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Abstract— This paper presents a physics-based analyt-
ical model for the MOS transistor operating continuously
from room temperature down to liquid-helium tempera-
ture (4.2 K) from depletion to strong inversion and in the lin-
ear and saturation regimes. The model is developed relying
on the 1-D Poisson equation and the drift-diffusion trans-
port mechanism. The validity of the Maxwell–Boltzmann
approximation is demonstrated in the limit to 0 K as a
result of dopant freezeout in cryogenic equilibrium. Explicit
MOS transistor expressions are then derived, including
incomplete dopant ionization, bandgap widening, mobil-
ity reduction, and interface charge traps. The temperature
dependence of the interface trapping process explains the
discrepancy between the measured value of the subthresh-
old swing and the thermal limit at deep-cryogenic temper-
atures. The accuracy of the developed model is validated
by experimental results on long devices of a commercial
28-nm bulk CMOS process. The proposed model provides
the core expressions for the development of physically
accurate compact models dedicated to low-temperature
CMOS circuit simulation.

Index Terms— Cryo-CMOS, cryogenic MOSFET, freeze-
out, incomplete ionization, interface traps, low temperature,
MOS transistor, physical modeling.

I. INTRODUCTION

A
DVANCED CMOS processes perform increasingly well

from room temperature (RT) down to deep-cryogenic

temperatures (<10 K) [1]–[3]. At these temperatures, the ideal

switch with a steplike subthreshold slope comes within

reach [4]. Furthermore, cryoelectronics [5]–[7] can provide

an interface with superconducting devices on the quest for

exascale supercomputing [8]. Ultimately, quantum-engineered

devices controlled by cryo-CMOS circuits can bring new

functionality to existing computing technologies [9], [10].

Large-scale integration of silicon spin qubits [11], [12] and

cryo-CMOS control circuits is envisioned to take solid-state

quantum computing to the next level [13]. Digital, analog, and

RF CMOS circuits [14]–[16] are then required to operate at

millikelvin temperatures for initialization, manipulation, and
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readout of the qubits, as well as error correction [17], [18].

Since the cooling power at millikelvin temperatures is reduced,

the system could feature a cryogenic temperature gradient,

where the control circuits operate at a higher cryogenic tem-

perature than the qubits, e.g., at 4.2 K [14]. However, the opti-

mal design of power-hungry and thermal-noise dissipating

circuits operating in close proximity to the qubits is yet to be

explored. In this context, the main hurdle to overcome is the

lack of compact MOS transistor models in circuit simulators,

remaining physically accurate below 10 K [14], [16].

II. CRYO-MOS TRANSISTOR MODELING

The low-temperature circuits developed for space-

craft [19], [20], scientific equipment [21], ultralow-noise

detectors [22], cryobiology [23], and others have been

custom-designed relying on a semiempirical approach. This

approach requires laborious and expensive low-temperature

measurements to extract model parameters for tuning RT

compact models to the target low temperature [22], [24], [25].

Empirical temperature-scaling laws have been added to

the RT physics-based MOS transistor model [26], [27]

to capture cryogenic operation down to 4.2 K [28]–[30].

However, the discrepancy between the measured value of

the subthreshold swing (SS) for a long device at 4.2 K

(≈10 mV/decade) [3], [31], [32] and the theoretical thermal

limit UT ln 10 (≈0.8 mV/decade) reveals that something more

fundamental is missing. As we will demonstrate along this

paper, important physical phenomena at low temperatures,

such as interface trapping [27], [33] and incomplete

ionization [34], [35], have not been properly included

to date. Furthermore, the intrinsic carrier concentration, ni ,

takes on extremely small values below 10 K, causing

arithmetic underflow in implemented analytical expressions

or convergence problems in computer-aided-design simula-

tions [36]–[38]. Therefore, standard references on semicondu-

ctor devices treat only the cryogenic equilibrium condition in

bulk semiconductors above 10 K [26], [27], [39]. Analytical

device-physics models, starting from the Poisson equation

at low temperature, leave a gap unfilled between the 0 K

approximation and 77 K [40]–[43].

In this paper, we develop a MOS transistor model valid

from RT down to deep-cryogenic temperatures, entirely based

on physics principles and validated with experimental results.

We start by verifying the continued validity of the Boltzmann

statistics down to the deep-cryogenic regime.

III. MOS ELECTROSTATICS FROM RT TO 4.2 K

We model a long, planar n-channel MOS field-effect tran-

sistor in silicon, as shown in Fig. 1. Uniform operation
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Fig. 1. Schematic of a long nMOS transistor with an annotated band
diagram. The drift-diffusion and Poisson equations are solved along the
x- and y-directions, respectively. At 4.2 K, and for doping concentrations
ranging from 1012 to 1018 cm−3, EF lies below EA in the bulk [see
Fig. 2(a)], leading to bulk freezeout according to (2). When EA bends
under EF near the surface, the acceptor dopants become rapidly com-
pletely ionized due to field-assisted ionization [i.e., the dopant-ionization
probability near the surface, fs(EA), is then close to one (see Fig. 4)].
The quasi-Fermi potential is not considered in this figure.

across the width of the transistor is assumed, and the gradual

channel approximation is adopted. The electrostatics can then

be described by the 1-D Poisson equation [26], [27].

A. Poisson–Fermi Equation
Merging the 1-D Poisson equation with the mobile carrier

concentrations, n and p, given by Fermi–Dirac statistics, gives

∂2ψ(y)

∂y2
= −

q

εsi

(

− n + p − N−
A

)

(1)

where q is the elementary charge, εsi is the silicon permittivity,

and ψ � (EF − Ei )/q is the potential, with EF the

Fermi level and Ei the intrinsic energy level. The first term

on the right-hand side (RHS) of (1) represents the electron

contribution, n, the second term the hole contribution, p, and

the third term the ionized dopant contribution, N−
A .

1) Incompletely Ionized Dopants: Under thermal equilib-

rium, both at room and cryogenic temperatures, the majority

carrier concentration can defer from the implanted doping

value, NA , due to incomplete ionization of the dopants.

In cryogenic equilibrium, incomplete ionization is strong and

known as freezeout, since thermal dopant ionization is very

low [35]. However, during MOS operation, also field-assisted

ionization comes into play. Fermi–Dirac statistics provides

a fundamental way to model incomplete ionization which

includes both dopant-ionization mechanisms. The concentra-

tion of ionized dopants, N−
A , is then equal to the total concen-

tration of implanted dopants times the Fermi–Dirac occupation

probability of the acceptor energy E A, i.e., NA × f (E A), or

N−
A =

NA

1 + gAe
E A−EF,n

kT

=
NA

1 + gAe
ψA−(ψ−Vch)

UT

(2)

where the electron quasi-Fermi level is given by EF,n =
EF − qVch. The RHS of (2) is obtained by replacing

E A − EF,n with E A − Ei + Ei − EF,n in the exponential term

and by defining an acceptor potential, ψA � (E A − Ei )/q ,

as shown in Fig. 1. The channel voltage, Vch, denotes the

shift of the quasi-Fermi potential due to the drain-to-source

voltage, VDS. The second expression in (2) highlights the

two dopant-ionization contributions, i.e., the potential (field-

assisted ionization [35]) and temperature (thermal ionization).

The acceptor-site degeneracy factor, gA, is set to four due

to fourfold degeneracy (heavy and light holes, spin up and

down) [27], [39]. Note that setting gA to zero is equivalent to

assuming complete ionization.

2) Mobile Carrier Concentrations: Since n and p given by

Fermi–Dirac statistics in (1) require numerical integration over

energy, this inhibits explicit solutions for the charge densities

and current in the MOS transistor. Expressing n and p

using Boltzmann statistics allows to obtain such relations.

However, the validity of the Maxwell–Boltzmann approxi-

mation down to deep-cryogenic temperatures is questionable.

It has been reported [38], [42] that semiconductors become

strongly degenerate at deep-cryogenic temperatures, prevent-

ing its use. This is, however, inconsistent with the 0 K

limits of the Fermi-level position in the bandgap derived

by Pierret and Neudeck [39]. Therefore, in Section III-A3,

we aim to verify the Maxwell–Boltzmann approximation down

to deep-cryogenic temperatures.

3) Verification of Boltzmann Statistics: We numerically cal-

culate the position of the equilibrium Fermi level, EF , down

to 100 mK relying on the Fermi–Dirac statistics in an extrinsic

bulk semiconductor, e.g., p-type silicon. In this case, the Pois-

son equation imposes the charge neutrality, pp = N−
A , where

pp is expressed by the Fermi–Dirac statistics [27], [39] and

N−
A by (2). This yields an implicit equation for EF , which is

solved numerically at each temperature and doping value using

an extension of the arithmetic precision. As shown in Fig. 2(a),

below 120 K, EF remains off the valence-band edge with an

offset larger than 3kT for doping values below the degenerate

limit (i.e., NA = 4 × 1018 cm−3 in Si:B) [27], [39], [45].

Note that this is predicted correctly only when incomplete

ionization is considered. Complete ionization (gA = 0) would

predict an offset smaller than 3kT for NA = 1018 cm−3

and, hence, a degenerate semiconductor. It should, therefore,

be emphasized that incomplete ionization maintains the non-

degeneracy of a highly doped semiconductor at temperatures

down to 100 mK. Furthermore, near 0 K, EF tends to

saturate at (E A − Ev)/2 for all considered doping values. This

corresponds to the 0 K limit by Pierret and Neudeck [39]

assuming Boltzmann statistics. Using the now validated

Maxwell–Boltzmann description for pp, i.e., Nv exp[(Ev −
EF )/kT ], in pp = N−

A , leads to a quadratic equation
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Fig. 2. Thermal equilibrium in extrinsic bulk silicon. (a) Magnified view of the cryogenic regime (below 120 K) in (b) for p-type Si. (b) Position of the
Fermi level, EF, in the bandgap as a function of doping and temperature. The EF-position is calculated from RT down to 100 mK using an extension
of the arithmetic precision and an EF-resolution of 1 meV. When incomplete ionization is considered, the distance of EF to the valence-band edge,
Ev, stays larger than 3kT, validating the use of the Maxwell–Boltzmann approximation down to millikelvin temperatures. This figure applies to the
bulk of the MOS transistor in all regions of operation and to the whole body of the MOS transistor in the flat-band condition. Bandgap temperature
dependence is taken by Varshni [44] and a standard, temperature-independent value of EA − Ev = 0.045 eV in Si:B is assumed.

in exp[(Ev − EF )/kT ] with as solution

EF − Ev = kT ln
Nv

NA

+ kT ln
1 +

√

1+4gA
NA

Nv
e

E A−Ev
kT

2
. (3)

Considering the temperature dependence of Nv [27], [39],

while taking the limit of (3) to 0 K, leads to limT →0 K EF =
Ev + (E A − Ev )/2.

Performing the same numerical EF -calculation for an intrin-

sic semiconductor, the extremely small value of ni can be

verified relying on the Fermi–Dirac statistics. The Poisson

equation then imposes the charge neutrality, n = p = ni ,

where n and p are given by the Fermi–Dirac statistics.

As shown in Fig. 3, this yields ni values lying outside the range

of the IEEE double-precision arithmetic (10−308 − 10308),

e.g., at 4.2 K, ni ≈ 10−678 cm−3. Therefore, an extension of

the arithmetic precision will also be used in the remainder of

this paper based on the Boltzmann statistics, since the carrier

concentrations are then expressed through ni .

B. Poisson–Boltzmann Equation
Using the Maxwell–Boltzmann approximation of

n and p, validated down to deep-cryogenic temperatures in

Section III-A3, we combine the 1-D Poisson equation with

the Boltzmann statistics, which leads to

∂2ψ(y)

∂y2
= −

q

εsi

(

−ni e
ψ−Vch

UT + ni e
− ψ

UT − N−
A

)

(4)

where UT � kT/q is the thermal voltage. The first term on

the RHS of (4) represents the electron contribution, n, and

the second term the hole contribution, p. The intrinsic carrier

concentration is given by ni =
√

Nc Nv exp(−Eg/2kT ), where

Eg is the bandgap and Nc and Nv are the effective density of

states in the conduction and valence bands, respectively. The

temperature dependence of Eg as described by Varshni [44]

is used. The extremely small, but a finite value of ni at deep-

cryogenic temperatures cannot be assumed 0—which would

Fig. 3. Intrinsic carrier concentration reaches extremely small values at
4.2 K. Left: Fermi–Dirac distribution function approaching a step function
at 4.2 K. Middle: density of states in the conduction band. Right: overlap
between the density of states in the conduction band and the Fermi–
Dirac distribution function at 4.2 K, 77 K, and RT. The overlap function
gc(E) × f(E) becomes extremely small in magnitude and very peaked at
4.2 K. The area under the overlap function is equal to the intrinsic carrier
concentration. Bandgap temperature dependence used by Varshni [44]
and effective mass values by Pierret and Neudeck [39].

be equivalent to the 0 K approximation [40] or considering

f (E) as a step function—since this leads to zero mobile

carrier concentrations independently of the potential. This

is irreconcilable with the observed field-effect and correct

functioning of the MOS transistor at 4.2 K [4], [31]. For

smaller UT , the exponential factor has a very big dynamic

range when ψ changes during the MOS transistor operation,

large enough to overrule ni in the multiplication.
1) Derivation of the Electric Field at the Surface: Introducing

(2) for N−
A in (4) and then multiplying (4) on both sides with

2(∂ψ/∂y) give

∂

∂y

[
(

∂ψ(y)

∂y

)2
]

=
2q

εsi

⎛

⎝ni e
ψ−Vch

UT − ni e
− ψ

UT +
NA

1 + gAe
ψA−(ψ−Vch)

UT

⎞

⎠
∂ψ

∂y
.

(5)
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Integrating (5) from bulk to surface with E = −∂ψ/∂y and

Eb = 0 yields

E
2
s =

2q

εsi

∫ ψs

ψb

⎛

⎝ni e
ψ−Vch

UT − ni e
− ψ

UT +
NA

1+gAe
ψA−(ψ−Vch)

UT

⎞

⎠dψ.

(6)

In (6), the additional potential dependence due to field-assisted

ionization of the dopants can be straightforwardly integrated

as well, i.e., by replacing NA with NA{1+gA exp[(ψA −(ψ −
Vch))/UT ]− gA exp[(ψA − (ψ − Vch))/UT ]} in the numerator

of the third term and splitting the resulting integral. This gives

an expression for the square of the electric field at the surface

E
2
s =

2qniUT

εsi

(

e
ψs−Vch

UT − e
ψb−Vch

UT + e
− ψs

UT − e
− ψb

UT

)

+
2q NA

εsi

[

ψs − ψb − UT ln
fs(E A)

fb(E A)

]

(7)

where ψb � (EF,b − Ei )/q is the bulk potential and

ψs � (EF,s − Ei )/q is the surface potential, as indicated

in Fig. 1. EF,s denotes the Fermi level at the surface, and

EF,b denotes the Fermi level in the bulk. The logarithmic term

in (7) is the contribution of incomplete ionization, where

fs(E A) �
1

1 + gAe
E A−EF,s

kT

=
1

1 + gAe
ψA−(ψs−Vch)

UT

(8)

is the Fermi–Dirac ionization probability at the surface, and

fb(E A) �
1

1 + gAe
E A−EF,b

kT

=
1

1 + gAe
ψA−ψb

UT

(9)

the Fermi–Dirac ionization probability in the bulk, assuming

that Vch is zero in the bulk. Both ionization probabilities

are qualitatively shown in Fig. 1. If complete ionization is

assumed, then fs(E A) = fb(E A) = 1 and the incomplete

ionization term cancels in (7), leading to the expression widely

used at RT [26], [27]. The surface-ionization probability

fs(E A) is shown in Fig. 4 as a function of thermal and

field-assisted ionization. Immediately evident is that freezeout

at the surface (arbitrarily defined when fs(E A) < 0.2) is

only present when the temperature is below ≈50 K and

the potential is close to the flat-band condition (ψs ≈ ψb).

Above ψb, the ionization probability rapidly transitions to one

due to field-assisted ionization. This transition corresponds

to the bending of E A under EF at the surface in Fig. 1.

Therefore, complete ionization is a valid approximation even

at deep-cryogenic temperatures, although the shift in EF

due to incomplete ionization [Fig. 2(a)] should be consid-

ered since it affects the threshold voltage. This EF -shift

can be quantified by using fb(E A) from (9) in the bulk

charge neutrality condition, pp = N−
A , which leads to the

quadratic equation exp(2ψb/UT ) − (ni/NA) exp(ψb/UT ) −
(gA/NA) exp(ψA/UT ) with the solution

ψb = UT ln
ni

NA

+ UT ln
1 +

√

1 + 4gA
NA

ni
e

ψA
UT

2
. (10)

Fig. 4. Dopant ionization at the surface is an interplay between the ther-
mal ionization (T) and the field-assisted ionization (ψs −ψb). Freezeout
is assumed when 20% of the dopants are ionized. This happens only
when T is below ≈50 K and close to the flat-band condition (ψs ≈ ψb).
When ψs increases, a rapid transition takes place to complete ionization
for all temperatures. In the flat-band condition (ψs = ψb), the ionization
probability at the surface is only due to thermal ionization and equals the
ionization probability in the bulk, fb(EA).

The second term in (10) is the shift of EF by including

incomplete ionization, which is only dependent on temperature

and doping. Assuming complete ionization, i.e., gA = 0,

the well-known UT ln(ni/NA) is obtained.

2) Derivation of the Charge Densities: Applying the Gauss

law over the semiconductor body, the total semiconduc-

tor charge density per unit area, Qsc, is obtained by

Qsc = −εsiEs , with Es given by (7). The obtained Qsc is

shown in Fig. 5(a) at RT, 77 K, and 4.2 K. For 77 and 4.2 K,

small kinks are noticeable close to ψb due to the transition

from incomplete to complete ionization when E A bends under

EF at the surface (EF,s), or equivalently, ψs becomes less

negative than ψA . Above this transition, fs(E A) ≈ 1 according

to (2). At RT, EF lies above E A in the flat-band condition

[see Fig. 2(b)], and hence, no transitional kink is noticeable.

There is, however, a ψb-shift also at RT due to incomplete

ionization according to (10). Note that for complete ionization

(dashed lines), no kinks are observed since the logarithmic

term cancels in (7). Assuming the charge-sheet and fully

depletion approximations [26], the fixed charge density per

unit area, Q f , is given by

Q f = −εsi

√

2q NA

εsi

(ψs − ψb) −
2q NAUT

εsi

ln
fs(E A)

fb(E A)
. (11)

Relying on the charge neutrality, the mobile charge density

per unit area, Qm , can be obtained from Qm = Qsc − Q f ,

resulting in (12), as shown at the bottom of the next page.

Qm is shown in Fig. 6(a) for RT, 77 K, and 4.2 K.

As can be observed in Fig. 6(a), incomplete ionization does

not affect the turn-ON rate of Qm , but it contributes a small

decrease in the charge-threshold voltage. The latter is due

to EF lying closer to the conduction band when including
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Fig. 5. (a) Total semiconductor charge density, Qsc, and (b) fixed charge density, Qf, at RT (red lines), liquid-nitrogen temperature (77 K, green
lines), and liquid-helium temperature (4.2 K, blue lines) including incomplete ionization (solid lines) or assuming complete ionization (dashed lines).
The potential is swept starting from the bulk potential, ψb, calculated at a given temperature and doping according to (10). Horizontal arrows show
the shifts in ψb by including incomplete ionization at a given temperature. Skewed arrows in the insets indicate the kinks at 77 and 4.2 K due to the
transition from incomplete to complete ionization when EA bends under EF (Fig. 1).

Fig. 6. (a) Mobile charge density, Qm, without interface traps at RT, 77 K, and 4.2 K including incomplete ionization (solid lines), and assuming
complete ionization (dashed lines). Incomplete ionization yields a small decrease in the charge-threshold voltage. (b) Influence of four single interface
traps close to the conduction band, and their combined effect on the turn-ON rate of Qm at 4.2 K.

incomplete ionization, as shown in Fig. 2(a) and derived

in (10).

Therefore, from this section, we conclude that incomplete

ionization cannot explain the offset between the measured

SS at 4.2 K and the thermal limit. As we will show in

Section III-B3, the temperature-dependent occupation of inter-

face charge traps can degrade the SS down to 4.2 K.

3) Interface Charge Traps: Defects and lattice breaking

at the oxide–semiconductor interface introduce the trap

energy levels, Et , in the bandgap which degrade the control

of the gate-to-bulk voltage, VGB, over the channel. In what

follows, the Fermi–Dirac occupation of interface traps, f (Et ),

is included in the surface-boundary condition and the effect

on the Qm turn-ON rate is analyzed at 4.2 K. The surface-

boundary condition, i.e., the link between VGB and ψs , is given

by VGB = VFB + εsiEs/Cox + (ψs − ψb), where Cox is

the oxide capacitance per unit area and VFB is the flat-band

voltage, given by VFB � φms −Qit/Cox [26], [27]. Here, Qit is

the interface-trap charge density per unit area. We consider a

summation of discrete acceptor trap energy levels [46] (all

donor states are occupied and neutral during turn ON in

nMOS [27]). Each discrete trap energy level, Et, j , at position j

in the bandgap has its particular Nit, j -value assigned to it,

where Nit is the density-of-interface traps per unit area. Qit can

then be expressed as Qit = −q
∑N

j Nit, j fs(Et, j ), where N is

the number of interface traps, and

fs(Et, j ) =
1

1 + gt e
Et, j −EF,s

kT

=
1

1 + gt e

ψt, j −(ψs−Vch)

UT

(13)

Qm = −εsi

√

2qniUT

εsi

(

e
ψs−Vch

UT − e
ψb−Vch

UT

)

+
2q NA

εsi

[

ψs − ψb − UT ln
fs(E A)

fb(E A)

]

+ εsi

√

2q NA

εsi

[

(ψs − ψb) − UT ln
fs(E A)

fb(E A)

]

(12)
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Fig. 7. (a) Linear model validation with measurements at RT and 4.2 K on a long nMOS device (a 28-nm bulk CMOS process). In the measurements,
the gate voltage was swept from 0.2 to 0.9 V with a step size of 1 mV in order to reliably resolve the steep subthreshold slope at cryogenic temperature.
The sets of physical model parameters are shown for each temperature. Five interface traps are placed at ψt,j = 0.58 V − 2UT : UT : 0.58 V + 2UT.
(b) Overview of the phenomena influencing the current at 4.2 K: incomplete ionization (gA = 4) leads to a decrease in the threshold voltage; interface
traps (Nit,j) strongly degrade the subthreshold slope, and mobility (µ) increases the ON-state current.

is the Fermi–Dirac occupation probability of the trap energy

level Et, j . The RHS of (13) is obtained by defining the trap

potentials, ψt, j � (Et, j − Ei )/q [46]–[48]. This leads to the

flat-band voltage

VFB = φms +
q

Cox

N
∑

j

Nit, j

1 + gt exp{[ψt, j − (ψs − Vch)]/UT }
.

(14)

Plotting Qm from (12) versus VGB at 4.2 K in Fig. 6(b),

including four interface traps close to the conduction band,

reveals how each interface trap degrades the turn ON of Qm

separately, as well as the combined effect of the sum of the

interface traps.

IV. CURRENT DERIVATION

To derive the current in the linear regime, this core model

assumes drift-diffusion transport and does not include ballistic

nor quantum transport. To verify the drift-diffusion transport

mechanism at cryogenic temperatures, the proposed model for

the drain-to-source current will be experimentally validated in

Section V. Neglecting the hole contribution to the current,

the expression for the total drain–source current is given by

IDS = −µn(W/L)
∫ VDB

VSB
Qm(Vch)dVch, where the electron

mobility µn is assumed constant along the channel and W/L is

the device aspect ratio, as shown in Fig. 1. In the linear regime,

Qm can be assumed independent of Vch. In this case, the total

drain–source current is given by IDS = −µn(W/L)Qm VDS.

In saturation, the integral over Vch cannot be readily solved.

Therefore, starting from the drift-diffusion equation gives

IDS = −
W

L

∫ ψs,D

ψs,S

µn Qmdψ +
W

L

∫ Qm,D

Qm,S

µnUT d Qm . (15)

Assuming a linearization of the mobile charge density

with respect to the surface potential at constant gate

voltage [49] in (15), i.e., Qm = mCox(ψs − ψP),

with m � ∂(Qm/Cox)/∂ψs and ψP the pinchoff potential,

and integrating, results in an expression for the total drain–

source current in saturation

IDS =
W

L
µn

[

−
Q2

m,D − Q2
m,S

2mCox
+ UT (Qm,D − Qm,S)

]

. (16)

Qm,S and Qm,D are obtained from (12), setting Vch to zero

and VDS, respectively. At cryogenic temperature, an improve-

ment in the low-field mobility, µ0, is observed due to a reduc-

tion of the phonon scattering [1], [5]. In addition, the mobility

reduces at higher gate voltages due to the surface-roughness

scattering associated with high vertical electric field [1]. This

mobility reduction can be modeled by µn = µ0/(1 + θVGB),

where θ is the mobility-reduction factor [50]. It should be

highlighted that the developed model is a core model for long

devices. Short-channel effects, impact ionization, self-heating,

and hot-carrier degradation should obviously be included in a

fully predictive model after the validation of the long-channel

model at cryogenic temperatures.

V. EXPERIMENTAL RESULTS AND DISCUSSION

RT and cryogenic measurements were performed on devices

fabricated in a 28-nm bulk CMOS process. The full set of

measurements, measurement setup, and characterization were

previously reported in [3] and [31]. After measuring at RT,

the samples were immersed into liquid helium (4.2 K) and

liquid nitrogen (77 K) baths with a dipstick. Fig. 7(a) favorably

compares the model with the linear transfer characteristics

(VDB = 20 mV) measured at RT and 4.2 K on a long

nMOS device with W/L = 3 µm/1 µm in the linear and

logarithmic scales. The extracted µ0 values from the model

are in accordance with the characterization performed in [31].

Furthermore, Fig. 7(b) analyzes the effect of incomplete ion-

ization, interface traps, and mobility on the current at 4.2 K.

Note that incomplete ionization reduces the threshold voltage,

and interface traps can degrade the SS to ≈10 mV/decade.
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Fig. 8. Saturation model validation with measurements at RT, 77 K,
and 4.2 K on a long pMOS device (a 28-nm bulk CMOS process). Four
interface traps are placed at ψt,j = 0.58 V − 2UT : UT : 0.58 V + UT.
The used physical model parameters for RT and 4.2 K are shown in
the figure. For 77 K, the model parameters are φms = −0.87 V, Nit,j =
1.1 × 1011 cm−2, and µ0 = 300 cm2 V−1s−1.

The strong increase in the mobility increases the ON-state

current at 4.2 K. Fig. 8 validates the model for the current in

saturation (|VDB| = 0.9 V) using the measurements performed

at RT, 77 K, and 4.2 K on a long pMOS device with W/L =
3 µm/1 µm in the linear and logarithmic scales. The metal–

semiconductor work function difference, φms , increases in an

absolute value at lower temperatures according to the change

in EF -position (Fig. 2).

VI. SUBTHRESHOLD-SWING DERIVATION

In this section, an expression for the SS, including incom-

plete ionization and temperature-dependent interface trapping,

is derived. Incomplete ionization is included to prove the min-

imal influence on SS, as shown in Fig. 7(b). The temperature

dependence of interface-trap occupation, fs(Et ), allows to

obtain the 1SS-offset of ≈10 mV/decade above the thermal

limit, UT ln 10, previously observed on long devices [3], [31].

The SS is usually expressed as nUT ln 10, where the non-

ideality factor or slope factor, n, is given by (∂VGB/∂ψs),

describing the deviation from the thermal limit. Assum-

ing fs(Et ) from (13) to be one, (∂VGB/∂ψs) yields 1 +
(2q NAεsi)

1/2/[Cox(2
√

ψs − ψb)]+q Nit/Cox [26], [51]. How-

ever, at 4.2 K, and assuming the highest possible doping

value below the degenerate limit, a large Nit value in the

order of 1013 cm−2 is extracted to accommodate for an SS

of ≈10 mV/decade [33], [52], since Nit becomes multiplied

with UT in this expression. However, it should be emphasized

that in the used expression for SS, the temperature dependence

of interface-trap occupation is not considered. Relying on

drift-diffusion transport in the linear regime and assuming µ

independent of VGB, the subthreshold slope, SS−1, is given by

SS−1 =
1

ln 10

1

Qm

∂ Qm

∂ψs

∂ψs

∂VGB
. (17)

The factor (1/Qm)(∂ Qm/∂ψs) is found from (12) by consid-

ering Qm � Q f or Qsc ≈ Q f in the subthreshold region.

After some mathematical manipulation, we find

1

Qm

∂ Qm

∂ψs

= qεsi

[

1

Qm Q f

ni e
ψs−Vch

UT

−
1

Q2
f

NA

(

1 −
UT

fs(E A)

∂ fs(E A)

∂ψs

)
]

. (18)

Merging (11), (17), and (18) and inverting give

SS =
2NA ln 10

[

(ψs − ψb) − UT ln
fs(E A)
fb(E A)

]

Q f

Qm
ni e

ψs−Vch
UT

︸ ︷︷ ︸

(a)

−NA

(

1 − UT

fs (E A)
∂ fs(E A)

∂ψs

)

∂VGB

∂ψs

. (19)

The following relation can be derived for (a) in (19) (see the

Appendix):

ni e
ψs−Vch

UT =
Qm

Q f

2NA

[

(ψs − ψb) − UT ln
fs(E A)
fb(E A)

]

UT

. (20)

Plugging this in (19), one finds

SS = UT ln(10)
1

1 −
UT

(

1− UT
fs (E A)

∂ fs (E A)
∂ψs

)

2
[

(ψs−ψb)−UT ln
fs (E A)

fb(E A)

]

∂VGB

∂ψs

(21)

where

∂VGB

∂ψs

= 1 +
√

2q NAεsi

Cox

1 − UT

fs(E A)
∂ fs (E A)

∂ψs

2

√

(ψs − ψb) − UT ln
fs (E A)
fb(E A)

−
q

Cox

∑

j

Nit, j

∂ fs(Et, j )

∂ψs

(22)

follows from the surface-boundary condition derived in

Section III-B3. In the subthreshold region, far above the flat-

band condition, fs(E A) = 1 can be assumed (Fig. 4), and

UT � 2(ψs − ψb), leading to SS = UT ln 10(∂VGB/∂ψs)

with

∂VGB

∂ψs

= 1 +
√

2q NAεsi

Cox

1

2
√

ψs − ψb

−
q

Cox

∑

j

Nit, j

∂ fs(Et, j )

∂ψs

. (23)

Taking the derivative of (13), (23) becomes

∂VGB

∂ψs

= 1 +
√

2q NAεsi

Cox

1

2
√

ψs − ψb

+
q

Cox

1

UT

∑

j

Nit, j

gt exp[(ψt, j − ψs)/UT ]
{1 + gt exp[(ψt, j − ψs)/UT ]}2

.

(24)

Note the appearance of a factor 1/UT in the third term on the

RHS of (24). Placing a discrete interface trap, ψt, j , at each

ψs value in the subthreshold region, and assuming a uniform

Nit, j value for each trap, leads to

∂VGB

∂ψs

= 1 +
√

2q NAεsi

Cox

1

2
√

ψs − ψb

+
q Nit

Cox

1

UT

gt

(1 + gt )2
.

(25)
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The first two terms in (25) yield the nonideality or slope factor

without interface traps, n0. The SS-expression becomes

SS = n0UT ln 10 +
q Nit

Cox

gt

(1 + gt )2
ln 10 (26)

where the second term on the RHS is the sought 1SS-offset.

The nonideality factor n0 has an upper bound of two mainly

related to doping. Therefore, at 4.2 K, the first term on the

RHS of (26) is limited to ≈1.6 mV/decade. Note that Nit does

not become multiplied with UT in (26). Therefore, assuming

a reasonable value for Nit = 3 × 1011 cm−2, the second term

gives ≈9 mV/decade (with Cox = 20 mF m−2 and gt = 4).

Together they yield the SS-degradation observed on a long

nMOS device at 4.2 K. At 77 K, a similar calculation using

n0 = 1.08 and Nit = 3 × 1011 cm−2 gives 25 mV/decade,

corresponding to the SS measured [31] on a long pMOS device

at 77 K (Fig. 8).

VII. CONCLUSION

A theoretical MOS transistor model is developed valid from

room temperature down to liquid-helium temperature. The

model relies on the Boltzmann statistics, verified in the limit

to 0 K, and includes incomplete ionization, interface traps,

bandgap temperature dependence, and mobility reduction. It is

evidenced that incomplete ionization maintains the nondegen-

eracy of a semiconductor at deep-cryogenic temperatures and

leads to a decrease in the threshold voltage on top of the

overall increase due to Fermi–Dirac distribution scaling. The

Fermi–Dirac temperature dependence of interface-trap occupa-

tion degrades the SS down to 4.2 K. An expression for the SS,

including incomplete ionization and temperature-dependent

interface trapping, is derived. The proposed model builds the

indispensable physical foundation for future low-temperature

CMOS circuit design.

APPENDIX

Starting from Qm +Q f = Qsc, we can write (Qm +Q f )
2 =

ε2
siE

2
s , with Es given by (7). Solving a quadratic equation for

Qm leads to

Qm

Q f

= −1 +
√

1 +
2qniUT εsi

Q2
f

e
ψs−Vch

UT (27)

where we neglected the exponential term in ψb/UT . In the

subthreshold region (Qm � Q f ),
√

1 + x can be approxi-

mated by 1+ x/2 for x → 0. Using (11) for Q2
f leads to (20).
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