and a correct answer. We use these pre-

dictions to aid crowd workers in transforming the

question produced from the first step into a multi-

ple choice question. Thus, with our methodology

we leverage existing study texts and science ques-

tions to obtain new, relevant questions and plau-

sible answer distractors. Consequently, the human

intelligence task is shifted away from a purely gen-

erative task (which is slow, difficult, expensive and

can lack diversity in the outcomes when repeated)

and reframed in terms of a selection, modification

and validation task (being faster, easier, cheaper

and with content variability induced by the sug-

gestions provided).

The second contribution of this paper is a

dataset constructed by following this methodol-

ogy. With a total budget of $10,415, we collected

13,679 multiple choice science questions, which

we call SciQ. Figure 1 shows the first four train-

ing examples in SciQ. This dataset has a multiple

choice version, where the task is to select the cor-

rect answer using whatever background informa-

tion a system can find given a question and several

answer options, and a direct answer version, where

given a passage and a question a system must pre-

dict the span within the passage that answers the

question. With experiments using recent state-of-

the-art reading comprehension methods, we show

that this is a useful dataset for further research. In-

terestingly, neural models do not beat simple infor-

mation retrieval baselines on the multiple choice

version of this dataset, leaving room for research

on applying neural models in settings where train-

ing examples number in the tens of thousands, in-

stead of hundreds of thousands. We also show that

using SciQ as an additional source of training data

improves performance on real 4th and 8th grade

exam questions, proving that our method success-

fully produces useful in-domain training data.

2 Related Work

Dataset Construction. A lot of recent work has

focused on constructing large datasets suitable for

training neural models. QA datasets have been as-

sembled based on Freebase (Berant et al., 2013;

Bordes et al., 2015), Wikipedia articles (Yang

et al., 2015; Rajpurkar et al., 2016; Hewlett et al.,
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2016) and web search user queries (Nguyen et al.,

2016); for reading comprehension (RC) based on

news (Hermann et al., 2015; Onishi et al., 2016),

children books (Hill et al., 2015) and novels (Pa-

perno et al., 2016), and for recognizing textual en-

tailment based on image captions (Bowman et al.,

2015). We continue this line of work and construct

a dataset for science exam QA. Our dataset dif-

fers from some of the aforementioned datasets in

that it consists of natural language questions pro-

duced by people, instead of cloze-style questions.

It also differs from prior work in that we aim at

the narrower domain of science exams and in that

we produce multiple choice questions, which are

more difficult to generate.

Science Exam Question Answering. Exist-

ing models for multiple-choice science exam QA

vary in their reasoning framework and training

methodology. A set of sub-problems and solution

strategies are outlined in Clark et al. (2013). The

method described by Li and Clark (2015) eval-

uates the coherence of a scene constructed from

the question enriched with background KB infor-

mation, while Sachan et al. (2016) train an en-

tailment model that derives the correct answer

from background knowledge aligned with a max-

margin ranker. Probabilistic reasoning approaches

include Markov logic networks (Khot et al., 2015)

and an integer linear program-based model that

assembles proof chains over structured knowl-

edge (Khashabi et al., 2016). The Aristo ensem-

ble (Clark et al., 2016) combines multiple rea-

soning strategies with shallow statistical methods

based on lexical co-occurrence and IR, which by

themselves provide surprisingly strong baselines.

There has not been much work applying neural

networks to this task, likely because of the paucity

of training data; this paper is an attempt to address

this issue by constructing a much larger dataset

than was previously available, and we present re-

sults of experiments using state-of-the-art reading

comprehension techniques on our datasets.

Automatic Question Generation. Transform-

ing text into questions has been tackled be-

fore, mostly for didactic purposes. Some ap-

proaches rely on syntactic transformation tem-

plates (Mitkov and Ha, 2003; Heilman and Smith,

2010), while most others generate cloze-style

questions. Our first attempts at constructing a sci-

ence question dataset followed these techniques.

We found the methods did not produce high-

quality science questions, as there were problems

with selecting relevant text, generating reasonable

distractors, and formulating coherent questions.

Several similarity measures have been em-

ployed for selecting answer distractors (Mitkov

et al., 2009), including measures derived from

WordNet (Mitkov and Ha, 2003), thesauri (Sumita

et al., 2005) and distributional context (Pino et al.,

2008; Aldabe and Maritxalar, 2010). Domain-

specific ontologies (Papasalouros et al., 2008),

phonetic or morphological similarity (Pino and

Esknazi, 2009; Correia et al., 2010), probabil-

ity scores for the question context (Mostow and

Jang, 2012) and context-sensitive lexical infer-

ence (Zesch and Melamud, 2014) have also been

used. In contrast to the aforementioned similarity-

based selection strategies, our method uses a

feature-based ranker to learn plausible distractors

from original questions. Several of the above

heuristics are used as features in this ranking

model. Feature-based distractor generation mod-

els (Sakaguchi et al., 2013) have been used in the

past by Agarwal and Mannem (2011) for creating

biology questions. Our model uses a random for-

est to rank candidates; it is agnostic towards tak-

ing cloze or humanly-generated questions, and it

is learned specifically to generate distractors that

resemble those in real science exam questions.

3 Creating a science exam QA dataset

In this section we present our method for crowd-

sourcing science exam questions. The method is

a two-step process: first we present a set of candi-

date passages to a crowd worker, letting the worker

choose one of the passages and ask a question

about it. Second, another worker takes the ques-

tion and answer generated in the first step and pro-

duces three distractors, aided by a model trained

to predict good answer distractors. The end result

is a multiple choice science question, consisting of

a question q, a passage p, a correct answer a∗, and

a set of distractors, or incorrect answer options,

{a0}. Some example questions are shown in Fig-

ure 1. The remainder of this section elaborates on

the two steps in our question generation process.

3.1 First task: producing in-domain

questions

Conceiving an original question from scratch in

a specialized domain is surprisingly difficult; per-

forming the task repeatedly involves the danger of
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falling into specific lexical and structural patterns.

To enforce diversity in question content and lex-

ical expression, and to inspire relevant in-domain

questions, we rely on a corpus of in-domain text

about which crowd workers ask questions. How-

ever, not all text in a large in-domain corpus, such

as a textbook, is suitable for generating questions.

We use a simple filter to narrow down the selection

to paragraphs likely to produce reasonable ques-

tions.

Base Corpus. Choosing a relevant, in-domain

base corpus to inspire the questions is of crucial

importance for the overall characteristics of the

dataset. For science questions, the corpus should

consist of topics covered in school exams, but not

be too linguistically complex, specific, or loaded

with technical detail (e.g., scientific papers). We

observed that articles retrieved from web searches

for science exam keywords (e.g. “animal” and

“food”) yield a significant proportion of commer-

cial or otherwise irrelevant documents and did not

consider this further. Articles from science-related

categories in Simple Wikipedia are more targeted

and factual, but often state highly specific knowl-

edge (e.g., “Hoatzin can reach 25 inches in length

and 1.78 pounds of weight.”).

We chose science study textbooks as our base

corpus because they are directly relevant and lin-

guistically tailored towards a student audience.

They contain verbal descriptions of general nat-

ural principles instead of highly specific example

features of particular species. While the number

of resources is limited, we compiled a list of 28

books from various online learning resources, in-

cluding CK-122 and OpenStax3, who share this

material under a Creative Commons License. The

books are about biology, chemistry, earth science

and physics and span elementary level to college

introductory material. A full list of the books we

used can be found in the appendix.

Document Filter. We designed a rule-based

document filter model into which individual para-

graphs of the base corpus are fed. The system

classifies individual sentences and accepts a para-

graph if a minimum number of sentences is ac-

cepted. With a small manually annotated dataset

of sentences labelled as either relevant or irrele-

vant, the filter was designed iteratively by adding

filter rules to first improve precision and then re-

2www.ck12.org
3www.openstax.org

call on a held-out validation set. The final fil-

ter included lexical, grammatical, pragmatical and

complexity based rules. Specifically, sentences

were filtered out if they i) were a question or ex-

clamation ii) had no verb phrase iii) contained

modal verbs iv) contained imperative phrases v)

contained demonstrative pronouns vi) contained

personal pronouns other than third-person vii) be-

gan with a pronoun viii) contained first names

ix) had less than 6 or more than 18 tokens or

more than 2 commas x) contained special char-

acters other than punctuation xi) had more than

three tokens beginning uppercase xii) mentioned

a graph, table or web link xiii) began with a dis-

course marker (e.g. ‘Nonetheless’) xiv) contained

absoulute wording (e.g. ‘never’, ‘nothing’, ‘def-

initely’) xv) contained instructional vocabulary (

‘teacher’, ‘worksheet’, . . . ).

Besides the last, these rules are all generally

applicable in other domains to identify simple

declarative statements in a corpus.

Question Formulation Task. To actually gen-

erate in-domain QA pairs, we presented the fil-

tered, in-domain text to crowd workers and had

them ask a question that could be answered by

the presented passage. Although most undesirable

paragraphs had been filtered out beforehand, a

non-negligible proportion of irrelevant documents

remained. To circumvent this problem, we showed

each worker three textbook paragraphs and gave

them the freedom to choose one or to reject all

of them if irrelevant. Once a paragraph had been

chosen, it was not reused to formulate more ques-

tions about it. We further specified desirable char-

acteristics of science exam questions: no yes/no

questions, not requiring further context, query-

ing general principles rather than highly specific

facts, question length between 6-30 words, answer

length up to 3 words (preferring shorter), no am-

biguous questions, answers clear from paragraph

chosen. Examples for both desirable and undesir-

able questions were given, with explanations for

why they were good or bad examples. Further-

more we encouraged workers to give feedback,

and a contact email was provided to address up-

coming questions directly; multiple crowdwork-

ers made use of this opportunity. The task was

advertised on Amazon Mechanical Turk, requiring

Master’s status for the crowdworkers, and paying

a compensation of 0.30$ per HIT. A total of 175

workers participated in the whole crowdsourcing
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project.

In 12.1% of the cases all three documents were

rejected, much fewer than if a single document had

been presented (assuming the same proportion of

relevant documents). Thus, besides being more

economical, proposing several documents reduces

the risk of generating irrelevant questions and in

the best case helps match a crowdworker’s indi-

vidual preferences.

3.2 Second task: selecting distractors

Generating convincing answer distractors is of

great importance, since bad distractors can make

a question trivial to solve. When writing science

questions ourselves, we found that finding rea-

sonable distractors was the most time-consuming

part overall. Thus, we support the process in our

crowdsourcing task with model-generated answer

distractor suggestions. This primed the workers

with relevant examples, and we allowed them to

use the suggested distractors directly if they were

good enough. We next discuss characteristics of

good answer distractors, propose and evaluate a

model for suggesting such distractors, and de-

scribe the crowdsourcing task that uses them.

Distractor Characteristics. Multiple choice

science questions with nonsensical incorrect an-

swer options are not interesting as a task to study,

nor are they useful for training a model to do well

on real science exams, as the model would not

need to do any kind of science reasoning to answer

the training questions correctly. The difficulty in

generating a good multiple choice question, then,

lies not in identifying expressions which are false

answers to q, but in generating expressions which

are plausible false answers. Concretely, besides

being false answers, good distractors should thus:

• be grammatically consistent: for the question

“When animals use energy, what is always

produced?” a noun phrase is expected.

• be consistent with respect to abstract proper-

ties: if the correct answer belongs to a certain

category (e.g., chemical elements) good dis-

tractors likely should as well.

• be consistent with the semantic context of the

question: a question about animals and en-

ergy should not have newspaper or bingo as

distractors.

Distractor Model Overview. We now intro-

duce a model which generates plausible answer

distrators and takes into account the above criteria.

On a basic level, it ranks candidates from a large

collection C of possible distractors and selects the

highest scoring items. Its ranking function

r : (q, a∗, a0) 7! s
a
0 2 [0, 1] (1)

produces a confidence score s
a
0 for whether a0 2

C is a good distractor in the context of question q

and correct answer a∗. For r we use the scoring

function s
a
0 = P (a0 is good | q, a∗) of a binary

classifier which distinguishes plausible (good) dis-

tractors from random (bad) distractors based on

features φ(q, a∗, a0). For classification, we train r

on actual in-domain questions with observed false

answers as the plausible (good) distractors, and

random expressions as negative examples, sam-

pled in equal proportion from C. As classifier we

chose a random forest (Breiman, 2001), because

of its robust performance in small and mid-sized

data settings and its power to incorporate nonlin-

ear feature interactions, in contrast, e.g., to logistic

regression.

Distractor Model Features. This section de-

scribes the features φ(q, a∗, a0) used by the dis-

tractor ranking model. With these features, the

distractor model can learn characteristics of real

distractors from original questions and will sug-

gest those distractors that it deems the most realis-

tic for a question. The following features of ques-

tion q, correct answer a∗ and a tentative distractor

expression a0 were used:

• bags of GloV e embeddings for q, a∗ and a0;

• an indicator for POS-tag consistency of a∗

and a0;

• singular/plural consistency of a∗ and a0;

• log. avg. word frequency in a∗ and a0;

• Levenshtein string edit distance between a∗

and a0;

• suffix consistency of a∗ and a0 (firing e.g. for

(regeneration, exhaustion));

• token overlap indicators for q, a∗ and a0;

• token and character length for a∗ and a0 and

similarity therein;

• indicators for numerical content in q, a∗ and

a0 consistency therein;
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• indicators for units of measure in q, a∗ and

a0, and for co-occurrence of the same unit;

• WordNet-based hypernymy indicators be-

tween tokens in q, a∗ and a0, in both direc-

tions and potentially via two steps;

• indicators for 2-step connections between en-

tities in a∗ and a0 via a KB based on OpenIE

triples (Mausam et al., 2012) extracted from

pages in Simple Wikipedia about anatomical

structures;

• indicators for shared Wordnet-hyponymy of

a∗ and a0 to one of the concepts most fre-

quently generalising all three question dis-

tractors in the training set (e.g. element, or-

gan, organism).

The intuition for the knowledge-base link and

hypernymy indicator features is that they can re-

veal sibling structures of a∗ and a0 with respect

to a shared property or hypernym. For example,

if the correct answer a∗ is heart, then a plausible

distractor a0 like liver would share with a∗ the hy-

ponymy relation to organ in WordNet.

Model Training. We first constructed a large

candidate distractor set C whose items were to be

ranked by the model. C contained 488,819 ex-

pressions, consisting of (1) the 400K items in the

GloVe vocabulary (Pennington et al., 2014); (2)

answer distractors observed in training questions;

(3) a list of noun phrases from Simple Wikipedia

articles about body parts; (4) a noun vocabulary of

∼6000 expressions extracted from primary school

science texts. In examples where a∗ consisted of

multiple tokens, we added to C any expression

that could be obtained by exchanging one unigram

in a∗ with another unigram from C.

The model was then trained on a set of 3705 sci-

ence exam questions (4th and 8th grade) , separated

into 80% training questions and 20% validation

questions. Each question came with four answer

options, providing three good distractor examples.

We used scikit-learn’s implementation of ran-

dom forests with default parameters. We used 500

trees and enforced at least 4 samples per tree leaf.

Distractor Model Evaluation. Our model

achieved 99, 4% training and 94, 2% validation ac-

curacy overall. Example predictions of the dis-

tractor model are shown in Table 1. Qualita-

tively, the predictions appear acceptable in most

cases, though the quality is not high enough to use

them directly without additional filtering by crowd

workers. In many cases the distractor is semanti-

cally related, but does not have the correct type

(e.g., in column 1, “nutrient” and “soil” are not el-

ements). Some predictions are misaligned in their

level of specificity (e.g. “frogs” in column 3), and

multiword expressions were more likely to be un-

related or ungrammatical despite the inclusion of

part of speech features. Even where the predicted

distractors are not fully coherent, showing them to

a crowd worker still has a positive priming effect,

helping the worker generate good distractors ei-

ther by providing nearly-good-enough candidates,

or by forcing the worker to think why a suggestion

is not a good distractor for the question.

Distractor Selection Task. To actually gener-

ate a multiple choice science question, we show

the result of the first task, a (q, a∗) pair, to a crowd

worker, along with the top six distractors sug-

gested from the previously described model. The

goal of this task is two-fold: (1) quality control

(validating a previously generated (q, a∗) pair),

and (2) validating the predicted distractors or writ-

ing new ones if necessary.

The first instruction was to judge whether the

question could appear in a school science exam;

questions could be marked as ungrammatical, hav-

ing a false answer, being unrelated to science or re-

quiring very specific background knowledge. The

total proportion of questions passing was 92.8%.

The second instruction was to select up to two

of the six suggested distractors, and to write at

least one distractor by themselves such that there

is a total of three. The requirement for the worker

to generate one of their own distractors, instead of

being allowed to select three predicted distractors,

was added after an initial pilot of the task, as we

found that it forced workers to engage more with

the task and resulted in higher quality distractors.

We gave examples of desirable and undesir-

able distractors and the opportunity to provide

feedback, as before. We advertised the task on

Amazon Mechanical Turk, paying 0.2$ per HIT,

again requiring AMT Master’s status. On aver-

age, crowd workers found the predicted distrac-

tors good enough to include in the final question

around half of the time, resulting in 36.1% of the

distractors in the final dataset being generated by

the model (because workers were only allowed to

pick two predicted distractors, the theoretical max-

imum is 66%). Acceptance rates were higher in
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Q: Compounds containing an
atom of what element, bonded
in a hydrocarbon framework,
are classified as amines?

Q: Elements have or-
bitals that are filled with
what?

Q: Many species use
their body shape and col-
oration to avoid being de-
tected by what?

Q: The small amount of energy
input necessary for all chemi-
cal reactions to occur is called
what?

A: nitrogen A: electrons A: predators A: activation energy
oxygen (0.982) ions (0.975) viruses (0.912) conversely energy (0.987)
hydrogen (0.962) atoms (0.959) ecosystems (0.896) decomposition energy (0.984)
nutrient (0.942) crystals (0.952) frogs (0.896) membrane energy (0.982)
calcium (0.938) protons (0.951) distances (0.8952) motion energy (0.982)
silicon (0.938) neutrons (0.946) males (0.877) context energy (0.981)
soil (0.9365) photons (0.912) crocodiles (0.869) distinct energy (0.980)

Table 1: Selected distractor prediction model outputs. For each QA pair, the top six predictions are

listed in row 3 (ranking score in parentheses). Boldfaced candidates were accepted by crowd workers.

the case of short answers, with almost none ac-

cepted for the few cases with very long answers.

The remainder of this paper will investigate

properties of SciQ, the dataset we generated by

following the methodology described in this sec-

tion. We present system and human performance,

and we show that SciQ can be used as additional

training data to improve model performance on

real science exams.

Figure 2: Total counts of question, answer and dis-

tractor length, measured in number of tokens, cal-

culated across the training set.

Model Accuracy

Aristo 77.4

Lucene 80.0

TableILP 31.8

AS Reader 74.1

GA Reader 73.8

Humans 87.8 ± 0.045

Table 2: Test set accuracy of existing models on

the multiple choice version of SciQ.

3.3 Dataset properties

SciQ has a total of 13,679 multiple choice ques-

tions. We randomly shuffled this dataset and split

it into training, validation and test portions, with

1000 questions in each of the validation and test

portions, and the remainder in train. In Figure 2

we show the distribution of question and answer

lengths in the data. For the most part, questions

and answers in the dataset are relatively short,

though there are some longer questions.

Each question also has an associated passage

used when generating the question. Because the

multiple choice question is trivial to answer when

given the correct passage, the multiple choice ver-

sion of SciQ does not include the passage; systems

must retrieve their own background knowledge

when answering the question. Because we have

the associated passage, we additionally created a

direct-answer version of SciQ, which has the pas-

sage and the question, but no answer options. A

small percentage of the passages were obtained

from unreleasable texts, so the direct answer ver-

sion of SciQ is slightly smaller, with 10481 ques-

tions in train, 887 in dev, and 884 in test.

Qualitative Evaluation. We created a crowd-

sourcing task with the following setup: A person

was presented with an original science exam ques-

tion and a crowdsourced question. The instruc-

tions were to choose which of the two questions

was more likely to be the real exam question. We

randomly drew 100 original questions and 100 in-

stances from the SciQ training set and presented

the two options in random order. People identi-

fied the science exam question in 55% of the cases,

which falls below the significance level of p=0.05

under a null hypothesis of a random guess4.

4using normal approximation
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4 SciQ Experiments

4.1 System performance

We evaluated several state-of-the-art science QA

systems, reading comprehension models, and hu-

man performance on SciQ.

Multiple Choice Setting. We used the Aristo

ensemble (Clark et al., 2016), and two of its indi-

vidual components: a simple information retrieval

baseline (Lucene), and a table-based integer linear

programming model (TableILP), to evaluate SciQ.

We also evaluate two competitive neural reading

comprehension models: the Attention Sum Reader

(AS Reader, a GRU with a pointer-attention mech-

anism; Kadlec et al. (2016)) and the Gated At-

tention Reader (GA Reader, an AS Reader with

additional gated attention layers; Dhingra et al.

(2016)). These reading comprehension methods

require a supporting text passage to answer a ques-

tion. We use the same corpus as Aristo’s Lucene

component to retrieve a text passage, by formulat-

ing five queries based on the question and answer5

and then concatenating the top three results from

each query into a passage. We train the reading

comprehension models on the training set with hy-

perparameters recommended by prior work ((On-

ishi et al., 2016) for the AS Reader and (Dhingra

et al., 2016) for the GA Reader), with early stop-

ping on the validation data6. Human accuracy is

estimated using a sampled subset of 650 questions,

with 13 different people each answering 50 ques-

tions. When answering the questions, people were

allowed to query the web, just as the systems were.

Table 2 shows the results of this evaluation.

Aristo performance is slightly better on this set

than on real science exams (where Aristo achieves

71.3% accuracy (Clark et al., 2016)).7 Because

TableILP uses a hand-collected set of background

knowledge that does not cover the topics in SciQ,

its performance is substantially worse here than on

its original test set. Neural models perform rea-

sonably well on this dataset, though, interestingly,

they are not able to outperform a very simple infor-

mation retrieval baseline, even when using exactly

the same background information. This suggests

that SciQ is a useful dataset for studying reading

comprehension models in medium-data settings.

5The question text itself, plus each of the four answer op-
tions appended to the question text.

6For training and hyperparameter details, see Appendix
7We did not retrain the Aristo ensemble for SciQ; it might

overly rely on TableILP, which does not perform well here.

Dataset AS Reader GA Reader

4th grade 40.7% 37.6%

4th grade + SciQ 45.0% 45.4%

Difference +4.3% +7.8%

8th grade 41.2% 41.0%

8th grade + SciQ 43.0% 44.3%

Difference +1.8% +3.3%

Table 3: Model accuracies on real science ques-

tions validation set when trained on 4th / 8th grade

exam questions alone, and when adding SciQ.

Direct Answer Setting. We additionally

present a baseline on the direct answer version

of SciQ. We use the Bidirectional Attention Flow

model (BiDAF; Seo et al. (2016)), which recently

achieved state-of-the-art results on SQuAD (Ra-

jpurkar et al., 2016). We trained BiDAF on the

training portion of SciQ and evaluated on the test

set. BiDAF achieves a 66.7% exact match and

75.7 F1 score, which is 1.3% and 1.6% below the

model’s performance on SQuAD.

4.2 Using SciQ to answer exam questions

Our last experiment with SciQ shows its useful-

ness as training data for models that answer real

science questions. We collected a corpus of 4th

and 8th grade science exam questions and used the

AS Reader and GA Reader to answer these ques-

tions.8 Table 3 shows model performances when

only using real science questions as training data,

and when augmenting the training data with SciQ.

By adding SciQ, performance for both the AS

Reader and the GA Reader improves on both grade

levels, in a few cases substantially. This contrasts

with our earlier attempts using purely synthetic

data, where we saw models overfit the synthetic

data and an overall performance decrease. Our

successful transfer of information from SciQ to

real science exam questions shows that the ques-

tion distribution is similar to that of real science

questions.

5 Conclusion

We have presented a method for crowdsourcing

the creation of multiple choice QA data, with

8There are approx. 3200 8th grade training questions and
1200 4th grade training questions. Some of the questions
come from www.allenai.org/data, some are propri-
etary.
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a particular focus on science questions. Using

this methodology, we have constructed a dataset

of 13.7K science questions, called SciQ, which

we release for future research. We have shown

through baseline evaluations that this dataset is a

useful research resource, both to investigate neu-

ral model performance in medium-sized data set-

tings, and to augment training data for answering

real science exam questions.

There are multiple strands for possible future

work. One direction is a systematic exploration of

multitask settings to best exploit this new dataset.

Possible extensions for the direction of generating

answer distractors could lie in the adaptation of

this idea in negative sampling, e.g. in KB popula-

tion. Another direction is to further bootstrap the

data we obtained to improve automatic document

selection, question generation and distractor pre-

diction to generate questions fully automatically.
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A List of Study Books

The following is a list of the books we used as data

source:

• OpenStax, Anatomy & Physiology. Open-

Stax. 25 April 20139

• OpenStax, Biology. OpenStax. May 20,

201310

• OpenStax, Chemistry. OpenStax. 11 March

201511

• OpenStax, College Physics. OpenStax. 21

June 201212

• OpenStax, Concepts of Biology. OpenStax.

25 April 201313

• Biofundamentals 2.0 – by Michael

Klymkowsky, University of Colorado &

Melanie Cooper, Michigan State Univer-

sity14

• Earth Systems, An Earth Science Course on

www.curriki.org
15

• General Chemistry, Principles, Patterns, and

Applications by Bruce Averill, Strategic En-

ergy Security Solutions and Patricia El-

dredge, R.H. Hand, LLC; Saylor Founda-

tion16

• General Biology; Paul Doerder, Cleveland

State University & Ralph Gibson, Cleveland

State University 17

9Download for free at http://cnx.org/content/
col11496/latest/

10Download for free at http://cnx.org/content/
col11448/latest/

11Download for free at http://cnx.org/content/
col11760/latest/

12Download for free at http://cnx.org/content/
col11406/latest

13Download for free at http://cnx.org/content/
col11487/latest

14https://open.umn.edu/opentextbooks/

BookDetail.aspx?bookId=350
15http://www.curriki.

org/xwiki/bin/view/Group_

CLRN-OpenSourceEarthScienceCourse/
16https://www.saylor.org/site/

textbooks/General%20Chemistry%

20Principles,%20Patterns,%20and%

20Applications.pdf
17https://upload.wikimedia.org/

wikipedia/commons/4/40/GeneralBiology.

pdf

• Introductory Chemistry by David W. Ball,

Cleveland State University. Saylor Founda-

tion 18

• The Basics of General, Organic, and Biologi-

cal Chemistry by David Ball, Cleveland State

University & John Hill, University of Wis-

consin & Rhonda Scott, Southern Adventist

University. Saylor Foundation19

• Barron’s New York State Grade 4

Elementary-Level Science Test, by Joyce

Thornton Barry and Kathleen Cahill 20

• Campbell Biology: Concepts & Connections

by Jane B. Reece, Martha R. Taylor, Eric J.

Simon, Jean L. Dickey21

• CK-12 Peoples Physics Book Basic 22

• CK-12 Biology Advanced Concepts 23

• CK-12 Biology Concepts 24

• CK-12 Biology 25

• CK-12 Chemistry - Basic 26

• CK-12 Chemistry Concepts – Intermediate 27

• CK-12 Earth Science Concepts For Middle

School28

• CK-12 Earth Science Concepts For High

School29

18https://www.saylor.org/site/

textbooks/Introductory%20Chemistry.pdf
19http://web.archive.org/web/

20131024125808/http://www.saylor.

org/site/textbooks/The%20Basics%20of%

20General,%20Organic%20and%20Biological%

20Chemistry.pdf
20We do not include documents from this resource in the

dataset.
21We do not include documents from this resource in the

dataset.
22http://www.ck12.org/book/

Peoples-Physics-Book-Basic/
23http://www.ck12.org/book/

CK-12-Biology-Advanced-Concepts/
24http://www.ck12.org/book/

CK-12-Biology-Concepts/
25http://www.ck12.org/book/

CK-12-Biology/
26http://www.ck12.org/book/

CK-12-Chemistry-Basic/
27http://www.ck12.org/book/

CK-12-Chemistry-Concepts-Intermediate/
28http://www.ck12.org/book/

CK-12-Earth-Science-Concepts-For-Middle-School/
29http://www.ck12.org/book/

CK-12-Earth-Science-Concepts-For-High-School/
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• CK-12 Earth Science For Middle School 30

• CK-12 Life Science Concepts For Middle

School 31

• CK-12 Life Science For Middle School 32

• CK-12 Physical Science Concepts For Mid-

dle School33

• CK-12 Physical Science For Middle School
34

• CK-12 Physics Concepts - Intermediate 35

• CK-12 People’s Physics Concepts 36

CK-12 books were obtained under the Creative

Commons Attribution-Non-Commercial 3.0 Un-

ported (CC BY-NC 3.0) License 37.

B Training and Implementation Details

Multiple Choice Reading Comprehension. Dur-

ing training of the AS Reader and GA Reader, we

monitored model performance after each epoch

and stopped training when the error on the valida-

tion set had increased (early stopping, with a pa-

tience of one). We set a hard limit of ten epochs,

but most models reached their peak validation ac-

curacy after the first or second epoch. Test set

evaluation, when applicable, used model param-

eters at the epoch of their peak validation accu-

racy. We implemented the models in Keras, and

ran them with the Theano backend on a Tesla K80

GPU.

The hyperparameters for each of the models

were adopted from previous work. For the AS

Reader, we use an embedding dimension of 256

and GRU hidden layer dimension of 384 (obtained

30http://www.ck12.org/book/

CK-12-Earth-Science-For-Middle-School/
31http://www.ck12.org/book/

CK-12-Life-Science-Concepts-For-Middle-School/
32http://www.ck12.org/book/

CK-12-Life-Science-For-Middle-School/
33http://www.ck12.org/book/

CK-12-Physical-Science-Concepts-For-Middle-School/
34http://www.ck12.org/book/

CK-12-Physical-Science-For-Middle-School/
35http://www.ck12.org/book/

CK-12-Physics-Concepts-Intermediate/
36http://www.ck12.org/book/

Peoples-Physics-Concepts/
37http://creativecommons.org/licenses/

by-nc/3.0/

through correspondence with the authors of On-

ishi et al. (2016)) and use the hyperparameters re-

ported in the original paper (Kadlec et al., 2016)

for the rest. For the GA Reader, we use three

gated-attention layers with the multiplicative gat-

ing mechanism. We do not use the character-level

embedding features or the question-evidence com-

mon word features, but we do follow their work by

using pretrained 100-dimension GloVe vectors to

initialize a fixed word embedding layer. Between

each gated attention layer, we apply dropout with

a rate of 0.3. The other hyperparameters are the

same as their original work (Dhingra et al., 2016).

Direct Answer Reading Comprehension. We

implemented the Bidirectional Attention Flow

model exactly as described in Seo et al. (2016) and

adopted the hyperparameters used in the paper.
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