
Crowdsourcing preference tests, and how to detect cheating

Sabine Buchholz, Javier Latorre

Toshiba Research Europe Ltd., Cambridge Research Lab, Cambridge, UK
sabine.buchholz@crl.toshiba.co.uk, javier.latorre@crl.toshiba.co.uk

Abstract
We describe an approach to crowdsource the evaluation of TTS

systems by preference tests and report on lessons learnt from

running 127 real-life crowdsourced tests. We show that at least

one type of cheating becomes more prevalent over time if left

unchecked and develop metrics to exclude cheaters. We demon-

strate that their exclusion improves test outcomes.

Index Terms: TTS, speech synthesis, listening test, preference

test, crowdsourcing, cheating

1. Introduction

Listening tests are important for TTS research and development

as no overall objective method exists that correlates well enough

with human jugdments. Traditionally, listening tests have been

done under very controlled conditions in the lab by external

subjects. However, this is time-consuming and costly. Tests

are now increasingly done over the internet, however finding

subjects is still a problem (e.g. [1]). This is where crowdsourc-

ing provides a solution. A special case of crowdsourcing are

so-called microtask platforms where work providers can post

tasks, specify a remuneration and transfer funds to the platform,

and “workers” do tasks of their choosing and get paid by the

platform. The most well-known microtask platform is Ama-

zon’s Mechanical Turk (MTurk)1 and it is increasingly used for

speech and language tasks [2].

However due to the anonymous nature of the interaction,

there is a risk of workers cheating. In the broadest sense,

cheaters2 can be defined as workers who do not meet the re-

quirements or do not follow the instructions outlined for the

task. Given the instructions we presented to workers on all

crowdsourced tests discussed in this paper, we therefore define

as cheaters those workers who do our preference tests but do

not listen at all or without proper attention to both samples be-

fore making a choice, do not use headphones, do not work in a

quiet environment, are not native speakers, have a hearing im-

pairment, or do not choose the sample they think sounds better.

There are clear incentives for people to cheat: Not listen-

ing to samples before answering the preference question means

workers can earn money faster. Listening without proper atten-

tion requires less concentration. As our tasks pay reasonably

well, non-native or hearing-impaired workers might be tempted

to do ours, rather than other lower-paying ones. Also, our tasks

are relatively short and so disappear from offer quickly, which

is an incentive for workers not to waste time finding that head-

phone or reaching a quiet place. Finally, there seems less of

an incentive to answer questions untruthfully but some people

might find the idea amusing.

While we can never hope to detect all cheaters and all types

of cheating, we will investigate what we can detect.

1https://www.mturk.com/mturk/welcome
2called “cheats” in the UK

2. Related Work

There is literature on crowdsourcing other types of tasks; par-

ticularly related is work on speech and language data collection,

annotation and evaluation, see [2] for a recent overview.

With regard to listening tests, [3] describe crowdsourcing

intelligibility tests via MTurk and [4] a framework for crowd-

sourcing mean opinion score (MOS) tests via MTurk. [5] de-

scribe a crowdsourced framework for evaluating algorithms that

process multimedia files, such as audio or video codecs. For

evaluating n algorithms, the framework runs a task consisting

of
`

n

2

´

paired comparisons (i.e. preference tests) on e.g. MTurk.

In each comparison, users randomly see/hear the output of one

or the other algorithm depending on whether they press or re-

lease the space bar. They then make a forced choice between

the two states (pressed/released). The presentation method de-

scribed in [5] is not suitable for TTS listening tests (except po-

tentially for vocoding research) as the outputs of two different

(versions of) TTS systems will typically have different timing

structure and cannot simply be switched mid-sample. As such,

the present work is the first to describe crowdsourced preference

tests suitable for evaluating TTS systems.

There are at least three different approaches for excluding

cheaters in crowdsourcing: using a gold standard, intrinsic met-

rics or additional information. Gold standard data is provided

by a group of trusted annotators/listeners or comes from an ob-

jective ground truth, such as the true text for an intelligibility

test. For example, [3] excluded workers with a Word Error Rate

above 0.9 from the results. The Blizzard Challenges, who, in

the broad sense, crowdsource part of their listeners, in effect

use the human samples as gold standard when they exclude lis-

teners who rate these samples very low in the MOS test [6]. By

intrinsic metrics we mean metrics that use only the raw test re-

sults, i.e. the information about which worker answered what

to which test item, and nothing else (see [7] for a general ex-

ample of such a metric). [5] and [4] both use intrinsic metrics.

[5] checks the transitivity of results: if A is preferred over B

and B over C then A should also be preferred over C. Workers

are rejected (i.e. not paid) if 80% or less of triples satisfy this

transitivity rule.3 [4] rejects workers if the sample correlation

coefficient between their MOS values and those of all workers

for each system is less than 0.25. [4] also uses additional infor-

mation – in the form of timestamps – by rejecting tasks “which

were submitted too quickly to have been listened to”.4 While all

work discussed uses some metrics to exclude workers deemed

3Note that this metric assumes that there are at least three systems
in the comparison, which is typically not the case for a TTS preference
test.

4Note that a simplistic implementation of this might miss some cases
of cheating: By looking at the overlap of start and end timestamps of
tasks we have seen workers who must have worked in 10 browser win-
dows in rotation, giving the impression that they had spent 10 times
more time on an individual task than they had in reality.

Copyright 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

3053

unreliable, none of them discuss what effect, if any, this has

on results. To the best of our knowledge, the present work is

the first to quantify the effect of cheater exclusion metrics for

listening tests.

3. Crowdsourcing preference tests

3.1. Set-up

Officially only people or institutions located in the US can post

work on MTurk.5 We therefore use CrowdFlower6 as an inter-

face to MTurk workers. In addition to allowing access from

outside the US, CrowdFower recently implemented IP address

geolocation, which helps to restrict workers to a country of in-

terest.7 For the tests reported in this paper, worker location was

always restricted to the US, as the TTS voices evaluated were

always US English voices.

We break a preference test into microtasks consisting of just

one paired comparison. Workers see instructions and two but-

tons which they need to click to play the two audio samples, and

indicate their preference for the first sample, the second sample,

or none. To ensure the samples are played in sequence and in

the intended order, the second button is only enabled once the

first one has been clicked and the duration of the first audio file

has elapsed. Every time a worker clicks a button to play an au-

dio sample, a hidden counter for that button is incremented. For

each microtaks, the final values of the two counters are stored

together with the worker’s preference. To avoid presentation or-

der bias, we post separate microtasks for each order (AB as well

as BA) of each sample pair. CrowdFlower/MTurk ensures that

workers get served microtasks in random order.

Sometimes researchers wish to compare not just two but

three or more versions of a TTS system. To facilitate this, pref-

erence tests can be grouped together, i.e. all the microtasks for

all the tests in the group will show up in the same HIT group on

MTurk. This will become relevant once we look at excluding

all work done by a cheater for a specific test, or in this case, test

group.

For each preference test, we compute the test outcome in

terms of percentages of preference expresses for each system,

A and B, and “No preference”. To check whether any observed

difference in preference for the systems is statistically signifi-

cant, we apply a two-tailed t-test to the results after splitting the

“No preference” votes equally over the two systems, simulating

a forced choice situation in which people who really have no

preference can be expected to vote for A as often as for B.

3.2. Test results

The above method to crowdsource preference tests has been

used within our TTS research group extensively. Since June

2010, 127 preference tests have been run, combined into 75 test

groups. Research evaluated comprised everything from prosody

to acoustic modelling to vocoding. Typically, all but the largest

test groups finish overnight, which greatly increases researcher

efficiency. On average, a test consists of 70 sample pairs, and

each pair is evaluated by 7.3 workers. Workers so far came from

48 different US states and therefore should be more representa-

tive than any group one could hope to assemble in a traditional

5https://www.mturk.com/mturk/help?helpPage=

requester#do support outside us
6http://crowdflower.com/
7This is another example of using additional information (the IP ad-

dress) for cheater exclusion. Note that MTurk only restricts workers
based on the country they fill in when signing up.

lab experiment.

To verify whether results would be similar if tests were not

crowdsourced, we repeated five of the early tests internally, i.e.

with speech researchers as test subjects. Note that the major-

ity of our speech researchers are fluent but non-native English

speakers. Figure 1 shows the test outcomes for the two sets of

five tests. As one can see, the crowdsourcing workers actually

express a preference more often than the speech experts.8 To

make it easier to compare relative preferences for systems, we

split the “No preference” vote in two halves, as described above.

By comparing the boundaries between these two halves, we can

see that relative preferences are very similar between the two

subject groups, except for Test 4. However, while the prefer-

ence differences observed in Tests 1 and 5 are highly significant,

the ones in Tests 2 to 4 are not significant, so the slight reversal

of system preferences in Test 4 is probably just noise. We con-

clude that crowdsourced preference tests allow us to draw the

same conclusions as listening tests with trusted subjects.

Figure 1: Preference for one system or the other (A or B) or

none (N) in 5 tests done by crowdsourcing (cs) or internally

(int). To facilitate comparison, the “N” vote is split in halves.

4. Analysis of cheating

As explained earlier, there is an incentive for workers to cheat.

In this section, we will discuss methods to uncover cheating,

and estimate its prevalence and effect on test outcomes.

4.1. Using additional information

Given that we know for each sample how often it was played by

each worker, the simplest way to detect cheating is by checking

these values: any worker who does not play both samples be-

fore answering is clearly cheating on that comparison. For each

test group, we can compute the not-played percentage, i.e. the

percentage of submitted answers for which one or both samples

were not played by the worker. Figure 2 shows the not-played

percentages for all 75 test groups, ordered chronologically. One

can see that there is a wide variation of values (which we can-

not explain) but that for many of the earlier tests, not-played

percentages were very low, sometimes below 1%. More recent

tests never show such low percentages, which further analysis

revealed is due to returning cheaters, i.e. workers who cheat on

more than one test group. It seems that some workers have fig-

ured out that they can get away with cheating (as CrowdFlower

does not allow to directly block or reject workers) and are now

on the lookout for our jobs.

8Either because they can hear more of a difference because they are
native speakers, or because we expressly instruct them to not use the
no-preference option too often.

3054

Figure 2: Percentage of submitted answers for which one or

both samples were not played by the worker, for each of 75 test

groups ordered chronologically, with months indicated.

4.2. Gold standard data

In our case, no ground truth or trusted annotations are available

for the two systems under test, as typically one or both of these

systems are the result of recent research. However, we can con-

struct crude gold questions by pairing a sample from the human

voice used to train the TTS with a sample from a TTS system

(typically an older version of the TTS versions in the main com-

parison). We would expect people to prefer the human over the

TTS and will henceforth say that they “fail” the gold question

if they do not. To confirm whether our gold samples work as

expected, we conducted a preference test in which all 103 ques-

tions were gold questions. 12 of the participating 20 workers

always preferred the human. A further 2 always preferred the

human except once (Note how excluding these two would also

exclude many correct answers). 4 of the 20 workers are clear

cheaters: they preferred the human and the TTS about equally

often. The remaining 2 workers fall somewhere in between,

preferring the human 92% resp. 78% of the time.

It was left to researchers to decide whether they wanted to

use gold samples in their tests. Therefore, only 46 out of the 75

test groups include gold samples. An obvious reason for failing

a gold question is if the samples were not even played; however

those are the uninteresting cases. We therefore only investigated

gold questions where both samples were played. We plotted the

percentage of (played) gold questions that were failed per test

group over time (not shown) and did not find the same increase

(yet...). The average percentage of failed gold was 7.8.

4.3. Intrinsic metrics

The previous section introduced two ways to detect cheating in

preference tests. Using that information, we can now define the

following two subgroups of workers:

Known cheaters Never play both samples of a microtask.

Trusted workers Always play both samples, got asked at least

4 or 5 gold questions and do not fail a single gold ques-

tion in the whole test group.9

By comparing these two groups, we can identify intrinsic met-

rics that differentiate well between the two groups. In effect,

we have “recruited” a group of “genuine” cheaters and can now

study their behaviour, in order to better identify and exclude

9Note that for these definitions, we consider a person that took part
in e.g. two test groups as two different workers. So the same person
could be a trusted worker for one test group but a known cheater for
another, as they might indeed have changed their behaviour.

similar cheating in the future. Note that while these known

cheaters did not even play the samples, their answer pattern

should be identical to workers who play, but do not listen to,

samples.10 To avoid sparse data issues we will concentrate on

those known cheaters and trusted workers that have done at least

25 relevant microtasks per test group.

Figure 3: Counts (y-axis) of workers who had a preference

for the second sample x% (rounded to nearest multiple of 10)

of the time that they had a preference at all, for workers who

had a preference in at least 25 microtasks and a) never played

samples (cheaters; 55 workers) or b) played everything, did at

least 4 gold and passed all gold (trusted; 91 workers; raising the

threshold to 5 gold resulted in too few data points.)

Presentation order bias describes the tendency of people to

prefer the second of two samples if there is no clear difference

between them. Cheaters however can be expected to have either

no preference for a specific position, as they choose their answer

basically at random, or a very clear preference, due to always

choosing the same answer. This is confirmed by the data shown

in Figure 3: The peak of the cheaters’ distribution is at 50%

while that of the trusted workers is at 60%. Also, all the data

points at the extremes are from the known cheaters. By looking

at the values prior to rounding, we determined that a suitable

definition of “extreme” here is x < 30 or x > 90.

Figure 4: Counts (y-axis) of workers who had a mean distance

of x (rounded to nearest multiple of 0.1) between the worker’s

answer and everybody else’s answer for those sample pairs, for

workers who did at least 25 microtasks and a) never played sam-

ples (cheaters; 76 workers) or b) played everything, did at least

5 gold and passed all gold (trusted; 88 workers).

10In fact, we are going to switch our interface to one that prevents
workers from submitting answers without having played both samples.
However, this still cannot fully prevent cheating as workers could e.g.
play samples while sound is muted.

3055

A cheater exclusion method proposed by [4] is to look for

workers whose answers deviate widely from the average of all

workers. This approach is based on the tacit assumption that

cheaters display outlier behaviour, and conversely that outliers

are probably cheaters. [4] treats MOS values as numeric and

computes the sample correlation coefficient. For a preference

test, the answers are not numeric. We decided to compute the

deviation in system preference for a worker as the mean dis-

tance between the worker’s answers and the other answers for

the same sample pair. The distance between two answers is 0 if

the answers are identical, 1 if one of the answers is “No prefer-

ence” and 2 if different systems are preferred. Figure 4 shows

that, indeed, the two worker groups have different distributions

for this value. By looking at the values prior to rounding, we

saw that no trusted worker in this subset had a mean distance of

more than 1.03.

4.4. Cheater exclusion metrics and their effects

The previous section presented several cheater detection mech-

anisms and metrics. We will now investigate how test outcomes

are affected when these are used to exclude answers/workers.

Note that this constitutes a best-case scenario as exclusion

thresholds were determined on a subset of the data itself. As

cheaters introduce noise and therefore “dilute” test outcomes,

we would expect that on average their exclusion results in big-

ger preference differences between systems, higher confidence

((1 − p) ∗ 100) in the outcome, and more tests with a highly

significant (p < 0.01) or significant (p < 0.05) difference.

Exclude % mean mean hs s ns

ans. pref. conf.

excl. diff.

None 0.0 11.6 86.3 45 12 70

not played answers 6.4 12.4 86.9 45 12 70

+ fail gold 14.6 12.8 86.7 45 11 71

+ pref 2nd <30 or >90 14.7 13.1 87.4 46 12 69

+ dev.syst.pref. >1.03 10.6 13.1 87.6 47 11 69

+ both above 18.5 13.6 87.8 47 13 67

+ random 14.5 12.5 86.6 43 13 71

Table 1: Effect of cheater exclusion metrics: Percent of answers

excluded, mean preference difference, mean confidence, num-

ber of tests with highly significant (hs), significant (s) and non-

significant (ns) differences. “+” means named metric plus ex-

clusion of non-played answers.

The first row of Table 1 shows the simplest case, in which

no answers or workers are excluded. The second row shows the

effect of excluding answers for which the worker did not play

both samples. This excludes 6.4% of answers, and increases

the mean preference difference and the mean confidence, as we

would expect. The number of tests in each significancy cate-

gory stays the same.11 In the remainder of this table, reported

effects are for the combination of non-played answer exclusion

and additional metrics.

If we exclude all workers who fail at least one gold ques-

tion, mean preference difference increases but mean confidence

decreases, and one more test is non-significant. This seems

to indicate that this metric excludes not only cheaters but also

11Although some tests changed their significancy category, these
changes cancelled each other out in terms of numbers.

some genuine workers who maybe by mistake failed one gold

question. The next two rows show results for the two intrinsic

metrics developed in the previous section (preference for the

second sample, deviation in system preference). Both yield the

highest values seen so far for mean preference difference and

mean confidence and both result in more tests with (higher) sig-

nificancy. Applying both metrics together results in a further

boost, showing that they complement each other. Finally, as a

sanity check, we show that simply excluding a percentage of

workers at random does result in worse test outcomes (except a

very slight increase in the mean preference difference).

5. Discussion and conclusions

We have presented a method for crowdsourcing preference tests

for TTS, and shown that it gives similar results to tests con-

ducted internally. We have shown how monitoring the number

of times samples were played and mixing in gold questions en-

abled us to quantify the prevalence of cheating over time, and to

study the behaviour of cheaters. This in turn lead to two intrin-

sic cheater exclusion metrics, which were shown to improve test

outcomes, in particular if combined. Of the two metrics, the one

based on deviation in system preference gives slightly better re-

sults while excluding far fewer answers. However, it also risks

biasing the results by inadvertently excluding genuine workers

who happen to have a preference different from the majority.

The metric based on the preference for the second sample in-

troduces no such bias. It does however exclude some workers

simply because they have done few samples and therefore the

percentage is skewed (in the extreme case, 0% or 100% if they

have done only one sample). This could be remedied by a more

sophisticated metric incorporating that additional information.

From the comparison of known cheaters and trusted work-

ers it should be clear that these metrics can only hope to exclude

some cheaters, and that there is a remaining risk of excluding

genuine workers. We therefore do not recommend these met-

rics for rejecting workers, i.e. withholding payment, but only

for post-hoc exclusion of workers from results. In addition, the

metrics can be used for monitoring change in cheating preva-

lence.

6. References

[1] A. W. Black and K. Tokuda, “The blizzard challenge – 2005:
Evaluating corpus-based speech synthesis on common datasets,” in
Proc. of Interspeech – Eurospeech, 2005.

[2] C. Callison-Burch and M. Dredze, “Creating speech and language
data with Amazon’s Mechanical Turk,” in Proc. of NAACL HLT

Workshop on Creating Speech and Language Data With Amazon’s

Mechanical Turk. ACL, 2010.

[3] M. K. Wolters, K. B. Isaac, and S. Renals, “Evaluating speech syn-
thesis intelligibility using Amazon Mechanical Turk,” in Proc. 7th

Speech Synthesis Workshop (SSW7), 2010.

[4] F. Ribeiro, D. Florêncio, C. Zhang, and M. Seltzer, “CrowdMOS:
An approach for crowdsourcing mean opinion score studies,” in
Proc. of ICASSP. IEEE, 2011.

[5] K.-T. Chen, C.-C. Wu, Y.-C. Chang, and C.-L. Lei, “A crowd-
sourceable QoE evaluation framework for multimedia content,” in
Proc. of the 17th ACM international conference on Multimedia

(MM ’09). ACM, 2009.

[6] C. L. Bennett, “Large scale evaluation of corpus-based synthesiz-
ers: Results and lessons from the blizzard challenge 2005,” in Proc.

of Interspeech – Eurospeech, 2005.

[7] P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on
Amazon Mechanical Turk,” in Proc. of KDD-HCOMP. ACM,
2010.

3056

	Previous View

	Search

