Crustal–lithospheric structure and continental extrusion of Tibet

M. P. SEARLE1,*, J. R. ELLIOTT1, R. J. PHILLIPS2 & S.-L. CHUNG3

1Department of Earth Sciences, Oxford University, South Parks Road, Oxford OX1 3AN, UK
2Institute of Geophysics and Tectonics, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
3Department of Geosciences, National Taiwan University, Taipei 106, Taiwan

*Corresponding author (e-mail: mike.searle@earth.ox.ac.uk)

Abstract: Crustal shortening and thickening to c. 70–85 km in the Tibetan Plateau occurred both before and mainly after the c. 50 Ma India–Asia collision. Potassic–ultrapotassic shoshonitic and adakitic lavas erupted across the Qiangtang (c. 50–29 Ma) and Lhasa blocks (c. 30–10 Ma) indicate a thick mantle, thick crust and eclogitic root during that period. The progressive northward underthrusting of cold, Indian mantle lithosphere since collision shut off the source in the Lhasa block at c. 10 Ma. Late Miocene–Pleistocene shoshonitic volcanic rocks in northern Tibet require hot mantle. We review the major tectonic processes proposed for Tibet including ‘rigid-block’, continuum and crustal flow as well as the geological history of the major strike-slip faults. We examine controversies concerning the cumulative geological offsets and the discrepancies between geological, Quaternary and geodetic slip rates. Low present-day slip rates measured from global positioning system and InSAR along the Karakoram and Altyn Tagh Faults in addition to slow long-term geological rates can only account for limited eastward extrusion of Tibet since Mid-Miocene time. We conclude that despite being prominent geomorphological features sometimes with wide mylonite zones, the faults cut earlier formed metamorphic and igneous rocks and show limited offsets. Concentrated strain at the surface is dissipated deeper into wide ductile shear zones.

The Tibetan Plateau region, bordered by the Himalaya along the south, the Tien Shan along the NW, the Kun Lun and Altyn Tagh ranges along the north and the Long Men Shan range along the east, is the largest region of high elevation (average 5.023 km; Fielding et al. 1994) and thick crust (70–90 km thick; Wittlinger et al. 2004; Rai et al. 2006) in the world (Fig. 1). The Tibetan Plateau is made up of several terranes progressively accreted onto the stable North Asian Siberian–Mongolian craton since the Early Mesozoic (Dewey et al. 1988). From north to south the plateau is composed of the Kun Lun–Songpan Ganze, Qiangtang and Lhasa terranes. In western Tibet the Karakoram terrane is the western equivalent to the Qiangtang, and the Kohistan–Ladakh–Gangdese batholith makes up the southern part of the Lhasa terrane (Searle & Phillips 2007). The southernmost part of the geomorphological Tibetan Plateau is the Tethyan Himalaya, part of the Indian plate south of the Indus–Yarlung Tsangpo suture zone. The Neo-Tethyan Indus suture zone marks the zone of collision between the Indian plate to the south and the Asian amalgamated terranes to the north. The Indus–Yarlung Tsangpo suture zone runs from the Nanga Parbat Western Himalayan syntaxis region across Ladakh and southern Tibet to the Namche Barwa Eastern Himalayan syntaxis region and then swings south into Burma.

Models for the growth of the Tibetan Plateau range from early, pre-India–Asia collision thickening and uplift in the Lhasa and southern Qiangtang blocks and Karakoram terrane (England & Searle 1986; Murphy et al. 1997; Hildebrand et al. 2001; Kapp et al. 2005; Searle et al. 2010a) through gradual uplift following the India–Asia collision (50–0 Ma) to sudden uplift at c. 7–8 Ma (Molnar et al. 1993). The India–Asia collision itself must have been a continuing process since the Late Cretaceous–Early Palaeocene obduction of ophiolites onto the Indian passive continental margin and initial contact between Indian and Asian crust, through to final withdrawal of the Tethyan Ocean with ending of marine sedimentation in the Indus–Yarlung Tsangpo suture zone. The final marine sediments in the suture zone and along the northern margin of India have been precisely dated at 50.5 Ma (planktonic foraminifera zone P8 and shallow benthic zone SBZ10; Garzanti et al. 1987; Rowley 1998; Zhu et al. 2005; Green et al. 2008). In this paper we equate the Late Ypresian (Early Eocene) timing of final marine sedimentation along the suture zone as defining the India–Asia collision.

Unlike the Himalaya where deep crustal metamorphic and granitic rocks are exposed and exhumation and erosion rates are high, most of the Tibetan Plateau has low relief, exhumed crustal rocks are uncommon, and erosion rates and exhumation rates are extremely low. Therefore we are reliant on deep crustal seismic experiments (tomography, receiver functions and seismic anisotropy), notably the INDEPTH (Zhao et al. 1993; Nelson et al. 1996; Haines et al. 2003; Tilmann et al. 2003) and Hi-CLIMB (Chen & Tseng 2007; Hétényi et al. 2007; Nábělek et al. 2009) profiles, to interpret the structure of the lower crust. The composition of the lower crust and upper mantle can directly be known only from xenoliths entrained in ultrapotassic or potassic (shoshonitic) volcanic rocks that have sampled the lower crust on their way up to the surface (e.g. Hacker et al. 2000, 2005; Ducea et al. 2003; Chan et al. 2009).

Models to explain the deformation history of the Tibetan Plateau can be grouped into four main types: (1) Argand-type underthrusting of India models (Argand 1924); (2) ‘rigid block’ models in which the crust behaves as a rigid or rigid–plastic cohesive unit (e.g. Molnar & Tapponnier 1975; Tapponnier & Molnar 1976, 1977; Tapponnier et al. 1982); (3) continuum models, in which the lithosphere is regarded as a continuum with a Newtonian or power-law rheology (e.g. England & McKenzie 1982, 1983; England & Houseman 1985, 1986; Houseman & England 1986); (4) crustal flow models. The last include (a) lower crustal flow models (e.g. Bird 1991; Royden et al. 1997;
Fig. 1. Digital elevation map of the Tibetan Plateau region showing active and recent thrust faults (red), normal faults (blue) and strike-slip faults (grey) together with the major suture zones (black dashed) after Taylor & Yin (2009). Two topographic profiles (X–X’ and Y–Y’) across the major strike-slip faults are shown, with the three shades of grey representing maximum, mean and minimum elevations 100 km either side of the profiles. Lines of section of the two crustal profiles in Figure 15 are also shown.
Clark & Royden 2000; Haines et al. 2003) and (b) the Himalayan mid-crustal 'channel flow' model (e.g. Beaumont et al. 2001, 2004; Grujic et al. 2002; Searle et al. 2003, 2006, 2010b; Law et al. 2004, 2006; Godin et al. 2006).

In the first landmark paper on Tibetan tectonics, Argand (1924) proposed that the entire Tibetan Plateau was uplifted by underthrusting of the Indian plate from the south doubling the crustal thickness and increasing the surface elevation (Fig. 2). This foresighted suggestion preceded the plate-tectonic revolution by 40 years. Thirty-five years ago, in another landmark paper for continental tectonics, Molnar & Tapponnier (1975) first proposed the 'continental extrusion' or 'tectonic escape' model whereby large-scale (800–1000 km) eastward extrusion of Tibet was achieved by large (500–1000 km) horizontal motions along major intra-continental strike-slip faults, specifically the Karakoram–Jiale, Altyn Tagh, Kun Lun, Haiyuan and Xianshui-he Faults (Fig. 1). This 'rigid block' model requires large geological offsets (500–1000 km), high slip rates, synshearing metamorphism and melting as a result of shear heating, and deep faults cutting down into the mantle. This model has been vigorously promoted by many researchers working both in Tibet (e.g. Tapponnier et al. 1982, 2001b; Peltzer & Tapponnier 1988; Armijo et al. 1989; Avouac & Tapponnier 1993) and in SE Asia (Leloup et al. 1993, 1995, 2001; Lacassin et al. 2004a).

An alternative view of only a minor amount of eastward extrusion of Tibet during the Late Neogene has resulted from intensive geological mapping combined with precise U–Th–Pb dating of offset geological markers such as granites and exhumed metamorphic rocks offset along the strike-slip faults. This view suggests that the metamorphism and most of the granites were formed prior to strike-slip faulting and not by shear heating, and that the faults are purely crustal features where localized strain at the surface dissipates into a wide zone of distributed ductile shear at depth. This view has been promoted both for the Karakoram Fault in particular (Searle 1996; Searle et al. 1998; Murphy et al. 2000; Phillips et al. 2004; Phillips & Searle 2007; Searle & Phillips 2007; Robinson 2009a, b) and for the Red River Fault (Jolivet et al. 2001; Searle 2006, 2007; Yeh et al. 2008; Searle et al. 2010c).

In this paper we first review and discuss the merits and shortcomings of the various published models for the lithospheric structure of Tibet. We review the structural and seismic evidence for crustal thickness and structure across Tibet. We then discuss the evidence for timing of crustal thickening of Tibet and the present-day global positioning system (GPS) velocities. We review the volcanic history of the Tibetan Plateau, as the volcanic rocks of the region hold the key to interpreting mantle structure and evolution. We also review slip rates across geological, Quaternary and present time scales for the Karakoram and Altyn Tagh Faults as well as major strike-slip faults of eastern Tibet. We discuss models of crustal rheology, particularly the so-called 'jelly sandwich'–'crème brûlée' models (Jackson 2002; Burov & Watts 2006). Finally, we present a working model for the evolution of the Tibetan lithosphere over the last 50 Ma based on all geological and geophysical data.

Crustal deformation models for Tibet

Argand-type underthrusting models

Argand (1924) first proposed that the thick crust of Tibet resulted from the underthrusting of the entire plateau by India (Fig. 2a)
and b). This model provided a plausible mechanism to explain both the double crustal thickness of Tibet and surface uplift of the plateau. Subsequent geological mapping and structural studies in the Himalaya showed that the Himalayan range is composed of folded and thrust Neoproterozoic to Palaeogene rocks that in the middle crustal levels were metamorphosed to Barrovian-facies metamorphic rocks during the Oligocene–Miocene (Searle et al. 1997a; Hodges 2000). The Archaean–Mesoproterozoic Indian plate lower crust that originally underlay the Phanerozoic passive margin sediments prior to the India–Asia collision is never exposed along the Himalaya and must therefore have underthrust the Tibetan Plateau to the north after the collision (Fig. 2c). Seismic experiments lend support the underthrusting of at least the southern part of the plateau by Indian lithosphere (Owens & Zandt 1997; Tilmann et al. 2003; Hetényi et al. 2007; Nábelek et al. 2009). Although the Argand model does suggest rigid plate underthrusting of India beneath Asia it does not compare with the ‘rigid plate’ models (e.g. Molnar & Tapponnier 1975) that treat the entire Asian crust as a rigid plate.

‘Rigid block’ models

The ‘rigid block’ models in general propose that the Tibetan crust can be described in terms of a rigid or rigid–plastic medium indented by a rigid Indian plate. These ‘plates’, ‘microplates’ or ‘blocks’ are bounded by crustal-scale strike-slip faults that extend down to the mantle (Molnar & Tapponnier 1975; Tapponnier & Molnar 1976, 1977; Tapponnier et al. 1982; Avouac & Tapponnier 1993). Tapponnier & Molnar (1976) proposed that the great strike-slip faults correspond to x and y slip lines radiating out to the NW and NE away from the rigid Indian indenter. These models formed the basis of the continental extrusion model for Tibet whereby the indentation of rigid India resulted in extrusion of the Afghan block to the west, bounded by the dextral Herat fault and the sinistral Chaman fault, and the extrusion of the Indochina block to the SE, bounded by the (at present) dextral Red River Fault and the sinistral Sagaing Fault (Fig. 3a and b). Peltzer & Tapponnier (1988) used analogue plasticine models to explain the distribution of faults around Tibet and the eastward extrusion of Tibetan crust (Fig. 3c). They used a rigid Indian indenter and a free boundary to the east (SE Asia) but they placed a fixed floor and lid both below and above, inhibiting both crustal thickening and increasing elevation. As we can be certain that Tibet has both thick crust and high elevation, clearly these plasticine models are not particularly relevant to the real world. England & Molnar (1990) showed how the strike-slip faults of eastern Tibet could be interpreted in terms of right-lateral shear along the eastern margin and clockwise rotation (Fig. 4) instead of major eastward extrusion.

Peltzer & Tapponnier (1988) proposed large-scale continental extrusion of Tibet along the bounding faults of the plateau. They proposed c. 1000 km of right-lateral motion along the Karakoram Fault, and c. 500 km of left-lateral slip along the Altyrn Tagh Fault. However, the granites they matched in the Pamirs to the Gangdese granites in southern Tibet were never part of the same batholith and have a different mineralogy, composition and age (Searle 1996; Searle et al. 1998, 2010a; Robinson et al. 2004, 2007). Estimates of geological offsets along the Karakoram Fault range from almost none (Jain & Singh 2008) through a minimum of 25 km (Searle et al. 2010a), 65 ± 5 km (Murphy et al. 2000), c. 120 km (Searle et al. 1998; Phillips et al. 2004) to 149–167 km (Robinson 2009a). Robinson (2009b) suggested that the northern part of the Karakoram Fault was no longer active based on detailed mapping of Quaternary deposits. The offsets of >400 km suggested by Lacassin et al. (2004a) and Valli et al. (2007, 2008) we regard as invalid correlation of offset geological markers (see Searle & Phillips 2004; Lacassin et al. 2004b, discussions). Evidence for larger offsets (c. 400 km) along the Altyrn Tagh Fault, however, does appear to be more robust (Yue et al. 2003, 2005; Zhang et al. 2001; Cowgill et al. 2003).
Avouac & Tapponnier (1993) compiled estimated slip rates for all the major faults of Tibet and concluded that the bounding faults all had fast slip rates and large amounts of offsets with as much as 50% of the total convergence absorbed by eastward extrusion of Tibet. However, many of these slip rates rely on poorly dated Quaternary features that were assumed to have formed during the last glacial maximum, an assumption that we now know to be incorrect (Brown et al. 2005). Tapponnier et al. (2001b) proposed a NE progressive growth of the plateau with large-scale eastward and southeastward extrusion facilitated by the east- and southward curving Kun Lun, Xianshui-he and Jiale faults.

The rigid body models for Tibet also imply that the major block-bounding strike-slip faults cut the entire thickened crust and extend down into the mantle, and that shear heating along the faults resulted in synshearing metamorphism and formation of crustal melt granites (e.g. Leloup & Kienast 1993; Rolland & Pécher 2001; Lacassin et al. 2004a,b; Valli et al. 2007, 2008; Rolland et al. 2008). A simple test of this theory would be that U–Pb monazite ages for peak metamorphism and magmatism would all have to date strike-slip motion along the faults. U–Pb monazite ages obtained from metamorphic rocks along the Karakoram Fault are Cretaceous (Streule et al. 2009) and preliminary zircon ages from metamorphic rocks along the Red River Fault are Triassic in age (Searle et al. 2010c), strongly suggesting that metamorphism was earlier than, and unconnected to shearing along the fault. Because the crust beneath western Tibet is up to 90 km thick (Wittlinger et al. 2004; Rai et al. 2006), these faults would have to penetrate these depths and remain coherent, an unlikely scenario given the high geothermal gradient and great depth.

A more recent approach has been to increase the number of rigid blocks to explain the observed surface kinematics as measured by GPS observations, resulting in a micro-plate description of Tibetan active tectonics. Meade (2007) produced a kinematic model of the India–Asia collision zone based upon 554 GPS observations from Zhang et al. (2004) and Shen et al. (2005) in which they estimated slip rates on faults bounding 17 blocks. Estimates for the major strike-slip faults on the plateau are relatively low at c. 5–10 mm a⁻¹, but in western Tibet the model suggested a relatively large 15 mm a⁻¹ right-lateral fault along a microplate boundary where there is no evidence for one. This is most probably due to the absence of GPS data in this region. Meade (2007) suggested that the optimal locking depth for the faults was 17 km, in good agreement with the seismic moment release from the historical catalogue. Thatcher (2007) produced a similar 11-microplate model for Tibet based upon 349 GPS measurements, and similarly proposed low slip rates of 5–12 mm a⁻¹ for Tibet’s major strike-slip faults, in contrast to the large slip rates from earlier studies consisting of larger blocks (e.g. Peltzer & Tapponnier 1988; Avouac & Tapponnier 1993).

However, Thatcher (2007) acknowledged systematic misfits that point to internal deformation of the blocks, which he suggested could be smaller blocks within the larger blocks.

Continuum models

A contrasting description of continental deformation involves a continuum description of deformation distributed through a continuously deforming lithosphere driven at the boundary and by interior forces, and in which the brittle upper-crustal discontinuities are less significant. These models attempted to explain the observed patterns of crustal deformation in Tibet and proposed that crustal thickening could account for most of the deformation with only c. 10–20% of the India–Asia convergence taken up by lateral extrusion. Dewey & Burke (1973) proposed a model of homogeneous crustal shortening and thickening in Tibet without the need for major underthrusting of India. Continuum models describe the large-scale and long-term deformation of the continental lithosphere as a continuum with a Newtonian or power-law rheology (England & McKenzie 1982, 1983). The numerical model consists of flow of a thin sheet of power-law material over an inviscid substratum. The thickness of the viscous sheet is small compared with the loads on it, and the surface and base have zero shear stress. A major assumption in the formulation of the model is that any variation in the horizontal component of velocity with depth can be ignored. Flow in the material is in response not only to the boundary forces (e.g. the rigid indenter as an analogue of India’s convergence), but also to the internal body forces owing to gradients in crustal thickness, resulting in a time dependence for the flow. The flow is controlled by two parameters: the power-law stress exponent, n, and the dimensionless Argand number, Ar, which is the ratio of stress resulting from crustal thickness contrasts to that required to deform the material (England & McKenzie 1982).

Using this approach, England & Molnar (1997b) produced a velocity field for Asia by estimating the stress field from observations of Quaternary faulting. They found that a large fraction (c. 85%) of India’s convergence could potentially have been absorbed by crustal or lithospheric thickening and that the strains associated with the Altyn Tagh and Karakoram Faults slip rates of 20–30 mm a⁻¹ are inconsistent with those calculated, having been overestimated owing to lack of accurate dating. Using the velocity field from England & Molnar (1997b), England & Molnar (1997a) calculated vertically averaged strains for a thin sheet of fluid in which gradients of stress point up...
topographic gradients to the centre of Tibet where the gravitational potential energy is maximum and coincident with the greatest contrast in crustal thickness. Therefore the dynamics is one of creeping flow balancing gradients in stress and the gravitational body force. From this prediction, England & Molnar (1997a) estimated a lithospheric viscosity for Tibet of 10^{22} Pa s, and concluded that, as this is only 1–2 orders of magnitude greater than the convecting upper mantle, the continental lithosphere belongs to the fluid part of the solid Earth, rather than to the part that acts as rigid plates. England & Molnar (2005) produced an updated velocity field for Asia based upon GPS estimates as well as the Quaternary slip rates used previously (England & Molnar 1997b), and showed that the strain field is consistent across these time scales. They concluded that block-like behaviour is a useful descriptor for only the Tarim, South China and Amurian regions.

Molnar et al. (1993) proposed that convective removal of lower lithosphere beneath Tibet at c. 8 Ma coincided with initiation of east–west extension and volcanism, suggesting replacement of lithosphere with a hotter asthenosphere, and also coincident with major climate changes in South Asia, particularly strengthening of the Indian monsoon system. Since then, dating of over 50 volcanic samples across the plateau has shown that shoshonitic volcanism has occurred sporadically from the time of collision (50 Ma) to today (Chung et al. 2005, 2009), suggesting that no sudden delamination occurred at c. 8 Ma. North–south aligned normal faults in Tibet were initially assumed to be Pliocene–Pleistocene (Armijo et al. 1988) and c. 13.5 Ma in age (Blisniuk et al. 2001), but east–west extension is now known to have occurred across the entire plateau from c. 47 Ma to the present day based on dating of adakitic and ultrapotassic dykes (Wang et al. 2010). Early interpretations of a change from north–south compression to east–west extension in Tibet (e.g. Molnar et al. 1993) are now known to be incorrect as both are contemporaneous in time. Normal faults do not necessarily relate to crustal thinning or ‘orogenic collapse’ (Dewey 1988), as material was constantly being replaced by underthrusting from the south. Recent surface-wave tomography studies imply a high-velocity lithospheric mantle beneath the whole plateau (except the far north under the Kun Lun) to a depth of 225–250 km (Piestley & McKenzie 2006; Priestley et al. 2008), arguing strongly against any lithospheric delamination beneath Tibet. Thin viscous sheet models also ignore depth-dependent behaviour and do not allow for lateral shear or detachments between upper and lower crust or between lower crust and mantle (Royden et al. 1997).

Lower crustal flow models

Bird (1991) first suggested that under large plateau regions of thick crust such as Tibet, the lower crust would flow assuming power-law creep. Based mainly on GPS observations and using a 3D viscous model, Royden et al. (1997, 2008) proposed a model for eastern Tibet based on lower crustal flow around the Eastern Himalayan syntaxis and also around the rigid Sichuan basin (Fig. 5). This model proposed that the lower crust is very weak and is decoupled from both the upper crust and the upper mantle. Clark & Royden (2000) used the regional topographic gradients to model a Newtonian fluid flowing through a 15 km thick lower crust, estimating a viscosity of 10^{16} Pa s for beneath the plateau and 10^{14} Pa s for low-gradient margins and 10^{21} Pa s for a steep margin. Haines et al. (2003) also presented evidence from INDEPTH III seismic data that lower crustal ductile flow had destroyed evidence in the deep crust for earlier accretion of distinct terranes.

Surface-wave tomography and receiver function analysis from regional seismic arrays in east and SE Tibet show low shear-wave speed and presumably low mechanical strength (Yao et al. 2008). A sharp change in mantle anisotropy occurs beneath the SE margin of the Tibetan Plateau, with fast directions consistently east–west (Sol et al. 2010). Because of the coincidence between mantle anisotropy, surface strain and strike-slip faults in this region, Sol et al. suggested that deformation of the lithosphere was coupled across the crust–mantle boundary. If this was the case there should be evidence of a Himalayan-type crustal flow along the eastern margin of the plateau.

The eastern margin of the Tibetan Plateau along the Long Men Shan is almost as abrupt as the southern margin along the Himalaya, but the two show very different geology (Kirby et al. 2002). The eastern part of Tibet shows no evidence of major Late Cenozoic crustal shortening, no evidence of post-collisional metamorphism or middle–lower crustal flow as seen along the Himalaya, and no flexural foreland basin to the east. Most of the upper crustal deformation in eastern Tibet is Mesozoic but U–Pb dating of zircons in Barrovian-facies metamorphic rocks gives ages of c. 65 Ma (Wallis et al. 2003), suggesting that the crust was already thick before the India–Asia collision. North–south stretching lineations do not support the model of eastward lower crust flow. Cenozoic deformation is relatively minor with a steep thrust–fold belt, but although seismically active there is very little east–west shortening.

There is abundant evidence of upper crust clockwise rotations both in the GPS motions and the curved strike-slip faults (e.g. Xianshui-he and Jiafa faults in particular), but there is no geological evidence that this deformation pattern is also present in the lower crust. Certainly there is no geological evidence that the upper or middle crust is flowing or thrusting significantly eastward from Tibet to Sichuan or Yunnan. As there are major detachments that are known to decouple the upper, middle and lower crust in southern Tibet and the Himalaya, the GPS patterns of rotation around the Eastern Himalayan syntaxis do not necessarily mimic the flow of the lower crust. The GPS motions in Yunnan and Burma (Fig. 6) are also surprising, being almost at right angles to the strike-slip fault motions along the active dextral parts of the Red River Fault and the active dextral Sagaing Fault (Gan et al. 2007).

Himalayan channel flow models

The channel flow model (Fig. 7) developed for the Greater Himalaya along the southern margin of the Tibetan Plateau was proposed initially from field geological mapping and strain data combined with P–T constraints and U–Pb dating of metamorphic rocks and leucogranites (Searle & Rex 1989; Grujic et al. 2002; Searle et al. 2003, 2006; Law et al. 2004, 2006; Searle & Szulc 2005; Godin et al. 2006). The channel flow model infers that a partially molten middle crust layer was extruded south from beneath southern Tibet to the Greater Himalaya during the Early Miocene, at c. 23–15 Ma. This is the span of U–Pb crystallization ages from the Himalayan leucogranites that provide evidence for melt-driven flow. The Himalayan channel flow model involves rocks wholly of Indian crustal origin that have been underthrust to the north, thickened, heated, metamorphosed and returned to the surface along a mid-crustal channel bounded by low-angle ductile shear zones below (Main Central Thrust) and above (South Tibetan Detachment).

These geological constraints were subsequently simulated in
the numerical models of Beaumont et al. (2001, 2004). In this model, partial melting occurs only in the middle crust beneath the seismogenic upper crust, but not in the lower crust, which is underthrust Indian Shield Precambrian granulites (Caldwell et al. 2009). In parts of the Karakoram—far west Tibet region where the Moho reaches depths of c. 80–90 km (Wittlinger et al. 2004; Rai et al. 2006), the lower crust must be in eclogite or high-pressure granulite fields today. The channel flow model is based on both geological constraints from the Greater Himalaya and geophysical constraints from the INDEPTH seismic experiments in southern Tibet (Zhao et al. 1993; Nelson et al. 1996). Intermediate-period Rayleigh and Love waves propagating across Tibet indicate a radial anisotropy in the middle—lower crust consistent with a 20–40% thinning of the middle crust and consistent with channel flow (Shapiro et al. 2004).

The geologically constrained parameters include a 10–20 km thick middle crust composed of sillimanite—K-feldspar grade gneisses, migmatites and leucogranites bounded by an inverted metamorphic sequence above the Main Central Thrust along the base and a right-way-up metamorphic sequence beneath a major low-angle normal fault, the South Tibetan Detachment, along the top (Searle et al. 2008, 2010b). From mapping of metamorphic isograds in western Zanskar and eastern Kashmir, Searle & Rex (1989) showed that the isograds are folded around a large-scale SW-verging recumbent fold with c. 100 km of SW displacement along both ductile shear zones along the top (South Tibetan Detachment zone) and bottom (Main Central Thrust zone). Both the Main Central Thrust and the South Tibetan Detachment are major ductile shear zones active synchronously during the Early Miocene (c. 24–15 Ma) when the partially molten middle crust was extruded southward at least 100 km beneath the brittle deforming upper crust of southernmost Tibet (Indian plate Tethyan or Northern Himalaya). It is possible that the ‘bright spots’ imaged by the INDEPTH profile, pockets of liquid at relatively shallow depth (c. 15–18 km) beneath southern Tibet today, are actually pockets of leucogranite magmas forming today at similar depths and P–T conditions as the Early Miocene leucogranites along the Himalaya (Searle et al. 2003, 2006; Gaillard et al. 2004).

Seismic constraints on the deep structure of Tibet

Lithospheric delamination or underthrusting?

Two interpretations of the lithospheric structure of Tibet are: (1) Tibet is underlain by relatively cold thickened lithospheric mantle; or (2) lithospheric delamination occurred, where, as a result of homogeneous lithospheric thickening, thickened lithospheric mantle dropped off to be replaced by hotter asthenospheric mantle at c. 7–8 Ma (Housman et al. 1981; England & McKenzie 1982; England & Houseman 1989; Molnar et al. 1993; Hatzfeld & Molnar 2010). This purportedly resulted in the sudden and rapid rise of the plateau, which indirectly caused major climate and vegetation changes in South Asia (Molnar et al. 1993). Kosarev et al. (1999) presented seismic evidence for a detached Indian lithospheric mantle beneath Tibet. However, subsequent broadband seismic experiments showed variations in crustal—lithospheric structure across the plateau from shear-coupled teleseismic P waves (Owens & Zandt 1997; Schulte-Pelkum et al. 2005). These studies revealed a major difference in mantle structure beneath southern and northern Tibet.

Owens & Zandt (1997) interpreted the Indian continental crust and mantle lithosphere as underthrusting north as far as the Bangong suture (c. 32°N) and noted that the crust under northern Tibet was 10–20 km thinner than the crust under southern Tibet (Fig. 8a). The broadband seismic data show that southern Tibet is underlain by crust and relatively cold mantle of Indian continental affinity as far north as the Bangong suture, but that northern Tibet is underlain by anomalously hot, low-density upper mantle characterized by mantle anisotropy. This has been interpreted as representing significant underthrusting of strong
Indian lithosphere into weaker and hotter Asian continental lithosphere (Owens & Zandt 1997). The advancing Indian lithospheric front provides a mechanism to form anisotropy in the mantle beneath northern Tibet, interpreted as lateral flow.

The INDEPTH seismic profiles (Zhao et al. 1993; Nelson et al. 1996; Haines et al. 2003; Tilmann et al. 2003) have also revealed major differences in lithospheric structure between northern and southern Tibet (Fig. 8b). The southern Tibet profiles have successfully imaged major reflectors corresponding to northerly down-dip extensions of the major Himalayan faults: the Main Boundary Thrust, the Main Central Thrust and the South Tibetan Detachment. The South Tibetan Detachment marks the upper limit of Himalayan metamorphic rocks and also the upper limit of the mid-crust zone of partial melting beneath the southernmost part of the plateau (Nelson et al. 1996). Tomographic images show a subvertical high-velocity zone from c. 100 to 400 km depth located immediately south of the Bangong suture zone that has been interpreted as representing downwelling Indian mantle (Tilmann et al. 2003). The INDEPTH III seismic profile extends north into the Qiangtang terrane, where the presence of crustal fluids in parts of eastern Tibet probably corresponds to low-viscosity ductile flow (Wei et al. 2001; M. P. Searle et al. 2006).

Fig. 6. GPS velocities across Tibet relative to a stable Eurasia, after Gan et al. (2007). Contour lines indicate smoothed surface elevations using a 200 km wide Gaussian filter.

Fig. 7. The Himalayan channel flow model after Searle et al. (2006, 2008, 2010b) showing the southward extrusion of a ductile partially molten layer of middle crust. Inset diagrams show the condensed right-way isograds beneath the South Tibetan Detachment and the condensed inverted isograd above the Main Central Thrust. Photographs show the South Tibetan Detachment as exposed on Everest (top), and 70 km to the north of Everest at Dzakaa chu (Cottle et al. 2007). Bottom diagram shows the restored South Tibetan Detachment profile for the Everest section, after Searle et al. (2003, 2006) during early Miocene leucogranite formation, and the flow pathways for its exhumation beneath the Lhotse detachment (LD) and the Qomolangma detachment (QD) branches of the South Tibetan Detachment.
Fig. 8. Three interpretative profiles across the Tibetan Plateau as interpreted from deep seismic experiments. (a) Owens & Zandt (1997) profile at c. 92–93°E showing Indian crust (green) extending north beneath the southern part of the Lhasa Block. MHT, Main Himalayan Thrust imaged on seismic reflection data. Blue indicates mantle lithosphere. Red areas indicate region telesismic tomography and suggest that mantle is lower velocity than southern Tibet. (b) Tilmann et al. (2003) profile showing the downwelling of Indian lithosphere beneath the Bangong suture (BNS). The convection cell beneath northern Tibet is superimposed on eastward extrusion. Red patches indicate pockets of partial melts. (c) Nábelek et al. (2009) interpretation of the receiver function profile, also showing underthrusting of Indian lithosphere as far as 31°N. The eclogitized lower crust of India is shown in green. Prominent lineations of the upper mantle fabric are shown in grey. Also shown are the possible mantle earthquake focal mechanisms, after Chen & Yang (2004). LVZ, low-velocity zone.
Haines et al. (2003). The INDEPTH IV line extends across northern Tibet to the Qaidam basin, along which a 15 km offset in the Moho has been detected across the northern boundary of the Tibetan Plateau from c. 65 km crustal thickness beneath Tibet to c. 48 km beneath the Qaidam basin (Vergne et al. 2002).

The 2002–2005 Hi-CLIMB receiver function experiment involved an 800 km long linear array of broadband seismometers extending from the Ganga basin across the central Himalaya and Lhasa block to about 34°N in the middle of the Qiangtang block (Hetényi et al. 2007; Nábelek et al. 2009). The results compare closely with the Owens & Zandt (1997) interpretation, with Indian crust underthrusting north as far as 32°N (Fig. 8c). The Moho was imaged at 40 km depth beneath the Ganga basin, dipping north to 50 km depth beneath the Himalaya and 70 km depth beneath the Indus–Yarlung suture zone. To the north the Moho remains at a constant depth beneath 200 km width of the Lhasa block but rises to a shallower depth of 65 km beneath the Qiangtang block (Nábelek et al. 2009). The thinner crust under the Qiangtang block is compensated by a lower density, lower velocity and hotter mantle. Recent surface-wave tomography studies imply a high-velocity lithospheric mantle beneath the whole plateau (except the far north under the Kun Lun) to a depth of 225–250 km (Priestley et al. 2008; Priestley & McKenzie 2006). These new data argue strongly against lithospheric delamination beneath Tibet.

Maggi et al. (2000), Jackson (2002), Priestley & McKenzie (2006) and Priestley et al. (2008) found no convincing evidence for substantial seismicity in the continental upper mantle, and proposed instead that the deep earthquakes in the eastern Himalaya occurred along the crust–mantle boundary or within the lowermost crust (Priestley et al. 2008, fig. 1, p. 347). Likewise in the western Himalaya, Rai et al. (2006) used teleseismic receiver functions to map the Indian Moho along a 700 km long profile across the Indian Himalaya as far as the Karakoram Fault and Wittlinger et al. (2004) used receiver functions to map the Moho NE of the Karakoram Fault. Combining these two studies shows that the Moho steepens to a depth of 75 km beneath the Karakoram Fault and reaches a maximum known depth of 90 km beneath far west Tibet. The Moho shallows to 50–60 km depth beneath the Altyn Tagh Fault and c. 50 km beneath the Tarim basin. The amount of underthrusting of Tarim plate material south beneath the Kun Lun and northern Tibet is debatable. Whereas the Himalaya has hundreds of kilometres of shortening of the upper crust, which must be balanced by a similar amount of northward underthrusting of Indian lower crust, there is very little Neogene shortening seen in eastern Tibet or the Kun Lun (Kirby et al. 2002).

The Pamir and Hindu Kush seismic zones are the deepest zones of seismicity known in the continents. The Hindu Kush shows a very narrow northward steepening zone of earthquakes down to a depth of c. 300 km whereas the Pamir seismic zone is a southward-dipping zone from the Alaï valley (Tadjik basin crust) down to c. 60 km depth beneath the central Pamir (Burtman & Molnar 1993; Pegler & Das 1998). There is debate about whether the deep earthquakes are related to subduction of a small Black Sea type oceanic basin within the continental crust (Chatelain et al. 1980; Roeker 1982) or whether they are related to fast and deep subduction of thinned Indian continental crust since c. 11 Ma (Searle et al. 2001). As there is no geological evidence of any oceanic crust since at least the mid-Cretaceous anywhere in the Central Asia region we favour the latter option of deep and fast subduction of thinned Indian continental crust. Continental material is known to have subducted to depths as much as 300 km from several ultrahigh-pressure terranes throughout the Phanerozoic and the Hindu Kush seismic zone provides an excellent example of how this can be achieved in a continental collision zone setting.

GPS measurements in Tibet

Since the advent of the GPS in the early 1980s it has become possible to measure horizontal surface motions over hundreds of kilometres to an accuracy of a few millimetres. Wang et al. (2001) compiled local GPS networks occupied between 1991 and 2001 consisting of 354 stations and showed that 90% of the India–Asia relative motion (measured to be 38 mm a\(^{-1}\)) is absorbed through deformation in Tibet and its margins. Zhang et al. (2004) updated this dataset to include 533 stations on and around the plateau in which 36–40 mm a\(^{-1}\) India–Asia convergence was measured, with 15–20 mm a\(^{-1}\) N20°E shortening across the Himalaya, 10–15 mm a\(^{-1}\) across the Tibetan Plateau interior, and 5–10 mm a\(^{-1}\) across the northern margin. Relatively low slip rates (4–11 mm a\(^{-1}\)) were subsequently inferred for the Karakoram, Altyn Tagh and Kun Lun faults.

The latest GPS measurements from Gan et al. (2007) consist of c. 726 stations around the plateau occupied during 1998–2004. Overall, the present-day GPS rates show north–south shortening of 40 mm a\(^{-1}\) across the plateau with almost 20 mm a\(^{-1}\) east–west motion with respect to India and stable Asia (Fig. 6). GPS data tell us only about active relative motions of the surface. They do not give us any information on motion direction or shortening rates back in time, and if, as we know for southernmost Tibet and the Himalaya, the upper, middle and lower crust are decoupled along large-scale detachments, then surface GPS motions also will tell us nothing about motion of the middle or lower crust. Only if the crust and mantle are completely coupled will GPS data give us information on potential lower crust flow.

GPS measurements are used in a variety of ways to try to constrain modern slip rates for the major faults of Tibet on a decadal time scale. They are either used to directly calculate a rate based upon a profile across the fault (Bendick et al. 2000) or used in larger plateau-wide studies (Zhang et al. 2004; Gan et al. 2007). Additionally, they are used in block or continuum models for the plateau (e.g. the microplate models of Meade (2007) and Thatcher (2007)) or are combined with Quaternary-derived fault slip estimates to provide far-field constraints to lithospheric deformation models (England & Molnar 2005; He & Chery 2008). At present the distribution of GPS stations presents a problem in measuring the interseismic strain accumulation because of the relatively large spacing of stations compared with the fault spacing, even in the more densely sampled eastern plateau. Large regions of western Tibet are unsurveyed, making constraints on the northern Karakoram and westernmost Altyn Tagh difficult, as well as making it hard to identify whether any internal deformation of the plateau occurs in this region. The increasing spatial coverage and longer time series of satellite-derived InSAR observations could potentially fill this geodetic shortcoming in future years. Estimates of the more difficult to determine vertical component of deformation of the plateau from GPS are not yet available but will place an important constraint on models for orogenic growth versus collapse.

Timing of crustal thickening in Tibet

Pre-collision thickening

There is an increasing body of evidence that substantial crustal thickening and, by inference, surface uplift of Tibet may have
occurred prior to the India–Asia collision (England & Searle 1986; Searle 1995; Murphy et al. 1997; Kapp et al. 2005, 2007a,b; Spurin et al. 2005). Crustal thickening, folding and thrusting along the Bangong suture across central Tibet occurred during Early Cretaceous times. Geological mapping along the Qiangtang terrane shows mid-Cretaceous volcanic flows and continental red beds unconformably overlying upper Palaeozoic and Triassic–Jurassic rocks and early Mesozoic blueschist-bearing mélangé (Kapp et al. 2005, 2007a). Geological evidence shows that west and central Tibet must have been above sea level since the mid-Cretaceous. In the Long Men Shan along the eastern border of Tibet, U–Pb ages of zircon from Barrovian-facies metamorphic rocks are c. 65 Ma (Wallis et al. 2003) showing that crustal thickening and metamorphism must have occurred prior to the India–Asia collision. There is also abundant evidence from the Karakoram in North Pakistan (geologically the western extension of the Qiangtang terrane) that crustal thickening, kyanite- and sillimanite-grade regional metamorphism occurred episodically or semi-continuously since 65 Ma (Searle et al. 2010a).

The youngest marine sedimentary rocks in the Lhasa block are Aptian–Albian shallower marine limestones of the middle Takena Formation (Leier et al. 2007). After this time only continental red-bed deposition occurred, indicating that the entire region was subaerial. During the Late Cretaceous to Early Eocene (c. 120–50 Ma), the Lhasa Block formed the southern margin of Asia and was an Andean-type margin with a 2500 km long, up to c. 100 km wide, subduction-related I-type granite batholith (Gangdese granites) comprising abundant hornblende- and biotite-bearing granodiorites and granites with an extensive calc-alkaline volcanic suprastructure (Linzizong volcanic rocks; Mo et al. 2007, 2008; Wen et al. 2008a,b; Chiu et al. 2009). The oldest U–Pb zircon age from the Gangdese granites is 188.1 ± 1.4 Ma (Chu et al. 2006) suggesting a long-lasting I-type batholith from Early Jurassic to Early Eocene time. 40Ar/39Ar ages from the calc-alkaline Linzizong volcanic rocks show two discrete stages of volcanism, a widespread Cretaceous stage and an intense migmatic ‘flare-up’ in the Palaeocene c. 50 Ma when compositions vary from low-K tholeiitic through calc-alkaline to shoshonitic magma suites (Lee et al. 2009).

The Lhasa block must have had a high, but unquantified, topography and thick crust associated with this massive magmatic addition to the crust in addition to some pre-collisional crustal shortening (Kapp et al. 2007a,b). The area and volume of the Trans-Himalayan Gangdese batholith is similar in proportion to the Andean batholith of Peru and Chile today, but not as long-lasting. A prominent regional unconformity has been mapped across the whole of southern Tibet where folded Takena Formation sedimentary rocks are abruptly truncated by a major unconformity beneath flat-lying Linzizong volcanic rocks dated at 60–45 Ma (Fig. 9a). There appears to be good geological evidence for crustal thickening in Tibet at least pre-mid-Cretaceous and also pre-60 Ma Linzizong volcanic successions. This deformation phase pre-dates the India–Asia collision and the final closure of the Neo-Tethys Ocean between the two continental masses at 50.5 Ma (Green et al. 2008). We define the final India–Asia collision as the timing of the final marine sedimentation (planktonic foraminifera zone P8; shallow benthic zone SBZ10; Green et al. 2008) in the suture zone and along the north Indian plate margin (Garzanti et al. 1987; Searle et al. 1988, 1997b; Rowley 1998; Zhu et al. 2005; Green et al. 2008). Ophiolite obduction southward onto the passive margin of Indian preceded India–Asia collision and most probably occurred during the Late Cretaceous–Palaeocene (Searle et al. 1988, 1997b).

Post-collision thickening

One of the most enigmatic features of Tibetan geology is that despite having double normal thickness crust, there is remarkably little evidence (e.g. folding, thrusting) of post-Middle Eocene shortening across the plateau. This observation lends support for the Argand-type underthrusting of India models, but would not support the Dewey & Burke (1973) or Houseman & England (1996) pure shear thickening type models. Doubling the crustal thickness of Tibet by pure shear thickening could only be achieved by internal folding and thrusting in the homogeneous shortening model, whereas in the Argand (1924) model the Lhasa block could be simply preserved without post-collision folding and thrusting, jacked-up by underplating of India beneath (Fig. 2b). Much of the Lhasa block shows relatively undeformed granites of the Gangdese–Ladakh and other related Transhimalayan batholiths with flat-lying or gently folded Linzizong volcanic rocks. Although the Lhasa and Qiangtang blocks appear not to have undergone much shortening following the India–Asia collision, major Palaeocene to Miocene shortening has been documented in northern Tibet along the Fenghuo Shan–Nanqian thrust belts (Coward et al. 1988; Horton et al. 2002; Spurin et al. 2005).

There must have been some considerable relief in the plateau during the Neogene, with a series of 1–2 km deep basins developed (e.g. Lunpola basin) especially along the Indus–Yarlung suture zone and the Bangong suture zone in central Tibet. Up to 4 km thickness of fluvial and lacustrine sediments filled the Nima basin along the Bangong suture zone during the period 27–23 Ma (Kapp et al. 2005). Oxygen isotope data suggest that the central part of the plateau had reached high elevation as early as Eocene–Oligocene time whereas northern Tibet became elevated only later (Rowley & Currie 2006; DeCelles et al. 2007). However, between 2.6 and 3 km thickness of post-collisional Eocene to Miocene red beds were deposited across extensive areas of north and NE Tibet and the Qaidam basin suggesting that the plateau has been elevated since the Eocene.

Recently, important high-grade metamorphic rocks have been discovered in SE Tibet in the Lhasa Block. A belt of eclogites with Permian sensitive high-resolution ion microprobe (SHRIMP) zircon ages (c. 291–242 Ma) and disrupted ultramafic rocks has been discovered in the middle of the Lhasa block (Yang et al. 2009). Regional kyanite- and sillimanite-grade metamorphic rocks also occur in the southeastern part of Tibet, but it is unclear if these rocks are related to deep parts of the Lhasa terrane or to the Namche Barwa syntaxis (Greater Himalayan Sequence). On the basis of petrological and geochronological data, Zhang et al. (2010) proposed an early granulite-facies event at c. 90 Ma and a later post-collision amphibolite-facies event at 36–33 Ma. In SE Tibet deeper levels of the Gangdese are likely to be exposed with high-grade Nyinchi gneisses intruded by the Bayi two-mica granite at 22 ± 1 Ma and the Lunan granite–granodiorite at 25.4 ± 0.3 Ma (Zhang et al. 2009). These may be the only record so far of the deep crustal evolution of the Lhasa Block. It seems more probable, however, that these kyanite- and sillimanite-bearing gneisses and migmatites are actually more closely related to the Namche Barwa rocks (Indian plate Greater Himalayan Sequence) than the Gangdese batholith (Asian plate) in which case the western margin of the Eastern Himalayan syntaxis has been mis-mapped.
Fig. 9. (a) Photograph showing folded Cretaceous Takena Formation red beds beneath a prominent unconformity above which are flat-lying Linzizong volcanic rocks dated at 60–50 Ma. (b) North–south-aligned normal fault along the Daggyai tso graben in south—central Tibet. (c) NASA shuttle photograph of western Tibet; view towards SE showing the Karakoram and Altyn Tagh Faults converging towards the west in the Pamir region. (d) NASA shuttle photograph showing a part of the Karakoram ranges of north Pakistan and SW Tibet; view to NE. The Karakoram Fault runs along the Siachen glacier and offsets mapped vertical northern margins of the Baltoro granite in Pakistan (Searle 1991) and the Siachen batholith in Ladakh (Phillips 2008). The total geological offsets are only c. 17–25 km. (e) Landsat composite image (courtesy of Global Land Cover Facility (GLCF)) of the Karakoram Fault, Ladakh and SW Tibet.
and actually occurs further to the west of the Bayi–Linzi area. It is also likely that deeper structural levels occur in the SE Lhasa block where structural interleaving of Himalayan-type regional metamorphic crust and Gangdese-type deformed diorite–granodiorite–tonalite type Asian crust have occurred.

Volcanism in Tibet

Post-collisional volcanic rocks are widespread across Tibet and mapping, geochemical characterization and dating have revealed systematic variations in space and time (Fig. 10a and b). These volcanic rocks also allow us to make assumptions about the mantle source region beneath Tibet, and entrained xenoliths of granulite, eclogite and ultramafic rocks sourced from the lower crust and upper mantle allow us to construct a model of the crustal composition of Tibet (Fig. 11). Potassium-rich shoshonitic lavas and subordinate sodium-rich lavas were erupted across the Qiangtang terrane between c. 50 and 30 Ma (Chung et al. 1998, 2003, 2005; Ding et al. 2007; Wang et al. 2010). Ultrapotassic (lamproite) volcanic rocks requiring a hot enriched mantle lithosphere source, and adakitic lavas requiring a garnet-bearing eclogitic lower crust source were erupted coevally across the Lhasa block during the period c. 30–10 Ma (Chung et al. 2003, 2009; Guo et al. 2007). The Tibetan adakites consist of intermediate to felsic lithologies, lack any mafic members, are generally Na-rich and have geochemical characteristics (e.g. high MgO and Sr, low Y and heavy REE) similar to modern adakites from highly evolved island arcs above circum-Pacific subduction zones (e.g. Martin 1998). Ultrapotassic lamproites were emplaced from c. 25 to 10 Ma and the adakites from c. 30 to 10 Ma (Chung et al. 2003, 2005, 2009; Nomade et al. 2004). We can deduce from these data that the Lhasa block must have had thick crust, thick enough to have an eclogitic root, an elevated geotherm and a hot mantle during this period.

In the Qiangtang block, central Tibet, both peraluminous rhyolites and dacites and metaluminous andesitic porphyry have adakitic geochemical characteristics. North–south-trending diabase and andesitic porphyry dykes have been dated by 40Ar/39Ar as ranging from 47 to 38 Ma, implying that Qiangtang crust was already thick by c. 47 Ma and that east–west extension occurred since that time (Wang et al. 2010). Geochemical and Nd–Sr isotopic data suggest that the dykes were derived from partial melting of enriched lithospheric mantle with some metasomatism related to subducted continental crust. Some extremely alkaline intrusive rocks including aegerine–riebeckite–sodalite–feldspathoid (leucite–nosean–nepheline-phryic) syenites and porphyry have ages c. 30–29 Ma (Wang et al. 2010). In the Karakoram terrane (western equivalent of the Qiangtang block) numerous lamprophyric dykes (mainly biotite-bearing minettes and amphibole-bearing vogesites, with similar Oligocene–early Miocene ages intrude the northern Karakoram terrane (Searle et al. 1992, 2010a).

Chan et al. (2009) sampled both mafic UHT–UHP granulite and hornblende + biotite restitic xenoliths formed at 1130–1330 °C and 22–26 kbar as well as felsic granulites formed at 870–900 °C and 17 kbar from a 12.7 Ma shoshonitic dyke in SW Tibet. U–Pb zircon and monazite ages from the granulite xenoliths span 14.4 ± 0.4 to 16.8 ± 0.9 Ma. These data suggest that southern Tibet must have had a very thick crust (70–90 km) at this time. Turner et al. (1993) related the shoshonitic volcanism in Tibet to convective thinning of the lithosphere and its replacement by hot asthenosphere. However, recent surface-wave tomography studies imply a high-velocity lithospheric mantle beneath the whole plateau today (except the far north under the Kun Lun) to a depth of 225–250 km (Priestley et al. 2008; Priestley & McKenzie 2006), arguing against lithospheric detachment or sinking. Instead, we suggest that northward underthrusting of cold Indian lithosphere beneath the Lhasa block from 50 Ma collision progressively shut off the hot Asian mantle source from south to north so that ages young northward across the Qiangtang terrane toward the Kun Lun.

The youngest magmatic rocks recorded in northern Tibet are potassium-rich shoshonitic volcanic rocks erupted during the Middle Miocene to Quaternary across the far north along the Kun Lun–Songpan–Ganze terrane (Chung et al. 2005; Wang et al. 2010). These shoshonites are generally less K-rich than the Eocene to Oligocene lavas in the Qiangtang terrane but still require a hot mantle source region. Also present in the far northern Tibetan Plateau in the Ulugh Muztagh region are uncommon peraluminous two-mica tourmaline-bearing leucogranites dated by the 40Ar/39Ar method at 11–4 Ma (Molnar et al. 1987b; McKenna & Walker 1990). Most recently, similar rocks were discovered from nearby regions and have been dated using 40Ar/39Ar and zircon U–Pb methods at 9.1–1.5 Ma (Wang et al. 2010; in preparation). These rocks have geochemical and isotopic characteristics (e.g. high SiO$_2$ contents, evolved compositions, high Sr isotope initial ratios) similar to crustal melts or S-type granites. Thus we can infer that from c. 10 Ma to the present time northern Tibet has had thick crust and hot mantle in the region north of the Bangong suture and south of the Kun Lun. It is possible that the Ulugh Muztagh peraluminous leucogranites are much more abundant at depth, and some of the ‘bright spots’ identified at high mid-crust levels in the INDEPTH III seismic profile (Tilmann et al. 2003) and magnetotelluric studies (Wei et al. 2001) may be pockets of Ulugh Muztagh type melts forming today.

Normal faults in Tibet

There are two distinct types of normal faults in Tibet: (1) north–south-aligned, steep normal faults flanking actively rifting grabens across the high plateau north of the Himalaya (Fig. 9b), some of which are seismically active; (2) east–west-striking (or NW–SE-striking in the western Himalaya), low-angle, north-dipping normal faults that bound the upper part of the Greater Himalayan Sequence with a southward extruding layer of partially molten middle crust (channel flow) that show no evidence of being currently seismically active.

North–south-aligned normal faults

Seven north–south-trending rift systems in Tibet were first identified by Tapponnier & Molnar (1977), Molnar & Tapponnier (1978) and Ni & York (1978) from seismicity and Landsat imagery. Field investigations by Tapponnier et al. (1981) and Armijo et al. (1988, 1989) confirmed that north of the Himalaya in southern Tibet, east–west extension was occurring on north–south normal faults, with rifts post-dating compressional structures. These observations led to the idea of ‘orogenic collapse’ (Dewey 1988). It is now known, however, that normal faults in the upper crust of Tibet were active synchronously with compressional structures and, because of the continuous underthrusting of Tibet by Indian lower crust (and to a lesser extent Tarim crust in the north), do not require a lowering of surface elevation or a decrease in crustal thickening. Armijo et al. (1988, 1989) noted the kinematic link between the north–south rifts terminating in the north with NW–SE-trending right-lateral strike-slip faults. They explained the rifting as due to right-lateral shear in south-
Fig. 10. (a) Simplified geological map of the Tibetan Plateau and surrounding areas, modified after Chung et al. (2005) showing distribution of post-collisional (potassic) magmatism across Tibet with their age ranges in numerals (see text and Chung et al. 2005, 2009; Lee et al. 2009; Wang et al. 2010, for sources of data). MCT, Main Central Thrust; STDS, South Tibetan Detachment system; ITS, Indus Tsangpo suture zone; BNS, Bangong Nujiang suture; JS, Jinsha suture; AKMS, Anyimaqin, Kun Lun, Muztagh suture; ATF, Altyn Tagh Fault; KF, Kun Lun Fault; KJFZ, Karakoram, Jiale fault zone; RRF, Red River Fault; WC, Wang Chao Fault. (b) Spatial variation in Tibetan magmatism across Tibet, showing geographical distribution of volcanic rocks (left margin) against time, after Chung et al. (2005). (See text and Chung et al. (2005, 2009) for sources of data.)
ern Tibet along the Karakoram–Jiale fault zone, a series of WNW–ESE-aligned strike-slip faults roughly along the Bangong suture zone that terminated in the south in the north–south-aligned grabens. They proposed that the Karakoram–Jiale fault system accommodated large-scale eastward extrusion of the Tibetan rigid block. This would decouple northern Tibet from southern Tibet and allow for the eastward extrusion of the northern plateau with respect to India, but not the Lhasa block.

Previous knowledge on the more northern rifts had been based upon earthquake fault plane solutions and limited Landsat imagery interpretation (Armijo et al. 1988; Molnar & Lyon-Caen 1989). However, more recent field observations from northern Tibet (Yin et al. 1999) found significant north–south-striking active normal faults, similar to those in the south, with up to 4–8 km displacements. The age of slip onset is uncertain, but Yin et al. (1999) estimated a minimum slip rate of 2 mm a−1. This is similar to estimates from Armijo et al. (1988) of several kilometres of offset with slip rates of 1–4 mm a−1 for faults in southern Tibet. In a mirror image to the connection of strike-slip faults to the southern Tibet rifts, the rifts of northern Tibet are connected at their southern end to left-lateral strike slip faults (Taylor et al. 2003). This forms a set of conjugate strike-slip faults that accommodates the coeval north–south shortening and east–west extension of the plateau (Taylor et al. 2003; Taylor & Peltzer 2006).

McCaffrey & Nabelek (1998) suggested that the driving force for the extension seen in southern Tibet was basal shear from the oblique sliding of the Indian plate beneath the plateau. They noted the similarities to subduction along a curved boundary and the radial vergence of slip vectors along the Himalaya. However, the India–Asia collision is widely thought to have been orthogonal and not oblique and there is no evidence of diachronity in the timing of major events along the strike of the Himalaya (collision, peak metamorphism, anatexis, etc.) to suggest a diachronous or oblique collision.

By noting that the strikes of the rifts approximately fan outwards from the Himalayan front, Kapp & Guyon (2004) showed that the collisional stress of India punching the Himalayan arc causes the orientation of stress axes to be such that the intermediate stress σ2 fans outward, suggesting that the strikes of normal faults will be similarly oriented. Kapp et al. (2008) noted low-angle normal faults flanking the Yadong–Gulu rift near Lhasa, and the Lunggar rift in west–central Tibet, but suggested that these originated as high-angle faults and were passively rotated with increased extension. Yin et al. (1999) observed similar normal faulting in northern Tibet as for the south, leading them to suggest that a regional boundary condition for the whole of eastern Asia was responsible for extension for the last 10 Ma, such as may be responsible for the Baikal rift. By making comparisons on the rift spacing in the Basin and Range being smaller than in Tibet and the similar onset ages for rifts across eastern Asia, Yin (2000) further supported the argument for a regional boundary condition being necessary, rather than topographic collapse or convective removal localized to the plateau. Because the regional boundary forces would be expected to die out exponentially to the north, it seems unlikely that the Baikal rift could be directly related to the Indian collision.

Using InSAR-derived measurements and body-wave seismology of eight recent moderate to large earthquakes across the plateau, Elliott et al. (2010) recalculated the contribution of normal faulting to the extension of the plateau to be 15–20%. By re-examining the relationship of the location of different faulting mechanisms with plateau elevation, they found that 85% of the moment release in normal faulting over the past 43 years is constrained to regions above 5 km, lending weight to the suggestion that this widespread faulting across the plateau is a result of variations in the gravitational potential energy of the lithosphere.

East–west-aligned low-angle normal faults

East–west-aligned low-angle (<30°) normal faults are restricted to the South Tibetan Detachment series of faults that form the northern upper boundary of the Greater Himalayan Sequence metamorphic rocks (Fig. 7). Originally discovered by Burg et al. (1984), the South Tibetan Detachment low-angle normal fault and associated ductile shear zone beneath is now known to occur along the entire length of the Greater Himalaya and form the geomorphological southern boundary of the Tibetan Plateau (e.g. Burchfiel et al. 1992; Searle et al. 1997a, 2003; Cottle et al. 2007, 2009). The South Tibetan Detachment faults form the passive roof fault of the southward extruding Greater Himalayan Sequence partially molten mid-crust during the Early Miocene (c. 23–15 Ma). The South Tibetan Detachment faults have a cumulative geological offset of c. 100 km or more and link north with the folded normal fault detachments that bound the tops of the North Himalayan domes (Lee et al. 2000). There is no evidence that these faults are active today, although they must have been at low angles during their Miocene slip, or that they have been rotated from steep faults (Searle 2010).

Strike-slip faults in Tibet

The interpretation of motion along strike-slip faults relies on three different time scales: (1) active deformation over decadal time scales can be inferred from GPS and InSAR measurements, which record the accumulation of elastic strain; (2) Late Quaternary slip rates can be inferred from dating of offset surface features using in situ cosmogenic nuclides and radiocarbon dates; (3) long-term geological slip rates can be inferred from U–Th–Pb dating of offset granitoids or metamorphic rocks. We now review the active, Late Quaternary and long-term geological record of each of the major strike-slip faults associated with Tibetan extrusion. In the original extrusion model for Tibet (Molnar & Tapponnier 1975; Tapponnier et al. 1982, 2001b) the boundaries of the extruding Tibetan crust were thought to be the right-lateral Karakoram–Jiale fault system along the SW and south and the left-lateral Alyn Tagh fault along the north (Fig. 9c). The Alyn Tagh and Kun Lun faults both extend east beyond the topographic boundary of Tibet, and bound the transpressional Qaidam basin. The Kun Lun and Xianshui-he fault systems curve around the eastern and south-

Fig. 11. (a) Schematic crustal section through Tibet illustrating a model showing the proposed origin and emplacement of post-collision adakites and shoshonites. Crustal thickness is from Owens & Zandt (1997), Schulte-Pelkum et al. (2005) and Nabelek et al. (2009). Depths of adakite reservoirs and sources are from Guo et al. (2007). Mineral compositions of lower crust granulites and eclogites and ultramafic restites are from xenoliths entrained in shoshonitic dykes (Hacket et al. 2000; Chan et al. 2009). (b) Field photograph of a typical adakite dyke intruding Lhasa block. (c) Shoshonitic dyke from near Xigaze, SW Tibet.
eastern margins of Tibet, cutting across the eastern topographic margin of the plateau.

Karakoram Fault

The c. 700 km long NW–SE-aligned (c. 140°) vertical Karakoram Fault runs from the Tashkurgan region of the northeastern Pamir to the Kailas region of SW Tibet (Fig. 1). The fault cuts obliquely across the geological terranes of the Pamir, Karakoram–Qiangtang and Ladakh–Gangdese Ranges. The northwestern end terminates in a series of contractional faults in the central Pamir where mapping has demonstrated that major gneiss domes (e.g. Kongur, Muztagh Ata) are not offset across the fault (Robinson et al. 2007; Robinson 2009a,b). The southeastern end of the Karakoram Fault merges into the Indus–Yarlung Tsangpo suture zone south of Mount Killay, where north-directed backthrusting occurs along the northern margin of the Indian plate (Searle 1996; Searle et al. 1997b) and north–south extensional faulting occurs in the Purang graben (Murphy et al. 2000; Murphy & Yin 2003). The Karakoram Fault forms one major strand along the Nubra Valley but in the Tangtse region the fault splays into two branches, the main strand, the Tangtse Fault strand, to the SW and the Pangong Fault strand to the NE, both of which display spectacular mylonites (Fig. 12). Stretching lineations along the Nubra valley sector plunge between 0 and 20° NW and at Tangtse plunge c. 30° NW. Between the two strands the Pangong Range is an exhumed metamorphic complex comprising amphibolites, hornblende–biotite diorites, orthogneisses, migmatites and abundant leucogranite dykes.

Debate centres around two end-member models. One model suggests that metamorphic rocks and leucogranites exhumed along the Karakoram Fault zone are synkinematic with regard to strike-slip shearing, with heat advection by magmatic ascent along a lithospheric-scale fault. The second model suggests that metamorphism and most leucogranites exhumed along the fault were pre-kinematic with respect to strike-slip shearing. Critical to the discussion concerning the age, offsets and slip rates along the Karakoram strike-slip fault are the following three factors.

1. Did the metamorphism along the Karakoram Fault result from shear heating (Rolland & Pécher 2001; Lacassin et al. 2004a,b; Valli et al. 2007, 2008; Rolland et al. 2008), or was it earlier and unrelated to shearing motion along the fault (Searle et al. 1990, 1998; Phillips et al. 2004; Searle & Phillips 2004; Phillips & Searle 2007)?

2. Are the deformed leucogranites along the Karakoram Fault synkinematic with respect to strike-slip shearing (Rolland & Pécher 2001; Lacassin et al. 2004a,b; Valli et al. 2007, 2008; Rolland et al. 2008; Weinberg & Mark 2008), or pre-kinematic (Searle et al. 1998; Phillips et al. 2004; Searle & Phillips 2004; Phillips & Searle 2007)?

3. What are the precise geological offsets along the Karakoram Fault?

Relationship between metamorphism, melting and strike-slip shearing

Deep crustal metamorphic rocks have been exhumed along the fault in the K2 region of northern Pakistan (Searle & Phillips 2007), in the Ladakh sector, north India (Searle et al. 1998; Searle et al. 1996; Searle & Phillips 2004; Phillips & Searle 2007) and also in the Ayilari Range in SW Tibet (Lacassin et al. 2004a; Valli et al. 2007, 2008). Field relationships of sheared leucogranites along the Karakoram Fault are remarkably similar in both Tangtse, Ladakh (Searle et al. 1998; Phillips et al. 2004; Searle & Phillips 2004; Phillips & Searle 2007; Streule et al. 2009) and at Zhaxikang in Tibet (Lacassin et al. 2004a,b; Valli et al. 2007, 2008). Within the mylonite zone, early leucogranites display an early shear-parallel fabric with later cross-cutting dykes that intruded obliquely or orthogonal to the mylonite foliation. Outside of the mylonite zones within the Pangong Range a network of leucogranite dykes intrudes earlier orthogneisses and amphibolites with larger sheets of garnet two-mica leucogranite rotated into parallelism with the fault.

The Tangtse leucogranite is a garnet two-mica leucogranite that contains spectacular dextral S–C fabrics and crops out adjacent to the Tangtse branch of the Karakoram Fault. Searle et al. (1998) published a 269±1.4 Ma U–Pb SHRIMP U–Pb zircon age of 18.0±0.6 Ma from this granite with inherited zircons of c. 106 Ma and 63 Ma. The age was more precisely refined by isotope dilution thermal ionization mass spectrometry (ID-TIMS) age dating of Phillips et al. (2004) to 15.55±0.74 Ma. Despite assertions that the Tangtse granite is synkinematic with the strike-slip shear fabrics (Lacassin et al. 2004a,b; Valli et al. 2007; Weinberg & Mark 2008) it has been demonstrated that the S–C fabrics were superimposed on the granite at temperatures of c. 550–500 °C after the granite crystallized and that the dextral strike-slip shear fabrics die out away from the fault (Searle et al. 1998; Phillips et al. 2004; Phillips & Searle 2007) so the age of the leucogranite must be a maximum age of initiation of dextral shear at this locality.

Phillips et al. (2008) carried out detailed mapping combined with numerous U–Pb ID-TIMS age-dating of granitoids along the shear zone. They concluded that dextral shearing along the Tangtse strand of the fault occurred between 15.68 and 13.73 Ma, the U–Pb ages being determined from both early deformed leucogranites parallel to the mylonite foliation that shows a protomylonite fabric and from late leucogranite dykes that cross-cut the dextral mylonite fabric. All granites and metamorphic host rocks within the Ladakh sector of the Karakoram Fault mylonite zones have been affected by dextral shear S–C fabrics imposed after metamorphic peak P–T conditions and after crystallization of the granites. Brittle faults along the margins of the shear zone cut all rocks and prominent pseudotachylytes within the ductile shear zone indicate palaeo-earthquake ruptures. Using 40Ar–39Ar dating, Dunlap et al. (1998) showed that two phases of rapid exhumation between c. 17 and 13 Ma and between 9 and 7 Ma corresponded to a switch from dominantly transpressional exhumation to dominantly strike-slip motion.

Lacassin et al. (2004a) worked along the southernmost part of the Karakoram Fault in SW Tibet in the Zhaxigang and Gar regions. In contradiction to the interpretations of Searle et al. (1998) and Phillips et al. (2004), they suggested that ‘KFZ leucogranites resulted from shear-induced melting’ and therefore that ages of the granites (c. 23 Ma, U–Pb zircon) would date shear movement along the fault. Lacassin et al. (2004a) stated that ‘dextrally sheared gneisses [were] intruded by syn-kinematic leucogranites whose age (~23 Ma) indicates that right-lateral motion was in progress at that time’ (Lacassin et al. 2004a, p. 255) and that the ‘implications of syn-kinematic granite emplacement are inescapable. Our conclusion that the onset of dextral motion along the Karakoram shear zone (KSZ) occurred prior to 23 Ma is therefore robust’ (Lacassin et al. 2004b, p. 161). Those workers also stated that ‘the Tangtse granite, whose age (~17 Ma) was taken by Searle et al., to provide a lower bound for the onset of right-lateral slip, could have formed as a result melting during shear, like the leucogranite we dated at Zhaxikang’ (Lacassin et al. 2004b, p. 264).
Fig. 12. Structural architecture of the Karakoram Fault in the Ladakh region: (a) map of the Eastern Karakoram including key sample localities; (b) cross-section across the Nubra valley; (c) cross-section across the Pangong transpressional zone, after Searle & Phillips (2007), Phillips & Searle (2007) and Phillips (2008).
Valli et al. (2007, 2008), also working in SW Tibet, proposed that minimum estimates for the initiation of the Karakoram shear zone were the oldest 40Ar/39Ar ages of 21.2 ± 10 Ma in agreement with their U–Th/Pb ages of >25–22 Ma. They interpreted the dated granites as being synkinematic with right-lateral shear with heat and fluid advection along the active fault, despite all the dated minerals (40Ar/39Ar and U–He on Kfeldspars, muscovite, biotite, apatite) having 'closure' temperatures lower than the granite solidus. U–Th/Pb ages of zircon and monazite are generally interpreted as dating crystallization of the magma and any ductile fabrics must obviously be formed after crystallization from the melt. Valli et al. (2007, p. 22) stated that 'Several lines of evidence suggest that the Tangtse granite is synkinematic to the KFZ and thus that ~18 and ~16 Ma [U–Pb ages from Phillips et al. 2004] are only lower bounds, not upper bounds, for the age of this fault.' They also suggested that 'Host rocks [to the Tangtse granite] were penetratively deformed in a dextral transpressive environment at temperatures ranging from >800 °C, thus above the 'Tangtse granite solidus temperature (750 °C) to surface conditions, suggesting synkinematic emplacement of the granite'. Phillips & Searle (2007) refuted these claims and showed that all strike-slip related fabrics were superimposed on earlier formed metamorphic and granitic rocks at temperatures less than c. 550 °C. Only a few late leucogranite dykes cross-cut the ductile mylonites along both the Tangtse and Pangong strands of the Karakoram Fault, and none of these dykes cut the brittle faults. Rolland et al. (2008) proposed that granulite (c. 800 °C, 5.5 kbar)–amphibolite (700–750 °C, 4–5 kbar) to greenschist facies assemblages were developed within the Karakoram Fault zone during strike-slip shearing and suggested that the ‘Tangtse granite was emplaced syn-kinematically at the contact between a LT and the HT granulite facies’. They further suggested that ‘Microstructures observed within the Tangtse granite exhibit a syn-magmatic dextral S–C fabric’ and that ‘the Tangtse granite is not offset by, and is rather emplaced within the Karakoram Fault’. Sillimanite-grade metamorphism in graphitic pelites of the Pangong metamorphic complex was superseded by the preserved P–T conditions of a Bt + Ms + St + Grt + Qtz + Fsp assemblage at 585–605 °C and 6.05–7.25 kbar, equivalent to c. 20–25 km of burial (Streule et al. 2009). Laser ablation monazite U–Pb geochronology reveals that sillimanite-grade metamorphism occurred at 108.0 ± 0.6 Ma in rocks immediately adjacent to the Pangong strand of the Karakoram Fault, implying that most metamorphic rocks along the Karakoram Fault formed earlier than strike-slip shearing and cannot have formed by shear heating during Miocene strike-slip faulting (Streule et al. 2009).

Weinberg et al. (2009) reported a U–Pb zircon SHRIMP age of 15.0 ± 0.4 Ma from a two-mica leucogranite north of Satti and suggested correctly that the Karakoram Fault must have been initiated after this age. Weinberg & Mark (2008), however, implied that anatectic occurred in the Karakoram Fault shear zone during transpressive deformation and that the fault zone provided a magma transfer and production zone to the Baltoro batholith. They interpreted the spectacular S–C fabrics in the Tangtse migmatites as magma-assisted fold transposition where magma migrated into layer-parallel and axial planar sheets forming stromatic migmatites. Axial planar foliation planes acted as melt conduits forming layer-parallel leucosomes, and the migmatite textures show pervasive magma flow through a crust that was regionally hot at the time (Weinberg & Searle 1998). Although many features do clearly show syn-melting features with melt leucosomes flowing into fold hinges (Weinberg & Mark 2008, figs 5 and 6) these structures are all clearly overprinted or truncated by the later strike-slip fabrics along the Tangtse and Pangong strands of the fault. In our view, the melt textures exposed in the migmatites along the Tangtse gorge are earlier than, and unrelated to the strike-slip deformation. Similar melt textures are present in numerous locations along the southern margin of the Baltoro batholith (e.g. Masherbrum migmatite complex; Searle et al. 1992, 2010a) where they are located a long way from the Karakoram Fault and are clearly nothing to do with strike-slip deformation. Geological offsets along the Karakoram Fault

Initial estimates of 1000 km dextral offset along the Karakoram Fault (Peltzer & Tapponnier 1988, plate 2) were proposed by matching granites in the Pamir with the Gangdese granites in SW Tibet. However, Searle (1996) and Searle et al. (2010a) showed that these granites were completely different in age, and mineralogical and isotopic composition, and were never part of the same belt. Lacassin et al. (2004a, b) proposed c. 400 km of offset along the Karakoram Fault by matching the Bangong suture zone in western Tibet with the Rushan–Psart zone in the central Pamir. However, the Rushan–Psart zone is much older than the Bangong suture and the correlation has been shown to be invalid (Searle & Phillips 2007; Robinson 2009a, b). Table 1 shows a summary of all the geological offsets proposed in the literature. Since the India-China border region in Ladakh was first opened to non-Indian nationals in 1995, the first field studies and detailed mapping along the Tangtse and Pangong branches of the Karakoram Fault was carried out by Searle (1996), Weinberg & Searle (1998) and Dunlap et al. (1998). Searle (1996) proposed that geological markers such as the Shyok suture zone, the Baltoro–Karakoram granites and the course of the antecedent Indus River all showed right-lateral offsets up to 120 km maximum along the Karakoram Fault. Searle et al. (1998) concluded that maximum right-lateral offsets were c. 150–120 km, and that the fault was initiated after 18.0 Ma based on U–Pb zircon ages of a dextrally sheared leucogranite, the Tangtse granite that was cut by the fault. Murphy et al. (2000) proposed 66 km of right-lateral offset along the Karakoram Fault using the north-verging ‘Great Counterthrust’ or Main Zanskar backthrust as a pinning point. The mapping of Searle (1991), Phillips (2008) and Searle et al. (2010a) suggests that right-lateral offsets of the Early–Middle Miocene Baltoro and Siachen leucogranites could be as little as 17–25 km (Fig. 9d).

Robinson (2009a) suggested 149–167 km of right-lateral offset along the Karakoram Fault by matching the Late Triassic–Early Jurassic Aghil Formation carbonates across the fault in western Xinjiang. This geological offset is debatable because of the large amount of erosion in the northern Karakoram that may have wiped out the evidence. However, what is clear is that there has been no Quaternary slip along this part of the Karakoram Fault. Robinson (2009b) showed by detailed mapping that multiple generations of Quaternary glacial and fluvial deposits at least 150 ka old, and older Pliocene loess deposits, overlie all strands of the fault with no offset. These results are consistent with the apparent lack of neotectonic activity along the Nubra valley (Brown et al. 2002) and the general lack of seismicity along the fault today. Jain & Singh (2008) interpreted the undeformed Tirit granodiorite as intruding the main penetrative shear fabric of the KSZ and therefore proposed that motion along the Karakoram Fault occurred between 75 and 68 Ma. However, the calc-alkaline Tirit granodiorite is petrologically, geochemically and structurally part
of the Ladakh batholith (Weinberg et al. 2009) and, furthermore, is entirely SW of the trace of the Karakoram Fault in the Nubra valley. Interestingly, Jain & Singh (2008) reported physical continuity of the Baltoro granite batholith across the Karakoram Fault in the Nubra valley region, implying no Tertiary offset. They stated: ‘Cross-cutting granite and later pegmatitic granite dykes characterize the southern front and appear to have intruded even the KSZ between ~20–14 Ma, thus precluding any large-scale strike-slip movements along the KSZ’ (Jain & Singh 2008, p. 13). Furthermore, they wrote: ‘Our field observations from upper reaches of the Nubra valley beyond Panamik document the presence of undeformed Karakoram Batholith that support the physical continuity of this batholith with the Baltoro-type granitoids in western Karakoram’ (Jain & Singh 2008, p. 15).

Table 1. Published ages, offsets and slip rates for the Karakoram Fault, with brief details on the source of the estimate

<table>
<thead>
<tr>
<th>Age (Ma)</th>
<th>Offset (km)</th>
<th>Slip rate (mm a⁻¹)</th>
<th>Data source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>13–25</td>
<td>115</td>
<td>–</td>
<td>Offset of Indus river</td>
<td>Gaudemer et al. (1989)</td>
</tr>
<tr>
<td>15–21</td>
<td>32 ± 8</td>
<td>–</td>
<td>Inferred Quaternary slip rate based on assumed age and calculated offset of glacial moraine</td>
<td>Liu (1993)</td>
</tr>
<tr>
<td>11</td>
<td>32 ± 8</td>
<td>–</td>
<td>Inferred Quaternary slip rate based on assumed age and calculated offset of glacial moraine</td>
<td>Avouac & Tapponnier (1993)</td>
</tr>
<tr>
<td>13</td>
<td>200</td>
<td>–</td>
<td>Offset Indus–Yarlung suture</td>
<td>Ratschbacher et al. (1996)</td>
</tr>
<tr>
<td>4</td>
<td>66</td>
<td>4</td>
<td>Inferred Quaternary slip rate from assumed age and glacial moraine offset</td>
<td>Matte et al. (1996)</td>
</tr>
<tr>
<td>23–32</td>
<td>250–400</td>
<td>10–13</td>
<td>Age of ‘synkinematic’ granites</td>
<td>Lacassin et al. (2004a)</td>
</tr>
<tr>
<td>–</td>
<td>1 ± 3</td>
<td>–</td>
<td>Inferred slip rate since 23 Ma</td>
<td>England & Molnar (1997b)</td>
</tr>
<tr>
<td>–</td>
<td>3 ± 5</td>
<td>–</td>
<td>Inferred slip rate since 23 Ma</td>
<td>England & Molnar (1997b)</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>4</td>
<td>Inferred slip rate range</td>
<td>Searle (1996)</td>
</tr>
<tr>
<td>3–10</td>
<td>150</td>
<td>8</td>
<td>Age and offset of pre-kinematic leucogranites</td>
<td>McAffrey & Nabelek (1998)</td>
</tr>
<tr>
<td>11</td>
<td>11 ± 4</td>
<td>–</td>
<td>Geodetic measurements from southwest Tibet</td>
<td>Banerje & Bürgmann (2002)</td>
</tr>
<tr>
<td>–</td>
<td>4</td>
<td>–</td>
<td>Modelled regional strain field</td>
<td>Holt et al. (2000)</td>
</tr>
<tr>
<td>4</td>
<td>66</td>
<td>4</td>
<td>Age of ‘synkinematic’ granites</td>
<td>Murphy et al. (2000)</td>
</tr>
<tr>
<td>7–10</td>
<td>120</td>
<td>–</td>
<td>Inferred slip rate since 13 Ma</td>
<td>Lacassin et al. (2004a)</td>
</tr>
<tr>
<td>0–6</td>
<td>4–10</td>
<td>–</td>
<td>Inferred slip rate since 13 Ma</td>
<td>Lacassin et al. (2004a)</td>
</tr>
<tr>
<td>3–4</td>
<td>150</td>
<td>8</td>
<td>Age of offset leucogranites</td>
<td>McAffrey & Nabelek (1998)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>–</td>
<td>Age of offset leucogranites</td>
<td>McAffrey & Nabelek (1998)</td>
</tr>
</tbody>
</table>
Quaternary and Holocene offsets

Measurement of in situ cosmogenic nuclides (e.g. 10Be and 26Al) is widely used to date offset Quaternary surface features within a time span of 10–100 ka in addition to 14C dating where suitable organic material is available. The cosmogenic isotope technique is based upon the fact that cosmogenic nuclides accumulate in situ from exposure of, for example, quartz grains to cosmic rays at or near the land surface (e.g. Nishizumi et al. 1986, 1989). Therefore it is possible to date the time at which an alluvial fan is abandoned and left exposed, and, in principal, if a fan offset is measurable in that fan as it crosses the fault, then a slip rate can be determined. Although the technique is routinely used, factors such as surface production rate, erosion rate and inheritance may be poorly constrained or unknown. In addition, site selection and sampling techniques appear variable. Consequently, attributing a surface age to an offset alluvial fan is not always straightforward and can have a large effect on the inferred slip rate. There is an uncertainty associated with the reconstruction of offset risers of alluvial fans when assigning an age to the initiation of offset to the upper or lower terrace age, which can result in slip rates varying by a factor of 1.2–5 (Cowgill 2007).

The high Quaternary slip rates initially defined for the Karakoram Fault were based on assumed postglacial ages of 10 ± 2 ka of displaced moraines by Liu (1993), who carried out a detailed study of offset geomorphological features along the southern strand of the Karakoram Fault in SW Tibet. Twenty-four sites were examined using SPOT images, with offsets varying from 50 to 350 m. These offsets, coupled with an assumed postglacial age of formation, allowed Liu (1993) and Avouac & Tapponnier (1993) to infer a rapid slip rate of 32 ± 8 mm a⁻¹. Despite an accepted offset determination, if their assumed postglacial age were incorrect, then a significant cornerstone of the extrusion hypothesis would be untenable. The assumed moraine age of 10 ± 2 ka by Liu (1993) was supported by lacustrine sedimentary records from western Tibet (Gasse et al. 1991, 1996), central and eastern Tibet (Lister et al. 1991) and northern Xinjiang (Rhodes et al. 1996). Significantly, none of the sedimentary cores provided a climatic record that extended beyond c. 20 ka. Although valley glaciers in northern and eastern Tibet may have reached their maximum extent during the Last Glacial Maximum (LGM) at 20 ka, the maximum extent of glaciation in SW Tibet may have occurred earlier (e.g. Shroder et al. 1993; Gillespie & Molnar 1995; Lehmkuhl & Haselwander 2000). To examine the possibility of early maximum glacial advance in Ladakh, Brown et al. (2002) used cosmic ray exposure dating on a terminal moraine near Leh, Ladakh. Their samples yield a mean 10Be age of 90 ± 15 ka and this clearly indicates that the maximum extent of glaciation occurred well before the LGM at 20 ka. The results by Brown et al. (2002) are supported by an optically stimulated luminescence (OSL) date of 78 ± 12 ka from Zanskar, c. 50 km south of Leh (Taylor & Mitchell 2000). Therefore, the OSL and the 10Be age data for Ladakh suggest that the last glacial expansion in the Eastern Karakoram occurred during Marine Isotope Stage 4, a date inconsistent with the assumed 10 ± 2 ka age for an offset moraine along the Karakoram Fault at the nearby Pangong Lake (Liu 1993). Importantly, Brown et al. (2002) also dated debris flow, tributary stream valleys and alluvial fans associated with highstand outflow from Pangong Lake in the Tangtse valley. These landforms yielded a 10Be age of 10 ± 2 ka and, given that they are offset by the Karakoram Fault by up to 40 m, these ages provide a Holocene slip rate of 4 ± 1 mm a⁻¹. If the moraine at Pangong Lake is associated with Marine Isotope Stage 4, then its 300–350 m offset determined by Liu (1993) implies a Holocene slip rate of c. 4 mm a⁻¹, consistent with that determined by Brown et al. (2002) and an order of magnitude less than that inferred by Avouac & Tapponnier (1993).

More recently, Chevalier et al. (2005) suggested a slip rate of 10.7 ± 0.7 mm a⁻¹ based upon 10Be dating of quartz cobbles taken from offset glacial moraines. By deriving both a surface age and a displacement they concluded that, as the millennial slip rate is an order of magnitude greater than that determined by InSAR (Wright et al. 2004), then it implies secular variation in slip. Brown et al. (2005) contended these data on the basis that the scattered 10Be dataset reflected a strong influence of post-depositional processes. This implies that only the oldest boulder ages should be used to conservatively assess moraine age and in this case the slip rate would concur with that of Brown et al. (2002) and the published geodetic rates. Although Chevalier et al. (2005) conceded that interpretation of a dispersed dataset is complex, and that the degree to which surface exposure ages are affected by surface reworking is ‘not solidly established’, they concluded that their glaciological model represents the simplest and most likely interpretation.

Earthquakes along the Karakoram Fault

One of the most enigmatic aspects of the geology of the Karakoram Fault is that despite it being one of the largest and most prominent strike-slip faults in all Tibet, there appears to be little or no seismic activity along it. Either the earthquake repetition time span is very large, or we must conclude that the Karakoram Fault is barely active. One deep earthquake, the 13 February 1980 Karakoram earthquake, involved oblique thrusting at c. 90 ± 4 km depth but its epicentre is located to the NE of the fault (Fan & Ni 1989). The depth is consistent with the earthquake rupturing the base of the crust, and is consistent with the compressional state of stress beneath the Karakoram today, but similar to the deep earthquakes beneath Nepal–southern Tibet, it is likely that elevated temperatures in the middle crust preclude earthquakes beneath the Karakoram. Jade et al. (2004) suggested that active right-lateral slip along the Karakoram Fault could be no more than 3.4 mm a⁻¹ based on GPS measurements.

Altyn Tagh Fault

The Altyn Tagh Fault is a major left-lateral strike-slip fault that bounds the northern part of the thickened Tibetan crust. It runs for at least 2000 km along the southern margin of the Altun Shan to the northwestern end of the Qilian Shan (Fig. 13a and b). The fault separates the high plateau to the south from the low Tarim Basin in the north, and trends ENE–WSW between 82°E and 100°E before changing strike at the southern end of the Tarim Basin, where it becomes known as the Karakax Fault and trends WNW–ESE. In the east, the fault runs north of the transpressional Qaidam basin and then splays into a series of east–west- to ENE–WSW-striking faults within the Alxa block (Darby et al. 2005). Unlike the Karakoram Fault, no deep crustal metamorphic rocks or granites have been exhumed along the fault, which cuts through Proterozoic–Palaeozoic rocks and Lower and Middle Jurassic non-marine sedimentary rocks (Ritts & Biffi 2000). A spectacular 200 m wide gouge zone is exposed along the Altyn Tagh Fault (Fig. 13c).

Recent estimates of slip along the Altyn Tagh Fault define three distinct time intervals: (1) long-term geological rates primarily determined from correlating geological piercing points across the fault, and therefore some also yielding a possible total
Fig. 13. (a) Landsat composite image (courtesy of Global Land Cover Facility (GLCF)) of the Altyn Tagh Fault in northern Tibet and (b) showing main active faults and offset geological markers (see Tables 2 and 3 for details). (c) Panorama of the wide fault gouge zone on the Altyn Tagh Fault.
offset (e.g. Cowgill et al. 2003; Yue et al. 2003); (2) Quaternary estimates derived from alluvial terrace ages and geomorphological offsets (e.g. Meriaux et al. 2005; Gold et al. 2009); (3) modern decadal geodetic measurements of intersessional strain from GPS and InSAR (e.g. Wright et al. 2004; Zhang et al. 2007). In addition to these three observation-derived slip-rate estimates, attempts have been made to model the deformation of Asia and infer slip rates from these, although many are constrained by GPS observations or Quaternary faulting (e.g. England & Molnar 2005; Meade 2007).

Geological offsets and slip rates

There are few accurately determined geological slip rates for the Altyn Tagh Fault and those that exist are predominantly restricted to observations east of 90°E. However, there are a number of geologically constrained fault total offsets. Table 2 lists measurements of offset piercing points across the Altyn Tagh Fault for the Phanerozoic. The first estimate of total offset across the Altyn Tagh Fault was from Tapponnier et al. (1982), who proposed 500–700 km of Tertiary offset but provided no details on offset geological markers. Peltzer & Tapponnier (1988) measured a c. 500 km displacement of Palaeozoic granodiorites between the western and eastern Kun Lun Shan based upon a Chinese geological map. Wang (1997) proposed a late Cenozoic left-slip offset of 69–90 km at 94°E, but owing to a poorly constrained initiation of major faulting, the range of slip rate values covers the interval 7–45 mm a⁻¹. However, Ritts et al. (2004) argued that this measurement was inaccurate owing to mismatches of offsets. Yin & Harrison (2000) calculated an average slip rate of 7–9 mm a⁻¹ from an estimated left slip of c. 280 ± 30 km since the early Oligocene (c. 30 Ma) based on a piercing point defined by Cenozoic thrusts (Tables 2 and 3, and Fig. 14).

Ritts & Biffi (2000) proposed c. 400 km of left-lateral offset along the Altyn Tagh Fault based on an offset north–south-aligned Jurassic palaeo-shoreline and c. 360 km offset of Palaeozoic felsic plutons. Those workers and Yue et al. (2001, 2003) suggested a long-term Cenozoic slip rate of 12–16 mm a⁻¹, calculated from these stratigraphically correlated basin units. These offsets and slip rates are similar to the c. 425 km proposed by Cowgill et al. (2003) for early Palaeozoic piercing points. Initiation of slip along the Altyn Tagh Fault is thought to have been late Oligocene—earliest Miocene (c. 23 Ma) from strata in the Xorkol Basin bounding the Altyn Tagh Fault at 92°E (Yue et al. 2001, 2003). However, Yin et al. (2002) estimated a significantly earlier age of fault initiation at 49 Ma with a total slip of c. 470 ± 70 km, yielding a rate of 9 ± 2 mm a⁻¹. Provenance matching using zircon dating of Miocene conglomerate clasts constrains the long-term slip rate to <10 mm a⁻¹ (Yue et al. 2003). However, this requires an accelerated slip rate between 25 and 17 Ma of 300 km offset (c. 40 mm a⁻¹). Therefore a two-stage evolution in fault kinematics has been suggested with fast slip and extrusion during the Late Oligocene–Early Miocene changing to slow slip and crustal thickening up to the present (Yue & Liou 1999; Yue et al. 2003; Ritts et al. 2008).

Quaternary slip rates

Estimates for the Altyn Tagh Fault slip rate over assumed Late Quaternary time scales were first made by Peltzer et al. (1989) and placed the rate relatively high at 2–3 cm a⁻¹ (Table 3; Fig. 14). These estimates were made from satellite-measured stream offsets of 100–400 m along most of the length of the fault and assuming the offset occurred since the beginning of the Holocene. Tapponnier et al. (2001a) summarized a number of Quaternary slip rate estimates from ¹⁴C and cosmogenic exposure dating from points along the entire length of the Altyn Tagh Fault (in addition to some from the Kun Lun and Haiyuan Faults). The values from Tapponnier et al. (2001a), although decreasing at either end of the Altyn Tagh Fault, show a slip rate along the central portion between 83 and 94°E of 20–30 mm a⁻¹. At 94°E, dated offset risers yield a rate of 23 ± 8 mm a⁻¹ in the last 6 ka and 31 ± 6 mm a⁻¹ at 87°E, which was constant over the last 110 ka (Fig. 14). Ryerson et al. (2006) reviewed applications of morphochronology to Tibetan active tectonics including a summary of fault slip rate determinations for major strike-slip faults of Tibet.

Table 2. Published estimates of the geological offsets on the Altyn Tagh Fault through the identification of piercing points across the fault

<table>
<thead>
<tr>
<th>Number</th>
<th>Piercing point type</th>
<th>Longitude (°E)</th>
<th>Age</th>
<th>Offset (km)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Magmatic belts (granodiorites)</td>
<td>84–90</td>
<td>Late Palaeozoic</td>
<td>c. 500</td>
<td>Peltzer & Tapponnier (1988)</td>
</tr>
<tr>
<td>2</td>
<td>Basin offset</td>
<td>94–95</td>
<td>Mid-Miocene (16 Ma) to Recent</td>
<td>69–90</td>
<td>Wang (1997)</td>
</tr>
<tr>
<td>3</td>
<td>Lacustrine shoreline</td>
<td>87–92</td>
<td>Mid-Jurassic (post-170 Ma)</td>
<td>400 ± 60</td>
<td>Ritts & Biffi (2000)</td>
</tr>
<tr>
<td>4</td>
<td>Cenozoic thrusts</td>
<td>92–95</td>
<td>Late Eocene–Oligocene (c. 40–32 Ma)</td>
<td>280 ± 30</td>
<td>Yin & Harrison (2000)</td>
</tr>
<tr>
<td>5</td>
<td>Eclogite facies</td>
<td>88–93</td>
<td>Early Palaeozoic c. 500 Ma</td>
<td>400</td>
<td>Zhang et al. (2001)</td>
</tr>
<tr>
<td>6</td>
<td>Ophiolite and blueschist facies</td>
<td>92–97</td>
<td>Early Palaeozoic c. 500 Ma</td>
<td>350</td>
<td>Zhang et al. (2001)</td>
</tr>
<tr>
<td>7</td>
<td>Cooling zones (⁴⁰Ar/³⁸Ar and AFT)</td>
<td>89–92</td>
<td>Early–Mid-Jurassic</td>
<td>350 ± 100</td>
<td>Sobel et al. (2001)</td>
</tr>
<tr>
<td>8</td>
<td>Basin offset</td>
<td>91–94</td>
<td>Early Miocene</td>
<td>320 ± 20</td>
<td>Yue et al. (2001)</td>
</tr>
<tr>
<td>9</td>
<td>Basin offset</td>
<td>91–95</td>
<td>Early Oligocene</td>
<td>380 ± 60</td>
<td>Yue et al. (2001)</td>
</tr>
<tr>
<td>10</td>
<td>Palaeomagnetic rotation</td>
<td>86–95</td>
<td>Late Oligocene (24 Ma)</td>
<td>500 ± 130</td>
<td>Chen et al. (2002)</td>
</tr>
<tr>
<td>11</td>
<td>Magmatic arc rocks</td>
<td>92–96</td>
<td>490–480 Ma</td>
<td>370</td>
<td>Gehrels et al. (2003)</td>
</tr>
<tr>
<td>12</td>
<td>Clast provenance analysis</td>
<td>90–92</td>
<td>Early Miocene (23–16 Ma)</td>
<td>0–165</td>
<td>Yue et al. (2003)</td>
</tr>
<tr>
<td>13</td>
<td>Tectonic boundary and batholiths</td>
<td>82–86</td>
<td>Early–Mid-Palaeozoic (518–384 Ma)</td>
<td>475 ± 70</td>
<td>Cowgill et al. (2003)</td>
</tr>
<tr>
<td>14</td>
<td>Sandstone clast (zircon age) provenance</td>
<td>92–96</td>
<td>Oligocene</td>
<td>360 ± 40</td>
<td>Yue et al. (2005)</td>
</tr>
</tbody>
</table>

Piercing points are numbered and refer to labels of estimates used in Figure 13. The type of piercing point is given, in addition to the current longitudinal range over which the feature is offset. The age and offset (km) are listed with error estimates provided by the relevant researcher. Estimates of total offset span the Phanerozoic and appear to be consistent around 400 km for much of this time-span, indicating no early initiation of slip along the Altyn Tagh Fault in the Mesozoic. However, relatively recent motion has occurred as recorded by the reduced offset of Miocene sediments. Additionally, these relatively small offsets imply a low slip rate of the Altyn Tagh Fault since the Mid-Miocene, with a maximum around 10 mm a⁻¹ (Yue et al. 2003).
Table 3. Published estimates of slip rate on the Altyn Tagh Fault

<table>
<thead>
<tr>
<th>Number</th>
<th>Method</th>
<th>Longitude (°E)</th>
<th>Estimate (mm a⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Geological</td>
</tr>
<tr>
<td>1</td>
<td>Thrust offsets</td>
<td>92–95</td>
<td>7–9</td>
<td>Yin & Harrison (2000)</td>
</tr>
<tr>
<td>2</td>
<td>Facies offset</td>
<td>92–95</td>
<td>12–16</td>
<td>Yue et al. (2001)</td>
</tr>
<tr>
<td>3</td>
<td>Sedimentary offset</td>
<td>90–94</td>
<td>7–11</td>
<td>Yin et al. (2002)</td>
</tr>
<tr>
<td>4</td>
<td>Palaeomagnetic rotations</td>
<td>86–95</td>
<td>27–45</td>
<td>Chen et al. (2002)</td>
</tr>
<tr>
<td>5</td>
<td>Zircon date granite clasts</td>
<td>91–92</td>
<td>5–10</td>
<td>Yue et al. (2003)</td>
</tr>
<tr>
<td>6</td>
<td>Tectonic belt and batholith offsets</td>
<td>82–86</td>
<td>10–16</td>
<td>Cowgill et al. (2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Late Quaternary</td>
</tr>
<tr>
<td>7</td>
<td>Stream, terrace and moraine offset</td>
<td>78–96</td>
<td>20–30</td>
<td>Peltzer et al. (1989)</td>
</tr>
<tr>
<td>8</td>
<td>Stream, fan and terrace offset</td>
<td>96</td>
<td>2–6</td>
<td>Meyer et al. (1996)</td>
</tr>
<tr>
<td>9</td>
<td>Cosmogenic dated offsets</td>
<td>78</td>
<td>12–23</td>
<td>Ryerson et al. (2001a)</td>
</tr>
<tr>
<td>10</td>
<td>Cosmogenic and ¹⁴C dated offsets</td>
<td>78</td>
<td>10–14</td>
<td>Tapponnier et al. (2001a)</td>
</tr>
<tr>
<td>11</td>
<td>Cosmogenic and ¹⁴C dated offsets</td>
<td>87</td>
<td>25–37</td>
<td>Tapponnier et al. (2001a)</td>
</tr>
<tr>
<td>12</td>
<td>Cosmogenic and ¹⁴C dated offsets</td>
<td>90</td>
<td>36–34</td>
<td>Tapponnier et al. (2001a)</td>
</tr>
<tr>
<td>13</td>
<td>Cosmogenic and ¹⁴C dated offsets</td>
<td>94</td>
<td>15–31</td>
<td>Tapponnier et al. (2001a)</td>
</tr>
<tr>
<td>15</td>
<td>Cosmogenic and ¹⁴C dated offsets*</td>
<td>87</td>
<td>20–34</td>
<td>Meriaux et al. (2004)</td>
</tr>
<tr>
<td>16</td>
<td>Cosmogenic and ¹⁴C dated offsets</td>
<td>94</td>
<td>14–20</td>
<td>Meriaux et al. (2005)</td>
</tr>
<tr>
<td>17</td>
<td>Cosmogenic and TL dated offsets†</td>
<td>85–86.5</td>
<td>15–19.5</td>
<td>Xu et al. (2005)</td>
</tr>
<tr>
<td>18</td>
<td>Cosmogenic and TL dated offsets†</td>
<td>94–95</td>
<td>7.5–14.5</td>
<td>Xu et al. (2005)</td>
</tr>
<tr>
<td>19</td>
<td>Cosmogenic and TL dated offsets†</td>
<td>96</td>
<td>3.8–5.8</td>
<td>Xu et al. (2005)</td>
</tr>
<tr>
<td>20</td>
<td>Cosmogenic and TL dated offsets†</td>
<td>97</td>
<td>2–2.4</td>
<td>Xu et al. (2005)</td>
</tr>
<tr>
<td>21</td>
<td>Offsets reinterpreted from *</td>
<td>86.4</td>
<td>7–12</td>
<td>Cowgill (2007)</td>
</tr>
<tr>
<td>22</td>
<td>Offsets reinterpreted from †</td>
<td>85</td>
<td>8–12</td>
<td>Zhang et al. (2007)</td>
</tr>
<tr>
<td>23</td>
<td>Offsets reinterpreted from †</td>
<td>86.5</td>
<td>5–10.5</td>
<td>Zhang et al. (2007)</td>
</tr>
<tr>
<td>24</td>
<td>Offsets reinterpreted from †</td>
<td>94–95</td>
<td>6–13</td>
<td>Zhang et al. (2007)</td>
</tr>
<tr>
<td>25</td>
<td>Offsets reinterpreted from †</td>
<td>96</td>
<td>5–9</td>
<td>Zhang et al. (2007)</td>
</tr>
<tr>
<td>26</td>
<td>Offsets reinterpreted from †</td>
<td>96.5</td>
<td>2–6</td>
<td>Zhang et al. (2007)</td>
</tr>
<tr>
<td>27</td>
<td>Offsets reinterpreted from †</td>
<td>96.5–97</td>
<td>1–2.5</td>
<td>Zhang et al. (2007)</td>
</tr>
<tr>
<td>28</td>
<td>Cosmogenic and ¹⁴C dated offsets</td>
<td>86.7</td>
<td>5–14</td>
<td>Xu et al. (2005)</td>
</tr>
<tr>
<td>29</td>
<td>Cosmogenic and ¹⁴C dated offsets</td>
<td>88.5</td>
<td>9–14</td>
<td>Cowgill et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Geodetic</td>
</tr>
<tr>
<td>33</td>
<td>GPS 1993–1998</td>
<td>c. 80</td>
<td>4–10</td>
<td>Shen et al. (2001)</td>
</tr>
<tr>
<td>34</td>
<td>GPS 1993–1998</td>
<td>c. 90</td>
<td>7–11</td>
<td>Shen et al. (2001)</td>
</tr>
<tr>
<td>37</td>
<td>GPS synthesis</td>
<td>90</td>
<td>4–7</td>
<td>Zhang et al. (2004)</td>
</tr>
<tr>
<td>38</td>
<td>GPS synthesis</td>
<td>95</td>
<td>3–7</td>
<td>Zhang et al. (2004)</td>
</tr>
<tr>
<td>46</td>
<td>GPS 1998–2004</td>
<td>96</td>
<td>1.6–6.2</td>
<td>Zhang et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plateau-scale modelling</td>
</tr>
<tr>
<td>49</td>
<td>Block model</td>
<td>80–100</td>
<td>16–46</td>
<td>Armijo et al. (1989)</td>
</tr>
<tr>
<td>50</td>
<td>Block model (Quaternary constraint)</td>
<td>82–90</td>
<td>27–30</td>
<td>Avouac & Tapponnier (1993)</td>
</tr>
<tr>
<td>51</td>
<td>Block model (Quaternary constraint)</td>
<td>75–82</td>
<td>20–25</td>
<td>Avouac & Tapponnier (1993)</td>
</tr>
<tr>
<td>52</td>
<td>GPS constraints</td>
<td>80–96</td>
<td>6.4–8.4</td>
<td>Xiong et al. (2003)</td>
</tr>
<tr>
<td>53</td>
<td>Continuum model (GPS and Quaternary constraints)</td>
<td>80–93</td>
<td>8–9</td>
<td>England & Molnar (2005)</td>
</tr>
<tr>
<td>54</td>
<td>Microplate model (GPS constraint)</td>
<td>76–84</td>
<td>2–3</td>
<td>Meade (2007)</td>
</tr>
<tr>
<td>55</td>
<td>Microplate model (GPS constraint)</td>
<td>84–94</td>
<td>5–6</td>
<td>Meade (2007)</td>
</tr>
<tr>
<td>56</td>
<td>Microplate model (GPS constraint)</td>
<td>94–97</td>
<td>3</td>
<td>Meade (2007)</td>
</tr>
<tr>
<td>57</td>
<td>Microplate model (GPS constraint)</td>
<td>86–92</td>
<td>8–9</td>
<td>Thatcher (2007)</td>
</tr>
<tr>
<td>58</td>
<td>GPS and Quaternary constraints</td>
<td>86</td>
<td>5–14</td>
<td>He & Chery (2008)</td>
</tr>
<tr>
<td>59</td>
<td>GPS and Quaternary constraints</td>
<td>93</td>
<td>14–18</td>
<td>He & Chery (2008)</td>
</tr>
<tr>
<td>60</td>
<td>GPS and Quaternary constraints</td>
<td>96</td>
<td>5–14</td>
<td>He & Chery (2008)</td>
</tr>
</tbody>
</table>

The estimates are grouped by geologically constrained offsets, Quaternary dated offsets, geodetically derived rates (GPS and InSAR) and also estimates from modelling calculations of plateau-wide deformation models. Within each category, estimates are listed by ascending publication date. TL, thermoluminescence dating.
Fault (Table 3; Fig. 14) suggests that there is a possible discrepancy between the geodetic or InSAR measurements and many of the millennial geological investigations that aim to quantify slip. All but the most recent rates (e.g. Gold et al. 2009) constrained by cosmogenic exposure dating of displaced surface features indicate that the Altyn Tagh Fault has an average millennial slip of 20–30 mm a$^{-1}$ (e.g. Meriaux et al. 2004). This high rate contrasts with many of the longer-term geological or decadal rates that indicate a slip of 5–10 mm a$^{-1}$. Wallace et al. (2004) interpreted the inconsistency between slip rates as evidence of a slowing in slip rate over time or a systematic error in all Quaternary geological velocities. Palaeoseismology along the Altyn Tagh Fault indicates a slip of 10–20 mm a$^{-1}$ over 2–3 ka (Washburn et al. 2001, 2003), supporting the possibility of a long-term reduction in slip rate. Wallace et al. (2004) noted that a likely mechanism for the slowing of the Altyn Tagh Fault may relate to increased slip along subparallel faults such as the Kun Lun Fault or a slowing of the entire northern plateau, although current datasets do not corroborate these hypotheses. The suggestion that the Altyn Tagh Fault and Kun Lun are kinematically linked is not supported by either geological or geodetic measurements for the Kun Lun; Van der Woerd et al. (2000)

Fig. 14. Published slip rates for the Altyn Tagh Fault plotted against the longitudinal position on the fault to which the estimate refers. Rates are shaded according to the method and time scale over which the estimate is applicable. Estimates are numbered to match those given in Table 3.
reported a long-term uniform rate of 11.5 mm a\(^{-1}\) since 40 ka, whereas Zhang et al. (2004) estimated a geodetic rate of 8–11 mm a\(^{-1}\).

Although Wallace et al. (2004) conceded that there is little evidence to support a widespread slowing of rates across the entire northern plateau, they suggested that a recent reduction in clockwise rotation may explain the observed disparity between long-term and recent slip rates for the Altyn Tagh Fault. Without such supporting data, Wallace et al. (2004) concluded that systematic errors in all cosmogenic ages may have biased the slip to higher rates and there is some validity to this point. The selection of the ‘correct’ age from a distributed dataset is a very real limitation of the cosmogenic dating technique and many published single ages are determined from skewed or non-Gaussian datasets that are not supported by additional independent datasets. For investigations that utilize an assumed age for postglacial landforms, recent data suggest that geomorphological features in central Asia may be an order of magnitude older than previously envisaged (e.g. Brown et al. 2002; Hetzel et al. 2002).

An alternative approach to interpreting the large discrepancy between geodetic and millennial rates was taken by Cowgill (2007). By exploring the technique of slip rate calculation, including error analysis and geomorphological interpretation, they noted that a number of uncertainties were largely overlooked in published Altyn Tagh Fault studies. Consequently, previous cosmogenic age data of displaced fluvial risers would carry such large errors that the derived slip rate will inevitably be within error of geodetic slip estimates for the Altyn Tagh Fault. Rapid slip has been suggested to occur at 20–34 mm a\(^{-1}\) (Meriaux et al. 2004) and 14–20 mm a\(^{-1}\) (Meriaux et al. 2005) from such riser offset dating at 87°E and 94°E. By applying newly derived geomorphological indices to the Chercen He sites of Meriaux et al. (2005), Cowgill (2007) suggested a revised slip rate of 9.4 ± 2.3 mm a\(^{-1}\) (Table 3), one-third of the original interpretation and within error of those derived from GPS and palaeoseismic studies for this region.

At an additional site on the central Altyn Tagh Fault, Cowgill et al. (2009) determined well-constrained age data for offset fluvial risers, providing a millennial slip rate of 14–9 mm a\(^{-1}\) since 4–6 ka. As for Chercen He, these data are inconsistent with previously published millennial slip rates but agree with geodetic, palaeoseismic and geological measurements. Cowgill et al. (2009) therefore concluded that there is no discrepancy between geological, millennial or geodetic slip rates along the Altyn Tagh Fault. Similarly, a range of slip rate estimates from Xu et al. (2005) based upon cosmoogenic, carbon and thermoluminescence (TL) dated offset landforms yielded a rate along the central Altyn Tagh Fault of 17.5 ± 2 mm a\(^{-1}\), which was subsequently reinterpreted in light of epistemic uncertainty in dating the terrace riser to be 5–12 mm a\(^{-1}\) (Zhang et al. 2007). More recent Quaternary observations by Gold et al. (2009) and Cowgill et al. (2009) at 86.7–88.5°E yielded slip rate estimates of 8–17 mm a\(^{-1}\) and 9–14 mm a\(^{-1}\) respectively, which lend support to the idea that the previously high Quaternary estimates were due to inaccuracies in interpretation of offset features, rather than pointing to secular variation (Cowgill et al. 2009).

Geodetically modelled slip rates

Geodetic slip rates are primarily dominated by GPS surveys consisting of data collected from both campaign and permanent measurements (e.g. Zhang et al. 2004; Gan et al. 2007), and are determined from fitting the horizontal velocities to a locked fault elastic model. The first GPS measurement for the Altyn Tagh was made by Bendick et al. (2000) and consisted of a transect of GPS observations on the east-central portion of the fault and the North Altyn Tagh Fault. The result pointed towards a low slip rate of 4–14 mm a\(^{-1}\) (as well as a small convergent component of 2–4 mm a\(^{-1}\)). This was subsequently updated by Wallace et al. (2004) and yielded an estimate of 5–13 mm a\(^{-1}\) (Table 3). Further GPS campaign measurements by Chen et al. (2000), Shen et al. (2001), Zhang et al. (2004) and Gan et al. (2007) gave estimates of 4–16 mm a\(^{-1}\) covering 89–100°E, with a decrease in slip rate from west to east (Zhang et al. 2007; Fig. 14). However, owing to the remote location of NW Tibet and the high plateau in the south, there are no GPS observations within 500 km to the south of the fault between 80 and 90°E. Therefore no accurate estimate of slip rate can be made in this region currently with GPS.

There is, however, an increasing number of measurements based on InSAR as a larger archive of data is accumulated. The slip rates estimated from these studies are all relatively low (Table 3; Fig. 14), with a range of 0–10 mm a\(^{-1}\) for the western portion of the Altyn Tagh Fault (Wright et al. 2004), 6–16 mm a\(^{-1}\) nearer the centre (Elliott et al. 2008) and 8–10 mm a\(^{-1}\) for the eastern portion (Jolivet et al. 2008). These geodetic datasets encompass measurements on the yearly to decadal scale and have been undertaken over most of the length of the Altyn Tagh Fault between 80°E and 100°E. The vast majority are in very close agreement (as is the agreement between the two geodetic methods) and cluster around 5–15 mm a\(^{-1}\), with a decrease towards the east (Fig. 14).

Plateau-scale models

Another approach to estimating the slip rate of the Altyn Tagh Fault comes from plateau-wide models of deformation. However, these are not direct determinations of slip rate and are not independent measurements as they are usually constrained by GPS data (e.g. Meade 2007) and sometimes additionally by the Quaternary estimates on faults (e.g. England & Molnar 2005). Using a simple block model, Armijo et al. (1989) calculated an approximate slip rate estimate of 31 ± 15 mm a\(^{-1}\), given the convergence rate of India, and the assumed eastward expulsion of northern Tibet as a rigid block. Avouac & Tapponnier (1993) produced a kinematic model with four rotating blocks, and predicted a c. 30 mm a\(^{-1}\) left-lateral slip along the Altyn Tagh Fault, in good agreement with the apparent observed rate of 30 mm a\(^{-1}\) at the time (Peltzer et al. 1989).

By using GPS baseline length changes and Quaternary fault slip rates, England & Molnar (2005) calculated a crustal velocity field and strain rate in Asia, from which block-like behaviour is seen only in the Tarim and south China. They estimated a slip rate of 8–9 mm a\(^{-1}\) along the length of the Altyn Tagh Fault based upon their calculated velocity field from Quaternary faulting and GPS, which matches well their thin viscous sheet model.

Meade (2007) and Thatcher (2007) both presented similar microplate models for the deformation in Tibet, and estimated a slip rate of 5–6 mm a\(^{-1}\) and 8–9 mm a\(^{-1}\) respectively, based upon minimizing the misfit with GPS observations using a number of *a priori* delineated rotating blocks (Table 3). These models use a larger number of blocks (11–17) than the earlier models by Armijo et al. (1989) and Avouac & Tapponnier (1993), leading to lower slip rates. However, this trend to an increasing number of microplates to fit the observations is approaching the idea of a continuum behaviour (Thatcher 2009).

Using a mechanical model constrained by far-field GPS measurements and Quaternary slip rates, with an elastoplastic upper
crust, viscoelastic lower crust and faults embedded in the model, He & Chery (2008) attempted to determine the long-term slip rates for the Altyn Tagh, Kun Lun and Karakoram Faults. Depending upon the assumed effective fault friction, they predicted long-term slip rates on the Altyn Tagh Fault of up to 13.7–17.8 mm a$^{-1}$ along the central portion of the fault. This rate is at the slightly higher end of the GPS-determined slip rates and is for an assumed low fault friction.

Discussion of Altyn Tagh Fault slip rates

Comparisons made between recent geodetically and geologically determined rates show broad agreement with estimates of the order of 10 mm a$^{-1}$ (e.g. Yue et al. 2003; Zhang et al. 2007). However, many Quaternary-derived estimates from cosmogenic and radiocarbon dating of offset terraces have resulted in estimates 2–3 times greater (e.g. Meriaux et al. 2004). Furthermore, many of these latter observations have been subsequently reinterpreted (e.g. Cowgill 2007), and as a result Quaternary-derived estimates have also reduced to similar values. However, the disparity still leaves open the question whether differences are due to interpretation of measurements or whether they imply a secular change in fault slip rates over decadal, millennial and million-year time scales.

If early block models with high slip rates using assumed Holocene ages for offsets are neglected and the reinterpretation of Quaternary slip rates to lower values discussed above is taken as correct, then the slip rate for the Altyn Tagh for the central portion at 84°–94°E lies in the range 5–15 mm a$^{-1}$ across the three time scales (Table 3 and Fig. 14). There are fewer measurements west of 84°E, where the Altyn Tagh Fault becomes the Karakax Fault, but these point to rates <15 mm a$^{-1}$. East of 94°E, the slip rate decays to <5 mm a$^{-1}$ by 99°E. Zhang et al. (2007) stated that this gradual decrease in slip rate to the east indicates that the Altyn Tagh Fault does not separate two effectively rigid lithospheric plates. Therefore, the overall relatively low slip rate and eastward decrease suggest that a significant proportion of the India–Asia convergence is not transferred into northeastward extrusion of the Tibetan Plateau (Zhang et al. 2007). The low slip rates support the notion of a Tibetan Plateau that deforms internally on a distributed network of faults in the shallow brittle crust and as a continuum at depth (England & Molnar 2005).

Earthquake history

Relatively little is known about the Altyn Tagh’s earthquake history. Two of the largest recorded earthquakes on the fault occurred a fortnight apart and were a pair of Mw 7.2 events in 1924 at 84°E (Molnar et al. 1987a; Washburn et al. 2003). The current levels of seismicity recorded in the very limited period of the last 33 years of the GCMT catalogue show only a couple of small oblique events recorded along its entire length. There appears to have been no major (M > 7.6) earthquakes since at least 1911 along the Altyn Tagh Fault (Chen & Molnar 1977). A traverse across the Altyn Tagh Fault and Kun Lun by Molnar et al. (1987a, b) revealed evidence for relatively recent faulting from 10 m offset ridges and fresh mole tracks 0.4 m high, the freshness of which they considered to point to an earthquake in the last few hundred years. Comparing these features with those from the 1920 Mw 8.0 Haiyuan earthquake (Deng et al. 1984), which occurred on the left-lateral strike-slip Haiyuan Fault east of the Altyn Tagh Fault in northeastern Tibet, Molnar et al. (1987a) suggested that they are comparable and represent a similarly major earthquake capable of c. 8 m slip over c. 220 km. From this, they also suggested that a poorly constrained fast slip rate of 30 ± 20 mm a$^{-1}$ is possible, and that the Altyn Tagh Fault can absorb a significant proportion (11 ± 7 mm a$^{-1}$) of the India–Eurasia convergence.

Palaeoseismic rupture mapping indicates that the Altyn Tagh Fault has produced major earthquakes as large as Mw 7.8 in the Holocene (Washburn et al. 2001, 2003). Using palaeo-trenches along the central Altyn Tagh Fault at 38°9′N, 91°8′E, Washburn et al. (2003) recorded two clear earthquakes with 14C ages of AD 1456–1775 and AD 60–980. From records at three trenches, they recorded earthquake repeat intervals of 0.7–0.9 ka, similar to those given for the Kun Lun Fault (Van der Woerd et al. 1998), and supporting a relatively low slip rate.

Strike-slip faults in eastern Tibet

Haiyuan Fault

The Haiyuan Fault is a vertical left-lateral strike-slip fault than runs for c. 1000 km from the northeastern part of the Tibetan Plateau, north of the Qaidam basin across to the Ordos Block (Fig. 1). The Haiyuan Fault has a large seismic potential, as observed by the 1920 M1 8.0–8.6 earthquake, which occurred near the town from which it derived its name and which resulted in the deaths of over 220 000 people (Deng et al. 1984). The Qilian Shan range to the north has also been affected by several, equally large (M 8–8.3) historical earthquakes along its NE-vergent fold–thrust belt in 1927 (Gaudemer et al. 1995). Palaeoseismic trenching along the central portion of the fault reveals four major events in the last 3.5–4 ka, yielding an earthquake recurrence time of almost 1000 years (Liu-Zeng et al. 2007).

Burchfiel et al. (1989, 1991) suggested that only 10.5–15.5 km offset had occurred along the Haiyuan Fault by matching geological markers across the fault. They showed that progressively smaller offsets occurred on younger rock units and proposed an average Pleistocene slip rate of 5–10 mm a$^{-1}$ assuming that faulting started at the end of the Pliocene. In contrast, Gaudemer et al. (1995) estimated an offset of 95 km with a much older initiation age of 10 Ma, but which also suggests a slip rate of c. 10 mm a$^{-1}$. Ding et al. (2004) estimated the total amount of sinistral strike-slip offset along the Haiyuan Fault zone since the late Miocene as c. 60 km, summing the offsets of three classes of pull-apart basins developed during different periods, giving an average rate of 6.5 mm a$^{-1}$.

An early estimate of Holocene slip rate for the Haiyuan Fault by Zhang et al. (1988) from stream offsets and radiocarbon dating was 6–7 mm a$^{-1}$ (although with some estimates as low as 3 mm a$^{-1}$). Late Holocene estimates of slip rate from Lasserre et al. (1999) gave a post-glacial slip rate of 12 ± 4 mm a$^{-1}$ based upon alluvial terrace and riser offsets dated with 14C ages. Lasserre et al. (2002) constrained the Late Pleistocene slip rate as 19 ± 5 mm a$^{-1}$, from 10Be and 26Al cosmogenic dating of offset moraines, although this has been recently challenged by Li et al. (2009), who derived a Quaternary estimate of 4.5 ± 1 mm a$^{-1}$.

The current slip rate as estimated geodetically is 4–8 mm a$^{-1}$ (Cavaliere et al. 2008) based upon InSAR observations and is in near agreement with that derived from GPS observations of 8.6 mm a$^{-1}$ (Gan et al. 2007). Microplate models for Tibet from Meade (2007) and Thatcher (2007) estimated fault slip rates of 9 mm a$^{-1}$ and 6 mm a$^{-1}$ respectively.
Kun Lun Fault

The left-lateral Kun Lun Fault marks the northern boundary of the high-elevation, low-relief main part of the Tibetan Plateau for nearly 1500 km (Fig. 1). Timing of initiation of strike-slip shearing is poorly constrained but thought to be coeval with Miocene extension c. 15 Ma (Jolivet et al. 2003). Finite displacement along the fault is also poorly constrained although some workers have suggested 85 km of apparent deflection of the Yellow River along the eastern segment of the fault (Gaudemer et al. 1989). Fu & Awata (2007) suggested that maximum offset of basement rocks was c. 100 km, and that maximum timing of shearing was 10 ± 2 Ma, giving a long-term slip rate of c. 10 mm a⁻¹. In contrast, Jolivet et al. (2003) suggested that strike-slip motion in the western Kun Lun ranges started at least in the Late Eocene simultaneously with Eocene to Oligocene SW–NE compression. At c. 15 Ma extension resulted in pull-apart basins possibly concomitant with subduction of Tarim–Qaidam lithosphere southward beneath the Kun Lun.

As with the Altyn Tagh Fault, slip rates along the Kun Lun Fault vary considerably between short-term geodetic and long-term geological rates. Quaternary slip rates along the Kun Lun Fault are, however, better constrained. Kirby et al. (2007) suggested that slip rates decrease systematically eastwards along the eastern segment of the fault from >10 to <2 mm a⁻¹. Those workers also showed that slip along the fault ends in the thickened crust of the plateau and therefore any eastward extrusion must be absorbed by internal deformation in the plateau. This is supported by further observations east of 99°E, showing a lower slip rate of 2–6 mm a⁻¹ for the easternmost portion of the fault (Harkins et al. 2010). The decrease in slip rate from c. 10 mm a⁻¹ to near zero over the last c. 200 km of the eastern portion of the fault mirrors that observed for the eastern portion of the Altyn Tagh Fault at 95–97°E (Zhang et al. 2007).

Recent large earthquakes on this fault include the Mw 8.1 Kokoxili event, which ruptured a 300 km portion of the western end of the fault in 2001 (Lasserre et al. 2005), and two earlier earthquakes along the central segment in 1963 (Mw 7.1) and 1937 (Mw 7.5). Therefore the central and western segments of the fault have had at least four large earthquakes in the past century whereas the eastern segment appears to have had little historical seismicity (Kirby et al. 2007). Geodetic observations from GPS are in agreement for the western portion of the fault, with estimates of 8–11 mm a⁻¹ (Zhang et al. 2004). More recent GPS measurements also show a decrease in slip rate from 96 to 106°E, from 14 to 2 mm a⁻¹. The microplate model of Thatcher (2007) suggests a uniform slip of 6–7 mm a⁻¹ along the fault, whereas that of Meade (2007) suggests 10–11 mm a⁻¹ for the western portion and 6–7 mm a⁻¹ for the eastern segment. He & Cherry (2008) in their mechanical model obtained consistent slip rates between 92 and 101°E of 8–12 mm a⁻¹, assuming a low effective fault friction.

Xianshui-he Fault

The left-lateral active Xianshui-he Fault cuts diagonally through the Songpan–Ganze terrane, south of the Qaidam basin in NE Tibet SW of the Long Men Shan and Sichuan Basin and curves around to north–south strike in western Yunnan (Fig. 1). The fault is called the Xiaojiang Fault in Yunnan north of the Red River and may also align with the Dien Bien Phu Fault in northwestern Vietnam, south of the Red River. It appears to be one of the most active of all Tibetan faults, with several large earthquakes along it and eight M 7+ events since 1725 (Allen et al. 1991). West of 100°E this activity appears to step left onto the Ganzi–Yushu Fault, which is also the locus of historical M 7+ earthquakes including the recent 2010 Yushu event.

The Xianshui-he Fault cuts the eastern margin of the large Gongka Shan (7756 m) granite, a two-mica crustal melt granite that has a U–Pb zircon crystallization age of 12.8 ± 1.4 Ma (Roger et al. 1995), suggesting that the fault must have initiated after this time. A series of strike-slip faults splay off the Xianshui-he Fault forming a duplex system. Together with a few isolated young crustal melt leucogranitic intrusions in northern Tibet (e.g. Ulugh Maztagh granites; Molnar et al. 1987b) these rocks may be the only surface geological evidence for lower crustal melting within the high plateau.

Geological offsets of c. 60 km for the last 2–4 Ma imply a long-term slip rate of 15–30 mm a⁻¹ (Wang & Burchfiel 2000). However, from thermochronology measurements dating the onset of fault activity at 13 Ma, Wang et al. (2009b) derived a long-term slip rate of 5.4 ± 0.8 mm a⁻¹ based upon the 60–80 km offset and an older age of initiation (c. 13 Ma) based on K–Ar mica and apatite fission-track ages. Holocene slip rates from radiometric dating are estimated to be 15 ± 5 mm a⁻¹ in the NW and 5 mm a⁻¹ in the SE (Allen et al. 1991), with re-estimates of the data yielding 14 ± 2 mm a⁻¹ and 9.6 ± 1.7 mm a⁻¹ respectively (Xu et al. 2003). GPS measurements suggest a c. 10 mm a⁻¹ slip rate along the fault between 29 and 32°N with the rate decreasing to 4–7 mm a⁻¹ as it runs north–south (Shen et al. 2005). Wang et al. (2009a) found a joint GPS and InSAR geodetic rate across the left-lateral fault at 101°E of 9–12 mm a⁻¹ with a locking depth of 3–6 km.

Jiale Fault

The right-lateral Jiale Fault is the most prominent strike-slip fault of SE Tibet, running for at least 800 km WNW–ESE from the Bangong suture zone to the Burma–Yunnan border (Fig. 1). North of the Eastern Himalayan syntaxis the fault splays into two branches, the northern Parlung Fault, which continues south-eastward into the Gaoligong Fault, and the southern Puqu Fault, which swings right around the syntaxis to align north–south and eventually connect with the northern Sagaing Fault in Burma. The active deformation and GPS patterns (Fig. 6) suggest a clockwise rotation around the Eastern Himalayan syntaxis with extruding crust bounded by the right-lateral Jiale, Gaoligong and Sagaing faults in the west, and the left-lateral Xianshui-he, Xiaojiang and Dien Bien Phu faults in the east.

The Jiale Fault cuts obliquely though the eastern Gangdese belt and cuts Cretaceous granites with U–Pb zircon ages of 136–113 Ma (Chiu et al. 2009). ⁴⁰Ar/³⁹Ar ages suggest that the main phase of strike-slip shearing was c. 18–12 Ma (Lee et al. 2003; Lin et al. 2009). This age range overlaps with active shearing along ductile shear zones along the Gaoligong Fault (Akciz et al. 2008; Lin et al. 2009) and the Sagaing Fault in Burma (Searle et al. 2007). It is also similar to main strike-slip phase of motion along the Karakoram Fault (Dunlap et al. 1998; Searle et al. 1998). Therefore all the dated strike-slip faults in southern Tibet dated appear to have initiated over 30 Ma after the India–Asia collision. Armijo et al. (1989) proposed c. 450 km of right-lateral offset along the Jiale Fault but they had no accurately dated markers or pinning points. Precise dating and mapping of offset geological markers along the Jiale Fault remains poorly defined.
Conjugate strike-slip faults of central Tibet

Relative to the strike-slip faults at or towards the edges of the plateau discussed above, the strike-slip faults of central Tibet have been less well studied. This high plateau region contains no active thrust faulting, with only north–south normal faulting and approximately east–west strike-slip faulting present (Molnar & Tapponnier 1978; Armijo et al. 1989; Taylor & Yin 2009; Fig. 1). Early studies focused on the NW–SE-orientated, right-lateral strike-slip faults of southern–central Tibet, which were mapped between the Karakoram and Jiali faults, forming an en echelon fault zone that was thought to accommodate the rigid eastward extrusion of northern Tibet between this zone and the Allyn Tagh and Kun Lun faults (Armijo et al. 1989).

The seismological record shows a distributed pattern of normal and strike-slip earthquakes across this region (Molnar & Lyon-Caen 1989), with the largest event in the last century being an M 8 right-lateral strike-slip event in 1951 on the Beng Co Fault (Armijo et al. 1989). The most recent seismicity consists of moderate to large normal faulting earthquakes, but with T-axes for both types of normal and strike-slip faulting consistently aligned ESE–WNW (Elliott et al. 2010). GPS measurements indicate that 19–25 mm a⁻¹ of east–west extension and 7–17 mm a⁻¹ of north–south contraction is accommodated across the central plateau, north of the Himalaya and south of the Kun Lun and Allyn Tagh faults (Zhang et al. 2004).

The right-lateral SE–NW strike-slip faults lie largely south of the Bangong–Nuijiang suture in the Lhasa terrane and are terminated in the south by north–south normal faults (Taylor et al. 2003; Fig. 1). These are reflected along a slight relative east–west topographic low by NE–SW left-lateral strike-slip faults that lie just north of the Bangong–Nuijiang suture in the Qiangtang terrane and are also kinematically linked to the north with further north–south-oriented normal faults (Yin et al. 1999). This pattern of faulting indicates a 250 km by 1500 km east–west-trending zone of conjugate strike-slip faulting across central Tibet that simultaneously accommodates north–south contraction and east–west extension (Taylor et al. 2003). By mapping three of the fault systems, Taylor et al. (2003) found average offsets in Tertiary thrusts and Palaeozoic–Mesozoic lithological units of only 12 km. This supports a model of coeval east–west extension and north–south contraction on multiple faults in a distributed pattern rather than the Qiangtang terrane behaving as a rigid block translating eastward, the latter requiring larger offsets on these faults.

Taylor & Peltzer (2006) attempted to measure the current slip rates of some of these faults using InSAR observations for the period 1992–1999. For the Riganpei Co, Gyaring Co and Lamu Co faults, they estimated rates of 5–10, 10–18 and 1–7 mm a⁻¹ respectively, similar in magnitude to the other strike-slip faults discussed here. When taken with small total offsets (Taylor et al. 2003), these relatively high slip rates imply that these structures have not been active for the entire period of the Indo-Asia collision, and possibly have been active only in the last 2–3 Ma (Taylor & Peltzer 2006). This is in contradiction to geochronological constraints of the onset of east–west extension at c. 8 Ma (Harrison et al. 1995) or earlier at c. 13.5 Ma for normal faulting (Blisniuk et al. 2001), or the initiation of slip on the Jiali Fault at between 18 and 12 Ma (Lee et al. 2003), which suggests that movement on the central Tibetan faults may have accelerated through time. Meade (2007) did not attempt to resolve each of the conjugate faults on the plateau with the 17-microplate model, particularly in western Tibet where an arbitrary boundary was modelled as taking up 15 mm a⁻¹ of right-lateral slip. However, 7 mm a⁻¹ of left-lateral and 4 mm a⁻¹ of right-lateral slip is predicted in the model for the east–central plateau. Thatcher (2007) did not attempt to resolve microplate boundaries for the western part of the plateau where there is an absence of GPS constraint.

Discussion: lithospheric structure and rheology

Jelly sandwich–crème brûlée models

The conventional view of continental lithospheric structure was that strong seismogenic layers in the upper crust and upper mantle are separated by a weak and aselastic lower crust, the so-called ‘jelly sandwich’ model (Chen & Molnar 1983; Burov & Watts 2006). Jordan & Watts (2005) estimated the elastic thickness of the Indian plate and concluded that the upper mantle was strong enough to support the load of the Himalaya–southern Tibet. The alternative model suggests that the strength of the lithosphere lies entirely within the crust, the so-called ‘crème brûlée’ model (Jackson 2002; Jackson et al. 2008). Earthquakes occur by frictional sliding in the brittle parts of the lithosphere, and so the depth distribution of earthquakes in the Tibetan crust is critical to our interpretation of the rheology. Almost all earthquakes within the main plateau region in Tibet occur in the upper crust at depths <18 km and show east–west extension within the high plateau (Molnar & Lyon-Caen 1989). These earthquakes are linked to the seven or so north–south-aligned grabens that cut across the entire plateau from the Himalaya north to the Kun Lun (Armijo et al. 1988). The grabens are most prominent in southern Tibet north of the South Tibetan Detachment system but the normal faults do extend into northern Tibet (Yin et al. 1999; Kapp et al. 2008; Taylor & Yin 2009).

Significantly, there are no earthquakes in the middle crust of southern Tibet, which is interpreted by both geological extrapolation from the Himalaya and from the INDEPTH seismic profiles to be partially molten and therefore too hot and ductile for earthquakes. Thus neither the ‘jelly sandwich’ nor the ‘crème brûlée’ model is compatible for southern Tibet. For this region a model showing that both the upper crust and lower crust are strong and relatively ‘rigid’ separated by a hot, ductile deforming partially molten middle crust would be more appropriate (‘custard cream’ model; Fig. 7). The strength of the upper mantle is open to debate but a strong viscosity and rheological contrast at the Moho between a plagioclase-dominated lower crust and an olivine-dominated upper mantle support a model of crust–mantle decoupling.

There is controversy about whether the cluster of earthquakes at c. 80–90 km depth in SE and NW Tibet (Chen & Molnar 1983; Molnar & Chen 1983) occurs within the lower crust (Maggi et al. 2000; Jackson 2002; Jackson et al. 2004; Priestley et al. 2008) or in the upper mantle (e.g. Burov & Watts 2006; Monsalve et al. 2009). A cluster of deep earthquakes at c. 60–90 km depth also occurs beneath the Greater Himalaya and southernmost Tibet roughly at the position of the ramp where the Indian plate flexes down from c. 40 km under the Ganga foreland basin to c. 75 km depth beneath southern Tibet. Monsalve et al. (2009) concluded from finite-element modelling that earthquakes in the upper mantle beneath the Himalayan collision are consistent with loading of a viscoelastic plate where the main forces are the weight of the orogenic wedge (Himalaya) and horizontal forces associated with plate convergence. However, as earthquakes can occur only in regions where temperatures are less than 600 °C (Priestley et al. 2008) it is difficult to envisage
temperatures as low as this beneath the thickened crust of the Himalaya or Tibet.

Proposed model for lithospheric structure of Tibet

Our model for the crustal structure of the western Himalaya–western Tibet and central Himalaya–central Tibet is shown in Figure 15a and b. The major faults and ductile shear zones associated with both the Main Central Thrust and South Tibetan Detachment along the Himalaya dip at low angles to the north and have been successfully imaged on the southern INDEPTH seismic profiles (Zhao et al. 1993; Nelson et al. 1996). The South Tibetan Detachment has been folded around the North Himalayan gneiss domes, the northern extension of the Greater Himalayan metamorphic rocks, and is not active today. The active southern front of the Himalaya is the Main Boundary Thrust, which dips to the north and merges with the Main Himalayan Thrust as imaged on seismic profiles (Nelson et al. 1996; Schulte-Pelkum et al. 2005) The Indus–Yarlung suture zone is a narrow and near-vertical feature containing remnant ophiolites and Tethyan sedimentary rocks. At about 18 km depth a horizontal band of dense ophiolite has been imaged beneath the Indus–Yarlung suture zone (Makovsky et al. 1999). Because at least 300 km of shortening has occurred across the upper crust Cambrian to Eocene rocks of the Tethyan Himalaya in the Himalaya to the south (Corfield & Searle 2000), and between 500–700 km of shortening across the Lesser–Greater Himalaya (DeCelles et al. 2002; Robinson 2008), simple balancing requires a similar amount of underthrusting to the north of Indian lower crust comprising Precambrian granulites of the Indian Shield. As the rocks of the lower crust of India underthrust the Himalaya and southern margin of Tibet they extend to depths of c. 60–80 km and enter the high-pressure granulite or eclogite fields. This strong, dry granulite crust might just be at low enough temperatures (<600°C) to host the deep earthquakes. These earthquakes might alternatively be within the upper mantle (Monsalve et al. 2009) but, if so, then these temperatures in the mantle must be <600°C, which seems rather unlikely beneath the thick Himalayan crust.

North of the Indus–Yarlung suture, the crust reaches the thickest known, c. 70–90 km, under the Karakoram and far west Tibet (Fig. 15a). The Asian plate in this profile consists of the Karakoram metamorphic sequence, a series of kyanite- and sillimanite-grade metamorphic rocks, migmatites and an extensive Miocene granite batholith with U–Pb zircon and monazite ages spanning c. 24–13 Ma (Searle et al. 2010a). We interpret the Karakoram strike-slip fault as purely a crustal structure. Temperatures in the deep crust beneath the Karakoram are far too high to support brittle faulting and the crustal melt granites in the Karakoram have a different mineralogy and isotopic composition from the Himalayan leucogranites (Searle et al. 1992, 2010a). Crustal thickness is also the same on either side of the Karakoram Fault, suggesting that the fault does not penetrate into the mantle. There is an apparent 10–15 km step in Moho depths across the northern boundary of west Tibet where thinner crust underlies the Precambrian stable Tarim block (Wittlinger et al. 2004).

In the Nepal–central Tibet profile (Fig. 15b) a similar Himalayan structure is present with shallow north-dipping structures extending beneath southern Tibet. The major difference lies in the structure of the Asian side of the collision zone. Unlike the Karakoram, in Tibet low exhumation and low erosion has not exhumed the deep crust metamorphic rocks to the surface. We are reliant on lower crust xenoliths entrained in Miocene ultrapotassic volcanic rocks and dykes to infer the composition of the lower crust. Chan et al. (2009) and Hacker et al. (2000, 2005) described high-pressure granulite xenoliths from southern Tibet and the Qiangtang terrane respectively. P–T conditions of these Miocene granulites indicate a thick (60–80 km), hot (>900–1000°C) and dry lower crust. In addition to the high-pressure granulites, eclogite-facies rocks and ultramafic restitic xenoliths support the eclogitized lower crust model (Fig. 15b).

Helium isotopes analysed from geothermal springs reveal two distinct zones. In southern Tibet helium isotopes are consistent with radiogenic heat production in the crust whereas in northern Tibet a b He anomaly is consistent with a mantle contribution (Hoke et al. 2000). The east–west divide is roughly 100–150 km to the north of the Indus suture zone, consistent with underthrusting of Indian lower crust north at least as far as this. There is no clear association between mantle helium domains and crustal structures in southern Tibet.

The surface velocity field as determined by GPS appears to be most consistent with relatively slow slip rates along the boundaries of elastic, rotating blocks under which relatively high-viscosity lower crust and mantle are present (Hilley et al. 2009). Based upon these data, and coupled with detailed field observations, we conclude that continental extrusion of Tibet was not a dominant controlling factor at any stage of the Himalayan–Tibet orogeny. Despite the geomorphological prominence of large strike-slip faults such as the Karakoram Fault, they actually show very limited geological offsets, they initiated long (>30 Ma) after the India–Asia collision, they were not the cause of metamorphism, and are not responsible for large-scale continental extrusion of the thickened crust of the Tibetan Plateau. The Karakoram Fault is highly oblique to both geological boundaries and the active GPS motions, appears to be seismically dormant and has very limited long-term geological offset. The Altyrn Tagh Fault, however, may have a geological offset up to c. 400 km but the piercing points are by no means certain.

Conclusions

Southern Tibet was an Andean-type margin dominated by calc-alkaline volcanic rocks (andesites, dacites, rhyolites) and subduction-related I-type (biotite–hornblende–granite–granodiorite) batholiths during the period c. 120–48 Ma. Granites (rare garnet and biotite leucogranite dykes) younger than c. 48 Ma have a distinct crustal chemistry related to post-collision thickening. Southern Tibet could have had a crustal thickness and topographic elevation similar to that of present-day Peru or Chile, prior to the Indian plate collision at 50 Ma, but precise amounts are unquantifiable.

Crustal thickness beneath SW, western and southern Tibet (c. 75–90 km; Wittlinger et al. 2004; Schulte-Pelkum et al. 2005; Rai et al. 2006) suggest that the lower Indian crust must at present be in eclogite (wet) or high-pressure granulite (dry) facies. Thermobarometry and U–Pb dating of monazites in exposures of exhumed lower crust metamorphic rocks and S-type granites in the Karakoram show that P–T conditions (650–800°C; 10–12 kbar) have been high almost continuously since c. 65 Ma (Searle et al. 2010a). These rocks are lateral exhumed equivalents of the central Tibet Qiangtang terrane, suggesting that Tibet could have been undergoing crustal thickening and regional metamorphism also at least since the Indian collision.

Surface-wave tomography implies that high-velocity lithospheric mantle underlies all of Tibet except for the farthest north beneath the Kun Lun (Priestley et al. 2008), supporting the model of underthrusting cold Indian lithosphere north beneath at
Fig. 15. (a) Cross-section of the Western Himalaya and Karakoram Ranges to the Tarim basin, far west Tibet, showing interpretation of the crustal structure, after Searle et al. (2010a). Depth of Moho is from Wittlinger et al. (2004) and Rai et al. (2006). MBT, Main Boundary Thrust; MCT, Main Central Thrust; MHT, Main Himalayan Thrust; MKT, Main Karakoram Thrust. (b) Cross-section of the Nepal–Tibet region showing our interpretation of the lithospheric structure. Depth of Moho is from Schulte-Pelkum et al. (2005) and Nábelek et al. (2009).
least the Lhasa block, and suggesting there has been no delamination of lithospheric mantle beneath Tibet. A subvertical low-velocity zone from c. 100 to 400 km depth beneath the Bangong suture suggests downwelling of Indian lithosphere (Tilmann et al. 2003).

The distribution of mantle-derived shoshonitic potassic and ultrapotassic volcanic rocks across the plateau indicates that hot mantle was progressively shunted northward by the underthrusting of cold Indian lithospheric mantle from the south from 50 Ma to c. 13 Ma (Chung et al. 2005). Adakitic melts in Tibet indicate partial melting of a garnet-bearing amphibolitic or eclogitic source rock, possibly eclogitized lower crust, from at least c. 47 Ma in the Qiangtang block and at least c. 30 Ma in the Lhasa block, implying that Tibet was high since the Early-Middle Eocene. The youngest volcanic rocks in northern Tibet, c. 15–0 Ma shoshonites that require a deep and hot mantle source, are distributed only along the far north of Tibet in the Kun Lun.

About seven north–south-aligned rift valleys and graben systems cut across the whole plateau north of the Himalaya. Earthquakes in the high plateau region of Tibet all occur within the upper c. 18 km of the crust and all show east–west extension. Adakitic, shoshonitic and alkaline rocks intruded along north–south-aligned dykes from 47 to 38 Ma (Wang et al. 2010) indicate east–west extension of the high plateau since then. This extension does not necessarily imply ‘orogenic collapse’ because new material has been constantly underthrust mainly from the south (Himalaya) but also to a lesser extent from the north (Kun Lun–Songpan Ganzi terrane). On the contrary, these normal faults were active during periods of crustal compression and active uplift. There is no evidence that Tibet has ‘collapsed’ or is decreasing in elevation or crustal thickness.

Deep earthquakes (c. 70–90 km) beneath southern Tibet could occur within the lower part of the old, cold Indian craton underthrusting Tibet, or even by slip along the crust–mantle boundary. The Hindu Kush seismic zone along the NW part of India is related to fast and deep subduction of thinned Indian continental crust since c. 11 Ma (Pegler & Das 1998; Searle et al. 2001).

Metamorphic rocks and granites exhumed along the Karakoram Fault were formed prior to strike-slip shearing along the fault (Searle 1996; Searle et al. 1998; Phillips et al. 2004; Streule et al. 2009) and not during strike-slip shearing (Lacassin et al. 2004a; Valli et al. 2007, 2008; Weinberg & Mark 2008; Weinberg et al. 2009). U–Pb ages of amphibolite-facies metamorphic rocks cut by the Karakoram Fault at K2 (Searle & Phillips 2007) and Pangong (Streule et al. 2009) are Cretaceous in age. Geological markers (notably the intrusive margins of the Baltoro and Nubra–Siachen granites) have been offset dextrally between 25 km (minimum) and 120 km (maximum) since 13 Ma (Phillips & Searle 2007; Searle & Phillips 2007; Searle et al. 2010a).

The Karakoram Fault does not appear to be particularly active today and has almost no historical earthquake activity, even though it is a major geomorphological feature. The fault also shows very little if any Quaternary offset. Present-day slip rates measured from InSAR along the Karakoram Fault (<7 mm a⁻¹; Wright et al. 2004) and Altyn Tagh Fault (c. 11 mm a⁻¹; Elliott et al. 2008), GPS-determined rates and long-term geological rates can account for only limited eastward extrusion of Tibet since Mid-Miocene time. The relatively minor geological offsets and low slip rates do not support large-scale continental extrusion of Tibetan crust along the Karakoram Fault.

Slip rates for each of the faults appear to be relatively consistent across the three time scales (geological, Quaternary, active). There is therefore little evidence for secular variation in fault slip rates. Slip rates for all the major faults in Tibet are <15 mm a⁻¹, suggesting that distributed deformation is a more suitable model, rather than localized block faulting, for the large-scale deformation of Tibet.

The Altyn Tagh Fault may have geological offsets of as much as c. 400 km (Ritts & Biffi 2000; Yue et al. 2001, 2003; Cowgill et al. 2003) and Cenozoic average slip rates of 12–16 mm a⁻¹. Quaternary and active slip rates measured from InSAR and GPS are between 5 and 15 mm a⁻¹, but with a decrease towards the east (Wright et al. 2004; Elliott et al. 2008; Jolivet et al. 2008) and are not high enough to support large-scale continental extrusion.

The Kun Lun and Xianshuihe faults rotate clockwise about a vertical axis, showing that as India indented into Tibet the eastern margin of the plateau was a large-scale zone of distributed right-lateral shear (England & Molnar 1990). The eastern margin of the Tibetan Plateau (Long Men Shan) shows no evidence of outward easterly crustal flow like the Himalaya; on the contrary, the margin appears to have been passively uplifted along steep west-dipping thrust faults such as those that ruptured during the Wenchuan earthquake.

Neither the ‘rigid block’ model nor the continuum model adequately explains the geological and geophysical characteristics of the Tibetan Plateau. Tibet instead shows widespread distributed strain both horizontally and vertically, and rheological layering of the crust with prominent layers of weak partially molten crust separated by major flat-lying detachments. Despite major differences between relatively cold mantle in southern Tibet and hot mantle in northern Tibet, there is little difference in topographic elevation across the plateau and only a small difference in crustal thickness.

The Himalayan mid-crustal channel flow model fits all the known geological and geophysical constraints along southernmost Tibet (Indian plate Himalaya). A 10–20 km thick mid-crustal zone of sillimanite-grade gneisses, migmatites and Miocene garnet, two-mica–tourmaline-bearing leucogranites was extruded southward during the Miocene between two thick ductile shear zones, the Main Central Thrust with a compressed inverted metamorphic isograd sequence along the base and the South Tibetan Detachment with a compressed and right-way-up metamorphic isograd sequence along the top. Approximately 100 km or more of relative southward motion occurred beneath the South Tibetan Detachment passive roof fault, and above the Main Central Thrust.

The lower crust flow model for eastern Tibet (Royden et al. 1997; Clark & Royden 2000) has no geological evidence from the upper crust to support it, although undoubtedly the temperature and rheology of the lower crust should allow it to flow. Unlike the Himalaya, the Long Men Shan range along the eastern margin of Tibet shows no horizontal extrusion of middle or deep crustal metamorphic rocks, there are no equivalents of the Main Central Thrust or South Tibetan Detachment detachments, and there is no flexural foreland basin to the east in Sichuan. The pattern of GPS ‘flow-lines’ around the Eastern Himalayan syntaxis does not correspond to the geological structure at all. The GPS lines cut diagonally across all earlier structures including the Red River Fault and Sagaing Fault. GPS motions tell us only about present-day surface motions and tell us nothing about relative motions in the middle or lower crust, or back in time. Only interpreting the geological record correctly can do this.

Broadband seismic experiments support the model of underthrusting of old, cold Indian lithosphere beneath southern Tibet as far as the Bangong suture (Tilmann et al. 2003; Hetényi et al. 2004).
2007; Nábělek et al. 2009). Northern Tibet is underlain by 10–20 km thinner crust than the south, with hot mantle and anisotropy interpreted as representing eastward lateral flow. This could support up to c. 400 km of finite geological offset along the Altyn Tagh Fault, whereas the Karakoram Fault has much more limited offset (<120 km) and limited extrusion in southern Tibet. Western Tibet and the Karakoram has undergone far greater amounts of crustal thickening, and regional high-grade metamorphism, with correspondingly high exhumation and erosion rates.

We would like to thank P. Molnar, P. Tapponnier, J. Yang, M. St-Onge, R. Parrish, D. Waters, R. Bilham, J.-P. Avouac, A. Watts, E. Burov, M. Yeh and L. Hua Qi for numerous discussions, although they may not agree with some of our conclusions. Thanks go to A. Robinson and P. Kapp for detailed and insightful reviews of the paper. Our work in and around Tibet was funded mainly by NERC (UK) grants and the National Science Council, Taiwan.

References

Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 283, 1306–1308.

Matte, P., Tappuni¤er, P. et al. 1996. Tectonics of Western Tibet, between the...

Rogers, F., Calais, S. & et al. 1995. Miocene emplacement and deformation of the Konga Shan granite (Xianshi He fault zone, west Sichuan, China).

Received 23 August 2010; revised typescript accepted 30 November 2010.

Scientific editing by Rob Strachan.