
CRSD: Application Specific Auto-tuning of

SpMV for Diagonal Sparse Matrices�

Xiangzheng Sun, Yunquan Zhang, Ting Wang, Guoping Long,
Xianyi Zhang, and Yan Li

Lab. of Parallel Software and Computational Science,
Institute of Software, Chinese Academy of Sciences.
Graduate University of Chinese Academy of Sciences

{xiangzheng08,yunquan,wangting,guoping,xianyi,liyan08}@iscas.ac.cn

Abstract. Sparse Matrix-Vector multiplication (SpMV) is an important
computational kernel in scientific applications. Its performance highly
depends on the nonzero distribution of sparse matrices. In this paper,
we propose a new storage format for diagonal sparse matrices, defined
as Compressed Row Segment with Diagonal-pattern (CRSD). We design
diagonal patterns to represent the diagonal distribution. As the diagonal
distributions are similar within matrices from one application, some di-
agonal patterns remain unchanged. First, we sample one matrix to obtain
the unchanged diagonal patterns. Next, the optimal SpMV codelets are
generated automatically for those diagonal patterns. Finally, we com-
bine the generated codelets as the optimal SpMV implementation. In
addition, the information collected during auto-tuning process is also
utilized for parallel implementation to achieve load-balance. Experimen-
tal results demonstrate that the speedup reaches up to 2.37 (1.70 on
average) in comparison with DIA and 4.60 (2.10 on average) in compar-
ison with CSR under the same number of threads on two mainstream
multi-core platforms.

Keywords: CRSD, Auto-tuning, SpMV, Diagonal-pattern, Application
Specific Optimization.

1 Introduction

The Sparse Matrix-Vector multiplication (SpMV) is one of the most important
computational kernels in sparse linear algebra. Algorithms based on Compressed
Sparse Row(CSR) format often perform poorly on modern computer systems.
The performance highly depends on nonzero distribution, which determines the
memory access pattern and varies significantly among different applications.

In this paper, we study the optimization for diagonal sparse matrices, in which
the nonzeros mainly distribute along diagonals. Diagonal sparse matrices are
� This paper is supported by the National 863 Plan of China (No.2006AA01A125,

No. 2009AA01A129, No. 2009AA01A134), the China HGJ Significant Project (No.
2009ZX01036-001-002), the Knowledge Innovation Program of the Chinese Academy
of Sciences (No.KGCX1-YW-13), the Ministry of Finance (No. ZDYZ2008-2).

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 316–327, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

CRSD: Application Specific Auto-tuning of SpMV 317

universal. As far as we know, the Finite Difference Method(FDM) is widely used
to solve the numerical problems. Once the FDM is used, the coefficient matrix
of discrete Partial Differential Equations(PDEs) is usually the diagonal sparse
matrix. The numerical solution to the PDEs is an approximation to its exact
solution by using a discrete representation to the PDEs on the m × n × l mesh
points (xi, yj , zk), where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l. In the finite difference
scheme, the unknown’s value Ui,j,k = U(xi, yj , zk) is related to Ui±t,j±p,k±q

(where t, p, q may normally be 1 or 2). As long as the difference scheme is fixed,
t, p and q remain unchanged. When we modify m, n and l to change the problem
size, the diagonal distribution remains similar.

The Diagonal format(DIA) [1] is designed to store the diagonal sparse matrix.
All nonzeros on the same diagonal share the same index. However, a large number
of zeros should be filled when there are many scatter points or the diagonal is
broken by a long zero section. We define the long zero section as idle section .

To address this problem, we propose a novel storage format CRSD. In order
to represent the diagonal distribution, we design the diagonal pattern, which
divides diagonals into different groups. Furthermore, the matrix is split into row
segments. In each row segment, nonzeros on the diagonals of the same group are
viewed as the unit of storage and operation. We store those nonzeros contiguously
and organize the operation on them in one loop. Simultaneously, the scatter
points are also detected in each row segment. The number of filled zero for idle
section can be controlled according to the application.

Because the diagonal distribution remains similar in one application of dif-
ferent problem sizes, most diagonal patterns remain unchanged. We define the
unchanged diagonal pattern as application specific diagonal pattern(detailed in
section 2.2). For any given application, we analyze one matrix, named the sam-
ple matrix, to obtain application specific diagonal patterns. Next, the optimal
SpMV codelets for those diagonal patterns are generated automatically. Finally,
we combine those codelets as the optimal SpMV implementation. In addition, the
information collected during auto-tuning process can also be utilized for paral-
lel implementation to achieve load-balance. As the unchanged diagonal patterns
vary across diverse applications, the optimization is application specific.

The rest of this paper is organized as follows: section 2 describes the diagonal
pattern and CRSD storage format; section 3 presents the process of automatic
performance tuning; in section 4, the experiment results are provided and ana-
lyzed; the related works are given in section 5. At last, conclusion is summarized
in section 6.

2 CRSD Storage Format

2.1 Diagonal Pattern

For any two diagonals in the matrix, if the absolute value of difference of their
offset [1] is 1, they are adjacent. We can group a sequence of diagonals by the
following steps: if two diagonals are adjacent, put them into an adjacent (AD)
group; after removing the diagonals within the adjacent groups, the original

318 X. Sun et al.

diagonal sequence is broken up into pieces. We assign the diagonals of each piece
into a nonadjacent(NAD) group. The diagonal pattern is defined as the
way that the AD group(s) and the NAD group(s) are organized.

When the group is represented by group type(AD or NAD) and the number
of diagonals in it, then

group = (group type, the number of diagonals)
According to the definition, the diagonal pattern is represented as follows:

diagonal-pattern = {group1, group2, . . . groupm}
If the whole matrix contains several diagonal patterns, then

matrix = {dia-pattern1, dia-pattern2, . . . dia-patternn}.

Fig. 1. Example of diagonal sparse matrix

For example, there are two diagonal patterns in the matrix shown in Fig. 1
except nonzero v55. The matrix is represented as follows:

matrix = {{(NAD,1),(AD,2),(NAD,2)}, {(AD,2), (NAD,1)}}.
With diagonal pattern, we can process idle section: if there are few zeros in

the idle section, we can fill zeros to maintain the diagonal structure; otherwise,
if a large number of zeros are needed, we believe that the diagonal is broken
and the diagonal pattern should be changed. For example, a zero is filled at v43
position to maintain the diagonal structure, while the main diagonal is broken.
The application developer can set the maximum number of filled zeros according
to the property of application and the problem size.

2.2 Application Specific Diagonal Pattern

The diagonal patterns that remain unchanged among different problem sizes are
abstracted as Application Specific Diagonal Pattern and stored into one
group with group type Application Specific (AS). As there are more than one
application specific diagonal patterns, a tag is needed to identify them. In this
way, the group is represented as (AS, tag). We analyze one matrix, named the
sample matrix, from a given application to obtain application specific diagonal

CRSD: Application Specific Auto-tuning of SpMV 319

patterns. For the matrix listed in Fig. 1, if the second diagonal pattern is viewed
as application specific diagonal pattern with tag 1, then

(AS, 1) = {(AD, 2), (NAD, 1)}
matrix = {{(NAD,1),(AD,2),(NAD,2)}, {(AS, 1)}}.

2.3 Storage Format

We have grouped the diagonals using diagonal pattern. Furthermore, the matrix
is split into row segments. The number of rows in each row segment is defined
as row segment size and represented by the token mrows. In this way, the
whole matrix is split in two dimensions, as the dotted lines show in Fig. 1. In
each row segment, nonzeros on the diagonals of the same group are the storage
unit of CRSD. Additionally, if only one nonzero is on a diagonal within one row
segment, the nonzero is viewed as scatter point, such as v55 in Fig. 1.

In CRSD storage format, the scatter points and the nonzeros in diagonal are
stored separately. In order not to change the order of floating point operations,
the whole row where the scatter point locates is stored together. The row number,
the number of nonzeros in this row and the column index of each nonzero are
used as the indices and stored in array scatter index. The nonzero values are
stored in array scatter val.

Except scatter points, the whole matrix is represented by diagonal patterns.
All nonzeros in the same diagonal pattern share the same index: the diagonal pat-
tern, the start row number of the diagonal pattern, the number of row segments,
and the column indices of diagonals. The column index of each diagonal is needed
for nonadjacent group, while only the column index of first diagonal in adjacent
group needs to be recorded. The diagonal pattern is stored in array matrix and
the remaining of index value is stored in array crsd dia index. The nonzero
values in each storage unit are stored contiguously in array crsd dia val, such
as v20, v31, v21 and v32.

The number of diagonal patterns and rows that contain the scatter point
are assigned to num dia patterns and num scatter rows respectively. An
example is shown in Fig. 2 for the matrix in Fig. 1, when row segment size is 2.

num scatter rows=1
num dia patterns=2

matrix={{(NAD,1),(AD,2),(NAD,2)}, {(AS, 1)} }

crsd dia index = {R0, 1, C0, C2, C5, C7, | R2, 2, C0, C4}
crsd dia val = {{(v00,v11),(v02,v13,v03,v14),(v05,v16,v07,v18)}, {(v20,v31,v21,v32),(v23,v24)},
{(v42,v53,0,v54),(v45,v56)} }

scatter index = {R5, 4, C3, C4, C5, C6}
scatter val = {v53, v54, v55, v56}

Fig. 2. The CRSD storage format for matrix shown in Fig. 1 when mrows=2

320 X. Sun et al.

2.4 SpMV Implementation for CRSD

In the SpMV implementation for CRSD, the storage unit is also the operation
unit, for the reason that all SpMV operations on the elements in each storage unit
are organized together. When we set the upper limit of the number of diagonals
in (non)adjacent group, it is practical to enumerate the SpMV operations for all
kinds of groups. Once the number of diagonals in one group exceeds the upper
limit, it will be split into many sub-groups until the number of diagonals is less
than the upper limit.

for each row-segment in diagonal pattern
for each group of the diagonal pattern in one row segment

switch group type
case (NAD, 1): operation for group (NAD, 1)
case (AD, 2) etc: operation for the enumerated groups
case (AS, 1): // for application specific diagonal pattern

for each row-segment in diagonal pattern // Loop inside
// the generated SpMV codelet for (AS, 1)={(AD,2),(NAD,1)}

done
end switch

done
done

Fig. 3. SpMV code fragment for matrix shown in Fig. 1 when mrows=2

As application specific diagonal patterns are only available after sampling
the sample matrix, a code generator is designed to generate codelets for those
diagonal patterns. Because application specific diagonal patterns are inherent to
an application, the SpMV for CRSD becomes application specific. In addition,
it is not reasonable to generate all application specific diagonal patterns, since
some patterns cover few nonzero values. A threshold is set to determine the least
number of nonzeros that an application specific diagonal pattern should cover.

A SpMV code fragment is given in Fig. 3. In processing the adjacent group,
the elements of x can be reused. For this reason, we can load the element into a
register and use it repeatedly, such as register x1. The group with type AS rep-
resents application specific diagonal pattern and describes diagonal distribution
of entire row segment. Then operations for entire row segment are organized in
one loop.

3 Application Specific Automatic Performance Tuning

In order to improve the performance as well as portability of the generated
codelets, we apply auto-tuning to select the optimal implementation. For the

CRSD: Application Specific Auto-tuning of SpMV 321

reason that the SpMV for CRSD is application specific, the auto-tuning process
is also application specific.

We optimize the generated codelets by applying SSE intrinsics and explicit
prefetching. The SSE intrinsics allow simultaneous operations on a vector of
two double precision values. Explicit prefetching is implemented via compiler
intrinsic builtin prefetch. It sets prefetch distance to determine which elements
to be preloaded. Meanwhile, it can change the temporal locality of the preloaded
elements by modifying the prefetch locality, ranging from 0 to 3. The bigger
the prefetch locality is, the higher the temporal locality is. Furthermore, we
reschedule the SpMV operation via modifying the latency between data read
and data available(LAT RD) as well as the latency between data operation and
result available(LAT OP)(as shown in Fig. 3).

For different diagonal patterns, the performance is affected by the following
parameters on different hardware platforms and the value ranges are determined
according to the experimental statistics results:

– mrows. It determines the number of nonzeros to be processed in one loop,
ranging from 2 to 8;

– prefetch distance and prefetch locality. The prefetch function is applied to
nonzeros and vector x. The range of prefetch distance is from 30 to 300.

– LAT RD and LAT OP. If the number of SSE registers is defined as
num SSE regs. Their range is from 1 to num SSE regs/3;

Fig. 4. Application specific auto-tuning

Table 1. Experimental Plat-
forms

platform # AMD Intel
CPU AMD Phe-

nomTM II
X4 940, 3.0
GHz

Intel Xeon
X5550,
2.67GHz

MEM 8GB 8GB
Sockets 1 2
Compiler GCC 4.3.3 GCC 4.4.3
Compiler
option

-msse2 -O3 -fopenmp

After obtaining the application specific diagonal patterns, the whole auto-
matic performance tuning process is described as follows (shown in Fig 4):

Step 1. Search engine reads each application specific diagonal pattern, deter-
mines value set of parameters and passes them to code generator.

Step 2. The SpMV Codelet is generated, compiled and executed. The per-
formance information is sent back to search engine and recorded until all
application specific diagonal patterns are measured.

Step 3. The optimal performance and the corresponding parameter values for
all application specific diagonal patterns are sent to the code generator to
produce the final SpMV implementation.

322 X. Sun et al.

The matrix, which is used to evaluate the generated codelet in step 2, is
extended according the indices of the corresponding diagonal pattern, since the
performance of SpMV is affected by the input sparse matrix.

The search engine uses orthogonal search method[6] to determine the param-
eter value set. The search order is prefetch distance, prefetch locality, LAT RD,
LAT OP and mrows. Moreover, the entire process is completed during the build-
ing phase rather than at runtime.

3.1 The Final CRSD SpMV Implementation

As the auto-tuning records show, the row segment size is not same for different
diagonal patterns when the performance of generated codelet is optimal. When
we split the matrix in row direction, we chose different row segment size for
different diagonal patterns. The SpMV codelet for each diagonal pattern should
be generated according the corresponding row segment size. Then we combine
those generated codelets to produce the final CRSD SpMV implementation.

3.2 Parallelization

When one matrix is stored in CRSD storage format, the diagonal pattern and
corresponding number of row segments are obtained. Given the performance for
processing each diagonal pattern, we can estimate the execution time. Then we
can split the matrix into sub-matrices and keep the estimated time for processing
each sub-matrix equal. The diagonal patterns may be split in the process when
necessary. The parallelization is implemented using OpenMP. specifically, we
distribute the scatter points according to the row range of each sub-matrix to
avoid write confliction of destination vector y.

4 Evaluation

In this section, we present the performance improvement of CRSD on two plat-
forms(Table 1) and 13 matrices(Table 2). Those matrices are categorized in five
classes: the first three classes come from [14]; the last two classes are from an
astrophysics application [15]. The coverage represents the percentage of number
of nonzeros in this diagonal pattern and threshold 15%, mentioned in section 2.4,
is used to identify the application specific diagonal pattern.

We choose CSR and DIA storage formats to compare with our CRSD storage
format. Owing to that SpMV is not available in ACML, we select Intel MKL,
with version 10.2.6.038, on the two x86-based architectures.

We also select OSKI-1.0.1h[7] for the comparison. When we set hint that
all the matrices are diagonal sparse matrices, it fails to tune the matrices and
return the input matrices.The same situations occur in earlier work[4][5].Thus
the performance of CSR can be viewed as the result of OSKI.

CRSD: Application Specific Auto-tuning of SpMV 323

Table 2. Matrix Set and Application Specific Diagonal patterns

#
Matrix Information Application Specific Diagonal pattern

name row nnz picture # content Coverage(%)

1 atmosmodd* 1270423 8814880
2 atmosmodj 1270423 8814880 Dp1 {(NAD, 2), (AD, 3), (NAD, 2)} 95.3
3 atmosmodm 1270423 8814880

4 cell1* 7055 30082
5 cell2 7055 30082 Dp2 {(AD, 2), (NAD, 1), (AD, 2)} 79.9

6 kim1* 38415 933195
7 kim2 456976 11330020 Dp3 {(AD,5),(AD,5), (AD, 5), (AD, 5) (AD, 5)} 98.0
8 A1 620000 4917600
9 A2 1080000 8578800 Dp4 {(NAD,2), (AD,3), (NAD,3)} 44.0

10 A3* 320000 2532800 Dp5 {(NAD,3), (AD,3), (NAD,2)} 45.9
11 B1 620000 4917600
12 B2 1080000 8578800 Dp6 {(NAD,2), (AD,5),(NAD,2)} 97.5

13 B3* 320000 2532800
* the sample matrix

4.1 The Auto-Tuning Records

The auto-tuning records on two platforms are given in Table 3. From the records
we can conclude that the parameter values are different when the performance
is optimal for the same diagonal pattern on different platforms.

Table 3. The Auto-tuning Records for Application Specific Diagonal patterns

Dp#
Segment size Locality for x Locality for

nonzeros
Prefetch dis-
tance

LAT RD LAT OP

AMD Intel AMD Intel AMD Intel AMD Intel AMD Intel AMD Intel
Dp1 3 8 2 3 0 0 50 30 2 3 4 2
Dp2 8 8 2 3 1 0 150 30 2 4 3 4
Dp3 5 4 2 3 1 0 150 90 3 4 3 2
Dp4 3 6 3 3 0 0 50 150 2 2 2 3
Dp5 2 6 2 3 0 0 150 90 3 3 3 3
Dp6 4 4 3 3 0 0 40 90 3 3 3 3

The prefetch locality for x is almost 3, the highest temporal locality, whereas
that for nonzeros is almost 0. The effect of prefetch locality for matrix B3 on two
platforms is shown in Fig 5. The maximum difference of performance reaches up
to 44.8% and 24.0% on platform AMD and Intel respectively. The major reason
is the different access behavior of nonzeros and vector x: the elements of x may
be accessed repeatedly, which is determined by nonzero distribution, whereas
the elements in nonzeros are only accessed once.

We also collect the performance data affected by prefetch distance for matrix
B3. The maximum difference of performance is only 11.8% and 2.2% on platform
AMD and Intel respectively. This phenomenon exists for other matrices. We
can conclude that prefetch locality plays a more important role than prefetch
distance on SpMV performance for diagonal sparse matrices.

The performance improvement for the automatic performance tuning is given
in Fig 6. The final CRSD SpMV uses the variable row segment and other opti-
mization methods, such as SSE intrinsic. The performance using only variable
row segment size is viewed as the basic CRSD implementation. The performance

324 X. Sun et al.

(a) Platform AMD (b) Platform Intel

Fig. 5. The performance effect of prefetch locality on AMD and Intel platforms

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6 7 8 9 10 11 12 13

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

Matrix #

basic CRSD
tuned CRSD

CRSD, mrows=2:8

(a) Platform AMD

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7 8 9 10 11 12 13

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

Matrix #

basic CRSD
tuned CRSD

CRSD, mrows=2:8

(b) Platform Intel

Fig. 6. The perfomance improvement of auto-tuning

gain differs among the matrices and the platforms. The average performance im-
provement is 36.3% and 36.6% and maximum is 65.9% and 63.1% on platform
AMD and Intel respectively.

In Fig 6, the performance range of CRSD with different identical mrows
is also given. The final CRSD SpMV outperforms those implementations for
all matrices on platform Intel. On platform AMD, the performance difference
between the final CRSD SpMV and upper range bound is less than 4%. This
verifies that the final CRSD SpMV is efficient.

4.2 Serial Performance Improvement

The performance comparison with CSR and DIA is given in Fig 7. The maximum
speedup compared with CSR reaches 3.83 and 4.38 on platform AMD and Intel
respectively. And the average of speedup reaches 2.44 and 3.05.

In comparison with DIA, we find that the performance of DIA for cell1 and
cell2 is very poor. For the reason that the number of filled zeros is almost 33
times larger than the number of nonzeros. The nonzeros distributes on 169 dis-
tinct diagonals. Therefore large number of idle sections exist. Even CSR is faster

CRSD: Application Specific Auto-tuning of SpMV 325

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

..

..

91

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

S
p

ee
d

u
p

Matrix #

CSR
DIA

CRSD
CRSD/CSR
CRSD/DIA

(a) Platform AMD

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7 8 9 10 11 12 13
1

2

3

4

5

6

7

..

55

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

S
p

ee
d

u
p

Matrix #

CSR
DIA

CRSD
CRSD/CSR
CRSD/DIA

(b) Platform Intel

Fig. 7. Serial performance comparison results

than DIA by the factor of 23.50 and 11.87 on AMD and Intel respectively. How-
ever, using diagonal pattern CRSD is suitable for the two matrices, especially
application specific diagonal pattern covers 79.9% of the nonzeros. In compar-
ison with CSR, the speedups reach 3.69 and 4.34 on platform AMD and Intel
respectively. Except cell1 and cell2, the maximum speedups reach 2.37 and 2.02
on platform AMD and Intel respectively. The average reaches 1.73 and 1.74.

4.3 Parallel Performance Improvement

Since the implementation based on the DIA is not parallelized in Intel MKL, only
the CSR format is used for the comparison. The comparison results are shown
in Fig 8. CRSD outperforms CSR under different number of available threads
on two platforms. The maximum and average speedups are listed in Table 4.

Table 4. Speedup of parallel CRSD compared with parallel CSR

of threads 2 4 8

AMD
Max 4.07 4.64 X
Average 2.51 2.32 X

Intel
Max 4.51 4.34 4.61
Average 2.42 2.16 2.17

The performance of CRSD for matrices with prefix cell and kim are relatively
high, especially for matrices whose sizes are small enough to be fitted into cache.
In those matrices, a large percent of diagonals are adjacent. Hence the elements
of x are reused frequently.

5 Related Work

Im and Yelick et al. propose register blocking, cache blocking and reordering
techniques. Register blocking[3][7][8] is based on BCSR format. BCSR is suit-
able for matrices, in which nonzeros primarily distribute in dense blocks. This

326 X. Sun et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 3 4 5 6 7 8 9 10 11 12 13
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

S
p

ee
d

u
p

Matrix #

CSR, 2thr
CRSD, 2thr

CSR, 4thr
CRSD, 4thr

CRSD/CSR, 2thr
CRSD/CSR, 4thr

(a) Platform AMD

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 10 11 12 13
 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

S
p

ee
d

u
p

Matrix #

CSR, 2thr
CRSD, 2thr

CSR, 4thr
CRSD, 4thr

CSR, 8thr
CRSD, 8thr

CRSD/CSR, 2thr
CRSD/CSR, 4thr
CRSD/CSR, 8thr

(b) Platform Intel

Fig. 8. Performance comparison results between parallel CSRD and parallel CSR

property is universal for the matrices produced by Finite Element Method(FEM,
another major method for PDEs). Vuduc et al. estimate the performance bounds
for the register blocking and propose a new approach to choose the register block
size[9]. However, excessive zeros have to be filled to maintain the block format
in BCSR, which wastes the computation and memory resources. To reduce the
number of filled zero, Vuduc et al. in [2][10] exploit variable block structure
rather than identical block size; Belgin et al. explore the distribution pattern
of nonzeros in dense block and propose PBR to store matrices without zero
filling[4]. Cache blocking[3] is used to increase the temporal locality by reorder-
ing the memory access, Nishtala et al. present a new performance models, which
takes TLB misses into account, and a criteria to determine when to apply the
cache blocking [11]. Samuel Williams [5] sums up all those optimization meth-
ods on the emerging multi-core platforms. To mitigate the memory bandwidth
pressure, Willcock[12] and Kourtis et al. [13] utilize data compression to reduce
the index. Furthermore Kourtis also introduce CSR-VI to compress the nonzero
value when most of nonzero values are identical.

6 Conclusion

In this paper, we propose CRSD for the diagonal sparse matrix. We design
diagonal pattern to describe the diagonal distribution, making CRSD more suit-
able than DIA. Furthermore, as diagonal distributions are similar for different
problem sizes, we introduce the idea of application specific diagonal pattern to
optimize SpMV implementation. During the building phase, the optimal codelets
for application specific diagonal patterns are generated automatically. It differs
from OSKI, for OSKI chooses the optimal implementation at runtime. The auto-
tuning records are also utilized to achieve load-balance for parallelization.

The results from our experiments demonstrate that CRSD is efficient for pro-
cessing the diagonal sparse matrices from one application, when there are several
major diagonal patterns and diagonal distribution remains similar among the
matrices. We are transplanting the CRSD to the GPU. Our preliminary tests on

CRSD: Application Specific Auto-tuning of SpMV 327

GPU indicate a strong potential for better performance. In the future, we will
study more types of nonzero distributions and optimize the SpMV specifically
on distinct architectures.

References

1. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput oriented processors. In: Supercomputing (2009)

2. Vuduc, R.W.: Automatic Performance of Sparse Matrix Kernels. The dissertation
of Ph.D, Computer Science Division, U.C. Berkeley (2003)

3. Im, E.: Optimizing the performance of sparse matrix-vector multiplication. PhD
thesis, University of California, Berkeley (2000)

4. Belgin, M., Back, G., Ribbens, C.J.: Pattern-based sparse matrix representation for
memory-efficient SMVM kernels. In: International Conference on Supercomputing,
NY, USA (2009)

5. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. In: Pro-
ceedings of the 2007 ACM/IEEE Conference on Supercomputing, Reno, Nevada,
November 10-16 (2007)

6. Kulkarni, M., Pingali, K.: An experimental study of self-optimizing dense linear
algebra software. Proceedings of the IEEE 96(5), 832–848 (2008)

7. Vuduc, R., Demmel, J., Yelick, K.: OSKI: A library of automatically tuned sparse
matrix kernels. In: Proceedings of SciDAC 2005, Journal of Physics: Conference
Series (2005)

8. Im, E.-J., Yelick, K.A.: Optimizing sparse matrix computations for register reuse
in SPARSITY. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S.,
Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2073, pp. 127–136. Springer,
Heidelberg (2001)

9. Vuduc, R., Demmel, J., Yelick, K., Kamil, S., Nishtala, R., Lee, B.: Performance
optimizations and bounds for sparse matrix-vector multiply. In: Supercomputing,
Baltimore, MD (2002)

10. Vuduc, R.W., Moon, H.-J.: Fast sparse matrix-vector multiplication by exploiting
variable block structure. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J.
(eds.) HPCC 2005. LNCS, vol. 3726, pp. 807–816. Springer, Heidelberg (2005)

11. Nishtala, R., Vuduc, R., Demmel, J.W., Yelick, K.A.: When cache blocking sparse
matrix vector multiply works and why. Applicable Algebra in Engineering, Com-
munication, and Computing (2007)

12. Willcock, J., Lumsdaine, A.: Accelerating sparse matrix computations via data
compression. In: ICS 2006: Proceedings of the 20th Annual International Confer-
ence on Supercomputing, pp. 307–316. ACM Press, New York (2006)

13. Kourtis, K., Goumas, G., Koziris, N.: Optimizing sparse matrix-vector multiplica-
tion using index and value compression. In: Proceedings of the 5th Conference on
Computing Frontiers, Ischia, Italy, May 5-7 (2008)

14. Boisvert, R., Pozo, R., Remington, K., Miller, B., Lipman, R.: NISTMatrixMarket,
http://math.nist.gov/MatrixMarket/index.html

15. Chana, K.H., Li, L., Liao, X.: Modelling the core convection using finite element
and finite difference methods. Physics of the Earth and Planetary Interiors 157(2),
124–138 (2006)

http://math.nist.gov/MatrixMarket/index.html

	CRSD: Application Specific Auto-tuning of SpMV for Diagonal Sparse Matrices
	Introduction
	CRSD Storage Format
	Diagonal Pattern
	Application Specific Diagonal Pattern
	Storage Format
	SpMV Implementation for CRSD

	Application Specific Automatic Performance Tuning
	The Final CRSD SpMV Implementation
	Parallelization

	Evaluation
	The Auto-Tuning Records
	Serial Performance Improvement
	Parallel Performance Improvement

	Related Work
	Conclusion
	References

