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Abstract

Bladder cancer is a significant health burden due to its high prevalence, risk of mortality, 

morbidity, and high cost of medical care. Epidemiologic evidence suggests that diets rich in 

cruciferous vegetables, particularly broccoli, are associated with lower bladder cancer risk. 

Phytochemicals in cruciferous vegetables, such as glucosinolates, which are enzymatically 

hydrolyzed to bioactive isothiocyanates, are possible mediators of an anticancer effect. In vitro 
studies have shown inhibition of bladder cancer cell lines, cell cycle arrest and induction of 

apoptosis by these isothiocyanates, in particular sulforaphane and erucin. Although, not yet 

completely understood, many mechanisms of anti-cancer activity at the steps of cancer initiation, 

promotion and progression have been attributed to these isothiocyanates. They target multiple 

pathways including the adaptive stress response, phase I/II enzyme modulation, pro-growth, -

survival, -inflammatory signaling, angiogenesis, and even epigenetic modulation. Multiple in vivo 
studies have shown the bioavailability of isothiocyanates and their anti-tumoral effects. Although 

human studies are limited, they support oral bioavailability with reasonable plasma and urine 

concentrations achieved. Overall, both cell and animal studies support a potential role for 

isothiocyanates in bladder cancer prevention and treatment. Future studies are necessary to 

examine clinically relevant outcomes and define guidelines on ameliorating the bladder cancer 

burden.
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Graphical Abstract.

There is mounting evidence that isothiocyanates, derived from cruciferous vegetables, show strong 

promise to prevent bladder cancer, specifically transitional cell carcinoma (TCC) of the urinary 

bladder.
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I. Introduction

Our interest in bladder cancer risk and prevention was motivated by collaboration on a series 

of large epidemiological studies that elucidated and quantified the potential roles of tobacco, 

geographic location, fluids, and dietary components on the risk of bladder cancer [1–5]. 

Interestingly, among the vast array of fruits and vegetables available in North America, only 

cruciferous vegetables emerged with significant associations with reduced bladder cancer 

risk. The objective of this review is to critically evaluate the accumulated literature regarding 

the potential role of cruciferous vegetables in bladder cancer prevention and as a possible 

adjunct to treatment. Cruciferous vegetables contain a complex mix of phytochemicals, 

however, this review will focus on isothiocyanates (ITC)s. We begin by defining the burden 

of bladder cancer and its pathophysiology. We then explore the cruciferous vegetable family, 

with a focus upon bioactive isothiocyanates, and summarize the present epidemiologic 

evidence for employing this class of vegetables in bladder cancer prevention and/or 

treatment. Next, we will define the chemistry and bioavailability of cruciferous vegetable 

isothiocyanates. We then proceed to review in vitro and in vivo experimental studies 

evaluating the effects of cruciferous vegetables and isothiocyanates in bladder cancer, 

followed by a synopsis of the diverse potential mechanisms of actions suggested to be at 

play in the bioactivity of these compounds. Finally, we summarize present findings from 

human interventions to assess the potential of these compounds to prevent bladder cancer 

and then discuss strategies for future larger scale human clinical trials and how we should 

proceed as a field to help ameliorate the bladder cancer burden.
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II. The Bladder Cancer Burden

Carcinoma of the urinary bladder presents a significant health care burden in the United 

States and around the globe. In the United States, bladder cancer is the sixth most common 

cancer and the eighth most common cause of cancer death, in men, with an estimated 79,000 

new cases and 17,000 deaths in 2017 [6, 7]. It is the second most prevalent neoplasm in men 

60 years of age or older [8–11]. Worldwide, almost 400,000 new cases are diagnosed 

annually with approximately 150,000 deaths [12, 13]. Strikingly, bladder cancer recurrence 

rate is the highest among all malignancies [14] and it has the highest lifetime treatment costs 

per patient, of all cancers, due to its high recurrence rate and ongoing invasive monitoring 

requirements [15].

Bladder cancers are derived from the urothelium, also referred to as the transitional 

epithelial lining of the bladder. More than 90% of bladder cancers are transitional cell 

carcinoma. The less common bladder cancers are squamous cell carcinoma, 

adenocarcinoma, and small cell carcinoma, perhaps representing different cells of origin [16, 

17].

Tobacco smoking is the most important risk factor of bladder cancer, estimated to cause 

about half of all cases, increasing relative risk by 2- to 4-fold, and is a growing international 

concern due to expansion in tobacco use in developing nations [18]. Dramatically, the risk of 

bladder cancer is directly related to the intensity and duration of smoking, and quitting 

visibly reduces risk [14]. The increased risk of developing bladder cancer due to smoking is 

attributed to exposure to a family of known bladder carcinogens present in tobacco smoke, 

called aromatic amines. The mechanism of action of aromatic amines in the genesis of 

bladder cancer is not completely currently clear, however there has been an associated link 

between aromatic amine exposure and a genotoxic effect, specifically DNA adduction and 

mutagenicity [14]. One can also be exposed to carcinogenic aromatic amines through 

occupational exposure. Interestingly, bladder cancer was one of the first cancers associated 

with an industrial process. Epidemiological studies of urinary bladder cancers began in 1985 

with a study of excessive occurrence of bladder cancer among workers in the aniline dye 

industry, with aniline being an aromatic amine, with then accumulating evidence clearly 

pointing to the relationship between bladder cancer and certain industrial chemicals with 

known carcinogenic effects [11]. Occupational exposure to different chemical carcinogens 

accounts for 10–20% of bladder cancers [19]. Some of the occupations that are linked to 

bladder cancer include painters, miners; and metal, rubber, leather and cement industry 

workers. Over 40 agents, from contemporary exposure, with a reported role in urothelial 

carcinogenesis have been identified, including 2-naphthylamine found in the dye and rubber 

industry as well as tobacco smoke and 4,4’-methylenebis[2-chloroanline] or [MBOCA] for 

short, which is used in polyurethane production [20]. Bladder infection with Schistosoma 

haematobium is a very important risk factor for bladder cancer in some parts of the world. 

Schistosomiasis is most prevalent in East Africa and the Middle East, and thus the most 

common cancer in men and the second in women [11, 21]. The chlorine [22] and arsenic in 

drinking water are also potential risk factors [10, 23, 24]. However, some studies suggest 

that greater total daily fluid intake may reduce the risk of bladder cancer, perhaps by dilution 

of carcinogens and promoting chemicals [3]. Acquired genetic alterations in tumor 

Abbaoui et al. Page 3

Mol Nutr Food Res. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suppressor genes and oncogenes play a critical role in bladder cancer initiation and 

progression [16]. However, there is no clear hereditary pattern and there appears to be only a 

small increased risk in relatives of bladder cancer patients [25]. There remains a critical need 

for effective screening as well as primary and tertiary preventive strategies, in addition to 

continued smoking cessation efforts.

Transitional cell carcinoma is generally classified into two pathways as summarized in 

Figure 1. The majority present with non-invasive cancers, which encompasses 

approximately 80% of urothelial carcinomas, with the remainder presenting with invasive 

disease. The non-invasive disease is usually managed by cystoscopic resection of the tumor, 

often followed by intravesical cytotoxic and/or immune therapy. Those with superficial 

disease have a 5-year survival rate of almost 90%, when optimally monitored and treated. 

However, non-invasive cancer has an approximately 70% chance of recurring, and a 10–20% 

chance of progressing into invasive disease [26, 27]. Due to the very high probability of 

recurrence, and risk of ultimately converting to invasive disease, the current standard-of-care 

mandates frequent urine tests, cystoscopies and resections, which is challenging and costly, 

yet this may present a unique and attractive opportunity for possible preventive strategies.

The de novo invasive form, in contrast, has a far grimmer prognosis with greater than 50% 

of patients developing metastatic disease and a 5-yr survival of 6% in the metastatic setting 

[28–30]. Interestingly, these two clinically different scenarios have distinct mechanisms of 

molecular carcinogenesis. The non-invasive variant is typically a result of gain-of-function 

mutations of the ras or similar growth regulating pathways, including ras itself and fibroblast 

growth factor receptor 3 (FGFR3) [31–33]. In contrast, the invasive variant is most 

commonly associated with inactivation of tumor suppressor genes, such as p53 and RB [16, 

34].

There remains a strong need for the development of effective treatments and preventative 

strategies to help ameliorate the bladder cancer burden. Furthermore, the development of 

novel biomarkers of bladder cancer initiation and progression, and monitoring of treatment 

are also greatly needed.

III. History of Cruciferous Vegetables

The mustard family of plants (Brassicaceae or Cruciferae) have a long history of human 

cultivation and consumption. It is documented that the Ancient Greeks, Romans, Indians and 

Chinese all utilized and greatly valued cruciferous vegetables. Interestingly, Brassicaceae 

crops provide the greatest diversity of crops used by man derived from a single species [35]. 

The diversity of cauliflower and broccoli-like vegetables from Brassica oleracea (wild 

cabbage) occurred in Europe, probably evolving from germplasm introduced in Roman 

times from the Eastern Mediterranean. Broccoli (Brassica oleracea italica) is a name of 

Italian origin, coming from the Latin ‘brachium’, meaning an arm or branch and refers to the 

edible floral shoots on brassica plants, which include cabbages and turnips. It became 

popular in Northern Europe in the 18th century. Broccoli, as a single main green head (called 

calabrese and named from the Calabria region of Italy), was introduced in the United States 

by Italian immigrants in the early 20th century. It is considered a ‘convenience’ vegetable 
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and has spread back to Europe from the United States into Japan and other countries in the 

Pacific Rim over the past 50 years [35]. Today, broccoli is one of the most consumed 

cruciferous vegetables in the United States, however it pales in comparison to the 

consumption of the top five fruits and vegetables: lettuce, tomatoes, potatoes, bananas and 

orange products. For example, the Continuing Survey of Food Intakes estimated 39–42% 

consume iceberg lettuce and tomatoes, while only 3% consumed broccoli [36]. Worldwide, 

cruciferous vegetables are commonly consumed and include cabbage, Brussels sprouts, 

cauliflower, kale, collard greens, arugula (rocket), bok choy, watercress, canola, mustard 

seeds, radish, daikon, wasabi and horseradish.

Plants from this family are readily distinguished by a cruciform (cross-shaped) corolla, six 

stamens (the outer two shorter than the inner four), a capsule often with a septum and a 

pungent watery sap [37]. However, taxonomic classification of Brassicaceae (338 genera and 

3709 species) is one of great complexity and controversy. This is because boundaries 

between species have been poorly delineated, and largely artificially circumscribed until 

2006. The use of molecular biology techniques have helped to more clearly define the 

taxonomy of this important family of plants [37].

IV. Epidemiology of Cruciferous Vegetables, Isothiocyanates and Bladder 

Cancer

A landmark series of reports from the Health Professional’s Follow-Up Study, a prospective 

cohort epidemiologic study, involving over 47,000 men and published in the late 1990’s 

provided new insight into risk factors for bladder cancer, particularly diet and nutrition [1, 

3–5]. Included in these, was a thorough examination of estimated fruit and vegetable intake 

and the risk of bladder cancer, reporting that intake of cruciferous vegetables, particularly 

broccoli, had a strong inverse association with bladder cancer risk, with those consuming <1 

serving of broccoli/week vs. >1 serving/week associated with a 29% lower risk, while ≥2 

servings/week experienced a 39% lower risk (p=.009) [5]. Supporting these findings, a 

retrospective case-control study of over 1400 participants, from MD Anderson Cancer 

Center, showed that high ITC intake was associated with 29% decreased risk of bladder 

cancer and the protective effect was most evident in older individuals and ever- and heavy-

smokers. The study also correlated N-acetyltransferase (NAT2) slow acetylators, an 

enzymatic process involved in carcinogen metabolism, with increased bladder cancer in 

Caucasians [38]. A recent meta-analysis found that increasing intake of fruits, vegetables, 

cruciferous vegetables, citrus fruits and fruits and vegetables combined were associated with 

a statistically significant reduction in bladder cancer risk with similar results observed in a 

linear dose-response analysis [39]. Furthermore, another meta-analysis including cohort and 

case-control studies, evaluated the relationship between cruciferous vegetables intake and 

risk of bladder cancer, finding a significantly decreased risk of bladder cancer in overall 

cruciferous vegetables intake group and subgroup of case-control studies but not detected in 

cohort studies [40]. A hospital-based case-controlled study, involving 275 individuals with 

incident, primary bladder cancer, observed a strong and statistically significant inverse 

association between bladder cancer risk and raw cruciferous vegetables intake, with the 

inverse association remaining consistent among current and heavy smokers with three or 
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more servings of cruciferous vegetables a month [41]. Furthermore, with an average 8-year 

follow-up, a strong and significant inverse association was observed between bladder cancer 

mortality and broccoli intake, particularly raw broccoli intake [42]. Interestingly, in a 

Multiethnic Cohort Study, it was found that in women, total fruits and vegetables, total 

vegetables, yellow-orange vegetables and total fruits and citrus fruits were all inversely 

associated with the risk of invasive bladder cancer in risk factor-adjusted models. However, 

for men, no association for fruits, vegetables, or nutrients were found, overall; although 

inverse associations were observed for vegetable intake among current smokers, and in 

ethnic specific analyses, specifically in Latino men [43].

There is emerging evidence that bladder cancer risk increases significantly in individuals 

who carry genetic variants of phase II enzymes such as glutathione S-transferase (GST) and 

NAD(P)H:quinone oxidoreductase 1 (NQO1) [44–47]. Phase II enzymes act as cell 

protectants by detoxifying against potential carcinogens and oxidants. Interestingly, 

isothiocyanates found in cruciferous vegetables have been shown to induce phase II enzyme 

activity and this may in part explain their epidemiologic association with decreased bladder 

cancer risk [33]. This may explain why high consumption of fruits and vegetables, 

particularly cruciferous vegetables, is associated with reduced risk of bladder cancer [48–

51]. Furthermore, genetic variations in DNA repair genes, including ERCC2, D312N and 

XPC, have also been shown to be associated with increased bladder cancer risk [52].

Conversely, some epidemiologic studies examining cruciferous vegetables intake and 

bladder cancer risk, have shown no association of decreased risk [53, 54]. For example, a 

prospective study from Alpha-Tocopherol Beta-Carotene Cancer Prevention Study did not 

find an association between total fruits and vegetables intake or cruciferous vegetables 

intake and bladder cancer risk in smokers [2]. In addition, a Swedish prospective population-

based cohort study of 82,002 women and men found no association between total fruits and 

vegetables or cruciferous vegetables intake [55]. A Meta- Analysis on fruits and vegetables 

intake and risk of bladder cancer risk also did not see a correlation between cruciferous 

vegetables and bladder cancer risk, however, an inverse relationship between bladder cancer 

and green leafy vegetables was seen [56].

Inconsistencies in epidemiologic findings may be related to multiple reasons [57]. Firstly, 

intakes from diet assessment tools cannot capture many variables that may significantly 

contribute to the potentially anticancer activity of bioactive in fruits and vegetables. The 

many types of cruciferous vegetables and their multitude of genetic strains will show a 

diverse array of bioactives. In addition, cooking methods may impact stability, absorption 

and bioavailability. The context of the meal where cruciferous vegetables are consumed may 

also impact host exposure to bioactives [58, 59]. In recent years, many studies are showing 

exceptionally diverse pharmacokinetics of phytochemicals in humans as host genetics 

impact the metabolism and degradation of phytochemicals [60–62]. Furthermore, 

epidemiologic studies must consider the exposures to known bladder carcinogens as critical 

variables and examine key interactions with diet and host genetic polymorphisms associated 

with carcinogen metabolism. Overall, in spite of the recognized caveats, the epidemiologic 

findings support a hypothesis that cruciferous vegetable intake is related to decreased risk of 

bladder cancer. Further well-designed prospective studies addressing the interactive risk 
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factors are needed to explore the potential protective impact of cruciferous vegetables over 

the life cycle of bladder carcinogenesis [40]. In addition to human studies, one logical and 

necessary step is to test these hypotheses in relevant pre-clinical bladder cancer models of 

superficial and invasive disease.

V. Chemistry, Bioavailability and Metabolism of Cruciferous Vegetable 

Isothiocyanates

A remarkable characteristic of cruciferous plants is their high content of glucosinolates, 

which often approaches greater than 1% of their dry weight [63]. These compounds serve an 

important evolutionary protective role as they are a component of the myrosinase system 

where myrosinase enzymes are sequestered in the intact plant separately from glucosinolate 

substrates. When the plant is damaged, by an insect or by human chewing, chopping or 

digestion for example, myrosinase catalyzes the conversion of inactive glucosinolate 

precursors to an unstable intermediate, which rearranges to produce a nitrile, thiocyanate, or 

isothiocyanate that protect the plant as illustrated in Figure 2. Isothiocyanates have been 

shown to have broad antibiotic properties including antimicrobial, nematocidal, antifungal 

and antiprotozoal [64]. They also cause specific positive and negative feeding cues for some 

insects, can exhibit insecticidal properties as well as allelopathy, where they can suppress the 

growth of neighboring plants [63]. Diverse glucosinolates and their corresponding 

isothiocyanates are common among cruciferous vegetables, with the glucosinolate backbone 

demonstrating over 100 different R groups [65] and classified as alkyl, indolyl, or benzyl 

derivatives. Isothiocyanates are often volatile adding spiciness to food products such as 

horse radish, wasabi, radishes, and many cruciferous sprouts such as those of broccoli. An 

emerging body of literature involves the bioactivity and fate of indolyl glucosinolates in 

humans. Downstream metabolites, indole-3-carbinol and di-indolyl methane, are well-

studied in this realm however, this review’s focus is on the alkyl isothiocyanates 

sulforaphane and erucin which have established efficacy in many experimental models of 

cancer including of the bladder.

The glucosinolate content of cruciferous plants varies greatly, influenced by a multitude of 

factors including the region, season, climactic conditions of the specific year grown, length 

and mode of storage and soil conditions among many other factors. However, genetics have 

been shown to have a greater effect on glucosinolate content over environment [66–68]. 

Previous damage to a plant primes for higher production of glucosinolates as a protective 

mechanism, watering also increases overall levels [69]. Contrastingly, lower growing 

temperatures, with plants harvested in the winter or autumn versus the spring or summer as 

well as selenium-enriched soil, causes decreased plant glucosinolate levels [67, 68]. Young 

broccoli plants, especially seeds and sprouts, have 20–50 times the levels of glucosinolates 

than more mature market-stage plants [70]. Since glucosinolates serve in plant defense, the 

myrosinase system has evolved to be most potent in immature organs to protect a plant until 

it reaches its reproductive stage.

Plant tissue damage usually induces glucosinolate hydrolysis to isothiocyanates and 

subsequent isothiocyanate losses if vegetables are not immediately consumed. Many food 
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handling practices employed for storage and preparation are disruptive. When vegetables are 

cooked, glucosinolates can be reduced by 30–60% via thermal degradation but primarily due 

to leaching into the cooking water when boiled [71–73]. Thawing of frozen cruciferous 

vegetables, without previous inactivation of myrosinase, leads to almost complete loss of 

glucosinolate as the cell structure is broken and water becomes available for reactions to 

occur [74]. Commercial transport, distribution and storage during the retail sale period also 

lead to significant losses, with a 40% loss of aliphatic glucosinolates after 7 days of storage 

and a 66% loss after 10 days [74]. To minimize these losses, rapid cooking at sub-boiling 

temperatures and with scant cooking water – e.g. sautéing, steaming, or stir-frying - 

thermally inactivates myrosinase without leaching and thereby stabilizes glucosinolate 

levels. Greater isothiocyanate yields at consumption can be realized by pre-treating 

vegetables at 60 °C to selectively inactivate epithiospecifier protein (ESP) such that a greater 

proportion of intermediates rearrange to isothiocyanates upon processing or chewing [74–

76]. It has also been shown that isothiocyanates in broccoli juice are relatively thermolabile 

and pressure stable [77]. In addition, High Pressure Processing (HPP) caused no negative 

effects on the glucosinolate-myrosinase system in broccoli sprouts [78].

The bioavailability and metabolism of vegetables isothiocyanates is a key issue when 

considering the potential impact these compounds may have on human health. 

Glucosinolates have limited bioavailability, yet when converted to isothiocyanates, 

metabolites are recovered in biological samples. Collectively, published data in rats and 

humans suggests that isothiocyanates from fresh cruciferous vegetables can reach μM 

concentrations in the blood, accumulate in tissues and persist with a half-life of 

approximately 2 hours [79]. After conversion by plant myrosinase, isothiocyanates can be 

transported from the gastrointestinal tract by passive, facilitated or active transport [73]. The 

high activity of myrosinase in fresh cruciferous vegetables rapidly produces isothiocyanates 

during chewing and isothiocyanate metabolites can reach their maximum concentration in 

blood within 30 minutes [80, 81]. During uptake by enterocytes or once they reach the blood 

and liver, isothiocyanates which are reactive electrophiles and usually trapped and further 

metabolized. A major first step of metabolism is by conjugation to glutathione (GSH) by 

Glutathione S-Transferase (GST) enzymes or by direct reaction with GSH or cysteine since 

thiol groups are strong nucleophiles. Consequently human genetic polymorphisms in GSTs 

were expected to be one contributing factor impacting isothiocyanate metabolite 

concentrations in vivo yet were not terribly predictive of recoveries [80, 82, 83]. 

Isothiocyanates conjugated to GSH are processed by the mercapturic acid pathway leading 

eventually to N-acetylcysteine (NAC) conjugates which are the major form present in urine, 

as depicted in Figure 3. Acetylated isothiocyanates have demonstrated effects on histone 

acetylation as histone deacetylases inhibitors. Although NAC-isothiocyanate conjugates are 

more stable than isothiocyanates themselves, NAC conjugates exist in an equilibrium with 

free isothiocyanates and the reversible nature of these bonds [84] might explain in part how 

conjugated isothiocyanates continue to influence biological systems. Free isothiocyanates 

can also react with protein thiols on the cysteine-rich protein, KEAP-1 thus modulating the 

KEAP1-Nrf2-antioxidant response element (ARE) signaling pathway [85] where several 

cysteine residues were reversibly modified through conjugation to sulforaphane.
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If myrosinase in foods is inactivated, glucosinolates reach the large intestine where they can 

be degraded by the resident microflora if they express the requisite myrosinase activity [86]. 

In a study by Clarke et al. [87] isothiocyanate metabolite levels in humans were measured 

after delivering a glucosinolate supplement devoid of myrosinase activity and compared to 

matched amounts of glucosinolates with high levels of endogenous plant myrosinase. 

Isothiocyanate bioavailability was ~40–80 fold higher in urine of volunteers when consumed 

as fresh broccoli sprouts [87]. More recently, researchers have aimed to encourage the 

growth of bacteria in the lower gut with myrosinase activity and thereby enhance conversion 

to isothiocyanates when humans ingest cooked cruciferous vegetables [88]. This is a 

promising strategy to maximize cruciferous vegetables health benefits since cruciferous 

vegetables are often preserved through cooking making isothiocyanate exposure reliant on 

the gut microbiome.

Two of the key isothiocyanates showing potent bioactivity in a variety of chemoprevention 

studies are sulforaphane (SFN) and erucin (ECN) which both reach the bladder via the urine 

after consumption of cruciferous vegetables. This has been shown in vivo where rats were 

fed purified glucosinolates. SFN and ECN conjugates as well as free SFN and ECN were 

found in the urine [89]. In addition, a study performed in over 18,000 men with colorectal 

cancer showed that cruciferous vegetable consumption, in single-void urine samples, led to 

urinary isothiocyanates concentrations that averaged 2.75 μmol/g creatinine, where urinary 

ITC concentrations were expressed in units of urinary creatinine to account for varying 

water contents of urine samples [90]. Cumulative excretion of isothiocyanates in urine have 

been shown to be about 50 times higher than the maximum concentration in the plasma, 

making the feasibility of isothiocyanate chemoprevention particularly powerful in the 

bladder [91]. Interestingly, SFN and ECN represent redox partners of one another (sulfinyl 

and thio-ether, respectively) and both are present in broccoli sprouts. When SFN and ECN 

were administered individually to mice, metabolites of both SFN and ECN were detected in 

biological samples [76, 92] demonstrating interconversion between the two forms. In studies 

by Clarke et al. [87, 93] it was found that between individuals there was great variance in the 

ratio of urinary ECN/SFN metabolites and these differences were reproducible over time. In 

the mouse studies this ratio was similar whether SFN or ECN was incorporated into chow, 

suggesting a steady state ratio. The varied human ECN/SFN ratios are provocative and may 

be predictive of individual biological impacts of isothiocyanate exposures. If so, elucidating 

the biochemical basis would be of great value to steer ratios towards optimal benefits.

More recently an analogous type of alkyl isothiocyanate with similar phase II enzyme-

inducing activity and chemopreventive promise has come to the forefront. Glucoraphenin 

and glucoraphasatin occur in radish roots, sprouts, and seeds and upon hydrolysis are 

converted to sulforaphane and raphasatin. They share the same structure with sulforaphane 

and erucin except contain a double bond at the 3-position of the alkyl chain. The two 

isothiocyanates occur with similar abundance to one another and in comparisons with 

broccoli sprouts for bioactivity, radish sprouts are similarly potent. Also of interest is that 

radishes are mostly devoid of ESP and thus generate higher yields of isothiocyanate without 

special pre-treatments [94–96].
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Human Studies in Isothiocyanate Metabolism

Several small-scale clinical studies have been reported examining the safety, tolerance and 

metabolism of isothiocyanates. A randomized, placebo-controlled, double-blind Phase I 

clinical trial of healthy volunteers used 25 μmol or 100 μmol of glucosinolates or 25 μmol of 

pure isothiocyanate (which is equivalent to about 10 g of dried broccoli or 1 g of dried 

broccoli sprouts) for 7 days showed no significant toxicities and much higher and more 

consistent excretion of isothiocyanates in the cohort fed isothiocyanates directly compared to 

those given glucosinolates [97]. A study comparing administration of a broccoli sprout 

derived sulforaphane-rich drink (SFR) vs. a glucoraphanin rich drink (GRR) found that the 

SFR led to fastest and highest peak concentration of serum SFN, while the GRR had 

considerable slower elimination rates of SFN, therefore implying that the optimal 

formulation would be a combination of SFR and GRR to achieve peak concentration for 

activation of targets as well as prolonged inhibition of other protective actions of SFN [98]. 

Healthy human volunteers given 200 μmol of broccoli sprout isothiocyanates exhibited peak 

plasma concentrations of 0.94–2.27 μmol/L at 1 hour and declined with first order kinetics 

with a half-life = 1.77 ± 0.13h [81]. Furthermore, raw broccoli was shown to result in faster 

absorption, higher bioavailability and higher peak plasma concentrations in human 

volunteers over cooked broccoli [99].

Interestingly, smokers consuming 250 g/day of steamed broccoli showed 41% decreased 

levels of oxidized DNA lesions and 23% increased resistance to H2O2 induced DNA strand 

breaks in peripheral blood mononuclear cells [100]. Another study looked at eight healthy 

women undergoing reduction mammoplasty who were given a single dose of broccoli sprout 

preparation containing 200 μmol of SFN. Following oral dosing, SFN metabolites were 

readily measurable in human breast tissue and were enriched in the epithelium [101]. One 

study conducted in China, reported striking inter- individual differences in the bioavailability 

of broccoli sprout isothiocyanates, an important consideration in the design of future human 

clinical trials [102]. Overall, the current literature supports the oral bioavailability of 

isothiocyanates, producing biologically active plasma and urine concentrations after 

consumption of broccoli, sprouts and pure isothiocyanates. Yet, there is clearly a need for 

further carefully controlled and powered clinical studies examining metabolism, 

bioavailability and safety of isothiocyanates. In addition, studies documenting the bioactivity 

of these compounds in relation to modulation of bladder carcinogenesis are also imperative.

VI. In Vitro and In Vivo Studies of Isothiocyanates and Bladder Cancer

There are limited in vitro and in vivo experimental studies examining at the potential 

inhibitory effects of cruciferous vegetables or their components on bladder carcinogenesis. 

In addition, there is a need for more in vivo bioavailability and metabolism studies of 

isothiocyanates to determine if they can reach appreciable plasma concentrations and reach 

important target organs and tissues progressing through the carcinogenesis cascade. 

Furthermore, addition studies focusing upon cellular targets mediating critical steps in 

bladder carcinogenesis are needed.

The ability of phytochemicals from food to inhibit carcinogenesis began over 5 decades ago, 

where the observation that animals fed a complex diet were at a lesser risk of developing 
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cancer than those consuming a semi-purified diet [103]. The two diets were nutritionally 

comparable in regard to major nutrients but differed significantly in the amount of non-

nutrients they contained. Dr. Lee Wattenberg subsequently fed a semi-purified diet and 

incorporated single food components one at a time to determine which of these exhibits an 

anticancer effect. He found that cruciferous vegetables are partly responsible for the 

observed anti-cancer effect of a chow diet [104]. In 1992, Paul Talalay reported the 

isothiocyanate sulforaphane to be a potent inducer of phase II enzyme activity and suggested 

that it may be responsible for the anti-cancer effects seen with broccoli consumption [105, 

106]. Subsequently, several in vitro and in vivo studies utilizing broccoli and broccoli sprout 

extracts as well as pure isothiocyanates have been performed looking at their effects in 

multiple cancers including lung, esophageal, prostate, breast and colorectal among several 

others [106–111]. However, the literature on bladder cancer and cruciferous vegetables is 

much more limited. In vitro, human bladder carcinoma cells (UMUC3 and T24) were 

significantly inhibited by isothiocyanates at doses of 7.5–30 μM, leading to induction of 

apoptosis and arrested cell cycle progression in the G2/M and S phases [112]. Our data also 

shows induction of apoptosis and cell cycle arrest in cell lines, ranging from superficial to 

invasive cell lines, treated with sulforaphane or erucin, with less toxic effects on normal 

human urothelial cells [92].

There are few in vivo bladder cancer studies utilizing isothiocyanates. In a long term (36 

week) rat study, animals fed 160 μmol/kg bw/day broccoli sprout extract and given 0.05% 

N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN), a specific bladder carcinogen, lead to a 

significant decrease in incidence, multiplicity, size and progression of bladder cancer. This 

was attributed to the broccoli extract’s ability to significantly induce glutathione-S-

transferase and NAD(P)H:quinine oxidoreductase 1, enzymes that detoxify oxidants and 

carcinogens [113]. Another study showed that sulforaphane can inhibit 4-aminobiphenyl-

induced DNA damage in RT4 cells and in bladder tissue [114]. It has also been shown that 

allyl isothiocyanate rich mustard seed powder (71.5 mg/kg giving from a singirin dose of 9 

μnmol/kg) can inhibit bladder cancer growth and block muscle invasion by 34.5% in an 

orthotopic rat bladder cancer model [115]. Also, in a study of n-butyl-(4-

hydroxybutyl)nitrosamine (BHBN) induced bladder tumors in rats, both 2-mercaptoethane 

sulfonate (MESNA) and 6-phenylhexyl isothiocyanate inhibited tumorigenesis, but 

phenethyl isothiocyanate did not [116]. We have also shown the broccoli isothiocyanates 

have the ability to inhibit established bladder cancer, utilizing a UMUC3 subcutaneous 

xenograft tumor model [92]. Additional cellular, animal and preclinical studies are described 

in a recent review on cruciferous vegetables, isothiocyanates and the prevention of bladder 

cancer [117].

Potential Toxicity of Isothiocyanates

Although isothiocyanates have been shown to exhibit anti-bladder cancer effects, they have 

also been shown to potential toxic effects. One of the major toxic effects of isothiocyanates 

involves their effects on thyroid function, interfering with iodine uptake and thyroid 

hormone synthesis and leading to hypothyroidism and goiter (enlargement of the thyroid 

gland) [97, 118, 119]. An inhibition of proper thyroid function may impact metabolism in 

almost all tissues, including effects on reproductive organs. In studies looking at animal feed 
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rich in cruciferous vegetables, a reduction in fertility of male and female animals, as well as 

growth reduction, and reduction in milk and egg production have been observed [120]. 

Furthermore, glucosinolate hydrolysis may cause irritation of gastro-intestinal mucosa, 

which may lead to local necrosis and hepatotoxicity [121].

There have even been studies that have linked isothiocyanates, in low concentrations, with 

compromising the function of immune cells and impairing genome stability [122]. 

Isothiocyanates are extremely electrophilic and have the ability to bind sulphydryl groups of 

biologically important molecules, contributing to their potential toxicity. In fact, some 

isothiocyanates have also been shown to have bladder cancer inducing properties, 

particularly phenethyl isothiocyanate (PEITC) and benzyl isothiocyanate (BITC). In rats fed 

a diet including 0.1% PEITC for 45 weeks, 92% of the mice formed bladder carcinomas, 

which remained even when the phenethyl isothiocyanate diet was discontinued [123]. Both 

pre- and post- initiation events were studied. Pre-initiation, 0.1% PIETC or BITC for 14 

days lead to increased inflammatory cell infiltration and hyperplasia of the bladder 

epithelium [124]. In addition, post-initiation effects of 0.1 % PEITC and BITC were 

examined in urinary bladder carcinogenesis with or without pre-treatment with 

diethylnitrosamine (DEN) and BBN, and both isothiocyanates showed strong promoter and 

some complete carcinogenic potential of bladder cancer [125]. One possible reason for this 

observation could be the accumulated dose of urinary isothiocyanates with this dosing 

regimen. It is estimated that NAC-ITCs could have been constantly maintained at levels far 

greater than 1 mmol/L and that although isothiocyanates can be beneficial at preventing or 

inhibiting bladder cancer growth at lower doses, at excessively higher doses, they may be 

harmful [112]. In addition, it is possible that the benzyl or phenethyl isothiocyanates may 

have some harmful effects, but this has not been reported for other isothiocyanates such as 

sulforaphane or erucin. Broccoli and broccoli sprouts do not have appreciable concentrations 

of these isothiocyanates and may be a better option over cruciferous vegetables containing 

higher levels of PIETC or BITC such as cauliflower, cabbage or Brussels sprouts, especially 

if these compounds are used in high doses for prevention or treatment of bladder cancer 

[126].

Toxicity can be explained by isothiocyanates ability to readily accumulate in bladder tissue. 

Given a rat that would consume an average of 16 g of food/day with a diet containing 0.1% 

isothiocyanate and produces 30 ml of urine in 24 hours, the rat will consume ~100 μmol 

isothiocyanate daily [127]. This would lead to a urinary concentration of ~1900 μM in the 

bladder which is much higher than can be achieved by human consumption and may explain 

the toxicity observed. Furthermore, cell culture studies have shown that only low 

concentrations of 5–20 μM are necessary to inhibit the growth of cancer cells further 

supporting the idea that large doses of isothiocyanates are not necessary [112, 128]. 

However, because other organs do not accumulate isothiocyanates and cannot reach such 

high concentrations as the bladder, toxicity is a possibility when attempting to achieve high 

enough concentrations for chemopreventive effects in these organs. Overall cruciferous 

plants at usual intake appear to be safe in humans [97] with the exception of allergies and 

with special precaution taken by those taking blood-thinning medications such as Warfarin 

[129].
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VII. Mechanisms of Action of Isothiocyanates and Bladder Cancer

A wide body of evidence suggests that isothiocyanates possess potent anti-cancer activity 

via induction of apoptosis through several distinct molecular mechanisms of action that 

include targeting the Keap-1- and Nrf2-dependent adaptive stress response, inhibition of 

phase I enzymes (i.e. cytochrome p450), interfering with inflammatory and pro-growth/-

survival intracellular signaling pathways, and through disruption of mitochondrial function, 

reviewed extensively in [130, 131].

Modulation of Carcinogen Metabolizing Enzymes

A well-defined isothiocyanate anti-cancer mechanism of action, which may modulate 

bladder cancer initiation, involves inhibition of phase I enzymes (i.e. cytochrome p450) and 

the induction of phase II enzymes, such as glutathione-S transferase (GST), quinone 

reductase (QR), and NAD(P)H:quinone oxidoreductase-1 (NOQ1), reviewed in [131]. Phase 

I enzymes cause carcinogenic compounds to become more hydrophilic through numerous 

oxidation, reduction, and hydrolysis reactions, causing increased reactivity and DNA 

damage [132, 133]. Furthermore, certain cytochrome p450 enzymes are associated with an 

increased risk of bladder cancer [127]. In contrast, phase II enzymes cause conjugation of 

the reactive intermediates, rendering them more water-soluble and therefore excreted in the 

urine through the mercapturic acid pathway [132, 133]. GSH is regulated by phase II 

enzymes, and is a principle ligand that binds with electrophiles and reactive oxygen species 

(ROS) [132].

Isothiocyanates have also been demonstrated to interact with the bladder epithelium and 

induce GST and NQO1, well-known cytoprotective enzymes capable of detoxifying 

carcinogens [134]. Interestingly, NQ01 has also been shown to stabilize the tumor 

suppressor p53 [135]. The bladder was also shown to be one of the most responsive tissues 

for the induction of these enzymes by broccoli sprout extracts which could especially be 

effective in protecting the bladder against cancer initiation [33]. Isothiocyanates appear to 

induce phase II enzymes at the transcription level, through the antioxidant response element 

(ARE) in the 5’-upstream region of mRNA [132, 136, 137]. This response element is 

activated through the binding of nuclear factor E2-related factor 2 (Nrf2), which can be 

regulated through mitogen activated protein kinase (MAPK), phosphatidylinositol 3-kinase 

(PI3K), and other kinases and phase II enzyme inducers [132, 136]. When cytosolic Nrf2 is 

released from its chaperone, it translocates to the nucleus to induce the transcription of phase 

II enzymes [132]. Since induction occurs at the level of transcription, chemoprevention 

through this mechanism of action is thought to be more effective prior to the presence of the 

carcinogen.

Modulation of Cell Cycle and Apoptosis

Evidence indicates isothiocyanates may enhance the deletion of initiated cells from damaged 

tissue through inducing programmed cell death. One way in which isothiocyanates have 

been shown to do this is through modulation of the cell cycle. Invasive bladder cancer cells, 

treated with sulforaphane, have been shown to undergo cell cycle arrest at the G2-M and S 

phases [138]. In addition, isothiocyanates have been shown to enhance sensitivity to 
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apoptosis. Sulforaphane (SFN) has also been shown to induce caspase-mediated (caspase 8 

and 9) apoptosis in both bladder and prostate cancer cells, as well as cause the 

overexpression of Bax and down-regulation of Bcl-2 [139]. We have shown that broccoli 

isothiocyanates, sulforaphane and erucin, can significantly induce apoptosis in superficial 

(RT4) and invasive (J82, UMUC3) human bladder cancer cell lines, by induction of caspase 

3/7 activity and PARP cleavage. We have also shown this phenomenon in vivo in a UMUC3 

subcutaneous xenograft model, where apoptosis was induced, revealed by an increase in 

PARP cleavage when mice were treated with broccoli sprout diet. Furthermore, we revealed 

RT4, J82 and UMUC3 cells to accumulate in the G2/M phase of the cell cycle when treated 

with either SFN or ECN that was regulated via suppressed levels of survivin, epidermal 

growth factor receptor (EGFR), and human epidermal growth factor receptor 2 (HER2/neu) 

[92].

A previous study by Savio, et. al. revealed that allyl isothiocyanate (AITC) (mustard cell 

essential oil) casued cell cycle arrest, increased apoptosis rates, and varying genotoxicity, 

which was dependent on the mutational status of TP53 [140]. Savio and colleagues also 

showed that while AITC affected the BAX/BCL2 pathway in RT4 cells (wt TP53), AITC 

affected the cytokinesis related ANLN and S100P in T24 (mutant TP53) cells. This suggests 

AITC regulates bladder cancer cell gene expression in a TP53 genotype-dependent manner 

[141].

Isothiocyanates have been shown to bind to microtubules to ultimately induce cell cycle 

arrest and apoptosis. A study by Overby, et. al. showed that isothiocyanates disrupted 

microtubules in Arabodopsis thalinia and in AY-27 rat bladder cancer cells suggesting that 

plant and mammalian cells share isothiocyante-mediated anti-growth mechanisms [142].

Additionally, SFN was also shown to induce mitotic arrest, however, not in the G2 phase of 

the cell cycle. Park, et. al. revealed that 5637 human bladder cancer cells treated with SFN 

underwent caspase-dependent apoptosis via accumulation of reactive oxygen species (ROS) 

[143]. Mechanistically, Jo and colleagues showed that SFN treated T24 human bladder 

cancer cells underwent apoptosis via the mitochondria-mediated intrinsic pathway with 

concomitant elevation of ROS, and activation of endoplasmic reticulum stress (ER) and the 

Nrf2 signaling pathway suggesting that ER and Nrf2 may represent targets for SFN-

dependent apoptosis [144]. Another report revealed that SFN not only affected the epithelial-

to-mesenchymal transition but also targeted both the OX-2/MMP2,9/ZEB1, Snail and 

miR-200c/ZEB signaling pathways in T24 bladder cancer cells [145].

In addition to SFN acting as a single therapeutic, Islam and colleagues showed that SFN in 

combination with the carbonic anhydrase inhibitor acetazolamide (AZ) targeted both the pH 

homeostasis pathway and the PI3K/Akt intracellular signaling pro-survival pathway 

allowing for increased anti-tumor efficacy in vitro and in vivo [146]. SFN+AZ combination 

treatment allowed for down-regulation of components of pH homeostasis related carbonic 

anhydrase 9 (CA9), E-cadherin, N-cadherin, and vimentin proteins while diminishing the 

epithelial-to-mesenchymal transition and decreased PI3k/Akt survival signaling suggesting a 

potential link between pH homeostasis and pro-survival signaling [146]. Another previous 

report showed that SFN inhibited proliferation of BIU87 bladder cancer cells via 
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upregulation of IGFBP-3 expression levels and negatively regulated nuclear factor-κB (NF-

κB) signaling [147]. Collectively, these findings suggest that isothiocyanates, specifically 

SFN targets multiple pathways in bladder cancer cells including the intrinsic apoptotic and 

pro-growth/-survival intracellular signaling pathways to promote apoptotic cell death.

In addition to apoptotic induction in bladder cancer cells through modulation of the adaptive 

stress response, phase I/II enzymes, pro-growth/-survival signaling, and the intrinsic 

apoptotic pathway, SFN has also been shown to be effective in inhibiting all essential steps 

of cancer vessel formation from proangiogenic signaling to endothelial cell proliferation, 

migration and tube formation [148, 149]. Furthermore, SFN has been shown to inhibit 

cancer cell metastasis. Utilizing B16F-10 melanoma cells, which are highly metastatic to the 

lungs, when injected through the mouse tail vein, SFN was shown to reduce metastasis, by 

inhibiting matrix metalloproteinases (MMPs). MMPs are proteases capable of degrading the 

extracellular matrix, and thereby promoting metastasis [150]. Together, these findings 

suggest that isothiocyanates are compounds with potent anti-tumor effects with several 

distinct mechanisms of action that inhibit proliferation, and induce apoptosis and cell cycle 

arrest.

Epigenetic Modulation

There is emerging evidence that broccoli isothiocyanates modulate epigenetic activity, partly 

through microRNA (miR) regulation and act as potent inhibitors of histone deacetylases 

(HDACs) and DNA methyltransferases (DNMTs), reviewed in [151]. The classical central 

causes of cancer revolve around changes in DNA structure leading to cell growth 

deregulation. However, the emerging field of epigenetics reveals that histone changes can 

also lead to cancer progression, through opening or closing regions of oncogenes or tumor 

suppressor genes, respectively [152–155]. HDAC activity has been shown to occur in many 

cancers, leading to deregulation of differentiation, cell cycle, and apoptosis. The tumor 

suppressor p21 appears to be a target of HDACs and is ‘silenced’, however, when HDAC 

inhibitors are utilized, the p21 gene remains open and inhibits cancer progression [156]. 

Sulforaphane has been shown to exhibit HDAC inhibitory activity in prostate cancer cells in 
vitro [157]. In vivo, a xenograft model with human prostate cancer cells also exhibited 

HDAC inhibition, when mice were fed SFN [158]. HDAC inhibition by SFN has also been 

shown in humans fed broccoli sprouts, where peripheral blood mononuclear cells were 

isolated and HDAC inhibitory activity was assessed [159]. Our laboratory has recently 

shown that both isothiocyantes SFN and ECN have the ability to significantly inhibit HDAC 

activity as well as histone acetyltransferase (HAT) activity, leading to small increased levels 

in acetylated histone H3 [160]. Furthermore, we have shown a potential novel epigenetic 

mechanism of broccoli isothiocyanate action, whereby histone phosphorylation decreased 

with concomitant increases in PP1β and PP2A phosphatase activity in the presence of SFN 

and ECN treatment [160], where we have previously identified increased histone 

phosphorylation as a biomarker of bladder cancer progression [161]. Taken together with 

evidence in the literature, our findings suggest that isothiocyanates act as effective epigenetic 

modifiers both as HDAC inhibitors and now as HAT inhibitors and phosphatase enhancers to 

ultimately affect the novel biomarker, histone H1 phosphorylation, to induce anti-tumor 

activity. To summarize, isothiocyanates have tremendous potential both as therapeutic and 
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preventative compounds due to their ability to target multiple pathways with numerous 

mechanisms of action in bladder cancer including the adaptive stress response, phase I/II 

enzyme modulation, pro-growth/-survival/-inflammatory signaling, the intrinsic apoptotic 

pathway, and epigenetic modulation.

VIII. Future Approaches

One potential challenge in the field of isothiocyanates as therapeutic and preventative agents 

for bladder cancer is targeting the compounds specifically to tumor cells, while leaving 

healthy tissue unharmed. One novel therapeutic approach is via the emerging fields of 

nanotechnology and nanomedicine for targeted and/or enhanced drug delivery. A recent 

report demonstrated the ability to construct rhodamine B isothiocyanate-labelled polyacrylic 

acid-coated cobalt ferrite nanoparticles (NPs) that were endocytosed with significantly 

greater efficacy by cancer urothelial cells compared to normal urothelial cells suggesting a 

selective uptake mechanism by cancerous urothelial cells [162]. In addition, Zhang, et. al. 

built several versions of β-cyclodextrin functionalized mesoporous silica NPs with hydroxyl, 

amino, and thiol groups and tested mucoadhesitivity properties on urothelium and found that 

thiol-modified NPs bound to a significantly higher degree compared to hydroxyl and amino 

modified NPs [163]. Furthermore, doxorubicin-loaded thiol-modified NPs were shown to 

undergo sustained drug release upon acidification [163]. Collectively, these findings 

represent a promising and exciting novel area of bladder cancer research that merges tumor 

biology and nanotechnology.

A deeper understanding of potential mechanisms of action may help us define better 

strategies for prevention and therapy by cruciferous vegetables or their components. The 

future integration of genomics, transcriptomics, proteomics and metabolomics, called 

systems biology, will offer deeper insights into the study of both bladder carcinogenesis as 

well as the cruciferous vegetable family. For example, these tools may identify new 

biomarkers in urine or other samples to effectively diagnose bladder cancer earlier and 

further define subtypes for study. A recent publication shows a pattern of fourteen 

metabolites including lactic acid, leucine, valine, phenylalanine, glutamate, histidine, 

aspartic acid, tyrosine, serine, uracil, hypoxanthine, carnitine, pyruvic acid and citric acid 

linked to early bladder carcinogenesis [164]. Furthermore, metabolomics has been used to 

study how growing conditions, such as light exposure, can ultimately change the nutritional 

and phytochemical value, and ultimately the cancer fighting abilities, of broccoli sprouts 

[165]. Metabolomics has additionally been used to help identify metabolite and transcript 

biomarkers, which could be useful in the cultivation of broccoli and other Brassica 
vegetables for increased insect resistance [166]. Fascinatingly, underlying mechanisms and 

key molecular targets involved in the ability of cruciferous vegetables to improve human 

health have been characterized through plasma metabolite profiles before and after human 

consumption of broccoli sprouts. The investigation identified several potential molecular 

targets of crucifers, including fatty acids, glutathione, glutamine, cysteine, 

dehydroepiandrosterone and deoxyuridine monophosphate, aiding in the study of established 

and emerging health benefits that the consumption of cruciferous vegetables may possess 

[167]. It is apparent that future research utilizing metabolomics and its integration with 
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additional –omics technologies has strong potential of helping both the fields of bladder 

cancer and isothiocyanates significantly advance.

IX. Concluding Thoughts

The natural history and pathophysiology of bladder cancer and the current standard-of-care 

surveillance programs allow for several opportunities to utilize preventive and treatment 

strategies. The anatomy of the bladder allows cancers at this site to be monitored easily 

through outpatient cystoscopy, urine cytology, and novel biomarker-based urine tests. 

Principally, the bladder is a storage compartment for urine, which provides a route of 

exposure for excreted carcinogens, as suggested by the strong association between bladder 

cancer risk and exposure to environmental carcinogens, such as tobacco [168]. However, this 

can also be exploited by enhancing concentrations of anti-carcinogenic compounds, for 

example from the diet, for prevention. As we reflect upon several decades of cancer 

prevention efforts, we have seen major accomplishments [169–176]. Yet, we face enormous 

challenges as a discipline/field with several large high profile human chemoprevention 

studies showing no benefit [177–179]. We firmly believe that successful human prevention 

studies are those with the strongest portfolio of supportive preclinical data, particularly with 

in vivo experimental models. Thus, additional preclinical studies examining multiple 

formulations of cruciferous vegetables relevant to human application are needed in a variety 

of modern models of bladder carcinogenesis [180]. Furthermore, critical human clinical 

trials utilizing isothiocyanate rich food products, extracts, concentrates or chemically pure 

phytochemicals are needed to examine bioavailability, safety, and biomarkers of impact in 

bladder carcinogenesis and other cancers.

Through the performance of well-designed rodent and human investigations, we have the 

ability to determine the stages of bladder carcinogenesis where cruciferous vegetables may 

impact risk. If these foods or compounds do indeed prove to demonstrate clear and potent 

bioactivity, they can be utilized to improve upon the bladder cancer burden in several ways. 

One strategy would be “primary” chemoprevention by targeting high-risk populations such 

as heavy smokers and those with environmental/occupational exposures [181]. Another 

strategy is a “tertiary” chemopreventive approach, in patients who had a successful complete 

cystoscopic resection of their superficial bladder cancer. In this case, the goal is to reduce or 

eliminate the well-known high risk of recurrent tumors and the progression to invasive 

disease. In addition, patients with diagnosed invasive cancers and scheduled for cystectomy 

could be fed well-characterized isothiocyanate-rich food products in the period between 

diagnosis and surgery in order to examine the dietary impact on molecular and cellular 

events in an established cancer. Furthermore, data for additive or synergistic effects are 

necessary.

Finally, it is also conceivable to combine dietary or phytochemical interventions with 

established and emerging treatments for bladder cancer, such as immunotherapy, 

chemotherapy, and radiation, although additional preclinical evidence and supportive 

mechanistic studies are needed. While foods alone are unlikely to have therapeutic effects on 

high grade and aggressive cancers, particularly those in the metastatic state, it is conceivable 

that foods may enhance the activity of other therapeutic agents when provided in novel 
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combinations or sequence. Based upon our work and others’, we believe that the use of 

cruciferous vegetable consumption, or the development of specific food products rich in 

cruciferous vegetable components, warrants additional studies in bladder cancer prevention 

as well as part of future effective treatment strategies. The bladder offers multiple 

opportunities for intervention with foods or phytochemicals in cancer prevention and it is up 

to us to best harness these opportunities.
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Figure 1. Transitional Cell Carcinoma Pathogenesis.
Transitional Cell Carcinoma of the urinary bladder tends to follow two pathways of 

pathogenesis. The more common non-invasive papillary tumor pathway has a high survival 

rate, but a high chance of recurrence, and a chance of progression. The invasive tumor 

pathway has a very high likelihood of developing into metastatic disease and a much lower 

rate of survival than the non-invasive tumor. Images, ‘unpublished findings’.
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Figure 2. Glucosinolate to isothiocyanate conversion.
Glucosinolate (GLU) hydrolysis mediated by myrosinase (MYR) (plant or gut) produces an 

unstable intermediate which spontaneously rearranges to thiocyanate, isothiocyanate (ITC), 

or to nitrile facilitated by epithiospecifier protein (ESP).

Abbaoui et al. Page 30

Mol Nutr Food Res. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Mercapturic Acid Pathway.
Alkyl isothiocyanates such as sulforaphane (SFN) and erucin (ERN), produced by 

myrosinase (MYR) action on glucosinolates after decompartmentalization of broccoli and 

broccoli sprouts (chewing or processing), can be interconverted post-absorption. Either can 

be scavenged by glutathione (spontaneous or mediated by glutathione S-transferase (GST)) 

to form a glutathione (GSH) conjugate which is rapidly processed by the mercapturic acid 

pathway to N-acetyl cysteine isothiocyanate (ITC) which predominates in urine. SFN is used 

as the example here although ERN is presumably metabolized in the same manner. It is not 
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known whether interconversion occurs between free ITC forms, after conjugation, or from 

either form.
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