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Abstract

Computational analyses of systematic measurements on the states and activities of signaling

proteins (as captured by phosphoproteomic data, for example) have the potential to uncover

uncharacterized protein-protein interactions and to identify the subset that are important for

cellular response to specific biological stimuli. However, inferring mechanistically plausible

protein signaling networks (PSNs) from phosphoproteomics data is a difficult task, owing in part

to the lack of sufficiently comprehensive experimental measurements, the inherent limitations of

network inference algorithms, and a lack of standards for assessing the accuracy of inferred PSNs.

A case study in which 12 research groups inferred PSNs from a phosphoproteomics data set

demonstrates an assessment of inferred PSNs on the basis of the accuracy of their predictions. The

concurrent prediction of the same previously unreported signaling interactions by different

participating teams suggests relevant validation experiments and establishes a framework for

combining PSNs inferred by multiple research groups into a composite PSN. We conclude that

crowdsourcing the construction of PSNs—that is, outsourcing the task to the interested community

—may be an effective strategy for network inference.

Obstacles and Opportunities in Signaling Network Inference

The availability of antibodies that recognize phosphorylated residues on specific signaling

proteins are the basis of an expanding number of quantitative phosphoproteomics assays (1–

4). To use these quantitative protein phosphorylation data sets, approaches that infer the
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structure of signaling networks from protein state data have been developed (5–9). However,

a number of technical difficulties conspire to derail network inference. Experimental studies

that support current network inference procedures typically involve stimuli and

perturbations to the system that are large in number from a practical perspective but that are

barely sufficient from the perspective of network inference. Furthermore, many proteins (or

phosphorylation or activity states) important for signaling networks remain unmeasured

either because appropriate reagents (typically antibodies) are not available for their detection

or because the proteins and modifications are not yet annotated. Existing inference

algorithms also face the problem that they do not necessarily yield directly testable and

mechanistically plausible inferences—for example, by confusing correlation with causation.

Last, even if a protein signaling network (PSN) can be successfully reconstructed, it is not

obvious how to quantify its accuracy. In most cases, the “most likely” network given the

observed data is selected, but there is a degree of ambiguity in the definition of most likely.

For example, we may say most likely with respect to the currently accepted network models,

most likely given the data at hand, or most likely on the basis of an arbitrary cost function.

We describe some of the difficulties and successes encountered in assessing the accuracy of

signaling-network inference and the specific strategies used in the DREAM4 Predictive

Signaling Network Challenge. This challenge, which took place in the summer of 2009, was

organized under the umbrella of the DREAM (Dialogue on Reverse Engineering

Assessment and Methods) project (http://www.the-dream-project.org). Twelve groups

participated in the task of predicting the response of human liver carcinoma cells (the

HepG2 cell line) to different extracellular ligands (“stimuli”) in the presence or absence of

several smallmolecule kinase inhibitors (“perturbations”). The data consisted of measuring

the abundance of seven phosphoproteins by using sandwich immunoassays with the xMAP

platform (Luminex, Austin, Texas).

Network Assessment by Accuracy of Predicted Interactions

One possible metric for assessing the accuracy of an inferred PSN is the “recall,” defined as

the fraction of previously known biological interactions (or edges in network jargon)

recovered by an algorithm. It is not uncommon to see claims that hundreds of predicted

interactions are justified based on showing a few previously reported inter actions. This

metric of inference accuracy is misleading because a completely connected network (one in

which every node—or protein—is linked to every other protein) has perfect recall, but it is

clearly inaccurate. A metric complementary to recall is “precision,” defined as the fraction

of inferred edges that are correct (with respect to the current knowledge base). Assuming a

complete and error-free prior knowledge base, a combination of precision and recall may be

a good measure to quantify the accuracy of inferred networks (10). Unfortunately, the

current knowledge base for signaling interactions is vastly incomplete (missing many nodes

and edges) and contains an unknown number of incorrect edges. Moreover, current

knowledge often lacks biological specificity, because the data from many different cellular

contexts and organisms are frequently combined into single-network diagrams that are

intended to represent the current state of information. Thus, the safest recourse for deciding

whether an inferred edge that is absent from the knowledge base is a true positive or a false

positive is to experimentally test each prediction. The number of validation experiments

required to achieve this laudable goal is overwhelming, both in effort and in cost. Moreover,

in many cases, network inference lacks the mechanistic detail required for unambiguous

experimental validation. To take maximum advantage of the benefits of network inference

from high-throughput data, we require metrics other than recall and precision to score an

inferred PSN. Those networks with the highest scores should provide the basis for the most

promising follow-up experiments for the discovery of new interactions or for the validation

of known interactions.
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Network Assessment by Accuracy of Quantitative Predictions

The metric adopted in the DREAM4 Predictive Signaling Network Challenge for assessing

the accuracy of inferred PSNs was based on a comparison between the predicted and actual

phosphoproteomics measurements.

Each team created a “model network” using a training data set (phosphoproteomics

measurements observed under a specific set of conditions). Each team’s model networks

related stimuli and measurement values using different mathematical formalisms, such as

differential equations (7, 8) or Boolean logical functions (11). From the model network,

each team predicted changes in the phosphoproteome that would occur in response to a

different combination of stimuli and perturbations (the test data set). Last, the effectiveness

of each model network was assessed by comparing the accuracy of the predicted

measurements with those of the actual test data set.

This framework in which data from some experimental conditions are set aside for testing

how well a fitted model generalizes to new data are common in the machine-learning

community. The framework rewards predictive accuracy without regard to plausible

biological mechanisms or interpretability of the predictive models as an interaction network.

If mechanistic understanding is the ultimate goal, it is up to the researcher to work with a

type of model that is interpretable in the form of an interaction network. For example, a

weight matrix of interaction strengths between variables representing protein

phosphorylation values can easily be interpreted as a network, whereas models that process

data with kernel methods—which makes predictions after mapping the data into a higher,

maybe infinite, dimensional feature space— or principal components analysis—which

projects the data into a reduced dimensional feature space—may not necessarily be

interpretable as a network.

We explored several metrics for assessing the accuracy of predicted measurements,

including the sum of square errors both in linear and logarithmic scales, mismatches in

temporal trends, and correlation measures. The actual assessment was made by using the

residual sum of squares (RSS) normalized by the sum of the technical and biological

variance (NRSS) as defined in Eq. 1:

(1)

The NRSS is calculated over the set of all the predicted phosphoproteomics values for each

phosphoprotein. We estimated technical variance from the lower detection limit of the

measurement apparatus, which is 300 arbitrary fluorescence units. We estimated the

biological variance from the coefficient of variation, which was 0.08 in independent assays

using the same xMAP measurement platform.

The NRSS makes no assumption about the validity of the computational model or the

distribution of the differences between measured and predicted protein abundances. To

estimate the significance of the NRSS achieved by the predictions for a given

phosphoprotein, we simulated the empirical distribution of the NRSS under the null

hypothesis that the predicted values are randomly sampled from the values in the training

data set for that phosphoprotein. From the resulting empirical null distribution, a P value can

be readily obtained for any realization of the NRSS.
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Specifics of the DREAM4 Predictive Signaling Network Challenge

The training set was composed of measurements of activating phosphorylation events on

seven measured phosphorylated proteins or groups of protein isoforms [the kinase Akt, the

mitogen-activated protein kinase (MAPK) family members ERK1 and -2, which are

detected with the same antibody and denoted as ERK1/2; JNK1, -2, and -3, which are

detected with the same antibody and denoted as JNK; p38; the MAPK kinase MEK1;

inhibitor of nuclear factor κB (NF-κB) (denoted as IKB); and heat shock protein HSP27]

observed at three time points (0, 30, and 180 min) after stimulation by one of four ligands

[transforming growth factor–α (denoted as TGFa), insulin-like growth factor 1 (IGF1),

tumor necrosis factor–α (denoted as TNFa), or interleukin-1α (denoted as IL1a) in human

hepatocellular liver carcinoma HepG2 cells (Fig. 1A). Measurements were obtained with

and without pretreatment of cells with potent and relatively specific small-molecule

inhibitors of cytosolic kinases (p38i, MEKi, PI3Ki, and IKKi, where “i” denotes inhibitor)

that inhibited p38, MEK1, phosphatidylinositol 3-kinase (PI3K), or inhibitor of nuclear

factor κB (IκB) kinase (IKK) as described (6). Participants attempted to predict

phosphorylation measurements of the same seven proteins at 30 min after stimulation by

various individual and pair-wise combinations of the ligands, in the presence of pair-wise

combinations of the inhibitors (12). The experimental conditions comprising the training set

were mutually exclusive with the experimental conditions comprising the test set. The

complete challenge description and the data can be obtained from the DREAM project Web

site (http://www.the-dream-project.org).

In addition to the training set, participants received a prior knowledge network (PKN; a

directed graph with edges specified as activating or inhibitory) compiled from the scientific

literature as based on the Ingenuity Systems (Redwood, California) database encompassing

the pathways known to be responsive to the ligands used for the challenge (Fig. 1B). In

addition to the prediction task, the challenge entailed adding and removing edges to the PKN

to capture those interactions that were essential to explain the training data. This task

encouraged participants to go beyond “black box” prediction algorithms to enable some

mechanistic interpretation of the quantitative models used to predict the test data set.

Although some participants applied models that were interpretable as a network, others

focused on the prediction task only and did not attempt to interpret their model in terms of a

network. Anecdotally, the team with the highest prediction score used a model that was not

readily interpretable as a network, suggesting that maximizing mechanistic interpretability

of a model might compromise predictive accuracy.

The NRSS was evaluated separately for each of the seven proteins because measurements of

phosphorylation status (Table 1) between proteins are not directly comparable because of

different affinities of the antibodies for their targets and variation in protein abundances. The

seven P values for each of the measured phosphoproteins represent the probability that the

prediction accuracy on the test set is better than a naïve prediction assembled by randomly

sampling from the phosphorylation status in the training set. The “Prediction Score” for a

team summarizes the team’s overall predictive performance and was defined as the negative

of the log10 of the geometric mean of the P values obtained by that team across all the

predicted proteins (Eq. 2):

(2)

A high prediction score corresponds to high statistical significance for the accuracy of the

prediction (a low average P value).
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In prediction problems, a model with a number of fitted parameters that is smaller than the

number of constraints in the problem (for example, the number of experiments) is generally

preferred to a model with more parameters than constraints because the former is more

parsimonious, less prone to overfitting, and typically more interpretable (7, 12). Also,

empirical evidence suggests that biological networks are sparse (13), that is, the number of

edges are of the order N (the number of nodes) rather than of order N2. We imposed a

sparseness criterion on the selection of the best-performer using a cost function that rewards

prediction accuracy and penalizes densely connected model networks to calculate the

“Overall Score” for each team (Eq. 3):

(3)

Cost per edge was calibrated to the actual prediction scores and networks of the teams by

taking the minimum (Prediction Score/Number of Edges) over all teams. The most accurate

team was third by this criterion, whereas the second most accurate participant was first. [For

the methodology used by the best performing team, Team 1, see (14).] This Overall Score

cost function is ad hoc, and other formulations could rank the teams differently. One take-

home message is that predictive accuracy, as measured by the Prediction Score and without

regard to model complexity, model interpretability, or mechanistic plausibility, may be

valuable in some tasks but not necessarily in the task of network inference. Indeed, the

correlation between edge count and prediction score was low (0.03), indicating that

increasing the number of edges does not automatically improve the predictability of the

model. For a Boolean model, we previously showed that removing edges with no empirical

support improved predictive accuracy (12). Networks with sparse connectivity, therefore,

might be expected to score better than highly connected networks. However, it remains an

open problem to design a cost function that rewards desirable attributes and penalizes

undesirable attributes in a model network.

Crowdsourcing as a Strategy for Signaling Network Reconstruction

Networks inferred by different research groups can be combined into a composite network

in different ways. For example, edges can be aggregated by using a majority vote (an edge is

included only if it is predicted by more than a minimum number of groups) or using a

scheme that weighs edges predicted by each team according to the team’s Prediction Score

or Overall Score. Other methods of aggregation have also been proposed (15, 16). Because

only some of the nodes in the provided PKN were measured or manipulated in the HepG2

cell line data, we asked participants to submit HepG1 networks containing only the

observable nodes (ligands, measured phosphoproteins, and molecules targeted by the

inhibitors) and the edges linking them. Thus, the submitted networks were representations of

a “compressed” network (Fig. 1C) comprising only the observed nodes in which an edge is

included if a path (direct or indirect) exists from the source node to the target node in the

original PKN.

Not all teams used the compressed-network edges similarly. Some edges were used by all 12

teams, some were used only by 2 of the 12 teams, and one was invoked by just one team

(Table 2). This analysis suggests that for HepG2 cells and these ligands, much of the “signal

transduction” occurs through a subset of the edges present the original PKN (which is not

specific to hepatocytes). Nine of the 12 teams added an edge between IL1α and MEK1, and

of the three teams that did not add this edge (Teams 5, 10, and 11), two of them (Team 10

and 11) had the lowest Prediction Scores. Four teams added an interaction between IL1α
and ERK1/2, which conveys a similar signal transduction as that conveyed by the added

interaction between IL1α and MEK1. Most of the other added interactions were invoked by
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individual teams. The consensus among the ensemble of predictions that a currently

uncharacterized pathway connects the stimulus IL1α and MEK1 in HepG2 cells should

prove fruitful in designing testable hypothesis for follow-up experiments and is consistent

with an independent study (12). Because literature-derived networks are an amalgam of

signaling interactions observed in many cell types and environments, the actual cell-specific

and condition-specific signaling networks may be quite different from the canonical one

derived from the literature. Additionally, the importance of specific pathways may be

different depending on the cellular context, as suggested by the addition to or subtraction

from the original PKN of specific edges in the final network resulting from the team’s

predictions.

Conclusions

Our network assessment strategy embraces the viewpoint that predictions are meaningful

only when their direct consequences can have an experimental counterpart. In such cases,

the plausibility of the predictions can be measured by cost functions that quantify the

deviation between prediction and observation. The framework of setting aside some

experiments to evaluate how well a computational model generalizes to previously unseen

experimental perturbations is well suited to the data-driven network inference methods

studied in the DREAM4 challenge. However, more research is needed on formulating cost

functions for network inference that balance predictive accuracy with model complexity. For

example, the sparseness criterion used in our Overall Score can be complemented with

additional constraints on the abundance of different network motifs (17, 18). Although all

network inference methods can make errors, we suggest that a way to improve network

predictions is to blend an ensemble of networks, based on the same data, generated by a

diversity of independent mathematical approaches into a composite network (16). The

probability of finding one edge by chance may be high for any single technique, but the

probability of finding that same edge by chance in many independent predictions decreases

as the number of aggregate predictions increases (assuming the methods are independent). In

this sense, the suggestion from the DREAM4 teams that a connection exists between IL1α
and MEK1 is statistically significant.

Community experiments, such as the DREAM challenges, can become a powerful tool for

network prediction: By aggregating the intelligence of the “crowds” (researchers),

comprehensive and accurate inference of PSNs could become a reachable goal. Moreover,

the development of increasingly high-throughput methods for measuring thousands of

proteins and their posttranslational modifications in hundreds of samples promises to make

collecting some of the data necessary for sophisticated network inference increasingly

possible. The technical challenge of combining the intelligence of crowds with the latest

instrumentation as a means to tackle problems of outstanding biomedical importance

remains.

Algorithm development by the crowd is labor intensive, as is the process of evaluating and

combining its conclusions. Because effective data generation requires a conceptual basis or

underlying hypothesis (however general), the researchers collecting the data will likely be

involved in an initial round of analysis. We are skeptical of the idea that data generation

should be separated from analysis modeling. However, we think that the true value of the

research will only be realized upon subsequent or concurrent crowdsourcing of data

analysis. We believe the crowd will likely develop more sophisticated and important

conclusions than those of the initial data generators. Critically, the computational and

managerial machinery needed to enable crowdsourcing needs to be supported, and the

likelihood (or past history) of data reuse needs to be part of the justification for data

collecting in the first place. Many of these ideas are familiar to the DNA sequencing
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community, but they are not part of the current ethos for “functional,” perturbation-rich

experimentation on cells and tissues. Moreover, in the case of modeling networks (but not

genome sequencing), data release and computational predictions need to run in a closed

loop, with one round of predictions informing the next round of data generation. Over time,

the data available for training computational models will grow, leading to more refined

predictions. New structures for assigning credit are needed in a scientific environment where

data producers and (competing) data analysts might never collaborate in the traditional sense

of the word, although the work is clearly collaborative in a fundamental sense.
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Fig. 1. The DREAM4 Challenge and resulting network
(A) Experimental approach: HepG2 cells were pretreated with four different inhibitors and

subsequently stimulated with four different ligands. For each combination of inhibitor and

ligand, the phosphorylation activity of seven proteins or groups of protein isoforms was

measured. (B) PKN pathway map (derived from the Ingenuity database) summarizing the

signaling pathway relevant to the DREAM4 phosphoproteomics challenge. Green, ligands

used as stimuli; red, proteins that were inhibited with small-molecule inhibitors but the

phosphorylation status of which was not measured; blue, proteins that were measured in all

experiments but were not targeted by small molecule inhibitors; purple, proteins targeted by
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small molecule inhibitors and also for which phosphorylation status was measured; gray,

proteins known to be part of the network but were neither measured nor targeted by small-

molecule inhibitors in the data sets supplied for the challenge. (C) Summary of the

compressed model networks with edges weighted according to the frequency of their

appearance in the networks submitted by each team. Only ligands, measured

phosphoproteins, and proteins targeted by small-molecule inhibitors are included. Black

arrows correspond to compressed interactions from the figure in (B), in which an edge exists

between two nodes if there is a path from the source to the target nodes in the PKN. The

thicknesses of the black arrows correspond to the number of teams that used an interaction

to account for the training set (the thickest edge was used by 12 teams, whereas the thinnest

was used by just one team). The red arrows are the most frequently predicted interactions

that were not present in the PKN. Both the left and right networks were created with

Cytoscape (http://www.cytoscape.org/). The protein ERK1/2 represents both ERK1 and -2,

and JNK represents JNK1, -2, and -3.
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Table 2

Frequency of use of original and additional direct interactions used by the teams to create the model networks.

The left side of each set represents the interaction and the right side represents the number of teams using that

interaction.

ORIGINAL INTERACTIONS ADDED INTERACTIONS

TGFα→MEK1 12 IL1α→MEK1 9

IKK→IKB 12 IL1α→ERK1 4

IL1α→JNK 12 P38→MEK1 2

IL1α→ p38 12 AKT→ JNK 2

P13K→AKT 11 IKK→ERK1/2 2

p38→HSP27 11 MEK1→AKT 1

MEK1→ERK1/2 10 JNK→AKT 1

TGFα→PI3K 7 JNK→IKB 1

IGF1→MEK1 7 p38→AKT 1

TNFα→p38 7 IKB→HSP27 1

IL1A→IKK 7 JNK→MEK1 1

TGFα→p38 7 ERK1/2→MEK1 1

IGF1→PI3K 7 IKK→PI3K 1

TNFα→IKK 6 IKB→ERK1/2 1

IL1α→HSP27 6 IKK→HSP27 1

AKT→MEK1 6 HSP27→ERK1/2 1

TNFα→JNK 5 MEK1→JNK 1

TNFα→PI3K 4 IKB→AKT 1

AKT→IKK 3

TGFα→JNK 3

PI3K→MEK1 3

IGF1→p38 3

ERK1/2→HSP27 2

TGFα→IKK 2

TNFα→HSP27 1
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