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Cruciform structures are a common DNA feature
important for regulating biological processes
Václav Brázda1*, Rob C Laister2, Eva B Jagelská1 and Cheryl Arrowsmith3

Abstract

DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are

formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are

fundamentally important for a wide range of biological processes, including replication, regulation of gene

expression, nucleosome structure and recombination. They also have been implicated in the evolution and

development of diseases including cancer, Werner’s syndrome and others.

Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5,

topoisomerase IIb, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding

proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess

weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in

fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the

protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-

resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d)

chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions,

epigenetic regulation and the maintenance of cell homeostasis are also discussed.
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Review

Genome sequencing projects have inundated us with

information regarding the genetic basis of life. While

this wealth of information provides a foundation for our

understanding of biology, it has become clear that the

DNA code alone does not hold all the answers. Epige-

netic modifications and higher order DNA structures

beyond the double helix also contribute to basic biologi-

cal processes and maintaining cellular stability. Local

alternative DNA structures are known to exist in all life

forms [1]. The negative supercoiling of DNA can induce

local nucleotide sequence-dependent conformational

changes that give rise to cruciforms, left-handed DNA,

triplexes and quadruplexes [2-4]. The formation of cru-

ciforms is strongly dependent on base sequence and

requires perfect or imperfect inverted repeats of 6 or

more nucleotides in the DNA sequence [5,6]. Over-

representation of inverted repeats, which occurs nonran-

domly in the DNA of all organisms, has been noted in

the vicinity of breakpoint junctions, promoter regions,

and at sites of replication initiation [3,7,8]. Cruciform

structures may affect the degree of DNA supercoiling,

the positioning of nucleosomes in vivo [9], and the for-

mation of other secondary structures of DNA. Cruci-

forms contain a number of structural elements that

serve as direct protein-DNA targets. Numerous proteins

have been shown to interact with cruciforms, recogniz-

ing features such as DNA crossovers, four-way junc-

tions, and curved or bent DNA. Structural transitions in

chromatin occur concomitantly with DNA replication or

transcription and in processes that involve a local

separation of DNA strands. Such transitions are believed

to facilitate the formation of alternative DNA structures

[10,11]. Transient supercoils are formed in the eukaryo-

tic genome during DNA replication and transcription,

and these often involve protein binding [12]. Indeed,

active chromatin remodeling is a typical feature for

many promoters and is essential for gene transcription
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[13]. Notably, DNA supercoiling can have a strong

impact on gene expression [14]. Using microarrays cov-

ering the E. coli genome, it was recently shown that

expression of 7% of genes was rapidly and significantly

affected by a loss of chromosomal supercoiling [15].

Several complexes that involve extensive DNA-protein

interactions, whereby the DNA wraps around the pro-

tein, can only occur under conditions of negative DNA

supercoiling [10]. Other proteins are reported to interact

with the supercoiled DNA (scDNA) at crossing points

or on longer segments of the interwound supercoil

[16,17]. Interestingly, the eukaryotic genome has been

shown to contain a percentage of unconstrained super-

coils, part of which can be attributed to transcriptional

regulation [3]. The spontaneous generation of DNA

supercoiling is also a requirement for genome organiza-

tion [18]. Transient supercoils are formed both in front

of and behind replication forks as superhelical stress is

distributed throughout the entire replicating DNA mole-

cule [19]. A number of additional processes may operate

to create transient and localized superhelical stresses in

eukaryotic DNA.

The recognition of cruciform DNA seems to be criti-

cal not only for the stability of the genome, but also for

numerous, basic biological processes. As such, it is not

surprising that many proteins have been shown to exhi-

bit cruciform structure-specific binding properties. In

this review, we focus on these proteins, many of which

are involved in chromatin organization, transcription,

replication, DNA repair, and other processes. To orga-

nize our review, we have divided cruciform binding pro-

teins into four groups (see Table 1) according to their

primary functions: (a) junction-resolving enzymes, (b)

transcription factors and DNA repair proteins, (c) repli-

cation machinery, and (d) chromatin-associated proteins.

For each group, we describe in detail recent examples of

research findings. Lastly, we review how dysregulation

of cruciform binding proteins is associated with the

pathology of certain diseases found in humans.

Formation and presence of cruciform structures in the

genome

Cruciform structures are important regulators of biolo-

gical processes [3,5]. Both stem-loops and cruciforms

are capable of forming from inverted repeats. Cruciform

structures consist of a branch point, a stem and a loop,

where the size of the loop is dependent on the length of

the gap between inverted repeats (Figure 1). Direct

inverted repeats lead to formation of a cruciform with a

minimal single-stranded loop. The formation of cruci-

forms from indirect inverted repeats containing gaps is

dependent not only on the length of the gap, but also

on the sequence in the gap. In general, the AT-rich gap

sequences increase the probability of cruciform

formation. It is also possible that the gap sequence can

form an alternative DNA structure. The formation of

DNA cruciforms has a strong influence on DNA geome-

try whereupon sequences that are normally distal from

one another can be brought into close proximity

[20,21]. The structure of cruciforms has been studied by

atomic force microscopy [22-24]. These studies have

identified two distinct classes of cruciforms. One class

of cruciforms, denoted as unfolded, have a square planar

conformation characterized by a 4-fold symmetry in

which adjacent arms are nearly perpendicular to one

another. The second class comprises a folded (or

stacked) conformation where the adjacent arms form an

acute angle with the main DNA strands (Figure 2). Two

of the three structural motifs inherent to cruciforms, the

branch point and stem, are also found in Holliday junc-

tions. Holliday junctions are formed during recombina-

tion, double-strand break repair, and fork reversal

during replication. Resolving Holliday junctions is a cri-

tical process for maintaining genomic stability [25,26].

These junctions are resolved by a class of structure-spe-

cific nucleases: the junction-resolving enzymes.

Cruciforms are not thermodynamically stable in naked

linear DNA due to branch migration [27]. Cruciform

structure formation in vivo has been shown in both pro-

karyotes and eukaryotes using several methodological

approaches. The presence of the cruciform structure

was first described in circular plasmid DNA where the

negative superhelix density can stabilize cruciform for-

mation. Plasmids with native superhelical density usually

contain cruciform structures in vitro and in vivo [28].

For example, higher order structure in the pT181 plas-

mid was shown to exist in vivo using bromoacetalde-

hyde treatment [29]. Deletion of the sequence which

forms this structure at the ori site leads either to a

reduction or failure in replication [30]. Similarly, dele-

tion of the cruciform binding domain in 14-3-3 proteins

results in reduced origin binding which affects the initia-

tion of DNA replication in budding yeast [31]. Monoclo-

nal antibodies against cruciform structures have also

been used successfully to isolate cruciform-containing

segments of genomic DNA. Furthermore, these

sequences were able to replicate autonomously when

transfected into HeLa cells [32]. Stabilization of the cru-

ciform structures by monoclonal antibodies 2D3 and

4B4, with anti-cruciform DNA specificity, resulted in a

2- to 6-fold enhancement of replication in vivo [33]. 14-

3-3 sigma was found to associate in vivo with the mon-

key origins of DNA replication ors8 and ors12 in a cell

cycle-dependent manner, as assayed by a chromatin

immunoprecipitation (ChIP) assay that involved formal-

dehyde cross-linking, followed by immunoprecipitation

with anti-14-3-3 sigma antibody and quantitative PCR

[34]. Similarly, the 14-3-3 protein homologs from
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Table 1 Proteins involved in interactions with cruciform structures

Protein Source Reference

Junction-resolving enzymes

Integrase family

RuvC E.coli [133-135]

Cce1 yeast [136]

Ydc2 S.pombe [134]

A22 Coccinia virus [137]

Integrases all [119,138]

Restriction nuclease family

Endonuclease I Phage T7 [139-141]

RecU G+ bacteria [134,142]

Hjc, Hje archea [134,143]

MutH Eukaryotes [25,144]

Other

Endonuclease VII phage T4 [25,145]

RusA E.coli [146]

MSH2 S. cerevisiae [147,148]

Mus81-Eme1 Eukaryotes [42,149-151]

TRF2 H. sapiens [52,152]

XPF, XPG protein families Eukaryotes [56,153,154]

Transcription, Transcription factors and DNA repair

PARP-1 H. sapiens and others [51,63]

BRCA1 H. sapiens and others [49,50,91,93]

P53 H. sapiens and others [69,73,75,76,132,155,156]

Bmh1 S.cerevisiae [35]

14-3-3 H. sapiens, S.cerevisiae [34,110]

Rmi-1 Yeast [157]

Crp-1 S. cerevisiae [158]

HMG protein family all [47,159-161]

Smc S. cerevisiae [118,162]

Hop1 S. cerevisiae [163,164]

ER estrogen receptor mammals [58]

Chromatin-associated proteins

DEK mammals [84,85]

BRCA1 mammals [49,50,91,93]

HMG protein family Eukaryotes [47,159-161]

Rad54 Eukaryotes [48]

Rad51ap Eukaryotes [81]

Topoisomerase I Eukaryotes [101,165]

Replication

S16 E.coli [113]

GF14, homolog of 14-3-3 plants [35]

MLL (leukemia) H. sapiens [125,126]

WRN (Werner syndrome) H. sapiens [129]

AF10 H. sapiens [114]

14-3-3 Eukaryotes [34,110]

DEK mammals [84,85]

DNA-PK Eukaryotes [166]

Vlf-1 Baculovirises [119]

HU E. coli [105,167,168]

Helicases (59, 44, and others) all [55]
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Saccharomyces cerevisiae, Bmh1p and Bmh2p, have cru-

ciform DNA-binding activity and associate in vivo with

ARS307 [35]. Several studies show that transcription is

regulated directly by the presence of cruciform structure

in vivo. Another example includes the ability of the d

(AT)n-d(AT)n insert to spontaneously adopt a cruci-

form state in E. coli, resulting in a block of protein

synthesis [36]. Using site-directed mutational analysis

and P1 nuclease mapping, it was demonstrated that the

formation of a cruciform structure is required for the

repression of enhancer function in transient transfection

assays and that Alu elements may contribute to regula-

tion of the CD8 alpha gene enhancer through the for-

mation of secondary structure that disrupts enhancer

function [37]. Transcriptionally driven negative super-

coiling also mediates cruciform formation in vivo and

enhanced cruciform formation correlates with an eleva-

tion in promoter activity [38]. It was also shown that

the secondary DNA structures of the ATF/CREB ele-

ment play a vital role in protein-DNA interactions and

its cognate transcription factors play a predominant role

in the promoter activity of the RNMTL1 gene [39].

Figure 1 Changes associated with transition from the linear to cruciform state in the p53 target sequence from the p21 promoter. The

promoter sequence contains a 20 bp p53 target sequence with 7 bp long inverted repeat (red), (A) as linear DNA and (B) as an inverted repeat

as a cruciform structure. In the cruciform structure, the p53 target sequence is presented as stems and loops.
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Hypo-methylation of inverted repeats by the Dam

methylase show that these sequences are consistent with

an unusual secondary structure, such as DNA cruciform

or hairpin in vivo [40]. The in vivo effects of cruciform

formation during transcription have been studied in

detail by Krasilnikov et al. [4]. Interestingly hairpin-

capped linear DNA (in which the replication of hairpin-

capped DNA and cruciform formation and resolution

play central roles) was stably maintained for months in

a human cancer cell line as numerous extra-chromoso-

mal episomes [41]. Long palindromes can also induce

DNA breaks after assuming a cruciform structure. Palin-

dromes in S. cerevisiae are resolved, in vivo, by struc-

ture-specific enzymes. In vivo resolution requires either

the Mus81 endonuclease or, as a substitute, the bacterial

HJ resolvase RusA. These findings provide confirmation

Figure 2 Conformations of a cruciform structure. Conformations of a cruciform can vary from (A) “unfolded” with 4-fold symmetry to (B)

bent, and to (C) “stacked” with 4 chains of DNA in close vicinity. D) Topology of a Holliday junction stabilized by a psoralen cross-linking agent

(PDBID 467D). Here, the junction takes the form of an anti-parallel stacked x-structure.
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of cruciform extrusion and resolution in the context of

eukaryotic chromatin [42]. Taken together, these studies

show that cruciforms have been detected in vivo using a

variety of independent techniques and that they are an

intriguing and integral phenomenon of DNA biology

and biochemistry.

Proteins involved in interactions with cruciform structures

Junction-resolving enzymes

There are a large number of proteins that recognize cru-

ciforms (summarized in Table 1) and, of these, the junc-

tion-resolving enzymes have been studied extensively.

These proteins have been identified in many organisms

from bacteria (and their phages) to yeast, archea and

mammals [43]. The majority of the junction-resolving

enzymes can be divided into one of two superfamilies

[44]. Those in the first class target specific DNA

sequences for enzymatic activity, although they will bind

equally well to junctions of any sequence. This super-

family includes E. coli RuvC, the yeast integrases, Cce1,

Ydc2, and RnaseH. The second group includes the

phage T7, endonuclease RecU, the Hjc and Hje resol-

ving enzymes, the MutH protein family and related

restriction enzymes. The x-ray structures of the junc-

tion-resolving enzymes in complex with 4-way junctions

highlight the flexibility inherent to DNA (Figure 3) [25]

in that these enzymes recognize and distort the junction.

This enables them to carry out such key roles as the

cleavage of allogene DNAs and maintenance of genomic

stability to name but a few. The recognition of non-B-

DNA structure by junction-resolving enzymes has been

the subject of several reviews [25,43,45,46].

Proteins involved in transcription and DNA repair

The maintenance of a cell’s genomic stability is achieved

through several independent mechanisms. Arguably, the

most important of these mechanisms is DNA repair.

Protein binding to damaged DNA and to the local alter-

native DNA structures is therefore a key function of

these processes. The promoter regions of genes are

often characterized by presence of inverted repeats that

are capable of forming cruciforms in vivo. A number of

DNA-binding proteins, such as those of the HMGB-box

family [47], Rad54 [48], BRCA1 protein [49,50], as well

as PARP-1 (poly(ADP-ribose) polymerase-1) [51], dis-

play only a weak sequence preference but bind preferen-

tially to cruciform structures. Moreover, some proteins

can induce the formation of cruciform structures upon

DNA binding [51,52]. Among the DNA repair proteins

which bind to cruciforms are the junction-resolving

enzymes Ruv and RuvB [53,54], DNA helicases [55],

XPG protein [56], and multifunctional proteins like

HMG-box proteins [57] BRCA1, 14-3-3 protein family

including homolog’s Bmh1 and Bmh2 from S. cerevisiae,

and GF14 from plants. Footprinting analysis of the

gonadotropin-releasing hormone gene promoter region

indicated the human estrogen receptor (ER) to be

another potential cruciform binding protein. In this

case, extrusion of the cruciform structure allowed the

estrogen response elements motifs to be accessed by the

ER protein [58].

PARP-1 PARP-1 is an abundant, nuclear, zinc-finger

protein present in ~ 1 enzyme per 50 nucleosomes. It

has a high affinity for damaged DNA and becomes cata-

lytically active upon binding to DNA breaks [59]. In the

absence of DNA damage, the presence of PARP-1 leads

to the perturbation of histone-DNA contacts allowing

DNA to be accessible to regulatory factors [60]. PARP-1

activity is also linked to the coordination of chromatin

structure and gene expression in Drosophila [61]. It was

reported that PARP can bind to the DNA hairpins in

heteroduplex DNA and that the auto-modification of

PARP in the presence of NAD+ inhibited its hairpin

binding activity. Atomic force microscopy studies

revealed that, in vitro, PARP protein has a preference

for the promoter region of the PARP gene in superheli-

cal DNA where the dyad symmetry elements form hair-

pins (Figure 4) [62]. PARP-1 recognizes distortions in

the DNA backbone allowing it to bind to three- and

four-way junctions [63]. Kinetic analysis has revealed

that the structural features of non-B form DNA are

important for PARP-1 catalysis activated by undamaged

DNA. The order of PARP-1’s substrate preference has

been shown to be: cruciforms > loops > linear DNA.

These results suggest a link between PARP-1 binding to

cruciforms structures in the genome and its function in

the modulation of chromatin structure in cellular pro-

cesses. Moreover, it was shown that the binding of

PARP-1 to DNA can induce changes in DNA topology

as was demonstrated using plasmid DNA targets [51].

P53 P53 is arguably one of the most intensively studied

tumor suppressor genes. More than 50% of all human

tumors contain p53 mutations and the inactivation of

this gene plays a critical role in the induction of malig-

nant transformation [64]. Sequence-specific DNA bind-

ing is crucial for p53 function. P53 target sequences,

which consist of two copies of the sequence 5’-RRRC(A/

T)(T/A)GYYY-3, often form inverted repeats [65]. It

was reported that p53 binding is temperature sensitive

and dependent on DNA fragment length [66,67]. More-

over, it was demonstrated, in vivo, that p53 binding to

its target sequence is highly dependent on the presence

of an inverted repeat at the target site. Preferential bind-

ing of p53 to superhelical DNA has also been described

[68,69]. Non-canonical DNA structures such as mis-

matched duplexes, cruciform structures [70], bent DNA

[71], structurally flexible chromatin DNA [13], hemica-

tenated DNA [72], DNA bulges, three- and four-way

junctions [73], or telomeric t-loops [74] can all be
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bound selectively by p53. There is a strong correlation

between the cruciform-forming targets and an enhance-

ment of p53 DNA binding [75]. Target sequences cap-

able of forming cruciform structures in topologically

constrained DNA bound p53 with a remarkably higher

affinity than did the internally asymmetrical target site

[76]. These results implicate DNA topology as having an

important role in the complex, with possible implica-

tions in modulation of the p53 regulon.

Chromatin-associated proteins

The chromatin-associated proteins cover a broad spec-

trum of the proteins localized in the cell nucleus. They

Figure 3 Crystal structure of the E. coli RuvA tetramer in complex with a Holliday junction (PDBID 1C7Y). A) The Holliday junction is

depressed at the center where it makes close contacts with RuvA. Each of the arms outside of the junction center takes on a standard beta-

DNA conformation B) Rotation of A) by 90°.
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are partly involved in modulating chromatin structure,

but are also implicated in a range of processes asso-

ciated with DNA function. They fine-tune transcrip-

tional events (DEK, BRCA1) and are involved in both

DNA repair and replication (HMG proteins, Rad51,

Rad51ap, topoisomerases). Another family of enzymes

deemed important in these processes is that of topoi-

somerases. These enzymes occur in all known organisms

and play crucial roles in the remodeling of DNA topol-

ogy. Topoisomerase I binds to Holliday junctions [77],

and topoisomerase II recognizes and cleaves cruciform

structures [78] and interacts with the HMGB1 protein

[57]. These processes are particularly important for

maintaining genomic stability due to their ability to dif-

fuse the stresses that are levied upon a DNA molecule

during transcription, replication and the resolving of

long cruciforms that would otherwise hinder DNA

chain separation. The Rad54 protein plays an important

role during homologous recombination in eukaryotes

[79]. Yeast and human Rad54 bind specifically to Holli-

day junctions and promote branch migration [80]. The

binding preference for the open conformation of the X-

junction appears to be common for many proteins that

bind to Holliday junctions. Human Rad54 binds prefer-

entially to the open conformation of branched DNA as

opposed to the stacked conformation [48]. Similarly,

RAD51AP1, the RAD51 accessory protein, specifically

stimulates joint molecule formation through the combi-

nation of structure-specific DNA binding and by inter-

acting with RAD51. RAD51AP1 has a particular affinity

for branched-DNA structures that are obligatory inter-

mediates during joint molecule formation [81]. The

recognition of branched structures during homologous

recombination is a critical step in this process.

DEK The human DEK protein is an abundant nuclear

protein of 375 amino acids that occurs in numbers

greater than 1 million copies per nucleus [82]. Its inter-

actions with transcriptional activators and repressors

suggest that DEK may have a role in the formation of

transcription complexes at promoter and enhancer sites

[reviewed in [83]]. The binding of DEK to DNA is not

sequence specific and DEK has a clear preference for

supercoiled and four-way junctions [84]. Work with iso-

lated and recombinant DEK has shown that it has

intrinsic DNA-binding activity with a preference for

four-way junction and superhelical DNA over linear

DNA and introduces positive supercoils into relaxed cir-

cular DNA [83,85]. DEK has two DNA-binding

domains. The first domain is centrally located and har-

bors a conserved sequence element, the SAF (scaffold

attachment factor). The second DNA-binding domain is

located at the C-terminus of DEK which is also post-

translationally modified by phosphorylation. In fact, the

DNA-binding properties of DEK are clearly influenced

Figure 4 AFM and SFM images of proteins binding to a cruciform structure. A) AFM images of PARP-1 binding to supercoiled pUC8F14

plasmid DNA containing a 106 bp inverted repeat. PARP-1 binds to the end of the hairpin arm (white arrow). Images show 300 × 300 nm2

surface areas (reprinted with permission from [51]. B) The interaction between p53CD and supercoiled DNA gives rise to cruciform structures.

Shown is an SFM image of complex formed between p53CD and sc pXG(AT)34 plasmid DNA at a molar ratio of 2.5; the complexes were

mounted in the presence of 10 mM MgAc2. The scale bars represent 200 nm (reprinted with permission from [132].
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by phosphorylation as phosphorylated DEK binds with a

weaker affinity to DNA than does unmodified DEK and

induces the formation of DEK multimers [86,87]. DEK’s

monomeric SAF box (residues 137-187) does not appear

to interact with DNA in solution. However, when many

SAF boxes are brought into close proximity, it coopera-

tivity drives DNA binding. A DEK construct spanning

amino acids 87-187 binds to DNA much like the intact

DEK preferring four-way DNA junctions over linear

DNA. This fragment forms large aggregates in the pre-

sence of DNA and is also able to introduce supercoils

into relaxed circular DNA. Interestingly, the 87-187

amino acid peptide induces negative DNA supercoils

[88].

BRCA1 BRCA1 is a multifunctional tumor suppressor

protein having roles in cell cycle progression, transcrip-

tion, DNA repair and chromatin remodeling. Mutations

to the BRCA1 gene are associated with a significant

increase in the risk of breast cancer. The function of

BRCA1 likely involves interactions with both DNA and

an array of proteins. BRCA1 associates directly with

RAD51 and both proteins co-localize to discrete sub-

nuclear foci that redistribute to sites of DNA damage

under genotoxic stress [89]. BRCA1 also co-localizes

with phosphorylated H2AX (gH2AX) in response to

double strand breaks [90].

The central region of human BRCA1 binds strongly to

negatively supercoiled plasmid DNA with native super-

helical density [50] and binds with high affinity to cruci-

form DNA [91]. The BRCA1 cruciform DNA complex

must dissociate to allow the nuclease complex to work

in DNA recombinational repair of double stranded

breaks. BRCA1 also acts as a scaffold for assembly of

the Rad51 ATPase which is responsible for homologous

recombination in somatic cells. The full-length BRCA1

protein binds strongly to supercoiled plasmid DNA and

to junction DNA. The difference in affinity was on the

order of 6- to 7-fold between linear and junction DNA

in reactions containing physiological levels of magne-

sium [92]. BRCA1 230-534 binds with a higher affinity

to four-way junction DNA as compared to duplex and

single-stranded DNA [91]. Residues 340-554 of BRCA1

have been identified as the minimal DNA-binding

region [93]. The highest affinity among the different

DNA targets which mimic damaged DNA (four-way

junction DNA, DNA mismatches, DNA bulges and lin-

ear DNA) was for DNA four-way junctions. To this end,

a 20-fold excess of linear DNA was unable to compete

off any of the BRCA1 230-534 bound to DNA molecules

mimicking damaged DNA [49]. Furthermore, the loss of

the BRCA1 gene prevents cell survival after exposure to

DNA cross-linkers such as mitomycin C [94]. These

results speak to the importance of BRCA1’s ability to

recognize cruciform structures.

HMGB family The high mobility-group (HMG) pro-

teins are a family of abundant and ubiquitous non-his-

tone proteins that are known to bind to eukaryotic

chromatin. The three HMG protein families comprise

the (a) HMGA proteins (formerly HMGI/Y) containing

A/T-hook DNA-binding motifs, (b) HMGB proteins

(formerly HMG1/2) containing HMG-box domain(s),

and (c) HMGN proteins (formerly HMG14/17) contain-

ing a nucleosome-binding domain [95].

HMGB proteins bind DNA in a sequence independent

manner and are known to bind to certain DNA struc-

tures (four-way junctions, DNA minicircles, cis-plati-

nated DNA, etc.) with high affinity as compared to

linear DNA [96,97]. The chromatin architectural protein

HMGB1 can bind with extremely high affinity to DNA

structures that form DNA loops [72], while other stu-

dies have shown that the HMG box of different proteins

can induce DNA bending [98-100]. The HMG box is an

80 amino acid domain found in a variety of eukaryotic

chromosomal proteins and transcription factors. HMG

box binding to DNA is associated with distortions in

DNA structure. Members of the HMG protein family

are involved in transcription [101-103] and DNA repair

[57,104,105]. The HMG protein T160 was found to be

co-localized with DNA replication foci [106]. The fact

that all HMG box domains bind to four-way DNA junc-

tions suggests that a common feature in the binding tar-

gets of this protein family must exist. Single HMG box

domains interact exclusively with the open square form

of the junction, and conditions that stabilize the stacked

× structure conformation significantly weaken the HMG

box DNA interaction [107]. Binding of the isolated A

domain of HMGB1 protein to four-way junction DNA

substrates is abolished by mutation of both Lys2 and

Lys11 together to alanine, indicating that these residues

play an important role in DNA binding [108].

Proteins involved in replication

Transient transitions from B-DNA to cruciform struc-

tures are correlated with DNA replication and transcrip-

tion [109]. It has been shown that cruciforms serve as

recognition signals at or near eukaryotic origins of DNA

replication [110-112]. There are a large number of pro-

teins involved in replication which bind to cruciform

structures (see Table 1). We focus here primarily on the

14-3-3 protein family and MLL and WRN proteins. We

will comment briefly on other systems of interest.

S16 is a structure-specific DNA-binding protein dis-

playing preferential binding for cruciform DNA struc-

tures [113]. The AF10 protein binds cruciform DNA via

a specific interaction with an AT-hook motif and is

localized to the nucleus by a defined bipartite nuclear

localization signal in the N-terminal region [114]. The

structural maintenance of chromosomes (SMC) protein

family, with members from lower and higher eukaryotes,
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may be divided into four subfamilies (SMC1 to SMC4)

and two SMC-like protein subfamilies (SMC5 and

SMC6) [115-117]. Members of this family are implicated

in a large range of activities that modulate chromosome

structure and organization. Smc1 and smc2 proteins

have a high affinity for cruciform DNA molecules and

for AT-rich DNA fragments including fragments from

the scaffold-associated regions [118]. The baculovirus

very late expression factor 1 (VLF-1), a member of the

integrase protein family, does not bind to single and

double strand structures, but it does bind (listed with

increasing affinity) to Y-forks, three-way junctions and

cruciform structures. This protein is involved in the

processing of branched DNA molecules at the late

stages of viral genome replication [119].

14-3-3 The 14-3-3 protein family consists of a highly

conserved and widely distributed group of dimeric pro-

teins which occur as multiple isoforms in eukaryotes

[120]. There are at least seven distinct 14-3-3 genes in

vertebrates, giving rise to nine isoforms (a, b, g, δ, ε, ζ,

h, s and τ) and at least another 20 have been identified

in yeast, plants, amphibians and invertebrates [110]. A

striking feature of the 14-3-3 proteins is their ability to

bind a multitude of functionally diverse signaling pro-

teins, including kinases, phosphatases, and transmem-

brane receptors. This plethora of proteins allows 14-3-3s

to modulate a wide variety of vital regulatory processes,

including mitogenic signal transduction, apoptosis and

cell cycle regulation [121]. The 14-3-3 proteins are

found mainly within the nucleus and are involved in

eukaryotic DNA replication via binding to the cruciform

DNA that forms transiently at replication origins at the

onset of the S phase [122].

14-3-3 cruciform binding activity was first observed in

proteins purified from sheep’s brain. More recently,

immunofluorescence analyses showed that 14-3-3 iso-

forms with cruciform-binding activity are present in

HeLa cells [123]. The direct interaction with cruciform

DNA was confirmed with 14-3-3 isoforms b, g, s, ε, and

ζ [34]. 14-3-3 analogs with cruciform-specific binding

are also found in yeast (Bmh1 and Bmh2) and plants

(GF14) [35].

The prevalence of the 14-3-3 family proteins in all

eukaryotes combined with a high degree of sequence

conservation between species is indicative of their

importance. Genetic studies have shown that knocking

out the yeasts homologs of the 14-3-3 proteins is lethal

[124]. Moreover, 14-3-3 proteins are involved in interac-

tions with numerous transcription factors and it has

been reported that several of the 14-3-3 proteins func-

tions are associated with its cruciform binding

properties.

Mixed lineage leukemia (MLL) protein The MLL gene

encodes a putative transcription factor with regions of

homology to several other proteins including the zinc

fingers and the so-called “AT-hook” DNA-binding motif

of high mobility group proteins [125]. The 11q23 chro-

mosomal translocation, found in both acute lymphoid

and myeloid leukemias, results in disruption of the MLL

gene. Leukemogenesis is often correlated with alterna-

tions in chromatin structure brought about by either a

gain or loss in function of the regulatory factors due to

their being disrupted by chromosomal translocations.

The MLL gene, a target of such translocation events,

forms a chimeric fusion product with a variety of part-

ner genes [126].

The MLL AT-hook domain binds cruciform DNA,

recognizing the structure rather than the sequence of

the target DNA. This interaction can be antagonized

both by Hoechst 33258 dye and distamycin. In a nitro-

cellulose protein-DNA binding assay, the MLL AT-hook

domain was shown to bind to AT-rich SARs, but not to

non-SAR DNA fragments [125]. MLL appears to be

involved in chromatin-mediated gene regulation. In

translocations involving MLL, the loss of the activation

domain combined with the retention of a repression

domain alters the expression of downstream target

genes, thus suggesting a potential mechanism of action

for MLL in leukemia [126]. AF10 translocations to the

vicinity of genes other than MLL also result in myeloid

leukemia. A biochemical analysis of the MLL partner

gene AF10 showed that its AT-hook motif is able to

bind to cruciform DNA, but not to double-stranded

DNA, and that it forms a homo-tetramer in vitro [114].

WRN The Werner syndrome protein belongs to the

RecQ family of evolutionary conserved 3’ ® 5’ DNA

helicases [127]. WRN encodes a single polypeptide of

162 kDa that contains 1432 amino acids. Prokaryotes

and lower eukaryotes generally have one RecQ member

while higher eukaryotes possess multiple members and

five homologs have been identified in human cells. All

RecQ members share a conserved helicase core with

one or two additional C-terminal domains, the RQC

(RecQ C-terminal) and HRDC (helicase and RNaseD C-

terminal) domains. These domains bind both to proteins

and DNA. Eukaryotic RecQ helicases have N- and C-

terminal extensions that are involved in protein-protein

interactions and have been postulated to lend unique

functional characteristics to these proteins [55,128].

WRN has been shown to bind at replication fork junc-

tions and to Holliday junction structures. Binding to

junction DNA is highly specific because little or no

WRN binding is visualized at other sites along these

substrates [129]. Upon binding to DNA, WRN assem-

bles into a large complex composed of four monomers.

Cruciform binding proteins and disease

The recognition of DNA junctions and cruciform struc-

tures is critical for genomic stability and for the
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regulation of basic cellular processes. The resolution of

Holliday junctions and long cruciforms is necessary for

genomic stability where the dysregulation of these pro-

teins can lead to DNA translocations, deletions, loss of

genomics stability and carcinogenesis. The large num-

bers of proteins which bind to these DNA structures

work together to keep the genome intact. We believe

that the formation of cruciform structures serves as a

marker for the proper timing and initiation of some

very basic biological processes. The mutations and epi-

genetic modifications that alter the propensity for cruci-

form formation can have drastic consequences for

cellular processes. Thus, it is unsurprising that the dys-

regulation of cruciform binding proteins is often asso-

ciated with the pathology of disease.

As stated above, the cruciform binding proteins

including p53, BRCA1, WRN and the proto-oncogenes

DEK, MLL and HMG are also associated with cancer

development and/or progression. Some of these proteins

play such important roles that their mutation and/or

inactivation result in severe genomic instability and

sometimes lethality. For example, Brca1 -/- mouse

embryonic stem cells show spontaneous chromosome

breakage, profound genomic instability and hypersensi-

tivity to a variety of damaging agents (e.g. g radiation)

all of which suggests a defect in DNA repair. The con-

nection between the BRCA1 mutation and breast cancer

is well known. P53’s transcriptional regulation is fine-

tuned by its timely binding to promoter elements. The

formation of a cruciform structure in p53 recognition

elements may be an important determinant of p53 tran-

scription activity.

The dHMGI(Y) family of “high mobility group” non-

histone proteins comprises architectural transcription

factors whose over expression is highly correlated with

carcinogenesis, increased malignancy and metastatic

potential of tumors in vivo [95]. 14-3-3 proteins are

related to several diseases, including cancer, Alzehei-

mer’s disease, the neurological Miller Dieker and Spino-

cerebellar ataxia type 1 diseases, and spongiform

encephalopathy. The deletion of 14-3-3s in human col-

orectal cancer cells leads to the loss of the DNA damage

checkpoint control [130]. The human DEK protein was

discovered as a fusion with a nuclear pore protein in a

subset of patients with acute myeloid leukemia. It was

also identified as an autoantigen in a relatively high per-

centage of patients with autoimmune diseases. In addi-

tion, DEK mRNA levels are higher in transcriptionally

active and proliferating cells than in resting cells, and

elevated mRNA levels are found in several transformed

and cancer cells [6,7]. Werner syndrome is an autosomal

recessive disorder characterized by features of premature

aging and a high incidence of uncommon cancers [127].

The Werner syndrome protein (WRN) plays central

roles in maintaining the genomic stability of organisms

[131]. Individuals harboring mutations in WRN have a

rare, autosomal recessive genetic disorder manifested by

early onset of symptoms characteristic of aged

individuals.

Conclusions

Cruciform structures are fundamentally important for a

wide range of biological processes, including DNA tran-

scription, replication, recombination, control of gene

expression and genome organization. The putative

mechanistic roles of cruciform binding proteins in tran-

scription, DNA replication, and DNA repair are shown

in Figure 5. Alternative DNA structures, including cruci-

forms, are often formed at sites of negatively supercoiled

DNA by perfect or imperfect inverted repeats of 6 or

more nucleotides. Longer DNA palindromes present a

threat to genomic stability as they are recognized by

junction-resolving enzymes. Shorter palindromic

sequences are essential for basic processes like DNA

replication and transcription. The presence of cruciform

structures may also play an important role in epige-

netics, such that cruciform structures are protected

from DNA methylation. For example, the Dam methy-

lase is not able to modify its GATC target site when it

occurs in a cruciform or hairpin conformation. The cen-

ter of a long perfect palindrome located in bacterioph-

age lambda has also been shown to be methylation-

resistant in vivo [40]. Moreover, the centers of long

palindromes are hypo-methylated as compared to identi-

cal sequences in non-palindromic conformations [40].

To this end, transient cruciforms can directly influence

DNA methylation and therefore provide another layer

for regulation of the DNA code. Proteins that bind to

cruciforms can be divided into several categories. In

addition to a well defined group of junction-resolving

enzymes, we have classified cruciform binding proteins

into groups involved in transcription and DNA repair

(PARP, BRCA1, p53, 14-3-3), chromatin-associated pro-

teins (DEK, BRCA1, HMG protein family, topoisome-

rases), and proteins involved in replication (MLL, WRN,

14-3-3, helicases) (see Table 1). Within these groups are

proteins indispensable for cell viability, as well as tumor

suppressors, proto-oncogenes and DNA remodeling pro-

teins. Similarly, triplet repeat expansion, a phenomenon

important in several genetic diseases, including Frie-

dreich’s ataxia, cardiomyopathy, myotonic dystrophy

type I and other neurological disorders, can change the

spectrum of cruciform binding proteins. Lastly, single

nucleotide polymorphisms and/or insertion/deletion

mutations at inverted repeats located in promoter sites

can also influence cruciform formation, which might be

manifested through altered gene regulation. A deeper

understanding of the processes related to the formation
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Figure 5 Scheme of the putative mechanistic roles of cruciform binding proteins in transcription, DNA replication, and DNA repair. A)

A model for the structure-specific binding of transcription factors to a cognate palindrome-type cruciform implicated in transcription. The

equilibrium between classic B-DNA and the higher order cruciform favors duplex DNA, but, when cruciform binding proteins are present, they

either preferentially bind to and stabilize the cruciform or bind to the classic form and convert it to the cruciform. This interaction results in both

an initial melting of the DNA region covered by transcription factor and an extension of the melt region in both directions. The melting region

continues to extend in response to the needs of the active transcription machinery. B) A model for the initiation of replication enhanced by

extrusion to a cruciform structure. Dimeric cruciform binding proteins interact with and stabilize the cruciform structure. The replisome is

assembled concomitantly and is assumed to include polymerases, single-strand binding proteins and helicases. C) Model for the influence of

cruciform binding proteins on DNA structure in DNA damage regulation. Naked cruciforms are sensitive to DNA damage and are covered by

proteins in order to protect these sequences from being cleaved. In these cases, a deficiency in cruciform binding proteins can lead to DNA

breaks. Here, cruciform-DNA complexes can also serve as scaffolds to recruit the DNA damage machinery.
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and function of alternative DNA structures will be an

important component to consider in the post-genomic

era.
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scDNA: supercoiled DNA.
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