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CRYOGENIC FUEL TANK DRAINING
ANALYSIS MODEL

Donald Greer

Research Engineer, Fluid Dynamics
NASA Dryden Flight Research Center
Edwards, California 93523

ABSTRACT

One of the technological challenges in designing advanced hypersonic aircraft and the
next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As
an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics
(CFD) model has been developed specifical,y for the analysis of flow in a cryogenic fuel
tank. This model employs the full set of Navier-Stokes equations, except that viscous
dissipation is neglected in the energy equation. An explicit finite difference technique in

two-dimensional generalized coordinates, approximated to second-order accuracy in both

space and time is used. The stiffness resulting from the low Mach number is resolved by

using artificial compressibility. The model simulates the transient, two-dimensional
draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface
between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data
for free convection inside a horizontal cylinder are compared with model results. Finally,
cryogenic tank draining calculations are performed with three different wall heat fluxes to
demonstrate the effect of wall heat flux on the internal tank flow field.

NOMENCLATURE

CFD	computational fluid dynamics

He/LH2 helium and liquid hydrogen

K	kelvin

J/m2 -s	joules per meter squared per second

M	meter

m/s	meters per second

q	speed, meters per second
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Figure 1. An 8-sided polygon for free convection
inside a horizontal cylinder, 100 by 100 node grid.
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Figure 2. Velocity vectors at steady state for free

convection inside a horizontal cylinder, vector skip
index of 2.
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Figure 3. Temperature contours, T-Tavg. at steady

state for free convection inside a horizontal cylinder.
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Figure 4. Comparison of velocity profiles across the

horizontal diameter to experimental data of Martini

and Churchill. Steady state free convection inside a

horizontal cylinder.
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Figure 5. Comparison of temperature profiles
across the horizontal diameter to experimental data
of Martini and Churchill. Steady state free

convection inside a horizontal cylinder.
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Figure 6. geometry, boundar-, and initial
conditions for 8-sided polygon tank analysis. lank

is symmetric and I m by 1 in.
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Figure 7. Initial 8 - sided polygon grid. Drain time =

0 seconds.
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Figure 8. Final 8-sided polygon grid. Drain time =

300 seconds.
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Figure 9. Velocity vectors at 50 seconds. He/LH2, Figure 10. Velocity vectors at 300 seconds. He/

q-0 J/nit-s. LH2, q=0 Jlm2-s.
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t	?'	Figure 11. Velocity .vectors At 50 seconds, He/L142, Figure 12. Velocity vectors at 300 seconds. He/ ,
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Figure 13. Velocity vectors at 50 seconds. He/LH2,

q=2 J/m2-s.
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Figure 14. Velocity vectors at 300 seconds.
Hc/LH2. q=2 J/rn2-s.
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Figure 15. Temperature contours, T - Ti , at
300 seconds. HcALH2, q=1 J/m2-s.
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Figure 16. Temperature contours, T - Ti , at

300 seconds. He/1-142, q=2 J/m2-s.






