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We use the effective relativistic mean-field (E-RMF) model to study the crustal properties of the neutron star.
The unified equations of state (EoS) are constructed using recently developed E-RMF parameter sets, such as
FSUGarnet, IOPB-I, and G3. The outer crust composition is determined using the atomic mass evaluation 2020
data [Chinese Physics C 45, 030002 (2021)] along with the available Hartree-Fock-Bogoliubov mass models
[Phys. Rev. C 88, 024308 (2013)] for neutron-rich nuclei. The structure of the inner crust is estimated by
performing the compressible liquid drop model calculations using the same E-RMF functional as that for the
uniform nuclear matter in the liquid core. Various neutron star properties such as mass-radius (M −R) relation,
the moment of inertia (I), the fractional crustal moment of inertia (Icrust/I), mass (Mcrust) and thickness
(lcrust) of the crust are calculated with three unified EoSs. The crustal properties are found to be sensitive to
the density-dependent symmetry energy and slope parameter advocating the importance of the unified treatment
of neutron star EoS. The three unified EoSs, IOPB-I-U, FSUGarnet-U, and G3-U, reproduced the observational
data obtained with different pulsars, NICER, and glitch activity and are found suitable for further description of
the structure of the neutron star.

I. INTRODUCTION

In 1934, astronomers Baade and Zwicky, in their pioneering
work, coined the term “supernova” and hypothesized the exis-
tence of neutron stars [1, 2] which was discovered by Hewish
et al. in 1968 [3]. The discovery of neutron stars revolu-
tionized nuclear and astrophysics and unfolded a new era of
science. Neutron stars are one of the densest and most com-
pact astrophysical objects, and the remnant collapsed core of
giant stars with mass 8− 20 M� after supernovae explosions
[4]. The internal structure of a typical cold nonaccreting neu-
tron star can be divided into three distinct parts below its thin
atmosphere: two concentric inhomogeneous outer and inner
crust followed by a dense homogeneous liquid core [5–7].
The neutron star remains in complete thermodynamic equi-
librium against all possible interactions and in the lowest en-
ergy state at zero temperature. The outermost layer, the “outer
crust”, consists of a body-centered cubic (BCC) lattice em-
bedded in the sea of electrons, making it globally charge neu-
tral. With increasing star depth, more and more neutron-rich
nuclei appear until the onset of the inner crust, where neu-
trons start dripping, owing to high-density [8–10]. The inner
crust is marked by the assembly of the clusters formed by neu-
trons and protons along with the unbound neutrons making
the neutron gas. The system is neutralized by the electron gas,
which is distributed uniformly over the cluster and neutron gas
[11, 12]. The clusters can have different shapes such as the
sphere, slab, rods, etc., commonly known as “nuclear pasta”
[13, 14] to reduce the energy of the cluster. As the density
increases, the size of the cluster in the inner crust increases,
and at a density called transition density, the inhomogeneities
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disappear, and we enter the liquid core of the star, which con-
sists of an admixture of neutrons and protons along with the
leptons ensuring the charge neutrality and β− equilibrium.

Determining the structure of the neutron star from the sur-
face to interiors in a unified way is one of the principal prob-
lems in neutron star physics. Apart from a small region of the
outer crust, the structure of the neutron star is mainly depen-
dent on the equation of state (EoS). A substantial amount of
research has been carried out in the last two decades to con-
strain the EoS based on many experimental and theoretical ob-
servations [15–20]. The GW170817 event [16, 21] provides
an upper limit on the tidal deformability while the massive
pulsar such as PSR J0740+6620 [22] , PSR J0348+0432 [23]
and PSR J1614–2230 [24] estimate that the neutron star mass
should be greater than 2M�. There are just a few EoSs which
have been used to calculate the neutron star structure in the
entire density range within a unified approach and satisfy the
relevant constraints [25]. The unified treatment of the neutron
star is essential as various properties such as crust-core transi-
tion density, pressure, the crustal moment of inertia, etc., are
very sensitive to the choice of EoS [26]. These properties and
the structure of the crust, which essentially depends on the
subsaturation behavior of EoS, have a significant impact on
the transport and thermodynamical properties of the neutron
star.

In this work, we provide a unified treatment of the structure
of the neutron star within the effective relativistic mean-field
(E-RMF) approach using the cold catalyzed matter approxi-
mation (CCM). The CCM means that the star is in thermal and
β− equilibrium, valid for any non-accreting neutron star [18].
The E-RMF formalism is inspired by the effective field theory
(EFT), where we do not have to worry about the renormaliza-
tion problem as in the conventional RMF theory [27, 28]. The
effective Lagrangian is consistent with the underlying quan-
tum chromodynamics (QCD) symmetries and contains infinite
terms, and none can be dropped without the proper symmetry
argument [29]. The E-RMF theory has been very successful
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in the last two decades and has been applied in various nuclear
problems, which range from the properties of the nucleus to
the structure of the neutron star [30–33].

We begin our calculations from the surface of the star with
a density greater than 10−10 fm−3 where all the atoms are
completely ionized, and electrons form a degenerate Fermi
gas. Below this density, the electrons are still bounded to the
nuclei, and one can use generalized Thomas-Fermi (TF) the-
ory to calculate the properties of this thin layer [34, 35]. The
composition of the outer crust, which starts from the density
of 10−10 fm−3 until the onset of neutron drip, is calculated us-
ing the pioneering variational formalism proposed by Baym-
Pethick-Sutherland (BPS) [36]. It considers that the ensemble
of heavy nuclei may be represented by a single nucleus com-
monly known as the single-nucleus approximation [37], thus
giving a unique configuration for given thermodynamic con-
ditions. The only input in the calculation of outer crust is the
atomic mass evaluations. We have taken the values from the
recently measured atomic mass evaluation (AME) 2020 mass
table [38], which is available up to isospin asymmetry of 0.3.
Mass evaluations are not possible for more neutron-rich nu-
clei in the laboratory, so the need to use a mass model arises.
For this, we use the nuclear mass model calculated from the
Hartree-Fock-Bogoliubov (HFB ) [39] method using the accu-
rately calibrated Brussels-Montreal [40] energy-density func-
tionals, such as, BSk14, BSk24, and BSk26 [41, 42]. The
HFB approach is a highly precise formalism used in var-
ious calculations concerning nuclear masses for the highly
neutron-rich nuclei.

The onset of neutron drip marks the beginning of the inner
crust, which has an intricate structure making it a challeng-
ing problem. Different treatments of inner crust are available
such as microscopic calculation pioneered by Negele and Vau-
therin [43] using the microscopic Hartree-Fock approach and
subsequently modified by Baldo et al. [44], and Onsi et al.
[45] which uses the extended Thomas-Fermi (ETF) formula-
tion. The microscopic calculations that specifically include
the quantum nature are accurate but suffer from the fact that
one needs to solve boundary value problems and do not al-
low the specific treatment of different terms such as surface or
Coulomb energy. On the other hand, classical formalism such
as the compressible liquid drop model (CLDM) [46, 47] is
computationally economical and avoids the choice of bound-
ary conditions. The CLDM model is modified from the con-
ventional semiempirical model by Baym-Bethe-Pethick [48]
which incorporated the compressibility of nuclear matter, neg-
ative lattice Coulomb energy, and the suppression of surface
tension by the neutron gas. The results of CLDM are known
to be at par with those of ETF, and TF calculations [49]. It
should be noted that the CLDM requires that the same func-
tional be used for the calculation of bulk as well as the finite
size contributions. The CLDM is recently applied in the work
of Refs. [50–52] where the energy-density functional is taken
in the form of meta-modeling, a technique developed to mimic
the original relativistic or nonrelativistic functional using the
isoscalar and the isovector energy of the EoS [53] and for the
Bayesian inference of neutron star crust properties [47]. The
meta-modeling reduces the computational difficulties when

studying the statistical properties such as Bayesian inference
to constrain the EoS. Although this formalism reasonably im-
itates the EoS at low density but deviates at extremely low and
high density, thereby estimating different neutron star results
as the original EoS. We, therefore, use the technique devel-
oped by Carreau et al. [54] and modify it to use the exact
E-RMF formalism for the calculation of bulk and finite-size
contribution of the cluster. This will preserve the underlying
properties of a parameter that may otherwise be lost in the
meta-modeling.

The aim of this paper is twofold: First, we develop three
unified EoS, namely FSUGarnet-U, IOPB-I-U, and G3-U with
available core EOSs, such as FSUGarnet [55], IOPB-I [56],
and G3 [30]. We construct the EoS from the outer crust to the
liquid core using the experimental mass from the AME2020
data [38], mass table of HFB-26 [42], available mass excess of
neutron-rich nuclei [57–59] and the E-RMF sets FSUGarnet
[60], IOPB-I [56], and G3 [30]. We consider only spherical
geometry for the estimation of inner crust structure. Second,
we study the neutron star properties such as the M − R rela-
tion, the moment of inertia. We study the influence of the crust
on the moment of inertia in the form of fractional moment of
inertia (FMI) which plays an important role to understand the
pulsar glitch behavior [40, 61]. Pulsar glitches are the sud-
den jump in the spin frequency usually attributed to the depth
of their interior superfluid from the surface. Therefore, these
glitches are related to the crust thickness and act as the labo-
ratory to test the validity of nuclear models.

The paper is organized as follows: In Sec. II, we describe
the formalism for the solid outer crust, inner crust, and liquid
core of the neutron star. We, in brief, describe the E-RMF for-
malism and neutron star observables such as the moment of
inertia. We discuss the results in Sec. III. Finally, we summa-
rize our results in Section IV.

II. FORMULATION

A. Outer crust

In the outer crust, the energy of Wigner–Seitz (WS) cell
at a given baryon density (ρb) with the condition of charge
neutrality is given by [5]

E(A,Z, ρb)WS = E(A,Z)N + EL + Ezp + Ee, (1)

where E(A,Z)N = M(A,Z) is the rest mass energy of nu-
cleus with mass numberA and atomic number Z. EL andEzp
corresponds to static-lattice and zero-point energy, which are
written as [52]

EL = −CM
(Ze)2

RN
; RN =

(
3

4π
ρN

)1/3

,

Ezp =
3

2
~ωpu.

(2)

Here, CM = 0.895929255682 is the Mandelung constant,
u = 0.51138 is a constant for a BCC lattice [8] and ωp is the
plasma frequency. ρN is the neutron density. Ee = EeVWS is



3

the energy of the surrounding relativistic electron gas. VWS is
the volume of the WS cell.

In order to estimate the composition of the ground state of
the outer crust, we use the BPS technique [36]. At a fixed pres-
sure, we find a nucleus with the mass number A and charge Z
that minimizes the Gibbs free energy [36],

G(A,Z, P ) =
EWS + P

ρb
, (3)

where EWS = EWS/VWS is the energy density of WS cell
and ρb = A/VWS = ρNA is the baryon density. The ad-
vantage of taking pressure as an independent variable is that
it increases monotonically while moving from the surface to
the core. Thus discontinuity in density suggests the transition
from one layer of the nucleus to another. One also gets rid
of the Maxwell construction [62] to determine the transition
pressure from one nucleus to another.

The pressure can be calculated from the first law of thermo-
dynamics as [51]

P = ρ2
b

∂EWS/ρb
∂ρb

. (4)

Nucleons exert no pressure in the outer crust, and the total
pressure can be written using Eq. (1) as

P =
1

3
ELρN +

1

2
EzpρN + Pe. (5)

The Gibbs free energy to minimize thus becomes [51, 63]

G(A,Z, P ) =
M(A,Z)

A
+

4

3

EL
A

+
1

2

Ezp
A

+
Z

A
µe, (6)

where µe is the electron chemical potential. The only in-
put in the calculation of outer crust is the nuclear mass table
which can be taken from experiments [38] which are avail-
able for I = (N − Z)/A ≤ 0.3. For the nuclear mass of
more neutron-rich nuclei, we use microscopic HFB theoret-
ical mass tables [39]. The outer crust extends to the den-
sity where the chemical potential of neutrons exceeds its rest
mass-energy. The neutron chemical potential utilizing the
condition of β−equilibrium µn = µp + µe can be simply
written as

µn = G. (7)

B. Inner crust

As one moves deeper into the crust, the neutrons become
less and less bound. At the transition density, the neutrons
drip out of the nuclei and start filling the continuous energy
spectrum. The dripped neutrons stay confined in the WS cell
due to the large gravitational pressure. In the inner crust, the
WS consists of a cluster surrounding ultrarelativistic electron
gas and ambient neutron gas. The energy of this cluster can
be written as [10, 36]

EWS = Mi(A,Z) + Ee + VWS(Eg + ρgMn), (8)

where Mi(A,Z) is the mass of the cluster written as

Mi(A,Z) = (A−Z)Mn+ZMp+Ecl−Vcl(Eg+ρgMn), (9)

where Mn, and Mp are the masses of neutron and proton re-
spectively. Eg , and ρg are the energy density and density of
the neutron gas respectively. We use the CLDM to determine
the energy of the cluster which reads

Ecl = Ebulk(ρ0, I)A+ Esurf + Ecurv + Ecoul, (10)

where Esurf , Ecurv, and Ecoul are surface, curvature and
Coulomb energy respectively. In WS approximation, the
Coulomb energy, which consists of lattice and finite-size cor-
rection, is written as [52]

Ecol =
3

20

e2

r0
ηcolA

5/3(1− I)2, (11)

with

ηcol = 1− 3

2
λ1/3 +

1

2
λ (12)

where λ = ρe/ρ0,p is the volume fraction with ρ0,p and ρe
are the proton and electron density inside the cluster respec-
tively. Considering cluster to be spherical, the surface energy
is defined as

Esurf = 4πR2
0A

2/3σ(I), (13)

where R0 = (4πρ0/3)−1/3 is related to the cluster density
ρ0, and σ(I) is the nuclear surface tension that depends on the
isospin asymmetry of the cluster. We use the parametrization
of surface tension proposed by Ravenhall et al. [64] which is
obtained by fitting Thomas-Fermi and Hartree-Fock numeri-
cal values as,

σ(I) = σ0
2p+1 + bs

Y −pp + bs + (1− Yp)−p
, (14)

where, σ0, p, bs are the free parameters and Yp is the proton
fraction inside the cluster. Similar to surface energy, the cur-
vature energy plays an important part in describing the surface
and is written as [49]

Ecurv = 8πr0A
1/3σc. (15)

Here σc is the curvature tension related to the surface tension
σ as [49, 52],

σc = σ
σ0,c

σ0
α(β − Yp), (16)

with α = 5.5 and σ0,c, β are the parameters which along with
the σ0 and bs needs to be fitted for a given EoS with the avail-
able experimental AME2020 mass table [38] at a fixed value
of p. The equilibrium composition of inhomogeneous matter
in the inner crust is obtained by minimizing the energy of WS
cell per unit volume at a given baryon density (ρb = ρn+ρp),
where ρn and ρp represent the neutron and proton density re-
spectively. We use the variational method used in [49, 50]
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where the Lagrange multipliers technique is used so that the
auxiliary function to be minimized reads as [50, 51]

F (A, I, ρ0, ρg, ρp) =
EWS

VWS
− µbρb, (17)

where µb is the baryonic chemical potential given by [50]

µb =
2ρ0ρp

ρ0(1− I)− 2ρp

∂(Ecl/A)

∂ρg
+
dEg
dρg

. (18)

The chemical and mechanical equilibrium along with the
Bayam virial theorem then transmute to the following set of
coupled differential equations [51],

∂(Ecl/A)

∂A
= 0, (19a)

ρ2
0

A

∂Ecl
∂ρ0

= Pg, (19b)

Ecl
A

+
1− I
A

∂Ecl
∂I

+
Pg
ρ0

= µg, (19c)

2

A

(
∂Ecl
∂I
− ρp

1− I
∂Ecl
∂ρp

)
= µe(ρp), (19d)

where Pg is the gas pressure. The four differential equations
(19) are solved simultaneously to estimate the equilibrium
composition in the inner crust. The energy density for the ho-
mogeneous nuclear matter entering Eq. (10) and neutron gas
in this work is determined employing the effective relativistic
mean-field theory, which will be discussed in the next section.

C. Liquid core

As the density is increased, the transition from inner solid
crust to outer liquid core takes place. In the outer core, the
energy density of homogeneous matter is written as

Ecore = EB(ρb, α) + Ee(ρe) + Eµ(ρµ), (20)

where B stands for baryon. The population of baryons and
leptons are calculated by the constraints of β−equilibrium and
charge neutrality as [31, 32, 65]

µn = µp + µe, µe = µµ. (21a)

ρp = ρe + ρµ, (21b)

where µp,n,e,µ are the chemical potential of the proton, neu-
tron electron, and muon in the homogeneous phase respec-
tively. We define the crust-core transition from the crust side

when the energy density of the WS cell in the inner crust ex-
ceeds the energy density of the liquid core. It can be written
as

EWS(ρt) = Enpeµ(ρρt). (22)

D. Effective relativistic mean-field theory

The E-RMF formalism is inspired by the effective field the-
ory (EFT) motivated relativistic mean field formalism and is
consistent with the underlying QCD symmetries. The con-
ventional RMF models, such as nonlinear NL-type (NL1,
NL2, NL-SH, NL3 etc.), consider only the higher-order self-
couplings of sigma-mesons. These couplings help to reduce
the incompressibility of nuclear matter to less than 300 MeV
(∼ 210− 270 MeV) [66–69].

Although, these models predict the incompressibility well
within the experimental data, other nuclear matter properties
of these models, such as symmetry energy and its higher-order
coefficients, do not fall in the accepted empirical or exper-
imental range [25]. In addition, EoS calculated from these
models also do not satisfy the flow data due to their stiffness,
which is one of the major drawbacks of these models. Conse-
quently, these models estimate the mass and radius of the neu-
tron star more than 2.5 M� and ∼ 14 km, which doesn’t sat-
isfy the latest massive pulsars and NICER data, respectively
[70]. However, these models are known to predict finite nu-
clei properties in agreement with the experimental data. Apart
from the conventional NL-type RMF models, a few modified
models have also been proposed that are still unable to satisfy
experimental/observational data for nuclear and neutron star
cases [70].

The E-RMF Lagrangian, on the other hand, includes
higher-order terms both for self and cross-couplings between
different mesons (σ, ω, ρ, and δ) [28, 71]. In our case, we
take the interaction between different mesons up to 4th order
except ρ4 and δ4 (in G3 and IOPB-I cases). The G3 set con-
tains the δ meson, which plays an important role in the high-
density limit and is absent in the majority of RMF models.
The predicted nuclear matter properties such as incompress-
ibility (220–250 MeV), symmetry energy (30–35 MeV), and
its slope parameter (40–80 MeV) by standard E-RMF forces (
e.g., G3, IOPB-I, FSUGarnet, etc. ) are in agreement with dif-
ferent empirical/experimental data. The flow data constraint is
also well satisfied by modern E-RMF sets [30, 56]. The most
important point is that almost all the modern E-RMF param-
eter sets satisfy the 2 M� constraint of neutron star. The E-
RMF has the advantage that besides being excellent for calcu-
lating neutron star properties, it does not violate the predictive
power of finite nuclei [30, 56]. Therefore, the E-RMF for-
malism is as good as the conventional RMF framework and,
in some cases, even performs better. This formalism has been
applied in a wide range of nuclear physics problems in the past
few years [72–78]. The E-RMF effective Lagrangian which
include the interaction between different mesons, such as, σ,
ω, ρ, δ and photon is written as [30, 56, 62, 79–81],
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E(r) = ψ†(r)

{
iα ·∇ + β[M − Φ(r)− τ3D(r)] +W (r) +

1

2
τ3R(r) +

1 + τ3
2

A(r)− iβα

2M

(
fω∇W (r) +

1

2
fρτ3∇R(r)

)}
ψ(r)

+

(
1

2
+
k3Φ(r)

3!M
+
k4

4!

Φ2(r)

M2

)
m2
s

g2
s

Φ(r)2 +
1

2g2
s

(
1 + α1

Φ(r)

M

)
(∇Φ(r))2 − 1

2g2
ω

(
1 + α2

Φ(r)

M

)
(∇W (r))2

− 1

2

(
1 + η1

Φ(r)

M
+
η2

2

Φ2(r)

M2

)m2
ω

g2
ω

W 2(r)− 1

2e2
(∇A2(r))2 − 1

2g2
ρ

(∇R(r))2 − 1

2

(
1 + ηρ

Φ(r)

M

)m2
ρ

g2
ρ

R2(r)

− ζ0
4!

1

g2
ω

W (r)4 − Λω(R2(r)W 2(r)) +
1

2g2
δ

(∇D(r))2 +
1

2

m2
δ

g2
δ

(D(r))2. (23)

Here Φ(r), W(r), R(r), D(r) and A(r) are the fields correspond-
ing to σ, ω, ρ and δ mesons and photon respectively. The gs,
gω , gρ, gδ and e2

4π are the corresponding coupling constants
and ms, mω , mρ and mδ are the corresponding masses. The
zeroth component T00 = H and the third component Tii of
energy-momentum tensor

Tµν = ∂νφ(x))
∂E

∂∂µφ(x)
− ηνµE , (24)

yields the energy and pressure density, respectively as [31, 75,
77]

E =
γ

(2π)3

∑
i=p,n

∫ ki

0

d3kE?i (ki) + ρbW +
1

2
ρ3R

+
m2
sΦ

2

g2
s

(
1

2
+
κ3

3!

Φ

Mnucl.
+
κ4

4!

Φ2

M2
nucl.

)
− 1

4!

ζ0W
4

g2
ω

− 1

2
m2
ω

W 2

g2
ω

(
1 + η1

Φ

Mnucl.
+
η2

2

Φ2

M2
nucl.

)

− Λω(R2 ×W 2)− 1

2

(
1 +

ηρΦ

Mnucl.

)
m2
ρ

g2
ρ

R2

+
1

2

m2
δ

g2
δ

D2, (25)

P =
γ

3(2π)3

∑
i=p,n

∫ ki

0

d3k
k2

E?i (ki)
+

1

4!

ζ0W
4

g2
ω

−m
2
sΦ

2

g2
s

(
1

2
+
κ3

3!

Φ

Mnucl.
+
κ4

4!

Φ2

M2
nucl.

)

+
1

2
m2
ω

W 2

g2
ω

(
1 + η1

Φ

Mnucl.
+
η2

2

Φ2

M2
nucl.

)

+Λω(R2 ×W 2) +
1

2

(
1 +

ηρΦ

Mnucl.

)
m2
ρ

g2
ρ

R2

−1

2

m2
δ

g2
δ

D2. (26)

We tabulated the different masses of the mesons and cou-
pling constants in Table I for three considered parameter sets
FSUGarnet, IOPB-I and G3.

TABLE I. The masses and coupling constants for FSUGarnet [60],
IOPB-I [56], and G3 [30] are listed. The mass of nucleon M is 939
MeV and other coupling constants are dimensionless.

Parameter FSUGarnet G3 IOPB-I
ms/M 0.529 0.559 0.533
mω/M 0.833 0.832 0.833
mρ/M 0.812 0.820 0.812
mδ/M 0.0 1.043 0.0
gs/4π 0.837 0.782 0.827
gω/4π 1.091 0.923 1.062
gρ/4π 1.105 0.962 0.885
gδ/4π 0.0 0.160 0.0
k3 1.368 2.606 1.496
k4 -1.397 1.694 -2.932
ζ0 4.410 1.010 3.103
η1 0.0 0.424 0.0
η2 0.0 0.114 0.0
ηρ 0.0 0.645 0.0
Λω 0.043 0.038 0.024
α1 0.0 2.000 0.0
α2 0.0 -1.468 0.0
fω/4 0.0 0.220 0.0
fρ/4 0.0 1.239 0.0
βσ 0.0 -0.087 0.0
βω 0.0 -0.484 0.0

E. Neutron star observables

The metric corresponds to static, spherically symmetric
stars is in the form of

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2sin2θdφ2,(27)

where r, θ and φ are the coordinates. ν(r), λ(r) are the metric
potential given as [82]

e2λ(r) = [1− γ(r)]−1, (28)

e2ν(r) = e−2λ(r) = [1− γ(r)], r > Rstar (29)

with

γ(r) =


2m(r)
r , if r < Rstar

2M
R , if r > Rstar

(30)
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For static star, its macroscopic properties such as M and R of
the NS, one can find by solving the Tolmann-Oppenheimer-
Volkoff equations as follow [83, 84]

dP (r)

dr
= − [P (r) + E(r)][m(r) + 4πr3P (r)]

r[r − 2m(r)]
, (31)

and

dm(r)

dr
= 4πr2E(r). (32)

The M and R of the star can be calculated with boundary
conditions r = 0, P = Pc and r = R,P = P0 at certain
central density.

The metric of slowly, uniformly rotating NS is given by
[85]

ds2 = −e2νdt2 + e2ψ(dφ− ωdt2) + e2α(r2dθ2 + dφ2),(33)

The moment of inertia (MI) of the NS is calculated in the
Refs. [85? –90]. The expression of I of uniformly rotating
NS with angular frequency ω is given as [91–93]

I ≈ 8π

3

∫ R

0

dr (E + P ) e−φ(r)
[
1− 2m(r)

r

]−1 ω̄

Ω
r4, (34)

where ω̄ is the dragging angular velocity for a uniformly ro-
tating star. The ω̄ satisfying the boundary conditions are

ω̄(r = R) = 1− 2I

R3
,

dω̄

dr

∣∣∣
r=0

= 0. (35)

We calculate the crustal MI by using the Eq. (34) from tran-
sition radius (Rc) to the surface of the star (R) is given by
[61, 94]

Icrust ≈
8π

3

∫ R

Rc

dr (E + P ) e−φ(r)
[
1− 2m(r)

r

]−1 ω̄

Ω
r4.

(36)

III. RESULTS AND DISCUSSIONS

A. Outer crust

In the outer crust of the cold nonaccreting neutron star, the
neutron-rich nuclei are embedded in a BCC lattice arrange-
ment, ensuring that the cell’s Coulomb energy is minimized.
These nuclei are stable against the β−decay by surrounding
uniform relativistic electron gas. To calculate the composition
of the outer crust of a neutron star, we minimize the Gibbs
free energy in Eq. (6) at fixed pressure where the atomic mass
table serves as an input. We use the most recent AME2020
data [38] along with the recently measured mass excess of
77−79 Cu taken from [58], 82Zn from [57] and 151−157Yb [59]
for the known masses and extrapolate them using the micro-
scopic HFB calculation namely HFB-24, HFB-26 [42], and
HFB-14 [41], which are based on BSk functional character-
ized by unconventional Skyrme forces along with the most
recent FRDM(2012) [95] mass table.

N=30
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3634

N

30
40
50
60
70
80
90

Fe

Se
Kr

Sr
Zr

Mo
Ru

Zn
GeSe
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FIG. 1. The proton (Z) and neutron number (N ) in the outer crust
as a function of density. The experimental data are taken from
AME2020 when available [38]. The unknown mass are taken from
microscopic calculations HFB-14 [41], HFB-24 , HFB-26 [42] along
with the FRDM(2012) mass table [95]. A comparison with BCPM
[7] and D1M [96] is also shown. In addition the experimental mass
of 82Zn [57], 77−79Cu [58] and 151−157Yb [59] are also considered.
Vertical dashed line represent the boundary where prediction from
experimental masses ends.

The composition of outer crust as a function of average
baryon density is shown in Fig. 1 for the various mass mod-
els. In addition to the HFB computed mass excess, we also
show the result from most recent FRDM(2012) [95], BCPM
[7] and D1M [96] Gogny interaction for a comparative anal-
ysis. The outermost layer is occupied by the 56Fe nucleus
accompanied by the layer of 28Ni nucleus in the intermediate
densities. The persistent existence of nuclear magic shell nu-
clei is also visible in Z = 28 and N = 50, 82 plateau due to
their enhanced binding energies. The layer of N = 50 starts
at density ≈ 10−6 fm−3 and is characterized by the staircase
structure signifying the decrease in atomic number due to the
electron capture process. It leads to the appearance of more
and more neutron-rich nuclei once we move deeper into the
crust. The composition of the outer crust is determined solely
from the experimental mass table up to the density 3.2×10−5

fm−3 for the HFB-26, which is marked by the dashed vertical
line in Fig. 1. The composition is the model-independent un-
til this density which is clear from the fact that all the curves
overlap each other. It may be noted that the value of this
density is slightly lower than the value determined from the
AME2016 data.

As we move deeper into the outer crust, the need to ap-
ply a mass model to calculate the mass excess of extremely
neutron-rich nuclei arises as these values are difficult to ob-
tain in a laboratory setup. However, various advanced ra-
dioactive beam facilities are working toward measuring the
properties of these neutron-rich nuclei in order to have a bet-
ter understanding of the unconventional regime [59, 97]. The
highly precise HFB calculations and those obtained from the
FRDM(2012), BCPM, and D1M predict the appearance of the
N = 82 layer at high density (near the transition to the in-
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FIG. 2. In the upper panel the EoS of outer crust is shown for dif-
ferent mass model. The lower panel shows the global asymmetry as
a function of density. Vertical dashed line represent the boundary
where prediction from experimental masses ends.

ner crust), which is also marked by the staircaselike structure.
However, the model dependency is clearly visible in this case.
The HFB calculations using HFB-14, HFB-24, and HFB-26
are close to the calculation of highly successful FRDM. For
comparison of different models, we show the last two layers
of the outer crust in Table III A where the last element cor-
responds to the layer just before the transition into the inner
crust. In the entire outer crust, one can see a strong effect
of closed proton and neutron shells on the composition, ex-
cept for the outermost layer of 56Fe nucleus. The existence of
nuclei with Z = 28 and N = 50 is the consequence of ex-
perimental fact whereas, N = 82 can be treated as the artifact
of extrapolation via the microscopic mass table used. In addi-
tion to these, there appears a thin layer of 121Y at the density
0.0001596 fm−3 using the HFB-24 mass model. The exis-
tence of an odd mass or charge number in the outer crust is
not considered in the calculations of BPS [36] and signifies a
possible ferromagnetic phase transition in a neutron star. Al-
though one needs a more precise evaluation of the mass of
odd-nuclei as it can alter the composition [10] of the outer
crust.

In Fig. 2 we have shown the equation of state and the vari-
ation of global isospin asymmetry in the outer crust and tabu-
lated data for HFB-26 in Table III. The outer crust is marked
by the discontinuous transition in the density at some pres-
sure values, indicating a change of equilibrium nucleus. The
pressure and chemical potential remain constant during the
transition from one nucleus to another resulting in the finite
shift in baryon density of the system. However, it is shown
in Ref. [98] that the transition between one layer to another
layer takes place through a thin layer of the mixed state of
two species with a pressure interval of ≈ 10−4P . It should
be noted here that the pressure of the outer crust is mainly
determined from the relativistic electron gas as suggested in

TABLE II. The last two layers of nucleus in the outer crust predicted
from the different model.

Model Element Z N
ρmax

(fm−3)
P

(MeV fm−3)
E

(MeV fm−3) α

HFB-14
122Sr 38 84 2.2799E-04 4.2566E-04 0.2137 0.377
120Kr 36 84 2.6712E-04 5.0108E-04 0.2505 0.400

HFB-24
122Sr 38 84 2.3720E-04 4.4874E-04 0.2224 0.377
124Sr 38 86 2.5675E-04 4.8804E-04 0.2407 0.387

HFB-26
122Sr 38 84 2.2799E-04 4.2566E-04 0.2137 0.377
126Sr 38 88 2.6188E-04 4.9052E-04 0.2456 0.397

FRDM
120Sr 38 82 2.2799E-04 4.3515E-04 0.2137 0.367
118Kr 36 82 2.6188E-04 4.9909E-04 0.2456 0.390

BCPM
120Sr 38 82 2.4265E-04 4.7276E-04 0.2275 0.367
114Se 34 80 2.6155E-04 4.8422E-04 0.2453 0.404

D1M
122Zr 40 82 1.7990E-04 3.3165E-04 0.1685 0.344
120Sr 38 82 2.4420E-04 4.7680E-04 0.2289 0.367

Eq. (5). The HFB calculations estimate similar EoS for the
outer crust except at the points where the transition in the nu-
cleus layers takes place. One can see that the majority of the
outer crust is determined from the nuclear mass models, which
are used to calculate the mass excess of neutron-rich nuclei.
The inner layers of heavy nuclei account for the maximum
mass of the outer crust. We also notice that the asymmetry
increases monotonically with density, although relatively at a
slower pace at high density in the outer crust, reaching ≈ 0.4
at the transition from outer to the inner crust. The relative
difference among different HFB mass models is also visible,
attributed to their different symmetry energy. The symmetry
energy plays a prominent role in determining the outer and in-
ner crust structure and will be discussed in the next section.

B. Inner crust

With the increase in density or the distance from the star’s
surface, neutron chemical potential increases monotonically.
When the chemical potential exceeds the rest mass of the neu-
tron, the neutron starts dripping out of nuclei making the onset
of the inner crust. Since no such system can be produced in
terrestrial laboratories as neutrons evaporate, the inner crust
inevitably becomes model dependent. We use the E-RMF
model to calculate the properties of the inner crust using three
recently developed parameter sets, namely FSUGarnet [55],
IOPB-I [56], and G3 [30]. The bulk properties of these three
parameter sets are provided in Table IV along with the theo-
retical or experimental constraints.

For a comparison, we plot the EoS of the nuclear matter for
three considered E-RMF parameter sets along with one RMF
parameter set NL3 [68] in Fig. 3. It is observed that the NL3
is the stiffest EoS compared to the other three E-RMF sets.
Hence, the predicted NM properties such as incompressibil-
ity, symmetry energy and its slope parameter etc. for NL3
case is quite larger as compared to other three as shown in
Table IV. Also the predicted properties does not satisfy the
empirical/experimental data. On the other hand, E-RMF pa-
rameters satisfy various constraints on EoS and are used in
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TABLE III. The composition and EoS of outer crust. The experi-
mental atomic mass evaluations are taken from AME2020 [38] when
available. The unknown mass are taken from microscopic calcula-
tions HFB-26 [42] . In addition the experimental mass of 82Zn [57],
77−79Cu [58] and 151−157Yb [59] are also considered. Horizontal
solid line represents the boundary where prediction from experimen-
tal masses ends. The upper part is obtained from the experimental
data and the lower part from the HFB-26 results.

ρb
(fm−3)

P
(MeV fm−3)

E
(MeV fm−3) Z N

1.0000E-09 2.9973E-11 9.3046E-07 26 30
4.9730E-09 3.4018E-10 4.6275E-06 26 30
5.0724E-09 3.3533E-10 4.7201E-06 28 34
1.5597E-07 4.0911E-08 1.4522E-04 28 34
1.5909E-07 4.1697E-08 1.4812E-04 26 32
1.6552E-07 4.3999E-08 1.5411E-04 26 32
1.6883E-07 4.3634E-08 1.5719E-04 28 36
8.0697E-07 3.5983E-07 7.5177E-04 28 36
8.2311E-07 3.5457E-07 7.6682E-04 28 38
9.2696E-07 4.1587E-07 8.6361E-04 28 38
9.4550E-07 4.1607E-07 8.8089E-04 36 50
1.8538E-06 1.0258E-06 1.7278E-03 36 50
1.8909E-06 1.0090E-06 1.7623E-03 34 50
6.8498E-06 5.6411E-06 6.3900E-03 34 50
6.9868E-06 5.5275E-06 6.5179E-03 32 50
1.6699E-05 1.7692E-05 1.5592E-02 32 50
1.7033E-05 1.7260E-05 1.5904E-02 30 50
3.2099E-05 4.0208E-05 2.9994E-02 30 50

3.2741E-05 3.9028E-05 3.0595E-02 28 50
7.5214E-05 1.1838E-04 7.0370E-02 28 50
7.6718E-05 1.1094E-04 7.1779E-02 42 82
1.2098E-04 2.0367E-04 1.1328E-01 42 82
1.2340E-04 2.0062E-04 1.1554E-01 40 82
1.5042E-04 2.6126E-04 1.4090E-01 40 82
1.5343E-04 2.6250E-04 1.4372E-01 40 84
1.6940E-04 2.9956E-04 1.5871E-01 40 84
1.7278E-04 3.0065E-04 1.6189E-01 38 82
1.7624E-04 3.0869E-04 1.6513E-01 38 82
1.7977E-04 3.1695E-04 1.6844E-01 38 82
1.8336E-04 3.1834E-04 1.7182E-01 38 84
2.2799E-04 4.2566E-04 2.1372E-01 38 84
2.3255E-04 4.2767E-04 2.1801E-01 38 86
2.5171E-04 4.7532E-04 2.3601E-01 38 86
2.5675E-04 4.7774E-04 2.4074E-01 38 88
2.6188E-04 4.9052E-04 2.4557E-01 38 88

this work for the complete description of the neutron star. The
structure and properties of the inner crust are calculated us-
ing the famous CLDM, assuming the existence of spherical
clusters surrounded by the gas of dripped neutrons throughout
the inner crust. The bulk energy of the cluster in Eq. (10)
and neutron gas is calculated using the E-RMF parameter sets
FSUGarnet, IOPB-I, and G3, ensuring numerical and physical
consistency.

The most important aspect in the calculation of inner crust
structure is the parametrization of the surface and curvature
energy of the cluster. The curvature energy helps to under-
stand the surface energy of the cluster better and is an inte-
gral part of the modified liquid-drop formulas [105]. Since

TABLE IV. Bulk matter properties such as saturation density (ρsat),
binding energy (E0), effective mass (m∗), symmetry energy (J),
slope parameter (L), second (Ksym) and third (Qsym) order deriva-
tive of symmetry energy , incompressibility (K) of nuclear matter
for the NL3, FSUGarnet, IOPB-I and G3 parameter and their corre-
sponding empirical values

NL3 IOPB-I G3 FSUGarnet Empirical Value
ρsat (fm−3) 0.148 0.149 0.148 0.153 0.148/0.185 [99]
E0 (MeV) -16.29 -16.10 -16.02 -16.23 -15.0/-17.0 [99]
M ∗ /M 0.595 0.593 0.699 0.578 0.55/0.6 [100]
J (MeV) 37.43 33.30 31.84 30.95 30.0/33.70 [101]
L (MeV) 118.65 63.58 49.31 51.04 35.0/70.0 [101]

Ksym (MeV)101.34 -37.09 -106.07 59.36 -174.0/31.0 [102]
Qsym (MeV)177.90 862.70 915.47 130.93 -494/-10 [103]
K (MeV) 271.38 222.65 243.96 229.5 220/260 [104]
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FIG. 3. EOSs of the Nuclear matter for NL3 set with other three
considered sets.

we do not have the significant knowledge of surface energy
of very neutron-rich nuclei from the laboratory experiments,
we resort to the fitting of semiempirical formula such as given
in Eq. (10). In order to fit the surface and curvature energy
of CLDM with the experimental mass, we define a param-
eter space S = {σ0, bs, σ0,c, β, α, p} which is fitted to the
experimental mass obtained from AME2020 table [38]. The
goodness of reproduction of experimental binding energy is
measured by the penalty function χ2(S) as [106]

χ2(S) =
1

N

N∑
i=1

( (Oi(s)−Oexpi )2

∆O2
i

)
, (37)

where N is the degree of freedom,Oi(s) stands for the calcu-
lated energy of cluster, Oexpi for the experimental binding en-
ergy and ∆Oi for adopted systematic theoretical error of 0.1
MeV [52]. The value of p, which takes care of isospin asym-
metry dependence of surface energy, is taken to be 3. This
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FIG. 4. The variation of mass numberA, proton number Z, asymmetry α, average cluster density ρ0, the neutron gas density ρg and the radius
of cell with the baryon density ρb in the inner crust of neutron star with FSUGarnet, IOPB-I, and G3 E-RMF parameter set. The quantum
calculation by Negele and Vautherin [43] and Onsi et al. [45] are also shown.

TABLE V. The fitted value of surface and curvature energy param-
eters for the FSUGarnet, IOPB-I, and G3 force parameter set. The
value of α and p is taken to be 5.5 and 3 respectively. Experimental
binding energy is taken from AME2020 table [38].

Parameter
σ0

(MeV fm−2) bs
σ0,c

(MeV fm−1) β

FSUGarnet 1.13975 29.39987 0.07819 0.44021
IOPB-I 0.97594 16.35460 0.09064 0.81485
G3 0.88424 26.58373 0.09921 0.93635

is a favorable choice in various calculations of surface energy
[14, 107], and α is taken to be 5.5 as prescribed in [49]. The
parameter space S then reduces to four variables whose val-
ues for different E-RMF parameter sets used in this study are
given in Table V.

The importance of fitting individual parameter set for the
experimental mass excess instead of taking the same value for
all the parameter sets is clear from the Table V, where one can
see a substantial difference in fitted parameters of surface and
curvature energy. The neutron star’s inner crust and crustal
properties are susceptible to the surface and curvature energy,
making this step essential for the CLDM calculation. It is also

clear from Table V that the fitting process underestimates the
value of σ0 and σ0,c as all other energies such as deformations
are included in these parameters themselves.

After fixing the surface parameters, we now calculate the
composition of the neutron star inner crust, which is shown
in Fig. 4 as a function of baryon density for the FSUGarnet,
G3, and IOPB-I parameter sets. The number of nucleons A
inside the cluster increase monotonically with increasing den-
sity. One can see a steep rise in the number of nucleons when
approaching the crust-core transition density, thereby indicat-
ing that the matter is transiting to a homogeneous phase of
nucleons and leptons. The variation of charge number is also
shown in Fig. 4. It is observed that theZ ≈ 40 dominates over
the majority of the inner crust. This feature is analogous with
the quantum calculation carried by Negele and Vautherin [43]
which predicts the dominance of Z = 40 at lower densities
and Z = 50 at higher densities along with the calculations by
Onsi et al. [45]. The distinctive feature of these works is the
existence of strong proton quantum-shell effects in the nuclear
cluster with Z = 40 and 50 in the inner crust of the neutron
star. One may note that the Z = 40 is not a magic number
in ordinary nuclei but corresponds to a filled proton subshell.
Recent calculation by BCPM [7] and D1M [96] also indicated
the same feature of inner crust.
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FIG. 5. The density dependent symmetry energy (J) and slope pa-
rameter (L) for different E-RMF parametrizations.

Distribution of mass and charge number in inner crust
within CLDM formalism primarily depends on two parame-
ters; a) the isovector surface parameter p in Eq. (14) which
is responsible for the isospin dependence of surface energy,
and b) the density-dependent symmetry energy or slope pa-
rameter of the EoS used to calculate the bulk energy of clus-
ter. It is observed that the surface parameter p = 3 correctly
estimates the properties of the inner crust properties such as
crust-core transition density in agreement with the dynami-
cal [108] or thermodynamical [109] formalisms and is used in
various works such as Refs. [13, 14]. In the same context, we
perform the inner crust calculation with p = 3. Furthermore,
it is an artifact of the literature that nuclear symmetry energy
plays a vital role in the structural properties of a neutron star,
such as radii, the moment of inertia, crust-core transition den-
sity, etc [110]. Additionally, it was observed in Ref. [10] that
the symmetry energy correlates with the EoS of the inner crust
for the Brussels–Montreal functionals. Recently Dutra et al.
[111] suggested that the mass and thickness of the crust are
more sensitive to the symmetry energy compared to other sat-
uration properties. Taking motivation from these facts and to
ascertain the effect of symmetry energy (J) and slope param-
eter (L) on the equilibrium distribution of inner crust, we plot
these quantities in Fig. 5 for the FSUGarnet, IOPB-I, and G3
parameter sets. All these sets follow the constraints from the
experimental flow data [56, 112]. The behavior of J and L of
parameter sets used is different for different density regions.
At sub-saturation densities (< 0.1 fm−3), which is relevant
for the inner crust, the FSUGarnet shows the maximum sym-
metry energy followed by IOPB-I and G3. This results in the
smallest slope parameter for the FSUGarnet and the highest
for the G3 set. This slope parameter behavior suggests that
the higher symmetry energy or lower slope parameter of an
EoS in the sub-saturation density region corresponds to the
larger nucleon and charge number of clusters inside neutron
star crust. This fact is also verified in Ref. [12] which used
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FIG. 6. Crust-core transition density and pressure as a function of
slope parameter L and p (Eq. (14)) for the FSUGarnet, IOPB-I, and
G3 parameter sets.

macroscopic nuclear models to study the inner crust of the
neutron star.

With increasing density or distance from the star’s surface,
the spherical cluster becomes more and more asymmetric and
dilute. The asymmetry

(
α =

ρn−ρp
ρn+ρp

)
reaches ≈ 0.9 when

reaching the crust boundary, and the density of cluster (ρ0) be-
comes comparable to the density of neutron gas (ρg) surround-
ing these clusters. It should be mentioned that the terms asso-
ciated with iso-vector meson coupling affect the asymmetric-
ity of the system. But in accordance to the mathematical con-
ventions, the terms with high powers of iso-vector mesons are
less effective, so, the linear term decides the asymmetry fac-
tor considerably. We checked the mentioned asymmetry value
for other usual RMF models too and did not observe any ma-
jor change for the same. The asymmetry at crust boundary are
0.896, 0.900, 0.902, & 0.894 for NL3, FSUGarnet, IOPB-I
and G3 sets respectively. However, the FSUGarnet shows the
largest asymmetry and density of cluster as one starts mov-
ing toward the core from the outer crust of neutron star, while
IOPB-I the least owing to the behavior of their symmetry en-
ergy. Finally, the radius of the WS cell decreases with density
while the cluster keeps growing in size. This leads the cluster
to get closer and closer to form a large cluster and ultimately
convert to homogeneous matter when reaching the crust-core
boundary. The slope parameter has an inverse effect on the
density of neutron gas and WS cell radius. A larger L cor-
responds to the smaller neutron gas density and radius of the
cluster.

We study the crust-core transition from the crust side shown
in Fig. 6 using Eq. (22). As discussed, the EoS of the inner
crust is sensitive to the choice of surface parameters p and
L. To investigate this, we plot the transition density ρt and
pressure Pt as a function of L and p. The G3 parameter set
predicts a larger transition density as compared to the IOPB-I
set owing to its smaller L, while FSUGarnet does not follow
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FIG. 7. The EoS for the inner crust and equilibrium value of WS cell
energy using the E-RMF parameter sets FSUGarnet, IOPB-I and G3.

the trend. In general practice, the crust-core transition density
and pressure are anti-correlated to the saturation value of L
for a given EoS. However, one can notice in Fig. 5 that the
behavior of L is different for below and above saturation den-
sity. Therefore, if we consider the behavior of L in the subsat-
uration density region, the trends in the crust-core transition
density could be understood more precisely. The FSUGarnet
set with the least L estimates the larges transition density, and
IOPB-I with maximum L estimates the lowest crust-core tran-
sition density. The transition pressure follows the same trend,
however, in the opposite way. The isovector surface param-
eter p seems to act similarly to the symmetry energy. The
transition pressure and density are positively correlated with
the value of p. This fact suggests the importance of isospin-
dependent surface tension in the CLDM calculation of inner
crust. Furthermore, the correlation of transition density and
pressure of crust-core transition is in harmony with the trends
obtained from [113]. Recently Bao-An Li and Macon Magno
[109] found that the curvature Ksym plays a more important
role than the slope L in determining the crust-core transition
density using the EoSs generated from meta-modeling. We
also find a similar behavior of ρt while comparing the value
of Ksym from Table IV.

It is clear from the above discussion that the structure of the
inner crust is susceptible to the behavior of density-dependent
symmetry energy and slope parameter in the sub-saturation
density region. In the E-RMF framework, the symmetry
energy is controlled mainly by the cross-coupling (Λω) of
isoscalar-vector (ω) and isovector-vector (ρ) mesons [see Eq.
(23)]. In addition, the parameter set G3 takes the δ meson as
the additional degree of freedom which helps to change the
variation of L and J to reproduce the theoretical and observa-
tional constraints [114]. The J and L also play a crucial role
in estimating the instability in the homogeneous nuclear mat-
ter [80]. Therefore, Λω becomes an essential parameter in the
E-RMF forces that govern various aspects of the neutron star
structure.

In Fig. 7 we show the EoS of the inner crust for the FSUG-
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FIG. 8. The effective shear and compression modulus for BCC lattice
in the inner crust of neutron stare using the FSUGarnet, IOPB-I, and
G3 parameter sets.

arnet, IOPB-I, and G3 E-RMF parameter sets along with the
WS cell energy and the tabulated data in Table VI. One may
see that the inner crust is primarily model-dependent, where
the stiffness is related to the behavior of symmetry energy or
slope parameter. Higher symmetry energy at subsaturation
densities corresponds to the larger eWS , which is the case
with FSUGarnet in Fig. 7. The behavior of G3 and IOPB-I
is similar, with IOPB-I estimating a comparatively stiffer EoS
which is also in accordance with the behavior of the symme-
try energy. Therefore, we believe that the symmetry energy
and its derivative predominantly decide the inner crust struc-
ture. However, one needs a detailed statistical study of various
E-RMF parameter sets (e.g., Bayesian and correlation analy-
sis) to comment on the ambiguities. One may further note
that, unlike in the outer crust, the pressure of the inner crust
is mainly dependent on the neutron gas surrounding the clus-
ters. Therefore, the parameters used must follow the necessary
constraints on the pure neutron matter (PNM). It is seen that
the FSUGarnet, IOPB-I, and G3 reasonably satisfy the results
obtained using microscopic chiral EFT [80], making these pa-
rameters suitable for the calculation of inner crust EoS.

It should be noted that in this work, we restrict ourselves
to spherically symmetric WS cell for the calculation of in-
ner crust of the neutron star. However, as one approaches the
crust-core boundary, there might be an energetic preference
for nonspherical shapes (rod, slab, tube, bubble, etc.) com-
monly known as “nuclear pasta” [13, 115–117]. These struc-
tures influence various properties of neutron star crust such as
crustal oscillation modes, crust cooling, crust shattering, mag-
netic field evolution, etc [47]. Nevertheless, it is seen that the
existence of pasta structure is sensitive to the approximations
made and minute energy differences exist between spherical
and nonspherical cell shapes. Therefore, nuclear pasta struc-
tures have a weak impact on the EoS [10] and the WS cell
composition [118] and hence they do not affect the global
properties of neutron stars, such as the mass-radius profile.
However, for the quantitative analysis of pasta structure, we
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FIG. 9. Adiabatic index of the inner crust calculated from the FSUG-
arnet, IOPB-I, and G3 E-RMF forces.

shall carry a comprehensive study of neutron star crust includ-
ing all possible structures in a forthcoming assignment.

It is shown that the fundamental seismic shear mode, ob-
served as a quasiperiodic oscillation in giant flares emitted by
highly magnetized neutron stars, is particularly sensitive to the
EoS of crust [119, 120]. In that context, we assume the neu-
tron star crust as an isotropic BCC poly-crystal whose elastic
properties are a function of two elastic moduli: shear ( µ) and
compression modulus (K). These are written as [5]

K = ρb
∂P

∂ρb
= ΓP,

µ = 0.1194
ρi(Ze)

2

Rcell
,

(38)

where Γ is the adiabatic index and ρi is the density of nuclei.
The variation of shear and compression modulus as a function
of baryon density is shown in Fig. 8. The shear modulus de-
pends on the distribution of Z and the size of the cell, which is
a smoothly increasing function of average baryon density as
shown in Fig. 4. As a result, the shear modulus increases
continuously on moving toward the core. The FSUGarnet
and IOPB-I show the maximum and minimum values of µ.
A higher value of µ means that the fundamental shear mode
will have a higher frequency. The compression modulus also
increases with density and has an opposite trend as compared
to the shear modulus.

Finally, the adiabatic index, which determines the response
of the crust toward the compression and decompression, is
plotted in Fig. 9 from the outer layer of outer crust till the
transition of inner crust to the core. As the pressure in the
outer crust is prominently determined from the ultrarelativis-
tic electron gas, the Γ becomes equal to 4/3. The onset of
the inner crust is marked by dripped neutrons which soften
the EoS. This results in a decrease in the value of Γ consid-
erably. As the density in the crust increases, the neutron gas
density increases resulting in more and more pressure of neu-
tron gas. As a consequence, the Γ increases and reaches up
to ≈ 2 on reaching the crust-core transition. The FSUGarnet
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FIG. 10. The unified EoSs for FSUGarnet-U, IOPB-I-U, and G3-U
sets. The green line represents the outer-inner crust transition.

shows a relatively lower value of Γ at CC point, which can be
explained based on the behaviors of its compression modulus
in Fig. 8. The results are in agreement with the microscopic
calculation using three-body forces[7].

C. Neutron star unified EOS, M −R relation

The core EoS of the neutron star is calculated with E-RMF
formalism for FSUGarnet, IOPB-I, and G3 parameter sets.
For the crust part, we use both outer and inner EoS as dis-
cussed in Sec. II above. We make the unified EoS by matching
the crust-core density and pressure, and is shown in Fig. 10 for
FSUGarnet, IOPB-I, and G3 sets. The unified EoSs are named
as FSUGarnet-U, IOPB-I-U, and G3-U, respectively and one
can find from the GitHub link1. The green circle represents
the outer-inner crust transition. The crust-core transition is
different for different forces because it is model-dependent.
With these EoSs, we calculate the neutron star’s mass, radius,
and moment of inertia.

We calculate the mass and radius of the neutron star using
Eqs. (31 and 32) for a fixed central density. TheM−R profile
is calculated for the whole star which is depicted in Fig. 11 for
considered sets. The maximum mass of the all the sets satisfy
∼ 2 M� limit. The maximum mass constraints from differ-
ent massive pulsars such as PSR J0348+0432 (M = 2.01 ±
0.04 M�) [23] and PSR J0740+6620 (M = 2.14+0.10

−0.09 M�)
[22] are shown. The radius constraints given by Miller et al.
[18] and Riley et al. [121] are shown with two dark cyan
boxes termed as old NICER. The new NICER data is also

1 https://github.com/hcdas/Unified_eos

https://github.com/hcdas/Unified_eos
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TABLE VI. Composition and EoS of inner crust with the IOPB-I, FSUGarnet, and G3 E-RMF parameter sets. The table include the values of
pressure (P ), energy (E), mass (A) and charge (Z) of the cluster and the radius (Rc) of cell.

IOPB-I FSUGarnet G3

ρb

(fm−3)

P

(MeV fm−3)

E
(MeV fm−3)

A Z
Rc

(fm)

P

(MeV fm−3)

E
(MeV fm−3)

A Z
Rc

(fm)

P

(MeV fm−3)

E
(MeV fm−3)

A Z
Rc

(fm)

0.0003 0.000512 0.281414 112.7301 35.3635 47.0669 0.000529 0.281392 124.2469 37.9120 47.7178 0.000529 0.281396 121.0933 36.9770 47.3051

0.0023 0.002196 2.162921 127.4424 36.4676 39.2188 0.002666 2.163182 148.1375 39.9832 38.3637 0.002421 2.163018 139.7759 38.3019 38.6883

0.0043 0.004378 4.046355 134.4834 36.8530 36.5161 0.006011 4.047617 162.3130 40.8027 34.4444 0.005088 4.046883 149.7114 38.7594 35.4098

0.0063 0.006857 5.930916 139.6914 37.0827 34.8056 0.010280 5.933861 174.1880 41.2951 31.7416 0.008233 5.932151 157.3900 39.0083 33.2786

0.0083 0.009637 7.816308 144.0866 37.2410 33.5129 0.015351 7.821608 184.9821 41.6146 29.6417 0.011770 7.818483 163.9397 39.1544 31.6794

0.0103 0.012790 9.702446 148.1121 37.3580 32.4303 0.021143 9.710712 195.1915 41.8254 27.9171 0.015679 9.705767 169.8407 39.2376 30.3825

0.0123 0.016404 11.589212 152.0036 37.4464 31.4627 0.027576 11.600992 205.0751 41.9625 26.4566 0.019966 11.593800 175.3510 39.2765 29.2779

0.0143 0.020568 13.476612 155.9021 37.5109 30.5624 0.034569 13.492286 214.7894 42.0488 25.1970 0.024647 13.482594 180.6262 39.2813 28.3051

0.0163 0.025362 15.364671 159.8925 37.5534 29.7039 0.042041 15.384688 224.4444 42.1009 24.0977 0.029740 15.372041 185.7704 39.2576 27.4281

0.0183 0.030855 17.253335 164.0333 37.5730 28.8741 0.049912 17.277980 234.1273 42.1316 23.1307 0.035264 17.262138 190.8534 39.2087 26.6240

0.0203 0.037103 19.142629 168.3629 37.5681 28.0663 0.058107 19.172182 243.9109 42.1518 22.2749 0.041231 19.152846 195.9276 39.1367 25.8779

0.0223 0.044151 21.032522 172.9082 37.5368 27.2774 0.066553 21.067174 253.8634 42.1702 21.5146 0.047654 21.044189 201.0313 39.0433 25.1792

0.0243 0.052030 22.923195 177.6925 37.4765 26.5066 0.075186 22.962877 264.0506 42.1949 20.8366 0.054541 22.936130 206.1971 38.9293 24.5210

0.0263 0.060762 24.814495 182.7338 37.3848 25.7538 0.083950 24.859370 274.5427 42.2329 20.2305 0.061897 24.828700 211.4524 38.7959 23.8976

0.0283 0.070358 26.706495 188.0512 37.2593 25.0194 0.092795 26.756579 285.4087 42.2906 19.6879 0.069724 26.721787 216.8215 38.6439 23.3053

0.0303 0.080822 28.599194 193.6626 37.0978 24.3043 0.101674 28.654369 296.7274 42.3745 19.2015 0.078025 28.615431 222.3302 38.4740 22.7407

0.0323 0.092152 30.492652 199.5922 36.8984 23.6087 0.110554 30.552771 308.5798 42.4907 18.7654 0.086799 30.509675 228.0027 38.2873 22.2015

0.0343 0.104339 32.386812 205.8659 36.6596 22.9332 0.119398 32.451663 321.0590 42.6453 18.3746 0.096044 32.404474 233.8671 38.0848 21.6857

0.0363 0.117373 34.281724 212.5165 36.3809 22.2781 0.128181 34.351065 334.2689 42.8449 18.0250 0.105759 34.299832 239.9538 37.8677 21.1916

0.0383 0.131239 36.177311 219.5887 36.0623 21.6434 0.136879 36.250965 348.3255 43.0963 17.7132 0.115943 36.195666 246.2988 37.6376 20.7177

0.0403 0.145923 38.073709 227.1356 35.7053 21.0292 0.145474 38.151365 363.3607 43.4070 17.4362 0.126592 38.092189 252.9423 37.3964 20.2631

0.0423 0.161410 39.970881 235.2303 35.3131 20.4360 0.153951 40.052167 379.5305 43.7854 17.1918 0.137707 39.989108 259.9348 37.1462 19.8267

0.0443 0.177688 41.868732 243.9690 34.8913 19.8641 0.162296 41.953359 397.0108 44.2410 16.9782 0.149287 41.886623 267.3362 36.8900 19.4077

0.0463 0.194741 43.767368 253.4835 34.4481 19.3141 0.170499 43.854858 416.0135 44.7846 16.7940 0.161332 43.784718 275.2192 36.6310 19.0056

0.0483 0.212560 45.666732 263.9520 33.9958 18.7874 0.178552 45.756858 436.7864 45.4290 16.6382 0.173844 45.683268 283.6740 36.3737 18.6201

0.0503 0.231136 47.566890 275.6233 33.5507 18.2858 0.186450 47.659061 459.6274 46.1891 16.5101 0.186825 47.582352 292.8160 36.1233 18.2510

0.0523 0.250460 49.467791 288.8484 33.1352 17.8120 0.194192 49.561660 484.8955 47.0827 16.4096 0.200280 49.482021 302.7876 35.8868 17.8984

0.0543 0.270527 51.369389 304.1277 32.7789 17.3698 0.201772 51.464453 513.0301 48.1317 16.3370 0.214213 51.382168 313.7734 35.6728 17.5629

0.0563 0.291330 53.271847 322.1954 32.5213 16.9645 0.209193 53.367562 544.5713 49.3622 16.2927 0.228631 53.282866 326.0136 35.4924 17.2451

0.0583 0.312864 55.174940 344.1495 32.4164 16.6034 0.216456 55.270952 580.1935 50.8072 16.2781 0.243539 55.184066 339.8258 35.3602 16.9466

0.0603 0.335122 57.078838 371.7034 32.5429 16.2972 0.223564 57.174654 620.7521 52.5076 16.2947 0.258946 57.085810 355.6361 35.2952 16.6694

0.0623 0.358096 58.983547 407.6620 33.0209 16.0623 0.230523 59.078454 667.3394 54.5159 16.3450 0.274861 58.988009 374.0316 35.3235 16.4164

0.0643 0.381778 60.888911 456.9247 34.0513 15.9241 0.237340 60.982554 721.3793 56.8996 16.4321 0.291295 60.890753 395.8363 35.4807 16.1918

0.0663 0.406154 62.795116 528.8127 36.0048 15.9275 0.244023 62.886854 784.7565 59.7475 16.5605 0.308257 62.794055 422.2481 35.8176 16.0017

0.0683 0.431207 64.701956 643.1830 39.6507 16.1563 0.250586 64.791356 860.0130 63.1784 16.7356 0.325756 64.697854 455.0602 36.4091 15.8547

0.0703 0.456922 66.609668 848.7924 46.8294 16.7832 0.257041 66.696056 950.6534 67.3544 16.9651 0.343803 66.602142 497.0797 37.3702 15.7640

0.0723 0.263407 68.600956 1061.6230 72.5019 17.2589 0.362407 68.506998 552.9294 38.8868 15.7498

0.0743 0.269708 70.505948 1200.0577 78.9449 17.6307 0.381575 70.412409 630.7147 41.2793 15.8444

0.0763 0.275974 72.411149 1376.5995 87.1585 18.0986 0.401315 72.318190 745.8048 45.1431 16.1026

0.0783 0.282245 74.316548 1607.4969 97.8569 18.6875 0.421639 74.224643 930.1836 51.6896 16.6213

0.0803 0.288574 76.222148 1918.1697 112.1331 19.4311 0.442582 76.131600 1256.6567 63.5913 17.5768

0.0823 0.295044 78.127848 2348.6311 131.6563 20.3718

0.0843 0.301780 80.033651 2959.3448 158.8194 21.5538

0.0863 0.309003 81.939748 3824.6786 196.1983 22.9867

0.0883 0.316890 84.005883 4964.3837 242.5463 24.6032



14

new	NICER old	NICER

PSR	J0348+0432
PSR	J0740+6620

FSUGarnet-U
IOPB-I-U
G3-U

M
	[M

⊙]

0

0.5

1

1.5

2

R	[km]
10 11 12 13 14 15 16

FIG. 11. The M − R relations for three unified EoSs such as
FSUGarnet-U, IOPB-I-U, and G3-U. The horizontal bars represents
the PSR J0740+6620 [22] (light orange) and PSR J0348+0432 [23]
(light violet). The old NICER data are also shown with two boxes
from two different analysis [18, 121]. The double-headed red line
represents the radius constraints by the Miller et al. [122] for 1.4
M� neutron star termed as new NICER data.
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FIG. 12. Upper: The mass of the crust as a function of mass for three
unified EoSs. Lower: The length of the crust as a function of mass.
The black dotted line represents the canonical neutron star mass.

shown from the study of PSR J0030+0451 with X-ray Multi-
Mirror Newton for canonical star with R1.4 = 12.35 ± 0.75
km [122]. From the figure it is clear that all the considered
EoSs satisfy all constraints; such as maximum mass by two
different pulsars and canonical radius by both NICER data.

We calculate the mass and thickness of the crust for three

unified EoSs using the formula Mcrust = M −Mcore, and
lcrust = R − Rcore respectively. The Mcore(Rcore) is the
mass (radius) of the neutron star core. The variation of mass
and thickness of the crust is plotted in Fig. 12 for three EoSs.
We find that the crust is thicker for low mass neutron star,
and it drops continuously with increasing neutron star mass.
Similar results are obtained for the crust mass as well. The
mass and thickness of the crust for all considered EoSs are
given in Table VII.

D. Moment of inertia of the neutron star

The moment of inertia of the neutron star is calculated for
a uniformly rotating case (slow rotation) as described in Sub-
Sec. II E. The total normalized MI of the neutron star is shown
in the upper panel of Fig. 13 for three unified EoSs. The I in-
creases with the masses of the neutron star as it depends on the
mass of the star. The I for considered sets is almost same up
to 1.6M� and then slightly diverges. This is because the core
part of EoS is model-dependent. Some theoretical predictions
believe that the relation between I and M is universal [123–
125]. It means that one can predict the nature of I from the
observed mass of the star.

The crustal MI of the neutron star is calculated using Eq.
(36) from the crust-core transition radius Rc to the surface
of the star R. The fractional moment of inertia (Icrust/I) is
depicted in the lower panel of Fig. 13. It is seen that for a
massive neutron star, the lesser moment of inertia is stored in
the crust. In this case, the maximum mass, FMI for the canon-
ical star, FMI1.4 predicted by IOPB-I-U EoS is 2.149M� and
≈ 0.057 respectively. For FSUGarnet-U and G3-U cases, the
masses and FMI1.4 are (2.065 M�, 0.044) and (1.996 M�,
0.036) respectively as given in Table VII. The blue and violet
dashed lines represent the minimum value needed to justify
the Vela glitch with [126] and without [127] crustal entrain-
ment. The details on the crustal entrainment are discussed in
the following subsection. It is evident that the crustal moment
of inertia is sensitive to the crust’s mass and radius, which sub-
sequently depends on the crust-core transition density and the
pressure. Therefore accurate estimation of these properties is
an essential and unified treatment of EoS become pivotal.

E. Pulsar glitch

Pulsars are rotating neutron stars observed to have pulses
of radiation at very regular intervals that typically range from
milliseconds to seconds. Pulsars have very strong magnetic
fields which funnel jets of particles out along the two mag-
netic poles. These accelerated particles produce very power-
ful beams of light. The pulsed emission, which is in the radio
frequency band, is the direct way of measuring the rotation of
the crust using the pulsar timing technique [61]. By measur-
ing the time of arrival of the pulse, one can estimate the crust’s
rotational speed and glitch activity.

The glitches are produced due to the sudden spin-ups in the
radio pulsars. This is because the angular momentum trans-
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TABLE VII. The neutron star properties such as maximum mass (Mmax), maximum radius (Rmax), canonical radius (R1.4), normalized
maximum MI (Imax), normalized canonical MI (I1.4), maximum FMI (FMImax), canonical FMI (FMI1.4), mass of the crust (Mcrust), and
length of the crust (lcrust) for FSUGarnet, IOPB-I, and G3 EoSs.

EoSs Mmax

(M�)
Rmax

(km)
R1.4

(km) Imax I1.4 FMImax FMI1.4
Mcrust

(M�)
lcrust
(km)

IOPB-I-U 2.148 11.947 13.301 0.429 0.346 0.014 0.057 0.013 0.490
FSUGarnet-U 2.065 11.775 13.170 0.419 0.344 0.010 0.044 0.009 0.528
G3-U 1.996 10.942 12.598 0.426 0.346 0.011 0.036 0.010 0.451
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FIG. 13. Upper: The normalized moment of inertia as a function
of mass for three unified EoSs. Lower: The fractional moment of
inertia as a function of mass. The dashed dark magenta and dark
blue lines represent the Vela pulsar data (see text for details).

fers from the superfluid component of the stellar interior to the
solid crust. Therefore, there is a change of MI from the super-
fluid to the rest of the star. The fractional crustal moment
of inertia (FMI) is the ratio of the total MI to the crustal MI
(Icrust/I), and it is related to the characteristic pulsar glitches
properties [40, 61],

Icrust
I

= 2τc
1

ti

(∆ν

ν

)
i
, (39)

where τc is the characteristic age of the pulsar, ti is the time
elapsed before the ith glitch since the preceding glitch and(

∆ν
ν

)
i

is fractional frequency jump. From the above relation,
one can compare the theoretical FMI with the observational
results.

Inside the neutron star, the neutron superfluid is strongly
coupled to the solid crust due to nondissipative entrainment
effects [129, 130]. These effects limit the amount of angu-
lar momentum that can be transferred during a glitch event.
The importance of the entrainment coupling is related to the
neutron effective mass m∗n in the inner crust, which is propor-
tional to the ratio of unbound neutrons to those that are not
entrained [52]. With this entrainment effects, the Eq. (39) can

be written as

Icrust
I

= 2τc
〈m∗n〉
mn

1

ti

(∆ν

ν

)
i
, (40)

where 〈m∗n〉 is the average effective mass of neutrons in the
inner crust. The ratio of the 〈m∗n〉 /mn has value 4.3 [126]
and the ratio becomes one (〈m∗n〉 = mn) where no crustal
entrainment are considered [127].

In Fig. 14, we plot the FMI estimated from the observed
581 2 glitches catalogue [128]. With addition to this, we cal-
culate the theoretical FMI using Eqs. (36 and 34) for three
unified EoSs with different masses of the star. The FMIs for
theoretical calculations are well consistent with peak in case
for 1.8 M� and 2.0 M� masses.

IV. CONCLUSION

In summary, we provide the unified treatment of EoS of
the neutron star, namely FSUGarnet-U, IOPB-I-U, and G3-
U. We consider different physics for various layers beginning
from the outer crust to the inner core within the E-RMF frame-
work. The outer crust is treated within the well-known vari-
ational BPS formalism, while the structure of the inner crust
is calculated using the compressible liquid drop model. We
use the most recent atomic mass evaluation AME2020 and the
highly precise microscopic HFB mass models along with the
experimental mass of available neutron-rich nuclei to find the
equilibrium composition of the outer crust. We compare the
EoS and composition of outer crust calculated from different
mass models and find the persistent existence of Z = 28 and
N = 50 and 82 nuclei. The majority of mass models predict
the presence of even mass nuclei in the outer crust except for
the HFB-14, which indicate a thin layer of 121Y at high pres-
sure suggesting a possible ferromagnetic behavior of neutron
star.

The inner crust is treated with the CLDM formalism us-
ing the E-RMF framework to calculate the bulk and finite-size
energies of the cluster. The composition of the inner crust us-
ing the CLDM is in harmony with the available microscopic
predictions. The mass, asymmetry, and gas density increase
monotonically with baryon density or star’s depth while the
cluster becomes dilute. It is seen that the equilibrium con-
figuration of the inner crust is strictly model-dependent and

2 http://www.jb.man.ac.uk/pulsar/glitches.html

http://www.jb.man.ac.uk/pulsar/glitches.html
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FIG. 14. Distribution of Icrust/I calculated using 581 glitches [128]. The vertical lines are the FMI for FSUGarnet-U, IOPB-I-U, and G3-U
EoSs.

depends mainly on symmetry energy and slope parameter
in the subsaturation density regime, and the surface energy
parametrization. A higher value of symmetry energy or lower
slope parameter results in the larger mass and charge of the
cluster. We also calculate the crust-core transition density (ρt)
and pressure (Pt) from the crust side and find that these val-
ues are sensitive to the isovector surface parameter p and slope
parameter L. The values of ρt for the FSUGarnet-U, IOPB-I-
U, and G3-U are found to be 0.08755, 0.07114, and 0.08125
fm−3 whereas the Pt is calculated as 0.46793, 0.31415 and
0.45284 MeV fm−3 respectively. In addition, we also show
the behavior of adiabatic index, shear, and compression mod-
ulus in the inner crust region. The neutron star properties such
as mass, radius, and the moment of inertia are calculated with
three unified EoSs viz. FSUGarnet-U, IOPB-I-U, and G3-U.
The masses predicted by the three EoSs are well consistent
with the different massive pulsars data. The predicted canoni-
cal radii are well within the old and NICER constraints limits.
The crustal mass and thickness are also calculated with three
unified EoSs. We observe that the crust is thicker for low mass
neutron star, and it drops continuously with increasing neutron
star mass.

The moment of inertia is calculated for a slowly rotating
neutron star. The MI increases with increasing the star’s mass,
and it is almost unchanged around 1.6 M�, then it diverges.
From the theoretical predictions, it is believed that there exist

some Universal relations between MI and mass of the neutron
star. In future, we expect that more pulsars detection (glitch
events) and binary neutron star merger events may put tight
constraints on the MI.

The pulsars are rotating neutron stars, which emit the elec-
tromagnetic frequency with millisecond time intervals. This is
because the glitches are produced due to the sudden spin-ups
in the radio frequency due to the angular momentum transfer
from the superfluid part to the outer crust. To illustrate the
glitch event, we calculate the FMI for three EoSs. We ob-
served that the more massive a neutron star is, the less MI
stores in its crust. We constraint the FMI by putting Vela pul-
sars data with and without entrainment of the crust. We com-
pare the FMI from the theoretical with observed data approx-
imately for 581 glitches. The theoretical prediction is well
consistent with the highest peak for canonical to maximum
mass star. This implies that the maximum number of glitches
observed so far are well compatible with our theoretical re-
sults.

In this work, we restrict ourselves to the spherically sym-
metric Wigner-Seitz cell as nonspherical structures do not af-
fect the EoS significantly. However, the existence of non-
spherical structures close to the crust-core interface have var-
ious observational consequences. Therefore to access the im-
pact of pasta structures, we shall perform a comprehensive
analysis of neutron star crust including nonspherical shapes in
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the future work.

In conclusion, we summarized that the three unified EoSs,
FSUGarnet-U, IOPB-I-U, and G3-U, well reproduced the ob-
servational data obtained with different pulsars, NICER, and
glitch. Hence, these unified EoSs may be used for future ex-
ploration of more neutron star properties such as transport,

cooling, inspiral etc.
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