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ABSTRACT
Two regional analgesic modalities currently cleared by the U.S. Food and 
Drug Administration hold promise to provide postoperative analgesia free of 
many of the limitations of both opioids and local anesthetic-based techniques. 
Cryoneurolysis uses exceptionally low temperature to reversibly ablate a 
peripheral nerve, resulting in temporary analgesia. Where applicable, it offers 
a unique option given its extended duration of action measured in weeks to 
months after a single application. Percutaneous peripheral nerve stimula-
tion involves inserting an insulated lead through a needle to lie adjacent to a 
peripheral nerve. Analgesia is produced by introducing electrical current with 
an external pulse generator. It is a unique regional analgesic in that it does 
not induce sensory, motor, or proprioception deficits and is cleared for up to 
60 days of use. However, both modalities have limited validation when applied 
to acute pain, and randomized, controlled trials are required to define both 
benefits and risks.
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POTENT site-specific analgesia may be provided with 
regional anesthetics and analgesics. Unfortunately, prev-

alent local anesthetic-based regional techniques such as sin-
gle injection and continuous peripheral nerve blocks have 
their own set of limitations such as inducing motor, sensory, 
and proprioception deficits that possibly increase the risk of 
falling;1 limited duration;2 and, for ambulatory patients with 
perineural catheters, the burden of carrying an infusion pump 
and local anesthetic reservoir.3–5 There is new evidence that 
suggests two analgesic alternatives currently cleared by the 
U.S. Food and Drug Administration—cryoneurolysis and 
ultrasound-guided percutaneous peripheral nerve stimula-
tion—hold promise to provide postoperative analgesia free 
of many of the major limitations of both opioid analgesics 
and currently prevalent regional analgesic options (table 1).

Cryoanalgesia
“Cryoanalgesia”6—the use of cold temperature to treat pain—is 
hardly a new concept: it was described by the ancient Egyptians 
and Hippocrates.7 Although a French military surgeon within 
Napoleon’s army delivered intraoperative regional anesthesia 
by applying ice and snow to injured limbs before amputation,8 
it was not until 1961 that the first closed cryoprobe apparatus 
was described.9 Modern cryoprobes, often termed “cannulas,” 
are essentially a tube-within-a-tube that convey a gas at a high 
pressure (600 to 800 psi) down their length, through a small 
annulus (0.002 mm), and into a low-pressure closed end before 
being vented back up the length of the probe (fig. 1).10 No gas 
ever comes into contact with body tissues. The pressure drop 

at the probe tip results in a corresponding volume expansion 
and decrease in temperature because of the Joule–Thomson 
effect.11 An ice ball forms around the end of the probe, which 
induces neuronal injury within the affected area.12

mechanism of Action

The degree of injury and ultimate effects are primarily 
determined by tissue temperature.13 Neuropraxia occurs 
with temperatures between +10°C to −20°C, with little or 
no injury to anatomic structures and highly variable neu-
ral recovery requiring minutes to a few weeks.14 However, 
between −20°C to −100°C, Wallerian degeneration (axon 
breakdown or “axonotmesis”) occurs distal to the lesion, 
resulting in “cryoneurolysis”,15 reliably inhibiting affer-
ent and efferent signal transmission for multiple weeks or 
months as the axon regenerates.14 Importantly, at tempera-
tures warmer than −100°C, the endoneurium, perineurium, 
and epineurium remain intact,14 allowing reliable regrowth 
of the axon distally from the point of treatment.11,16 In con-
trast, at temperatures colder than −100°C, the endoneu-
rium may be irreversibly injured (“neurotmesis”), inhibiting 
reliable axon regrowth.14 Therefore, for cryoneurolysis, the 
target temperature is between −20°C and −100°C. It is for 
this reason that nitrous oxide or carbon dioxide are most 
frequently used for cryoneurolysis9—as opposed to “cryoab-
lation,” in which permanent tissue destruction is desired 
(e.g., tumor ablation)17: these two gasses become solid below 
their boiling point of −88° and −78°C, respectively, and 
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therefore inherently limit the cooling process to within a 
safe—and therapeutic—range.18

The 1 to 2 mm/day rate of axon regrowth distally from 
the point of treatment provides both the primary bene-
fit and limitation of cryoneurolysis when applied to acute 
pain: analgesia may be provided for weeks or months with a 
single treatment, although the actual duration is highly vari-
able and based in large part on the distance from the point 
of cryoneurolysis to the terminal nerve branches innervat-
ing the affected tissue.16,19–21 The consequence is that cry-
oneurolysis is optimally applied when prolonged analgesia 
is required; yet an extended and somewhat unpredictable 
duration of hypesthesia, muscle weakness (or paralysis), 
and possibly decreased proprioception are acceptable.22 
There are therefore limited applications involving acute 
pain (table  2); however, for circumstances in which these 
limitations are acceptable, a peripheral nerve block using 
cryoneurolysis appears to be a promising analgesic tech-
nique with a unique duration of action orders of magnitude 
beyond current local anesthetics.22

Intraoperative Application to Acute Pain

The initial report of postsurgical analgesia using cryoneurol-
ysis involved intraoperative application to surgically exposed 
intercostal nerves during thoracotomy.29 Subsequently, mul-
tiple randomized, controlled trials involving thoracotomy58 
demonstrated analgesic, opioid-sparing, and pulmonary func-
tion benefits, as well as a shortened length of hospitalization 
and fewer opioid-related adverse effects,19,24,30–37,39,40,43,48,58 
some with superiority over other regional analgesic techniq
ues.24,31,32,35,48 In contrast, six randomized trials failed to iden-
tify cryoneurolysis benefits.39–44 Similarly, for inguinal her-
niorrhaphy one randomized, sham-controlled trial involving 
intraoperative cryoneurolysis was negative,50 whereas another 
reported multiple benefits including lower pain scores, lower 
oral analgesic requirements, and earlier resumption of nor-
mal activity.49 Of note, a third study applying cryoneurolysis 

to patients with chronic postherniorrhaphy pain revealed a 
90% success rate in decreasing pain levels by 75 to 100%.59 
Differences in findings may be due to differing cryoneu-
rolysis protocols with various freeze durations, number 
of cycles or treated nerves, extent of nerve manipulation, 
drain placement or surgical pain outside the distributions 
of treated nerves, inadequately powered sample sizes,41 dif-
fering outcome measures, and numerous other factors.58,60,61 
Regardless, additional study is certainly warranted to clar-
ify the potential benefits and risks, as well as the optimal 
application technique, when treating post-thoracotomy and 
herniorrhaphy pain.

Imaging

The development of percutaneously inserted cryoprobes 
greatly increased possible analgesic applications because sur-
gical exposure of the target nerve was no longer required.6 
Anatomic landmarks (blind)62 and/or nerve stimulation ini-
tially guided probe insertion,6,63 but these techniques were 
eventually supplemented/replaced with biplane X-rays,64,65 
fluoroscopy,66,67 computed tomography,67–72 magnetic reso-
nance imaging,73–75 and ultrasound.76,77 Imaging not only 
improves nerve targeting,78 but—most importantly—en-
ables real-time evaluation of the ice ball’s envelopment of 
the target nerve.79,80 Ultrasound-guided percutaneous cry-
oneurolysis can now be provided on an outpatient basis 
without sedation, resulting in a plethora of reports involv-
ing the treatment of chronic pain.17,71,72,81–89 The technique 
is nearly identical to placing a single-injection peripheral 
nerve block, only instead of injecting local anesthetic 
through a hollow-bore needle to envelope the target nerve, 
the probe is inserted adjacent to the nerve and activated 
with an ice ball forming at the tip that envelopes the tar-
get.11 Because thin, difficult-to-image fascial layers between 
the probe and epineurium—that would inhibit local anes-
thetic spread—are irrelevant with cryoneurolysis, it appears 
easier to administer than local anesthetic-based peripheral 

Table 1. relative Attributes of Five regional Analgesic modalities That may be Used to Treat Acute Pain

Local Anesthetic- 
based Peripheral  

Nerve Blocks

Liposome  
Bupivacaine in  

Peripheral Nerve Blocks

Continuous  
Peripheral Nerve  

Blocks
Percutaneous  

Cryoneurolysis

Percutaneous  
Peripheral Nerve  

Stimulation

Analgesia duration (typical) < 1 day 1–3 days Up to 7 days Weeks to months Up to 60 days
Administration time + + ++ ++ to ++++* +++
Titratable No No Yes No Yes
Applicable anatomic locations ++++ +† ++++ ++ +++
Sensory deficits ++++ + ++ ++++ 0
motor deficits ++++ + ++ +++ 0
Cost (per application) + ++ ++ + ++++
Follow-up time requirements + + ++++ + +++

*Total duration required for cryoneurolysis is significantly dependent upon the number of treated nerves (e.g., treating eight intercostal nerves for a bilateral mastectomy requires 
significantly longer than a single application for a rib fracture). †At the time of this writing, the single liposome bupivacaine formulation approved for clinical use by the U.S. Food and 
Drug Administration is approved exclusively for only two peripheral nerve blocks (transversus abdominis plane and interscalene for shoulder surgery).
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Fig. 1. A modern cryoneurolysis probe (“cannula”) produces extremely cold temperatures at its tip due to the Joule–Thomson effect 
resulting from gas flowing from a high- to low-pressure chamber (top panel). Examples of handheld (left panel; Iovera Focused Cold Therapy, 
myoscience, USA, with inset of optional trident probe) and portable console (right panel; Painblocker, Epimed International, USA) cryoneurol-
ytic devices. Used with permission from brian m. Ilfeld, m.D., m.S.
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nerve blocks.22 Although application of percutaneous cryo-
neurolysis to acute pain has been lacking, recently published 
cases suggest a possible renaissance.10

Percutaneous Application to Acute Pain

Treatment of intercostal nerves provides analgesia of the 
trunk for procedures or injuries that produce moder-
ate-to-severe pain of an extended duration measured in at 
least weeks, if not months. For example, providing potent, 
site-specific analgesia after percutaneous nephrolithotomy 
can permit hospital discharge.51 Repeated debridement of 
burns frequently requires potent analgesia, and effective 
pain control was reported using percutaneous cryoneurol-
ysis after a scalding injury from boiling water in the dorsal 
and plantar aspects of the first to third toes.51 Severe pain 
from traumatic rib fractures often decreases patients’ ability 
to breathe deeply and cough efficiently, greatly increasing 
their risk of pneumonia that is, in itself, a cause of mortality 

among the elderly.90 Local anesthetic-based intercostal 
nerve blocks and epidural infusions provide potent analge-
sia, improve peak expiratory flow rates, and improve arte-
rial oxygen saturation on room air but have duration of 
actions measured in hours or days and not the weeks or 
months required for fracture healing.91 Case reports suggest 
that cryoneurolysis of solely the involved intercostal nerves 
may provide potent analgesia, thus avoiding the need for 
hospitalization, obviating opioid requirements, improving 
breathing/coughing, and therefore decreasing the risk of 
pulmonary comorbidity.52,53 Three patients who received 
cryoneurolysis of the second to fifth intercostal nerves 
before uni- or bilateral mastectomy reported a near-painless 
postoperative course without any opioid requirements or 
sleep disturbances, a significant improvement over historic 
controls.54

Ultrasound-guided percutaneous cryoneurolysis may 
also be used in the extremities, such as to provide analgesia 

Table 2. reported Cryoneurolysis Applications to Acute Pain management Administered Either Percutaneously or via the Surgical 
Incision

Case Reports  
and Series

Retrospective,  
Controlled Studies

Randomized,  
Controlled Trials

  Positive Negative Positive Negative

Head and neck
 Tonsillectomy    robinson et al. (n = 59)23  
Trunk
 mini-thoracotomy    bucerius et al. (n = 57)24  
 Thoracotomy Johannesen et al. (n = 22)25

maiwand et al. (n = 100)26

maiwand et al. (n = 600)27

Glynn et al. (n = 58)28

Nelson et al. (n = 76)29

 brichon et al. (n = 120)30

Joucken et al. (n = 96)31

Katz et al. (n = 24)32

momenzadeh et al. (n = 60)33

moorjani et al. (n = 200)19

Pastor et al. (n = 100)34

roberts et al. (n = 144)35

rooney et al. (n = 75)36

Sepsas et al. (n = 50)37

Yang et al. (n = 90)38

Gwak et al. (n = 50)39

Ju et al. (n = 107)40

miguel et al. (n = 45)41

müller et al. (n = 63)42

mustola et al. (n = 42)43

roxburgh et al. (n = 53)44

 Pectus excavatum repair  Graves et al. (n = 25)45

Harbaugh et al. (n = 32)46

Keller et al. (n = 52)47

 Graves et al. (n = 20)48  

 Herniorrhaphy    Wood et al. (n = 30)49 Callesen et al. (n = 15)50

 Percutaneous nephrolithotomy Gabriel et al. (n = 1)51     
 rib fracture(s) Finneran et al. (n = 5)52

Vossler and Zhao (n = 1)53

    

 Iliac crest grafting Gabriel et al. (n = 1)51     
 mastectomy  Gabriel et al. (n = 6)54*    
Extremities
 Amputation Gabriel et al. (n = 3)51     
 burns Gabriel et al. (n = 1)51

Finneran et al. (n = 3)55

    

 Skin graft harvesting Finneran et al. (n = 2)55     
 Knee arthroplasty Ilfeld et al. (n = 3)56 Dasa et al. (n = 100)57    
 rotator cuff repair Ilfeld et al. (n = 2)56     

*This retrospective study reported a dramatic difference between the treatment (cryoneurolysis) and control groups, but due to a very small sample size (n = 6), statistics were not 
applied to the data.
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after limb or digit amputation of either the upper or lower 
extremity.92 If there is any risk of a canceled case, it is rec-
ommended to administer local anesthetic-based nerve 
blocks preoperatively and the cryoneurolysis only after 
the amputation. Similarly, cryoneurolysis may provide pal-
liative analgesia during end-of-life care,22 or pain control 
during weeks of postburn debridement and redressing of 
an extremity.51,55 Relatedly, split-thickness skin grafts are 
frequently harvested from the lateral thigh, and cryoneurol-
ysis of the lateral femoral cutaneous nerve has been used to 
provide multiple weeks of potent analgesia.55

Pain after knee arthroplasty is notoriously challenging to 
treat and frequently lasts multiple weeks or even months,93 
and consequently may be a suitable procedure for cryoneu-
rolysis.94 However, application to the femoral nerve at the 
inguinal ligament or even more distally within the adductor 
canal has a high probability of inducing quadriceps weak-
ness.95 Therefore, investigators have targeted exclusively 
sensory nerves surrounding the knee, including the anterior 
femoral cutaneous and infrapatellar branch of the saphe-
nous nerve.56,57,96 A retrospective cohort study reported that 
treatment of these nerves 1 week before total knee arthro-
plasty resulted in a lower proportion of patients remaining 
hospitalized for more than 1 day (67% vs. 6%; P < 0.001), 
45% less opioid consumption during the first 12 postop-
erative weeks (P < 0.001), and less pain interference with 
daily living activities at both 6 and 12 weeks (P < 0.001 for 
both).97 Unfortunately, no randomized trial involving the 
use of perioperative cryoneurolysis for knee arthroplasty 
has been reported in the peer-reviewed literature. However, 
one randomized, double-masked, sham-controlled study 
involving nonsurgical chronic osteoarthritis knee pain 
demonstrated significant improvement in functioning 30, 
60, and 90 days after cryoneurolysis compared with a sham 
procedure.98

Similarly, total shoulder arthroplasty and other major 
shoulder procedures can result in a prolonged period of 
pain of multiple weeks. The suprascapular nerve innervates 
approximately 65% of the shoulder joint and has been tar-
geted for cryoneurolysis to provide analgesia after rotator 
cuff repair.56 The suprascapular nerve contains both sen-
sory and motor fibers, and weakening or paralyzing the 
supraspinatus and infraspinatus muscles for potentially 
multiple months may compromise rehabilitation of the 
shoulder joint. Cryoneurolysis has been applied clinically 
to mixed sensory-motor nerves for decades without any 
reported clinically detectable muscle weakness after nerve 
regeneration.11 However, various investigators have sug-
gested the possibility of subclinical residual and persistent 
motor weakness caused by either incomplete regeneration 
or motor unit clustering.99 There are preclinical data from 
laboratory animals suggesting decreased nerve conduction 
velocities 90 days after cryoneurolysis of intercostal nerves, 
but all physiologic and behavioral measures fully returned 
to normal by that time point (subsequent time points were 

not evaluated).100 Importantly, treatment with 10% procaine 
HCl to intercostal nerves within the same animal study 
resulted in similar deficit and recovery patterns.100 In con-
trast, three preclinical studies designed specifically to address 
this issue revealed no long-term changes to the structure or 
function of mixed nerves and their motor targets after tibial 
or common peroneal nerve cryoneurolysis and subsequent 
axonal regeneration and remyelination99,101,102—even with 
repeated applications.101

Administration Protocol

As noted previously, the clinical findings of randomized, 
controlled trials are somewhat mixed.58 This is probably 
due at least in large part to the myriad of freezing pro-
tocols used by investigators. Considering cryoanalgesia has 
been cleared by the U.S. Food and Drug Administration 
for over a half century, there are surprisingly little clinical 
data regarding optimizing its administration. In most cases, 
ultrasound-guided percutaneous cryoneurolysis may be 
performed in unsedated patients by first applying cutaneous 
local anesthetic to the probe entry point, the anticipated 
probe trajectory, and—frequently—a couple of milliliters 
perineurally (without local anesthetic, stinging may be ini-
tially experienced that dissipates after 15 to 30 s).11 The onset 
profile and maximum blockade intensity remain undefined, 
partially because local anesthetic is usually deposited imme-
diately before the cryoneurolysis procedure and thus cov-
ers the latter’s onset profile. The ultimate effectiveness and 
duration of action of the treatment are dependent upon 
a number of factors, but the two most influential are the 
amount of axon disruption (injury) and the distance of the 
cryolesion from the terminal nerve branches, respectively.103 
Thus, the longer the duration of action desired, the more 
proximal the cryolesion should be administered.

The amount of axon disruption is determined by a 
number of factors, the most important of which is the tis-
sue temperature. However, if an adequate lesion is induced 
between −20°C and −100°C, the duration of analgesia is 
independent of both the duration of freezing and appli-
cation of repeated freezing cycles.103 Nevertheless, these 
two factors can enable the administration of an “adequate 
lesion,” which involves all of the nerve axons for a minimum 
critical length because myelinated fibers can still conduct 
through small inactive segments of axons.104 Because the 
minimum critical length has yet to be defined in humans (it 
is 4 mm in cats),104 maximizing lesion length is prioritized. 
This is not difficult for a surgically exposed nerve because 
repeated serial applications may be applied adjacent and 
overlapping each other.29 However, for percutaneous cry-
oneurolysis the ice ball diameter is increased with a longer 
duration of application as the cold overcomes warmer tissue 
until a terminal size is reached when the ice itself becomes 
an insulation layer between the cold probe and unaffected 
tissue at the ice ball’s periphery. Once the ice ball reaches 
maximum diameter, little is gained by extending the freeze 
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duration further when using nitrous oxide or carbon diox-
ide.105 For temperatures colder than approximately −50°C, 
a single application is adequate for the axons enveloped in 
the ice ball.105 However, the volume of the ice ball may 
be increased by letting the tissue thaw and then repeating 
the freeze–thaw cycle.106 With each successive freeze–thaw 
cycle, the ice ball diameter increases until a new maxi-
mum effect is realized, thereby maximizing the cryolesion 
length.106

The optimal freeze and thaw durations, as well as the 
number of freeze–thaw cycles, have yet to be determined.11 
However, common percutaneous techniques involve a 
freeze of 30 to 120 s followed by a thaw of 30 to 60 s, fre-
quently repeated 1 or 2 times. Regardless of the number of 
cycles administered, it is imperative that after each freeze 
the probe remain fixed until ice ball resolution to avoid 
tearing of involved tissues.11

A completely novel cryoneurolysis administration tech-
nique involves the use of ice slurry infiltrated around a 
nerve, administered in a similar manner to a single-injection 
local anesthetic-based peripheral nerve block.107 However, 
this technique has only recently been reported in a labora-
tory rat model, and efficacy and safety in humans remains 
unknown.

Equipment

Nearly all cryoneurolysis machines approved by the U.S. 
Food and Drug Administration are portable console devices 
most easily used and transported using a dedicated cart 
containing the gas supply in a standard e-cylinder (fig. 1). 
However, there is a recently developed handheld option that 
uses miniature nitrous oxide cartridges.108 Unique features 
of this device are its portability (fits in a lab coat pocket), 
disposable probes and gas cartridges, battery rechargeabil-
ity, and two unique trident probes with integrated heat-
ers that protect the skin when treating superficial nerves.108 
Potential drawbacks include relatively flexible probes that 
can be challenging to use for deep targets, the requirement 
of holding the probe at a maximum angle of 45° relative to 
the floor that limits approaches during treatment, a maxi-
mum probe length of 9 cm, and a smaller diameter ice ball 
relative to console-based devices.108 In contrast, the con-
sole devices utilize reusable probes that require sterilization 
between uses but are somewhat easier to maneuver because 
of their relative stiffness, are available longer than 9 cm, may 
be used at any angle relative to the floor, have probes that are 
easier to visualize with ultrasound (because of large gauge 
and rigidity), and frequently produce a larger ice ball.11

Probes are available with and without nerve stimulation 
capabilities, as well as hemispherical/blunt tips designed 
to minimize nerve/tissue trauma, and trocar ends for easy 
advancement through tissue. In general, even probes with 
trocar tips require a sharper introducer such as an intrave-
nous angiocatheter to enable passage through the skin and 
muscle to the target nerve; so, it is unclear how beneficial 

hemispherical/blunt tips are in practice.54–56,92 Ice balls are 
easiest to visualize with high-frequency linear transducers, 
but power Doppler may improve imaging with low-fre-
quency linear-array transducers used for deeper struc-
tures.109 Because of the hyperechoic border of the ice ball 
resulting from the higher acoustic impedance at the border 
between frozen and unfrozen tissues,110–112 acoustic shadow-
ing can limit visualization when the nerve is deeper than 
the ice ball.84,113,114 After a freeze–thaw cycle, there are no 
ultrasonographic differences between treated and untreated 
tissue.84 Consequently, a post-treatment “check” of the 
cryolesion is not currently feasible, and evaluation of the 
extent of nerve involvement must be made by direct visu-
alization of the ice ball during treatment and physical exam 
after the procedure.

The relative costs for handheld versus console devices 
vary greatly. Although a console machine and reusable can-
nulas may require over $20,000 for the initial investment, 
the per-patient costs are negligible with only nitrous oxide 
required from a standard e-cylinder and any autoclave costs 
for sterilization. In contrast, the initial investment for a 
handheld device is usually a fraction of that for a console 
device (~$5,000), but the disposable cannulas (~$300 each) 
can quickly drive the total costs higher depending on the 
number of subjects treated. Therefore, the anticipated treat-
ment volume often helps to direct operators toward one of 
these two machine designs, in addition to the many factors 
discussed previously.

Contraindications and Complications

Relative contraindications to percutaneous cryoneurolysis 
are similar to any percutaneous treatment with a needle, 
such as local or systemic infection, anticoagulation, bleed-
ing diathesis, and immunosupression.11 Specific contra-
indications to cryoneurolysis include cold urticaria,115,116 
Raynaud’s disease,117 cryofibrinogenemia,118 cryoglobulin-
emia,119 and paroxysmal cold hemoglobinuria.22 Laboratory 
studies have demonstrated impaired nerve regeneration 
in diabetic animals,120 and diabetes in patients can lead to 
impaired regeneration of axons and recovery after investi-
gational nerve injury,121 as well as focal neuropathies such as 
ulnar neuropathy and carpal tunnel syndrome.122 Whether 
these findings are applicable to cryoneurolysis in patients 
with diabetes remains unknown.

There are few large studies on which to base estimates of 
complication rates, but overall, the literature is overwhelm-
ingly positive.11,79 Nonspecific risks include pain during 
and after the procedure, as well as superficial bleeding and 
bruising.11 Because of a continuous flow of warm blood, 
large blood vessels are not at risk from ice ball involvement. 
For example, application of temperatures of nearly −200°C 
applied for up to 10 min did not result in vessel rupture, 
coagulation, or thrombosis.123 For percutaneous cryoneurol-
ysis, one suspected deep infection has been reported that 
eventually led to myonecrosis.124 Transient or permanent 
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alopecia or changes in pigmentation may occur if the ice ball 
involves the skin.125 For superficial areas, injecting a tumes-
cent layer of local anesthetic or saline below the dermis can 
push the nerve deeper and increase the margin of safety.55 
Additionally, trident probes specifically designed for treat-
ing subdermal nerves are available with heated elements to 
protect the dermis and epidermis (“trident” probe, fig. 1).108

Of importance, various investigators have suspected a 
possible increase in longer-term neuropathic-like pain in 
patients who had intraoperative cryoneurolysis under direct 
vision,25,42,44,50,60 although the limitations of these obser-
vations have been noted.126 Indeed, two subsequent ran-
domized, controlled trials did find a clinically relevant and 
statistically significant increased incidence of neuropathic 
pain 3 to 6 months after open thoracotomy with surgically 
applied cryoneurolysis.40,43 However, the majority of ran-
domized, controlled trials have not reported similar findings, 
and this discrepancy remains unresolved.61 It is worth not-
ing that preclinical studies clearly demonstrate hyperalgesia 
after an incomplete freeze lesion—but only hypoalgesia during 
the period of regeneration with complete nerve thickness 
involvement.127 Additional preclinical investigations found 
that substantial nerve manipulation before cryoneurolysis 
was required to induce chronic pain conditions (personal 
written  communication, Rochelle Wagner, Ph.D., June 29, 
2017),15 an observation possibly related to the “double-crush” 
theory first proposed by Upton and McComas.128 In other 
words, when investigators sought to intentionally induce 
chronic pain in rodents, they succeeded exclusively when 
the target nerve was physically manipulated before treatment 
with cryoneurolysis. Although the precise etiology has yet to 
be elucidated, it is hypothesized that the physical manipu-
lation produces an afferent barrage that sets up the central 
sensitization such that when axonal regeneration occurs after 
injury, the fiber activity is perceived as dysesthetic.129

These preclinical findings may help explain the incon-
sistent findings from the various clinical investigations in 
which a few detected an increased incidence of postopera-
tive neuropathic pain, whereas the rest failed to do so.49,50,58 
The technique of exposing the target nerves intraopera-
tively before applying cryoneurolysis under direct vision 
varies dramatically among surgeons, from leaving the nerve 
in situ to having the nerve physically “separated from the 
adjacent intercostal artery and vein, supported with a lift-
ing ligature, and then frozen with a cryosurgery probe” (see 
illustration, Nelson et al. 1974, page 281).29 Significantly, 
the investigators with one of the highest incidences of post-
operative neuralgias—20% identified 6 to 10 weeks after 
thoracotomy—clearly describe their technique in which 
each intercostal nerve was “exposed paravertebrally, lifted 
with a nerve hook, and frozen at two close sites [empha-
sis added]…”, suggesting both manipulation and dou-
ble-crush.42 Unfortunately, it is impossible to correlate 
technique and outcome because the majority of studies do 
not adequately describe the precise technique or degree of 

nerve involvement. However, when viewed in light of the 
preclinical data, it appears somewhat unsurprising that some 
healthcare providers report a high incidence of neuralgias in 
their practice (highest 38%),60 whereas others do not (larg-
est neuralgia-free series: 0% in over 1,500 patients).126

If intraoperative nerve manipulation is the cause of a 
possible increased incidence of neuropathic pain, then ultra-
sound-guided percutaneous cryoneurolysis should have no 
comparable risk. Indeed, to date, no incidence of neuro-
pathic pain has been correlated with percutaneous admin-
istration.79 Caution is still warranted because the number 
of percutaneous administrations is far fewer than for intra-
operative application. Furthermore, replacing open-in-
traoperative with percutaneous-preoperative application 
can dramatically reduce operating room time by replacing 
serial with parallel case processing.130 For example, although 
intraoperative cryoneurolysis decreased length of hospital 
stay after pectus excavatum repair—from 5 days to 3 days 
compared with epidural infusion—an additional 69 min 
of operative time, on average, was added for each case (P 
< 0.001)—an amount probably not viable or tolerated at 
many hospitals within the United States.48 

Although direct comparisons with other postoperative 
techniques such as perineural local anesthetic infusion are 
unavailable, theoretical benefits of cryoneurolysis include an 
ultra-long duration of action; a lower risk of infection; no 
infusion pump and anesthetic reservoir carrying burden; no 
risk of local anesthetic toxicity, catheter dislodgement, or 
leakage; and no infusion management or catheter removal.4,5 
Radiofrequency ablation is a possible alternative long-act-
ing modality,131 although little data involving postopera-
tive pain is currently available.132–135 Unlike cryoneurolysis, 
traditional radiofrequency ablation may induce significant 
procedure pain requiring sedation,136 may injure surround-
ing tissues and structures,137 and is associated with neuroma 
formation.136 Data for pulsed and cooled radiofrequency 
ablation to treat acute pain are not currently available.

Conclusions

Because of its prolonged duration of action measured in 
weeks to months, cryoneurolysis is an appropriate analgesic 
for a relatively small subset of surgical procedures (table 2). 
However, where applicable, it offers a unique option in 
treating acute pain conditions given its few contraindica-
tions, low risk profile, minimal per-patient cost, low patient 
burden (no infusion pump/catheter), and extended period 
of action far surpassing any local anesthetic-based periph-
eral nerve block (fig. 2). This decades-old—yet rarely uti-
lized—analgesic modality might prove timely considering a 
temporal confluence of factors, including an understanding 
of the relationship of postsurgical opioid prescription to the 
opioid crisis; prevalence of advanced ultrasound capabilities 
among anesthesiologists; ubiquity of ultrasound equipment 
throughout healthcare systems; and growing appreciation 
of poorly controlled postoperative pain evolution into a 
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persistent, chronic condition. Multiple questions remain 
regarding ultrasound-guided percutaneous cryoneuroly-
sis for the treatment of acute pain, not the least of which 
is determining whether the duration of action can be 
controlled by manipulating the administration protocol. 
Additional applications such as providing analgesia after 
iliac crest bone grafting, as well as various breast, intratho-
racic and abdominal surgical procedures remain to be inves-
tigated. Data from randomized, controlled clinical trials are 
needed to conclusively demonstrate treatment benefits and 
better determine the incidence of adverse events.

Neuromodulation
Electrical “neuromodulation” is the use of electrical cur-
rent to modify nerve activity.138 This is scarcely a novel idea, 
having been described by the ancient Romans who treated 
various maladies such as headaches by delivering up to 220 
volts using living torpedo fish.139 The technique continued 
to be used into the 18th century with the development of 
multiple devices generating electrical current.139 The early 
1900s saw the first device specifically designed to use elec-
tricity to treat pain (among countless other ailments), the 
“Electreat.”140 However, electrical neuromodulation fell out 
of favor after the 1910 Flexner Report, which noted a lack 
of supporting scientific evidence and recommended the 
exclusion of electrotherapy in clinical practice.141 It was not 
until 1967 that Sweet and Wall142 used electrical stimula-
tion to successfully treat pain emanating from a peripheral 
nerve and Shealy et al.143 described the first application to 
the spinal cord.

mechanism of Action

Numerous theories exist as to the exact mechanism of 
action,144,145 but most commonly described is Melzack and 
Wall’s “gate control theory.”146 This proposes that stimula-
tion of large-diameter afferent nerve fibers close a “gate” 
that connects peripheral nerves and the spinal cord, thus 
interrupting the transmission of pain signals to the central 
nervous system.146,147 Wall and Sweet142 subsequently pos-
tulated delivering analgesia by stimulating primary afferent 
neurons, which was soon followed by commercially available 
pulse generators (stimulators) that were used—frequently 
off-label—to deliver peripheral nerve stimulation.148 
Unfortunately, these devices nearly always required multi-
ple electrodes located immediately adjacent to the target 
peripheral nerve, thus requiring surgical implantation.149 
Moreover, lead removal frequently required additional sur-
gery, often complicated by fibrous capsule formation adher-
ent to the target nerve.150 The invasive and time-consuming 
nature of surgical implantation and removal resulted in neu-
romodulation being used overwhelmingly for the treatment 
of chronic, versus acute, pain—and often as a last resort.151–154

The relatively rare application to postoperative pain 
occurred primarily with electrodes applied directly to the 

skin in the area of incision (transcutaneous electrical nerve 
stimulation).155,156 Although demonstrated to be superior 
to placebo controls for various surgical procedures,157–161 
activation of pain fibers in the skin limits the tolerated 
current resulting in an analgesic “ceiling.”162 To increase 
current delivered to specific large—and frequently deep-
er—target nerves for acute pain relief, the current needs 
to theoretically bypass the skin without requiring an open 
surgical incision.162 Beginning in 1978,163 extremely small 
leads were developed that enable transcutaneous insertion 
via a needle (at times termed “injectable” leads).162,164–175 
Paired with ultrasound guidance, any peripheral nerve 
may now be targeted with a similar technique to that 
used for perineural catheter insertion.5,176,177 Ultrasound-
guided percutaneous peripheral nerve stimulation was 
first reported in situ by Huntoon and Burgher in 2009178 
using an epidural neurostimulation electrode for the treat-
ment of neuropathic pain. Although multiple different lead 
designs and percutaneous approaches were reported subse-
quently, they were used nearly exclusively for chronic pain 
conditions.170,179–201

Application to Acute Pain

Recently, the U.S. Food and Drug Administration cleared 
the first percutaneous peripheral nerve stimulation lead 
and pulse generator system for use treating acute pain 
(fig. 3).138 Because at the time of this writing this is the only 
system cleared to treat acute pain, much of the following 
section will involve this specific device (table 3), although 
the principles may be applicable to future lead and pulse 
generator designs. The leads consist of a 0.2-mm-diam-
eter, seven-strand stainless steel wire core insulated with 
a fluoropolymer and wound into an open helical coil 
(0.6-mm diameter) with the distal tip forming an anchor 
(fig.  3). Unlike polyamide perineural catheters used for 
continuous peripheral nerve blocks, the leads are so flexi-
ble that they cannot be advanced/inserted themselves and 
are therefore preloaded into a 20-gauge introducer.202 The 
introducer may be guided toward a target using real-time 
ultrasound visualization with the same in- or out-of-
plane techniques frequently utilized for perineural cath-
eter insertion.203 When the introducer is withdrawn, the 
lead remains in place because of the small “anchor” at its 
terminal end. The pulse generators have a mass (30 g) and 
footprint (6.2 × 3.7 × 1.4 cm) small enough to allow the 
unit to be adhered directly to the patient. Replaceable/
rechargeable batteries permit prolonged application, with 
a Food and Drug Administration–defined maximum of 60 
indwelling days.10 The 2-month duration offers the possi-
bility of a perioperative analgesic modality that for most 
patients should significantly outlast the surgical pain being 
treated while also offering an option for patients whose 
pain has become chronic, lasting past the time of normal 
tissue healing.138
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The initial report involving acute pain examined five 
patients who experienced pain insufficiently treated with 
oral analgesics 6 to 58 days after total knee arthroplasty.204 
Percutaneous leads were inserted using ultrasound guidance 
0.5 to 3.0 cm from the femoral and sciatic nerves. Pain at 
rest decreased from a mean of 5.0 to 0.2 on the Numeric 
Rating Scale almost immediately after electrical current 
was introduced, with four of five subjects having a com-
plete resolution of pain. Pain during passive and active knee 
motion decreased approximately 30%, although maximum 
flexion was increased by only a few degrees. The leads were 
removed later that day. A second short series of patients  
(n = 5) published subsequently reported similar, although 
somewhat less dramatic, results.205

This research led to the first preoperative application of 
ultrasound-guided percutaneous peripheral nerve stimula-
tion: seven subjects had both femoral (inguinal) and sciatic 
(subgluteal) leads inserted using ultrasound guidance up to 7 

days before undergoing tricompartment knee arthroplasty.206 
In the preoperative holding area, subjects had a single-in-
jection adductor canal block administered with ropivacaine 
0.5% and epinephrine. Within 20 h after surgical stop, each 
lead was connected to a pulse generator, which delivered cur-
rent for a median [interquartile range] of 38 [32 to 42] days, 
interrupted only for bathing and battery replacement. Six of 
seven subjects (86%) reported mild pain (Numeric Rating 
Scale < 4) both at rest and during ambulation through the 
first 4 postoperative weeks. One subject required no opioids, 
and four (57%) had discontinued opioid use within the first 
week. This pilot study lacked a control group, so the clini-
cal significance of the magnitude of effects (if any) remains 
unknown. However, the series demonstrated the feasibility 
of postoperative stimulation for multiple weeks at home, and 
the results used to design and power subsequent ongoing 
randomized, controlled trials involving knee arthroplasty 
(NCT03286543 and NCT04341948).

Fig. 2. Attribute comparison for two analgesic modalities: cryoneurolysis (left panel) and peripheral nerve stimulation (right panel).
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Three additional feasibility studies involved ambulatory 
procedures with a single lead inserted for each subject 1 
to 7 days before surgery (table 3).207–209 For hallux valgus 
osteotomy (bunion removal; n = 7) and anterior cruciate 
ligament reconstruction (n = 10), leads were inserted adja-
cent to the sciatic and femoral nerves, respectively.207,208 For 
rotator cuff repair, the suprascapular nerve was targeted in 
the first two subjects, followed by the brachial plexus roots 
or trunks for the remainder (n = 14).202 Preoperatively, all 
subjects had perineural catheters inserted using normal 
saline to be used only as a rescue analgesic. All subjects 
received a general anesthetic and had a pulse generator 

attached to their lead and activated within the recovery 
room. Two-thirds of subjects required perineural local 
anesthetic rescue even with maximum-tolerated stimu-
lation, usually within the recovery room.207–209 This is in 
contrast with the previously published series of patients 
with persistent pain multiple weeks or months after knee 
arthroplasty in whom dramatic analgesia was perceived 
within seconds of introducing electrical current via a fem-
oral lead.204,205 However, for the feasibility study subjects, 
nearly all experienced relatively little pain and extraordi-
narily low opioid requirements compared with historic 
controls in the 2 to 4 postoperative weeks. Subsequent 

Fig. 3. A percutaneous peripheral nerve stimulation system approved by the U.S. Food and Drug Administration to treat acute pain (OnePass, 
SPr Therapeutics, USA). The insulated lead (microLead, SPr Therapeutics) is 0.2 mm in diameter wrapped into a helical coil 0.6 mm in diam-
eter (top panel), which is percutaneously inserted using a preloaded introducer (middle panel). The rechargeable battery snaps into the pulse 
generator (SPrINT peripheral nerve stimulation system, SPr Therapeutics) and is controlled with a handheld remote control (bottom panels). 
Used with permission from brian m. Ilfeld, m.D., m.S.
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experience (NCT03481725) suggests that a single-in-
jection ropivacaine peripheral nerve block administered 
immediately preoperatively (but after lead insertion) results 
in a very smooth transition from the often-severe pain 
experienced in the recovery room to the more-moderate 
levels that follow, the latter which percutaneous peripheral 
nerve stimulation appears to treat adequately. The feasibil-
ity studies informed all aspects of perioperative percutane-
ous peripheral nerve stimulation technique and equipment 
design, beginning with lead insertion.

Lead Insertion

Although ultrasound visualization is used to guide the 
insertion device toward the target nerve, the ultimate loca-
tion is determined by the patient reporting sensory chang-
es—often described as a “pleasant massage”—in the general 
anatomic location of the planned surgery (e.g., the foot for 
hallux valgus osteotomy) without discomfort or muscle 
contractions. In the first iteration of the peripheral nerve 
stimulation device, if an undesirable sensory or motor effect 
was elicited and remained unresolved with further needle 
advancement, an entirely new preloaded lead-needle com-
bination was required because lead deployment occurred 
with needle withdrawal due to the lead’s distal “anchor” 
(fig. 3). This resulted in a majority of participants requiring 
two to four lead-needle combinations and insertion times 
well over 15 min in most cases. These issues were resolved 
with a second-generation system that allows needle with-
drawal and redirection/reinsertion without lead deploy-
ment, dramatically decreasing the required time and units 
and enabling insertion the day of surgery (fig. 3).209 Because 
patients’ descriptions of sensory changes help guide the 
final lead position, avoiding sedation is paramount: local 
anesthetic in a skin wheal at the needle entry point and 
2 to 3 cm along the planned trajectory are nearly always 

adequate (although exceptions occur for brachial plexus 
leads because of the sensitivity of the neck muscles and 
fascia).207–209

The optimal distance from the lead tip to epineu-
rium of the target nerve was consistently 1.0 to 1.5 cm 
(in contrast to 0 to 2 mm for conventional leads).178 A 
relatively remote distance theoretically promotes selec-
tive stimulation of the desired larger-diameter myelinated 
sensory neurons without activating motor or smaller-di-
ameter sensory neurons that induce muscle contraction 
and discomfort, respectively (fig. 4).210 In addition, leads 
placed at this distance from the nerve are less sensitive to 
small changes in positioning caused by movement—crit-
ical to avoid unpleasant sensations with purposeful mus-
cle contraction. For sciatic leads, optimal tip location was 
nearly uniformly posteriomedial to the nerve.208 Three of 
five subjects (60%) with a lead inserted in the popliteal 
fossa just proximal to the sciatic bifurcation experienced 
cramping in their foot with stimulation, whereas of more 
than 50 percutaneous sciatic leads inserted at or proximal 
to the subgluteal region for that and previous investiga-
tions, none had induced foot cramps.204–206,208 Whether this 
represents a spurious finding remains unknown, but con-
sidering that the relative intraneural fascicular orientation 
greatly impacts the functional results of stimulation,211 the 
fascicular organization in the subgluteal location may be 
preferred to the popliteal region when the stimulation of 
sensory fibers is desired over motor and mixed fascicles.212 
For femoral leads, the optimal tip location was nearly 
uniformly immediately superficial to the fascia iliaca just 
medial to the nerve midpoint.207 Although this location 
was frequently less than 1 cm from the epineurium, the 
increased impedance of the iliac fascia relative to muscle 
probably allowed for the decreased lead-nerve distance. 
Leads inserted deep to this fascia usually induced quadri-
ceps femoris contractions.

Table 3. reported Percutaneous Peripheral Nerve Stimulation Applications for Acute Pain management within the Peer-reviewed 
Literature (Exclusively Feasibility Studies)

Surgical  
Procedure

Anatomic Lead  
Location(s) Subjects

Treatment
Duration

Primary  
Findings

Ilfeld et al.204 Total knee arthroplasty Femoral and/or sciatic 5 < 1 day Four subjects had complete resolution of pain immediately after stimula-
tion begun

Ilfeld et al.205 Total knee arthroplasty Femoral and/or sciatic 5 < 1 day Four subjects had pain decrease by at least 50% immediately after 
stimulation begun

Ilfeld et al.206 Total knee arthroplasty Femoral and sciatic 7 5–6 weeks Six subjects had Numeric rating Scale < 4 across first 2 weeks and 4 
subjects ceased opioid use within 1st week

Ilfeld et al.207 Anterior cruciate liga-
ment reconstruction

Femoral 10 2–4 weeks Local anesthetic nerve block frequently required in the recovery room, but 
moderately low pain scores and opioid requirements subsequently

Ilfeld et al.208 bunion removal Sciatic 7 2–4 weeks Local anesthetic nerve block frequently required in the recovery room, but 
very low pain scores and opioid requirements subsequently

Ilfeld et al.209 rotator cuff repair Suprascapular 2 2–4 weeks Suprascapular leads did not appear to provide any reduction in pain or 
opioid requirements

brachial plexus roots 
or trunks

14 Local anesthetic nerve block frequently required in the recovery room, but 
very low pain scores and opioid requirements subsequently
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Unlike in the lower extremity, an optimal anatomic lead 
location for shoulder surgery could not be determined.209 
The leads of the first two subjects of the feasibility study 
were inserted adjacent to the suprascapular nerve in the 
suprascapular notch based on a published case used for the 
management of malignant neuropathic shoulder pain.213 
Unfortunately, these two subjects did not appear to gain any 
benefit from stimulation, although whether this was due 
to an inadequate implantation technique or other reason 
remains unknown.209 The remaining participants received 
leads inserted through the middle scalene muscle with a tra-
jectory nearly identical to an in-plane technique for inter-
scalene perineural catheter insertion.214,215 Those inserted 
just posterior to the superior trunk tended to result in cuta-
neous discomfort, whereas those placed adjacent to the C5 
root frequently induced muscle contractions.209 Although 
positioning the lead tip immediately posterior to the mid-
dle trunk did not always avoid triggering cutaneous fibers 
or motor nerves, it appears to be the location that is suc-
cessful most often. 

The pulse generator itself is attached to the skin with an 
adhesive mounting pad and should be located over clean, 
healthy skin on the ipsilateral side of the body to avoid the 
introduction of electrical current into the chest that may 
cause cardiac arrhythmias.

Stimulation Parameters

As described previously, within the first postoperative week 
there is a delay of approximately 1 h from the initiation of 
stimulation until maximum analgesia.207–209 Therefore, con-
tinuous application of current is recommended (duty cycle 
= 100%) as opposed to activating the stimulator only when 
pain is experienced. At the time of this writing, the only 
Food and Drug Administration–cleared pulse generator for 
the treatment of acute pain (fig. 3; SPRINT peripheral nerve 

stimulation system, SPR Therapeutics, USA) provides a fre-
quency of 12 to 100 Hz (higher usually optimal); an ampli-
tude of 0.2 to 30 mA (higher usually optimal); and a pulse 
duration of 10 to 200 μs (lower usually optimal). Although the 
frequency is fixed after the initial programming, the amplitude 
and pulse duration may be adjusted by the patient within a 
provider-defined range with a small Bluetooth-connected 
remote control (fig.  3). This patient control is essential: 
although maximizing current theoretically maximizes analge-
sia, at some point before reaching the pulse generator’s high-
est-possible current, uncomfortable sensations and/or muscle 
contractions will usually be induced. Consequently, optimiz-
ing analgesia requires setting the current at the maximum 
tolerated—and not simply the maximum available—but this 
level frequently varies with changes in positioning, activity 
level, and the simple waxing and waning of postoperative pain, 
making patient-enabled adjustments crucial.

Patient Instructions

If a single-injection peripheral nerve block is provided 
before surgery, it is impossible to determine the postop-
erative current requirements within the recovery room 
because of the insensate extremity. Therefore, the pulse 
generator is often set for a current below the maximum 
tolerated during lead insertion to avoid inducing pain upon 
block resolution. However, patients must be instructed to 
adjust the current to the maximum tolerated contempora-
neously with block resolution, a maneuver that has proved 
challenging for a subset of patients (especially with night-
time resolution). In addition, any oral analgesic prescrip-
tions should be filled even with a lack of pain (because of 
a dense surgical block) in case the peripheral nerve stimu-
lation provides inadequate analgesia after block resolution. 
Each system comes with two rechargeable batteries, and 
although there is a battery-level indicator on the handheld 

Fig. 4. The therapeutic window and the ability to preferentially activate the targeted large-diameter afferent fibers across the nerve’s 
diameter—without activating pain or motor neurons—increase as the distance between the electrode and the nerve increases. Used with 
permission from brian m. Ilfeld, m.D., m.S.
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remotes, inadvertent battery exhaustion and subsequent 
surgical pain occurs frequently. This scenario may be easily 
avoided simply by having one battery recharging while the 
other is in use, and switching them at the same time daily. 
Patients may bathe as long as the lead insertion site is not 
submerged, but the pulse generator should be disconnected 
beforehand. Fortunately, a decrease in analgesia is not expe-
rienced for 2 to 3 h after a pause in stimulation—a phe-
nomenon theorized to be related to prolonged alteration of 
supraspinal pain processing—so an increase in pain may be 
prevented by reattaching and restarting the pulse generator 
immediately after bathing.216

When lead insertion occurs on a day preceding surgery, 
providing system instructions at that time can be easier for 
patients to comprehend before the perioperative hours 
with its accompanying stress and sedation. On the day of 
surgery, both the patient and a caretaker should receive 
verbal and written instructions that include healthcare-pro-
vider contact information and a warning that magnetic res-
onance imaging use is hazardous with the lead/stimulator in 
situ. Patients should be cautioned to avoid strenuous phys-
ical activity and motion near the implant—an especially 
important instruction when leads are inserted on a day 
before surgery. Extra lead-site dressings and pulse generator 
mounting pads should be provided along with the second 
battery and battery charger for outpatients. Lead removal 
is accomplished simply with gentle traction, but is strongly 
recommended to be performed by a healthcare provider. 
Unlike polyamide perineural catheters,217 the 0.2-mm-di-
ameter wire lead is more  easily fractured, and the helical 
coil unraveling during extraction can give the impression 
of a fracture and can be confusing in inexperienced hands. 
The pulse generators, batteries, and remotes are disposable 
and should not be reused.

Contraindications and Complications

The few absolute contraindications to percutaneous 
peripheral nerve stimulation include patients with a deep 
brain stimulation system, implanted active cardiac implant 
(e.g., pacemaker or defibrillator), or other neurostimulator 
whose stimulus current path might overlap with that if the 
percutaneous peripheral nerve stimulation system. Relative 
contraindications include bleeding disorders, pharmaco-
logic anticoagulation, severe adhesive allergies, or infection 
in the area of lead insertion.

With fewer than 1 infection every 32,000 indwelling 
days,218 helically coiled leads have dramatically lower risk 
than percutaneous noncoiled leads or perineural/intravas-
cular catheters.2,219–221 The reason(s) for the extraordinary 
difference in infection rate—even between lead designs—
remains unknown, but there are theoretical explanations 
that deserve future study. The helical open-coiled design 
permits fibrosis at the insertion site, leading to a superior 
bacteriostatic seal at the skin; and a solid anchor helping 
to prevent lead movement.222 Decreasing lead movement 

theoretically decreases any “pistoning” effect that could 
draw pathogens subcutaneously.222,223 In addition, the 
diameter of the lead wire (0.2 mm) and even of the entire 
helix itself (0.6 mm) have small diameters compared with 
cylindrical noncoiled leads (0.6 to 1.3 mm) and perineural 
catheters (0.8 to 1.0 mm) and therefore create a relatively 
smaller exit site.

Nerve injury has not been reported using percutaneous 
peripheral nerve stimulation. Leads are optimally implanted 
~1 cm away from the epineurium in contrast to perineural 
catheters that are frequently inserted immediately adjacent 
to and within the same fascial plane as the target nerve.4 
Theoretically, the greater distance from the target nerve 
when using a lead decreases the possibility of neurologic 
injury caused by needle–nerve contact.224 Because of the 
frequently prolonged duration of lead implantation (up to 
60 days) and required dressing changes, skin irritation is the 
most common adverse event but can be easily mitigated 
by simply moving the mounting pad to different anatomic 
locations or replacing adhesive dressings with gauze and 
paper tape. Lead dislodgment may occur (8% in acute pain 
studies), but the incidence appears to be greatly lessened 
with the use of 2-octyl cyanoacrylate (surgical glue) at the 
lead insertion site (NCT03481725).206–209

The most concerning adverse event is lead fracture, occur-
ring either during use or removal. Within postoperative 
patients discharged with a lead in situ, the overall fracture rate 
is 20%,206–209 although this is more than halved (9%) when all 
patients—acute and chronic—are included.209 It is notable that 
when leads were placed and subsequently removed the same 
day (n = 46), not one fractured (0%).204–209 In contrast, of 49 
leads implanted in the very same subjects but used after surgery, 
10 subsequently fractured (20%).206–209 Combined with pre-
liminary evidence that sciatic leads implanted at the popliteal 
fossa fracture at a far higher rate than sciatic leads implanted in 
the subgluteal region,208 we speculate that lead fracture is most 
likely related to applied tension caused by repeated flexion and 
extension of the surrounding musculature. 

All fractured lead remnants have been left in situ with 
no negative sequelae reported in up to a 1-year period of 
assessment.138 Importantly, magnetic resonance imaging 
may be performed safely in patients with retained lead frag-
ments of up to 12.7 cm—the maximum possible—at 1.5 
Tesla,225 although most reported fractures have occurred at 
or near the tip of the lead, leaving a relatively short remnant 
of the 100-μm coated wire at a length of less than 1.6 cm.225 
Recent experience suggests that lead fracture may be 
reduced if resistance is encountered during withdraw by 
simply holding continuous traction and/or percutaneously 
injecting local anesthetic in the area of the lead to induce 
muscle relaxation (NCT03481725).

Conclusions

Because of its prolonged duration of action of up to 60 days, 
titratability, and low infection risk, percutaneous peripheral 
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nerve stimulation has significant potential as a nonopioid 
postoperative analgesic. As with continuous peripheral 
nerve blocks,226,227 percutaneous peripheral nerve stimu-
lation may be used to treat all major nerves,178 as well as 
multiple nerves concurrently.202,204–206 However, unlike peri-
neural local anesthetic infusion,228 percutaneous peripheral 
nerve stimulation does not induce sensory, motor, or pro-
prioception deficits208,209 and therefore possibly improves 
the ability to participate in physical therapy and reduces 
the risk of falling with lower extremity application.1,229–231 
Similarly, with percutaneous peripheral nerve stimulation, 
there is no risk of local anesthetic leakage or toxicity; the 
incidence of nerve injury and infection appear to be far 
lower, and patient burden is decreased without an infusion 
pump and local anesthetic reservoir to carry. Benefits of 
percutaneous peripheral nerve stimulation over cryoneu-
rolysis include a lack of sensory and motor deficits, as well as 
titratability and complete control over the duration of treat-
ment.138 Conversely, cryoneurolysis may be easily applied 
to multiple target nerves (e.g., intercostals) and, although 
no direct comparisons are currently available, appears to 
provide far more potent focused analgesia at a dramatically 
lower cost without the risk of lead dislodgement or retained 
lead fragments.22

Multiple questions remain regarding ultrasound-guided 
percutaneous peripheral nerve stimulation for the treatment 
of acute pain, not the least of which is determining the 
optimal equipment, lead insertion techniques, stimulation 
parameters, and potential applications such as treating pain 
after burns and percutaneous nephrolithotomy. The degree 
to which percutaneous peripheral nerve stimulation is used 
clinically will most likely depend on the ultimate cost of the 
available systems (~$4,000 per lead at the time of this writ-
ing), the ability to decrease the dislodgement/fracture rates, 
and—most importantly—validation and quantification of 
clinical benefits and risks with appropriately powered ran-
domized, controlled trials (NCT03286543, NCT03481725, 
and NCT04341948).
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James Darsie Morrison and Cold Anesthesia: A Technique 
of Antiquity and Modernity

For decades before the first clinical use of local anesthetics (1884), inhalational agents relieved the pain of 
dental procedures. In 1859, the Royal Scottish Society of the Arts (RSSA) awarded “Surgeon Dentist” James 
Darsie Morrison of Edinburgh (right) a silver medal for his application of an alternative anesthetic technique. 
The medal’s obverse (upper left) displays a bust of Athena, goddess of wisdom and crafts, and symbol of the 
RSSA, whose mission was to promote scientific innovation. The award’s reverse (lower left) praises Morrison 
for creating an “Apparatus for the Application / Of Cold for producing / Local Anaesthesia” (right). In ancient 
times, Hippocrates had noted the analgesic effects of snow. Today, the mechanisms of cold anesthesia are 
thought to include vasoconstriction, slowed nerve conduction, and impaired pain substance release. In 1859, 
Morrison, prefiguring modern cryoanalgesia, patented his award-winning thermoconductive device. His 
invention employed tubes of frosty liquid and chilled compressed air to numb the teeth and gums of patients. 
(Copyright © the American Society of Anesthesiologists’ Wood Library-Museum of Anesthesiology.)
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