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Abstract—We present a comprehensive investigation of the
cryogenic performance of third-generation silicon—germanium
(SiGe) heterojunction bipolar transistor (HBT) technology.
Measurements of the current-voltage (dc), small-signal ac, and
broad-band noise characteristics of a 200-GHz SiGe HBT were
made at 85 K, 120 K, 150 K, 200 K, and 300 K. These devices
show excellent behavior down to 85 K, maintaining reasonable dc
ideality, with a peak current gain of 3800, a peak cut-off frequency
(fr) of 260 GHz, a peak fi,.x of 310 GHz, and a minimum
noise figure (NF,,;,) of approximately 0.30 dB at a frequency of
14 GHz, in all cases representing significant improvements over
their corresponding values at 300 K. These results demonstrate
that aggressively scaled SiGe HBTs are inherently well suited
for cryogenic electronics applications requiring extreme levels of
transistor performance.

Index Terms—Broad-band noise, cryogenic temperature, ex-
treme environments, heterojunction bipolar transistor (HBT),
high-frequency noise, silicon-germanium (SiGe).

I. INTRODUCTION

ILICON-GERMANIUM (SiGe) heterojunction bipolar
Stransistor (HBT) technology has recently emerged as an
important alternative to III-V device technologies for RF and
mixed-signal applications. Commercial SiGe technologies with
transistor performance in the range of 50-100 GHz now exist
today in many companies worldwide, and recent work [2] has
demonstrated that manufacturable SiGe HBT technologies with
performance well above 200 GHz can be achieved by careful
profile and structural design. It is well established that, due
to bandgap engineering, SiGe HBTs are naturally suited for
use in the cryogenic environment (e.g., at 77 K or even down
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to 4.2 K) [3], an operational regime traditionally forbidden to
conventional silicon (Si) bipolar junction transistors (BJTs).

At present, cryogenic electronics represent a small but im-
portant niche market, with applications such as high-sensitivity
cooled sensors and detectors, satellite systems, deep-space and
planetary space missions, very high-precision instrumenta-
tion and detector electronics, superconductor—semiconductor
hybrid electronic systems, and very-low-noise receivers for
astronomy. In this study, we present a comprehensive investi-
gation of the cryogenic performance of a scaled 200-GHz SiGe
HBT technology.

II. SiGe TECHNOLOGY AND MEASUREMENT SETUP

The SiGe HBTs used in the investigation are from a com-
mercial third-generation SiGe HBT process technology which
employs a new reduced-thermal-cycle “raised extrinsic base”
structure and utilizes deep and shallow trench isolation, an in
situ doped polysilicon emitter, a silicided extrinsic base, and
a carbon-doped graded UHV/CVD epitaxial SiGe base (Fig. 1
[2]) with a minimum emitter width of 0.12 ;zm, a measured peak
fr of 200 GHz, and peak fi,.x of 285 GHz at room tempera-
ture (300 K). It was not optimized for cryogenic operation in
any way.

Measurements were performed using a custom-designed
cryogenic probing system which enables on-wafer microwave
measurements across the temperature range of 18-350 K [4].
S-parameters were measured to 26 GHz using an HP 8510C
VNA. Noise parameters were measured from 2 to 26 GHz
using an automated ATN noise measurement system, em-
ploying a “multiple source impedance” parameter extraction
methodology. The thermometry of the cryogenic setup was
carefully verified using transistor dc measurements dipped in
a bath of liquid nitrogen (i.e., 77.3 K). Conventional “open”
structure, Y-subtraction parasitic de-embedding was used for
both the S-parameter and noise parameter measurements, and
system calibration was performed at each temperature to ensure
accuracy across the entire temperature range.

III. SiGe HBTs OPERATING AT CRYOGENIC TEMPERATURES

It has long been known that conventional Si BJTs are not
suitable for operation at cryogenic temperatures because of the
combined detrimental effects of: 1) the exponential decrease in

0018-9383/$20.00 © 2005 IEEE
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Fig. 1. Schematic device cross section of a raised extrinsic base SiGe HBT.

current gain with cooling due to heavy-doping-induced bandgap
narrowing in the emitter; 2) the increase in base resistance with
cooling due to carrier freeze-out in the base; and 3) the decrease
in frequency response due to the degradation of the minority car-
rier diffusivity in the base region with cooling [5]. Thus, for Si
BJTs optimized for high-speed operation at 300 K, current gain
() degrades quasi-exponentially with cooling, the fr and fiax
degrade with cooling, and, not surprisingly, the circuit delay
(e.g., ECL) increases (degrades) with cooling, precluding their
use at cryogenic temperatures.

Bandgap engineering has a very positive influence, however,
on the low-temperature operation of SiGe HBTs. The thermal
energy (kT), in every instance, is arranged in the SiGe HBT
equations such that it favorably affects the low-temperature per-
formance metric in question. For an SiGe HBT optimized for
300-K operation, when compared to a similarly constructed Si
BIT, (T should increase exponentially with decreasing tem-
perature, since

Bsice [ AIAE, Go(grade) /KT e Fo.ce (/KT |
ﬂSi Van - 1— e—AEg_Ge(grade)/kT ( )
where
- (Dnb)sice
— 1/nb)SiGe 2
K (Dub)si @

is the ratio of the minority electron diffusivity between SiGe and
Si and

(NeNv)sige

(NcNvy)si ®)

v =
is the “effective density-of-states ratio” between SiGe and Si.
The Ge-induced reduction in the base bandgap occuring at the
emitter—base edge of the quasi-neutral base is AE, ge(z = 0)
and

AE%GO(grade) = AEg,Gc(Wb) — AE%GO(O) (4)

Shallow Trench

Deep Trench

where W, is the neutral base width. This indicates that one
should expect a quasi-exponential increase in the SiGe-to-Si
current gain ratio with decreasing temperature. In addition,
V4(T) should also increase exponentially with decreasing
temperature when compared to Si BJT, since

1 — ¢ AEsGe (grade)/kT
AE, ge(grade)/kT
)

The frequency response of SiGe HBTs should also improve with
decreasing temperature, as can be seen from

V4 sice

~ eAEg Ge(grade)/kT
Vasi

‘fH E

Tp,SiGe _ 2 kT
msi 1 AE, ge(grade)
% {1 kT [1 _ efAEg_(;e(grade)/kT} }
AE, ge(grade)
(6)
TesiGe | Josi . 1- e~ AEy.ce(grade) /KT D
Tesi  JosiGe r”yﬁAEﬂkeiWeAEg.Ge(O)/kT

both of which are favorably influenced by cooling. We assume
here that the influence of the graded SiGe profile is also suffi-
cient to overcome the inherent electron diffusivity degradation
on 7, with cooling. Detailed derivations of these equations can
be found in [5].

Hence, we expect that SiGe HBTs, even without optimiza-
tion for cryogenic operation, will naturally have improved per-
formance with cooling, provided carrier freeze-out is prevented
by using an abrupt and heavily doped (above the Mott transi-
tion) epitaxial base. As will be shown, this is indeed the case for
the present SiGe technology.

IV. MEASUREMENT RESULTS AND DISCUSSION

A. DC Performance

Current—voltage measurements across the 85-300-K temper-
ature range were made on SiGe HBTs with an emitter area
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Fig. 2. Forward Gummel Characteristics at 300 K and 85 K for a 0.12 x
10.0 pm? SiGe HBT.

of 0.12 x 10.0 pm? [6]. The forward-gummel characteristics
at 300 K and 85 K are shown in Fig. 2, for Vop = 0 V. In
spite of the high peak base and emitter doping levels associated
with these aggressively scaled SiGe HBTs (>10'% cm™3), the
base current remains reasonably ideal at 85 K. This is the re-
sult of the lightly doped epitaxial spacer layer inserted between
the base and emitter regions and helps limit field-assisted tun-
neling and recombination at low temperatures. The base—emitter
turn-on voltage increases with cooling, as expected, due to the
exponential decrease of the intrinsic carrier concentration with
cooling. The base and emitter regions in this device are both
doped well above the Mott transition and ensure that carrier
freeze-out does not negatively impact the base or emitter resis-
tance below 100 K. As can be seen in Fig. 2 at 85 K, this device
is capable of very high current density operation (>25 mA/u
m?), and thus the high collector doping level effectively limits
the impact of heterojunction barrier effects at low temperatures,
which can be a key design issue for the cryogenic operation of
SiGe HBTs [3]. It can be noted that the slope of the collector
current (g, ) increases with the base—emitter voltage as we de-
crease the temperature from 300 K to 85 K. For low injection,
we can write

dlc qlc q
~ e 4

— ~ qVBE/kT. 8
WVep kT kTC ®)

Im

Fig. 3 shows the collector current as a function of the base—
emitter voltage for various temperatures illustrating the change
in the transconductance with temperature. Fig. 4 shows the base
current as a function of the base—emitter voltage for various tem-
peratures. It is interesting to note that the the nonideal base cur-
rent increases dramatically at 85 K compared to the collector
current. This is because, at a given Vg, both the base and col-
lector currents decrease strongly going from 300 K to 85 K. The
leakage current in the base, induced by the tunneling and field-
assisted recombination processes associated with the high elec-
tric field in the emitter—base junction, though, remains largely
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Fig. 3. Collector current as a function of base—emitter voltage at various
temperatures for a 0.12 x 10.0 gm? SiGe HBT.
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Fig. 4. Base current as a function of base—emitter voltage at various
temperatures for a 0.12 x 10.0 pm? SiGe HBT.

constant over temperature (i.e., they are only weakly tempera-
ture-dependent mechanisms). This parasitic base leakage cur-
rent increases the nonideal base current as we go from 300 K to
85 K.

Shown in Fig. 5 are typical output characteristics of the SiGe
HBTs at 300 K and 85 K. The output characteristics remain
reasonably ideal at 85 K with the breakdown voltage (BV cro)
reducing from about 1.8 V at 300 K to about 1.6 V at 85 K.

A “negative-differential-resistance” (NDR) effect is observed
in the forced-Ip output characteristics, which causes the over-
shoot-like characteristics in the collector current at 85 K [8]. A
“hysteresis” in the voltage sweep direction of the I-V charac-
teristics appears in the NDR region at cryogenic temperatures.
We observe (Fig. 5), at 85 K, that in the quasi-saturation region
I decreases as Vg increases, thus producing an NDR-like
behavior. The effect of the NDR is also observed in the for-
ward-gummel (Fig. 2), where we can observe “dips” in the Ip
curve (decreasing and then increasing Ig) as can be seen in
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Fig. 5. Common-emitter output characteristics at 300 K and 85 K for a
0.12 X 0.25 pm? SiGe HBT.
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0.12 x 10.0 #m? SiGe HBT.

Fig. 4. These dips become much pronounced as we reach tem-
peratures 150 K and lower.

The current gain increases monotonically with cooling from
600 at 300 K to 3800 at 85 K, as shown in Fig. 6. Two mecha-
nisms are responsible for this improvement with cooling: 1) the
(sizeable) Ge-induced band offset in this device (exponentially)
increases the current gain with cooling (1) and 2) the heavily
doped base region partially offsets the doping-induced bandgap
narrowing associated with the emitter region. The strong de-
crease in the current gain above its peak value at 85 K is as-
sociated with the “Ge-grading” effect [9], but the current gain
remains above 2000 at 85 K at the current density at which
peak fr is reached, effectively minimizing any emitter charge
storage at low temperatures. Fig. 7 shows a normalized peak /3
as a function of reciprocal temperature (1000/7"), illustrating
the increase in peak (3 with the decrease in temperature (about
7 x from 300 K to 85 K).

Avalanche multiplication effects were also studied at 300 K
and 85 K to ascertain the effects of temperature on the break-
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down and reliability of this aggressively scaled SiGe HBTs. The
M — 1 is calculated from -V measurements using

Al
T Io-Alp

Fig. 8 shows the measured multiplication factor (M — 1) versus
collector—base voltage (V) at 85 K and 300 K. Since the col-
lector current decreases strongly with Vpg as we go from 300 K
to 85 K, to obtain similar I~ at 300 K and 85 K, the Vg was
increased from 0.65 V at 300 K to 0.93 V at 85 K. Only a weak
increase in M — 1 with cooling is observed, as expected from
previously reported work [10]. This modest temperature depen-
dence of M — 1 with cooling alleviates the power supply limit
posed by the base-current reversal voltage and indicates the suit-
ability for these aggressively scaled SiGe HBTs for low-temper-
ature circuit applications requiring higher Vcp.

M-1 ©)

B. Small-Signal Characteristics

On-wafer S-parameter measurements were performed at
various temperatures. Fig. 9 shows the measured small-signal
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gain on frequency at peak fr for a0.12 x 10.0 um? SiGe HBT
at 300 K and 85 K (Vog = 1.2 V). A near —20-dB/decade
slope is obtained across a wide frequency range for all tem-
peratures. Fig. 10 shows the extracted cutoff frequency versus
bias current data at 300 K, 200 K, 150 K, 120 K, and 85 K
for the 0.12 x 10.0 um? SiGe HBT. An increase in peak fr
from 200 GHz at 300 K to 260 GHz at 85 K is observed.
This increase in the peak fr with cooling is proportionately
smaller than has been reported in first-generation SiGe HBTs
operated at 85 K [11]. This is because, in the present case, the
base and emitter transit times in this 200-GHz device, which
are favorably affected by both the Ge-grading and cooling, are
already small compared to the collector delay time, and thus
their relative influence on the total transit time with cooling is
smaller. We observe very little difference between the cutoff
frequencies for 120 K and 150 K at low currents, which is likely
the result of measurement accuracy limitations. Fig. 11 shows
a plot of 1/(2x fr) against 1/Ic at 300 K, 150 K, and 85 K.
The extrapolated transit time decreases from 0.7 ps at 300 K
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to 0.6 ps at 150 K and 0.5 ps at 85 K, and the total depletion
capacitance of the device decreases with cooling, as expected,
since the junction built-in voltages increase with cooling. fi,.x
is extracted from the measured S-parameters by extrapolating
the unilateral gain at a —20-dB/decade slope. The peak fmax
as a function of temperature is shown in Fig. 12. We observe
that the peak fi,ax increases from about 280 GHz at 300 K to
310 GHz at 85 K.

C. Broad-Band Noise Characteristics

The main sources of broad-band noise in these SiGe HBTs
are the base and collector shot noise components and the base
resistance-induced thermal noise. High fr and (3, along with
low base resistance, can be used to produce SiGe HBTs with
excellent broad-band noise performance at 300 K [12], [13].
The minimum noise figure NF,,;;, as a function of the collector
current I (through g,,) can be written as

1 1 ()
NFmin—1+B+\/29mrbb' E+ (f_T> . (10)
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Since, in this case, the current gain J and the fr both increase
with cooling (Fig. 13), one would expect improved noise
performance at low temperatures, provided the base resistance
(rp5) does not increase due to carrier freezeout at low tem-
peratures. The measured noise data were well behaved at all
temperatures with near-ideal parabolic impedance surfaces.
Nevertheless, error bars are estimated on the extracted noise
data of approximately £0.1 dB. Fig. 14 shows the behavior
of both minimum NF,,;, and the extracted r;;, as a function
of temperature and shows that the base doping level is clearly
above the Mott transition, effectively suppressing carrier
freezeout. This decrease in the extracted rp;, also indicates that
the fmax should increase with cooling, which is the indeed
the case here, as was shown in Fig. 12. At a fixed collector
current I(g,,) and frequency, NF i, depends on fr, 3, and
Tpp, and hence NF,;, decreases as the temperature is reduced
from 300 K to 85 K [see (10)]. This combined effect leads to a
substantial decrease in the NF;,, with decreasing temperature,
before it becomes dominated by the saturation of the base
resistance, and the minimum noise figure thus tends to saturate.
Fig. 15 shows the measured minimum noise figure (NF,,;,,) as
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a function of bias current at 14 GHz. Interestingly, the rapid
increase in NF,;, at high bias currents at 300 K, which is
primarily determined by the base shot-noise component, dis-
appears at cryogenic temperatures, again due to the combined
increase in 3, gm, and fr with cooling (10), allowing lower
NF in to be achieved at peak fr at 85 K. Fig. 16 shows the
NF 1uin and associated gain (G 4) as a function of frequency at
Ic = 12 mA (peak fr) for a 0.12 x 10.0 um? SiGe HBT, at
both 300 K and 85 K. Because of the increase in fr from 200 to
260 GHz, an increase in 8 from 600 to 3800 and a decrease in
rpp from 32 to 18 €2 as we go from 300 K to 85 K, at the same
Ic(gm), the NF i, becomes a little weaker function of the
frequency at 85 K than at 300 K. Hence, the NF',.,;,, increases
at a slower rate with frequency at 85 K than at 300 K as shown
in Fig. 16. At 85 K, this device achieves a minimum NF ;,, of
about 0.3 dB (G 4 = 18 dB) at 14 GHz, and a minimum NF;;,
of about 0.75 dB (G4 = 15 dB) at 20 GHz.

V. SUMMARY

Current—voltage, small-signal ac, and broad-band noise char-
acteristics of a 200-GHz SiGe HBT have been measured down
to 85 K. At cryogenic temperatures, these SiGe HBTs maintain
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excellent dc ideality, with a peak current gain of 3800, a peak
cut-off frequency of 260 GHz, a peak fi,.x of 310 GHz, and a
minimum noise figure of approximately 0.30 dB at a frequency
of 14 GHz and in all cases represent significant improvements
over their corresponding 300 K values. These results were ob-
tained from a SiGe HBT technology which is not optimized for
cryogenic operation and suggest the inherent suitability of ag-
gressively scaled SiGe HBT technology for cryogenic applica-
tions requiring extreme levels of transistor performance.
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