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Cryopreservation as a Key Element in
the Successful Delivery of Cell-Based
Therapies—A Review
Julie Meneghel*, Peter Kilbride* and G. John Morris

Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom

Cryopreservation is a key enabling technology in regenerative medicine that provides

stable and secure extended cell storage for primary tissue isolates and constructs

and prepared cell preparations. The essential detail of the process as it can be

applied to cell-based therapies is set out in this review, covering tissue and cell

isolation, cryoprotection, cooling and freezing, frozen storage and transport, thawing,

and recovery. The aim is to provide clinical scientists with an overview of the

benefits and difficulties associated with cryopreservation to assist them with problem

resolution in their routine work, or to enable them to consider future involvement in

cryopreservative procedures. It is also intended to facilitate networking between clinicians

and cryo-researchers to review difficulties and problems to advance protocol optimization

and innovative design.

Keywords: cell therapy, cryochain optimization, cryopreservation, freezing, cryogenic storage, cryogenic

transport, thawing

INTRODUCTION

For a successful, clinical outcome of cell therapy (CT), the timely delivery of consistently reliable
and effective cell materials to the point of receipt by the patient is critical. Significant difficulties
arise when the required point of use is separated by distance and, increasingly commonly, by
time from the facilities where the cells were isolated and prepared. Short-term storage, typically
2–4 days at 4◦C, may be appropriate, in some instances, to alleviate such difficulties e.g., for
bone marrow-derived mesenchymal stem cells (1), peripheral blood stem cells (2), pluripotent
stem cell-derived cardiomyocytes (3), alginate-encapsulated adipose-derived stem cells (4), and
hepatocytes (5). However, any greater extension of effective shelf life at even this lowered
temperature will not be possible as metabolic decline and disruption will lead rapidly, and
eventually, to total loss of cell viability. A long-term, practical solution to this difficulty lies in
successful cryopreservation that offers secure, stable storage at temperatures below −130◦C where
metabolic change will not occur. The essential elements of the cryopreservation process as it can
support cell therapy are outlined below, with a more detailed treatment of freezing and the science
underlying cryopreservation available from reviews at a more fundamental level (6–13).

When effective procedures for long-term storage and transport are linked together (a cryochain)
then timing of delivery of a therapy to the patient can be precisely controlled to secure the required
clinical objectives (14–23). Additionally, with these extended storage times, cryopreservation
provides clear benefits for cell banks and research collections of cells of ongoing value in
regenerative medicine (23–25). Cryopreservation is also well-established as part of hematopoietic
stem cell (HSC) transplantation, with over 47,000 procedures carried out in Europe in 2018, and
has gained a specific importance in a context of global pandemic, where recommendations from
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transplant networks worldwide now include the cryopreservation
of all products intended for allogeneic transplantation
(13, 26–28).

For cryopreservation to be used with optimal success it is
essential that the entire protocol of freezing, storage, and thawing
procedures is carried out in the precisely required and prescribed
manner. The team concerned with freezing must, therefore, be
appropriately equipped, experienced and informed to be able to
preserve the maximum viability in the frozen samples. The team
responsible for the recovery of this viability, by thawing, need not
be specialized in the earlier stages of cryopreservation but must
be appropriately skilled and knowledgeable as to the detail of
what is required for the best outcomes of their efforts (29). This is
critical for, if the cryopreservation process results in sub-optimal
cell recovery, it may not be possible to provide another treatment
for further therapy.

Cryopreservation will provide additional benefits when used
twice in the process chain from tissue isolation to delivery to
the patient (Figure 1). An original isolate e.g., from biopsy or
apheresis, can be stabilized and stored by cryopreservation until
the appropriate time for further growth and/or manipulation to
produce the final, therapeutic product. This final product can
then, in turn, be cryopreserved and stored until the appropriate
time and place for clinical delivery (8, 30, 31).

When larger quantities of tissue are being prepared for clinical
use cryopreservation provides advantages over conventional
short-term storage, or “just in time” manufacture, as it provides
the capability to make large quantities of material available
for subsequent use at some as yet unknown, point. Other
advantages include:

• The availability of preparations of consistent quality from
secure storage

• Flexibility and predictability of delivery for clinical scheduling.
• Global availability with transport not being time-critical
• Less product wastage, with reduced costs

In research environments, the key parameters for successful
cryopreservation include effective cooling, thawing, ice
nucleation strategies, and correct use of cryoprotectants.
These remain critical when moving to clinical samples, but
where cryopreserved CT products are employed there are,
typically, regulatory issues that also have to be accommodated,
in addition to safety precautions which must always be taken
with clinical samples (32). For example, therapeutic materials
provided as cells for parenteral application may be viewed as
medicines and relevant, regulatory conditions could include
providing evidence for:

• Minimized potential for contamination of the sample.
• Hermetically sealed samples.
• Reproducibility—all samples having the same viability and

efficacy on thawing.
• Traceability throughout the cold chain and up to delivery to

the patient.

An efficiently managed, secure, and monitored cryochain will
meet all of these requirements.

It is important that the conditions necessary to ensure
optimized cryopreservation and an effective cryochain are
considered at an early stage in the development of any
specific cell therapy. Practical details of the cryopreservation
processes should be built-in as an early consideration as later
redesign of, for example, sample containers or storage and
transportation options can be difficult, time-consuming, and
costly to implement. The freezing protocol may also be adversely
affected by such alterations. It is, therefore, essential when
developing a cryopreservation protocol to consider the practical
requirements in reverse, that is from the point of delivery to the
patient back to the acquisition and preparation of the source
material. The mode of delivery to the patient will, for example,
affect the type and size of the container cells are frozen in. In
turn, this will influence the design of the cooling protocol and
the requirements for handling, storage, shipping, and thawing.
To avoid any bottleneck effect that cryopreservation may have on
the timely delivery of the completed therapy, a holistic view of the
cryochain should be kept in mind (Figure 1).

In this review the future, strategic steps toward delivery
of effective, cryopreserved regenerative medicine products
will be addressed, with a particular focus on T cell and
other apheresis-based therapies. The necessary, key parameters,
such as cryoprotectant use, cooling rate, ice nucleation,
and other product-related parameters (volume, cell density,
cryopreservation vessel etc.) whichmust be appropriately defined
and controlled for the successful cryopreservation of mammalian
cells for cell therapy are considered in appropriate detail.
The critical storage, shipping, and thawing conditions will be
considered, and future steps toward delivery of regenerative
medicine products will be addressed.

The review also deals with those aspects of cryopreservation
directly relevant to the clinical situation, from initial
tissue isolation to the delivery of recovered cells to the
patient. It will outline the steps that need to be taken to
successfully modify an existing cryopreservation protocol.
Working through such a process may not be the role of
the clinical team concerned but an understanding of the
process will support discussions with cryopreservation
specialists working in research and development. In this
regard an outline, practical guide to aid in the development
of a successful cryopreservation protocol is provided (see
Supplementary Material). The practical steps necessary to
modify an existing cryopreservation protocol or devise a new
one are essentially the same.

The presented material largely covers the delivery of
cell-based therapies in regenerative medicine, cryopreserved
in larger volumes in commercially available “cryobags.”
Their processing will have used the widely published and
adopted “slow cooling” cryopreservation protocols (15, 33).
Vitrification-based approaches are not included as, currently,
these are only effective for small volumes of cells, typically
in reproductive medicine (34–36). The technique can be
successful for mammalian gametes and embryos, but significant
technical issues are involved in scaling up to larger tissue
pieces and bulk cell suspensions (25, 37, 38). However, it
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FIGURE 1 | A complete cryochain for a cell therapy product from collection from a patient (autologous route, blue) or a healthy donor (allogeneic route, green) to

manufacture and clinical delivery. Two cycles of freezing and thawing, cryogenic storage, and cryogenic shipping are illustrated.

may be of more immediate value for tissue banking of stem
cells, where a low number of samples of small volume are
required (39).

SOURCING CELL SAMPLES

The ability to secure and stabilize specific cell types, e.g., T cells
from apheresis or cells taken by biopsy, is a critical first step
in the development of successful cell therapies for regenerative
medicine (11, 15, 23, 24, 40). Inevitably, these isolated, biological
samples suffer increasing damage the longer they remain without
physiological support in vitro, resulting in eventual cell death.
Maintaining the samples on ice or with non-frozen refrigeration
can provide a limited storage window (41) but the only way
to preserve levels of viability and avoid progressive decline in
cellular survival for longer timeframes is to stabilize the tissue by
cryopreservation. If this procedure is applied as soon as possible
after the initial tissue isolation (29, 42) or re-stimulation (43),
then any loss of viability and/or function will be minimized
and long-term storage extending into decades can be secured
(44–48). Tissue biopsies such as melanomas can be stabilized
and stored prior to extraction of tissue infiltrating lymphocytes
(TIL) for expansion and transfer back to the patient (40). Biopsy
samples of limited size (c. 1–3mm3, up to 1mm in thickness) are
likely to be suitable for immediate cryopreservation. Samples of
ovarian or testicular tissue destined for subsequent autologous
transplantation can be stabilized by cryopreservation and then
stored until suitable arrangements for the transplantation can
be made (35, 49–55). Larger tissue pieces may require further
dissection or a level of enzymic digestion prior to preservation
(56–61). As freezing technology progresses then larger pieces
of tissue, and organs e.g., derived from liver or ovaries will

become subjects of increasing interest with a view to their
cryopreservation (62–65).

THE FREEZING PROCESS

To utilize cryopreserved, therapeutic products effectively, and to
contribute to any necessary process refinement, it is important
that the teams involved from sample preparation to delivery
to the patient share an understanding of the freezing process.
Similarly, researchers involved in developing new and innovative
protocols for cryopreservation in regenerative medicine need a
strong understanding of the principles that underpin the process.

The following descriptions outline the supporting principles
of cryopreservation as they apply to the bulk cell suspensions that
are the focus of this review.

Cell Damage and the Role of
Cryoprotectants
Cryopreservation can bring about a number of cellular injuries,
potentially leading to deleterious changes in cell morphology,
characteristics (e.g., adhesion, cell surface markers), metabolic
activity (e.g., proliferation ability, potency), function (e.g.,
immunomodulation), and to cell death (6, 66). Temperature
decrease can be responsible for triggering specific stress response
pathways (7, 11) and can activate apoptotic and necrotic
pathways after thawing (67). Significant cell injury can develop in
response to the stressful changes that occur in the frozen sample
due to ice crystal formation. As cooling progresses, ice initiates
first in the suspending extracellular medium. The crystalline
structure of the ice excludes solutes and so their concentration
increases in the residual, unfrozen suspending liquid. A direct
consequence is an increase in osmolarity of the suspending
medium, imposing osmotic stresses on the cells (Figure 2). As
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temperature continues to fall the ice fraction increases, and
with it the extracellular osmolarity. The resulting osmotic stress
can cause severe injuries and is a major cause of viability loss
during attempts at cryopreservation (7, 68, 69). Intracellular ice
formation may also occur, which is a leading cause of cell death
(6, 70–72).

To minimize the cell damage that arises, largely, from
such solute effects it is essential to use added, cryoprotectant,
compounds. These compounds do not ionize in aqueous
solutions and, at low temperatures, have a relatively low toxicity
to the cells (73). Added cryoprotectants are also excluded from
ice crystals and have the effect of maintaining an enlarged,
unfrozen extracellular fraction at any given temperature, thereby
reducing the osmotic effect of the concentrating solutes (7,
74). In turn, this can significantly reduce osmotic injury. For
illustration, the solute concentration in a sample of 300 mOsm
NaCl during freezing is shown in Figure 2, with the traces
plotting the increasing concentration of NaCl in the residual,
unfrozen solution. As the temperature decreases the ice fraction
increases, excluding NaCl from the crystals, and so the solute
concentration in the residual solution rises. The ameliorating
effect of increasing concentrations of the cryoprotectant DMSO
are evident. Non-penetrating, extracellular solutes will assist
cell dehydration to limit the probability of intracellular ice
formation and can interact with, and stabilize, the limiting cell
membrane (7). Additional, specific mechanisms of protection
conferred by cryoprotectants will depend on their capacity to
diffuse through the outer cell membrane. By increasing the
intracellular osmotic concentration, permeating protectants will
decrease the likelihood of ice forming inside cells, as well as
limiting the extent of cell, and organelle, dehydration. Mixtures
of permeable and non-permeable cryoprotectants can be used
to provide a synergistic effect, but care has to be taken in
their choice as any beneficial impact on osmotic stress may
be offset by toxicity to the cells in question (7, 75). Toxicity
may be reduced by ensuring that exposure to cryoprotectant
is limited to suitable low temperature e.g., a refrigerator or
ice bath (4◦C) (73, 76, 77) and that the pre-freeze exposure
time is minimized (29, 78). The most widely used, permeating
protectant is dimethyl sulphoxide (DMSO) (15, 66). Glycerol and
propanediol may also be encountered, although the former is
more commonly used with erythrocytes (79, 80) and sperm cells
(81, 82), while the latter is usually a component of vitrification
solutions (83). Cell membrane permeability to the commonly
used, permeable cryoprotectants will be c. 100–1,000 times lower
than to water (68), so it is essential to include an adequate
incubation time in the cryoprotectant to allow for equilibration
of protectant between the extra- and intracellular compartments.
An understanding of toxicity effects is critical for an optimal
incubation period. Hydroxyethyl starch and oligosaccharides are
common, non-permeating examples (7, 84, 85).

It is important to ensure that any cryoprotectant being
considered has supporting evidence to show it can be used
clinically e.g., approved to be transfused or injected into a
patient. DMSO, for example, is a very effective cryoprotectant
and many of the alternatives that have been developed are less
so, especially when working with cells particularly sensitive to

freezing and thawing (86). It has been used as a carrier solution
in injections for many years and infused along with stem cells
from bone marrow transplants (9, 66). The most commonly used
concentration of DMSO is 10% v/v, as with stem cells (9, 66). A
clear trend toward its reduction down to 5% v/v is apparent, in
combination, or without, the inclusion of non-permeable CPAs,
to both improve cell recovery post-thaw and reduce the amount
of DMSO infused to patients (83, 87–91).

Currently, there is a developing discussion about the clinically
appropriate use of DMSO for CTs and, whilst there have been
very few contraindications for DMSO in transfusions of adult
stem cells (92–94), there are questions about its suitability if
the intention is to implant the cells directly into localized
environments such as the brain or bone (95–99). Alternative
cryoprotectants may be identified that are successful during
research and development, and must be rigorously assessed on
their safety for transfusion into a patient before taking the final
steps toward a completed therapy.

Sample Containers for Cryopreservation
The choice of appropriate sample container for cryopreservation
depends upon the end use of the cell preparation, once recovered.
For research purposes, small volumes of cell suspension are
likely to be adequate and small sterile cryovials (typically
1–10mL) can be the container of choice (23, 100). However,
for therapeutic delivery, containers must be hermetically sealed
to prevent the risk of contamination and for this reason alone
research cryovials are not appropriate (15). The potential for
contamination of unsealed CT samples by liquid nitrogen
(LN)-borne contaminants (101) or other contaminants in
the cryochain (102–104) means that samples for parenteral
administration (injecting directly into the body) must be
processed in hermetically sealed containers (105).

It should be noted that, to maintain strength at low
temperatures (106), many vials designed specifically for medical
use have thicker walls than standard, research laboratory
cryovials. The material used to manufacture them may also
have low thermal conductivity, and so care must be taken to
ensure that the rate of temperature reduction in the vial reflects
accurately the protocol entered into the programmable freezer
(107). This can be achieved by inserting a recording temperature
probe into a dummy sample during the cooling procedure. This
becomes particularly relevant when the quality control sample
is contained in a medical vial, with the bulk material of the
preparation in a cryobag.

Many cell treatments require relatively large volumes
(>100mL) of suspended cells and these are held in specifically
designed cryobags for cryopreservation. They are, of necessity,
sterile and can be hermetically sealed before processing. In
many instances they are cryopreserved within an additional,
outer wrapping to guard against mechanical damage that might
compromise the structure of the container, with risks of material
loss and compromised sterility (15). Both the cryobag and
the overwrap bag have relatively thin walls and the presence
of any noticeable amount of air—a good thermal insulator—
between them should be removed to ensure the temperature
of the cell preparation is closely aligned with the cooling
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FIGURE 2 | The increase in ionic concentration following freezing of a 300 mOsm NaCl solution (solid line), or a 300 mOsm NaCl solution containing DMSO at 5% w/v

(dotted line) and 10% w/v (dashed line).

rate generated by the freezer. Instead of, or in addition to,
the overwrap bag a metallic casing may also be used, which
provides the additional advantages of insuring that the bag is
frozen flat, thereby reducing any risks of breaking at cryogenic
temperatures. More importantly, the casing has excellent heat-
conducting properties to ensure amore consistent, homogeneous
thermal profile across the length, and thickness of bags during
freezing, which is essential to ensure homogeneous cell recovery
between preparations.

Appropriate cryocontainers would include:

• Medical device-compliant cryovials with capacities between
0.5 and 50mL. Standard screw cap cryovials are not accepted
as medical devices and should not be used for clinical materials
(15, 108, 109).

• Bags with or without overwrap bags with volumes from 10
to over 100mL. These are generally not suitable for volumes
below 5mL (15).

• Straws with capacities of up to 0.5mL, originally developed
for the cryopreservation of spermatozoa, oocytes and embryos.
These straws can be efficiently heat sealed and have found
some application with vitrified cell therapy products (110,
111).

• Syringes that can be cryopreserved and used for clinical
delivery immediately on thawing are under development by a
number of manufacturers and will be of significant value once
commercially available (112, 113).

The need for innovative designs for freezing vessels will expand
as therapies in regenerative medicine develop and will certainly
be required for the cryopreservation of larger materials such as
cell sheets and biomimetic tissues.

Preparing the Final Sample
To ensure that the selected freezing containers can be filled easily
and effectively this aspect of the process should be considered

during protocol development. Manual filling of cryocontainers is
possible when relatively small numbers of samples are involved
but, for larger numbers, the impact of the lag time between
dealing with the first and last sample must be evaluated. This
lag may significantly extend the time that some preparations
incubate in the cryoprotectant solution, compromising the
viability and overall functional outcome of the product. With
manual filling there may also be variability between samples
bringing with it the possibility of inconsistent therapeutic effects.
Automated filling lines are currently available for some vials and
for straws but not, to date, for cryobags (15, 100).

Temperature monitoring and control during vessel filling are
also important and influence the size of the batch that can
be filled, as well as the conditions under which the operation
takes place. Any potentially cytotoxic effects of cryoprotectants,
especially DMSO, will be reduced by lowered temperature and
the avoidance of abrupt temperature change. Consequently,
working temperatures in the range 0–4◦C are beneficial (15, 73,
75) and practices such as adding cooled protectant to precooled
cells or warmer protectant to warmer cells with immediate
subsequent cooling are to be recommended (114–116).

The cell concentration per unit volume of cryoprotectant
medium can affect survival and this should also be determined
during protocol development. Conventional concentrations
employed for the cryopreservation of hematopoietic stem cells
for engraftment range from 20 to 80 × 106 nucleated cells/mL
(117–119). Sample volume reduction, achieved by increasing
cell concentration, can be attractive as it will limit materials
and reagents used, processing time and cryostorage space as
well as reducing the quantity of DMSO infused to the patient
(11, 117–119). However, cell concentrations higher than ∼200
× 106 cells/mL appear detrimental on engraftment prediction
(through the CFU-GM assay) or engraftment yield post-thaw
(88, 114, 117, 118, 120, 121). As the ice fraction within a
cooling sample grows and the unfrozen channels, where cells are
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confined, reduce in size there will be an increase in potentially
injurious compression forces and direct cell to cell contact (11).
This report also notes the increased likelihood of cell clumping,
both before freezing and after thawing, as a result of using too
high cell concentrations. By contrast, new immune cell therapies
are reported to contain up to 107 CAR-T cells/mL (122, 123) and
low cell concentrations <106 cells/mL can lead to cell apoptosis
(124). A balance therefore needs to be established between using
a greater injected volume at low cell concentrations and any
cell damage caused by using high cell concentrations to achieve
equivalent perfused cell numbers. The adopted concentration will
also be affected by the percentage survival expected following
cryopreservation and the total number of cells that need to
be delivered into the patient. These considerations will also
influence the choice of freezing container.

The possibility that a proportion of the cells may adhere to
the freezing vessel walls during the cryopreservation process
has also to be considered and the consequent level of recovery
assessed. Also of concern is the sedimentation rate of suspended
cells and cell aggregates in the cryoprotectant solution. Rapid
sedimentation can dramatically change the cell concentration at
the base of a cryovial, for example, and can have a significant
effect on the immediate cell environment as freezing progresses
through the bulk sample. The elapsed time between vessels being
loaded with a cell suspension and ice nucleation, when cells begin
to be immobilized, must be considered where cell concentration
may have a discernible impact on post-thaw outcomes. The
timing needs to be consistent between vials to minimize
sedimentation-related effects, with minimal variation (125).

Of particular concern and relevance to cell therapy is the
cryopreservation of samples containing a range of different
cell types. Sensitivity to the cryopreservation process may be
different between cell types and could result in subpopulation
changes in the recovered material. In PBMC samples, T cells
(CD3+/CD4+ and CD3+/CD8+ cells) are often identified as
more sensitive than the other cell subpopulations (29, 126,
127), although a recent study outlined the greater sensitivity of
Natural Killer cells (CD56+ cells) over T cells (CD3+/CD4+
and CD3+/CD8+ cells) in cryopreserved donor lymphocyte
infusions (128). The sensitivity of T cells to cryopreservation may
even be different within specific T cell subsets, with regulatory
T cells (Tregs) and activated T cells generally more sensitive
than other subsets (127, 129). However, allowing a post-thaw
resting period before staining cells for flow cytometry analysis
has been shown to improve the detection and functionality of
PBMC subpopulations and T cell subsets. This resting period
may allow for the repair of some aspects of cell injury, yet
the nature and duration of such a recovery period has yet to
be determined, and must be consistent between all samples,
as does the time between sample staining and data acquisition
(127, 129–133). This recovery time has been considered as
enabling both the removal of apoptotic cells generated by the
cryopreservation process and the pre-activation of T cells (131).
An interesting observation is that the apparent sensitivity of T
cells to cryopreservation relative to other PBMC subpopulations
may be limited by the inclusion of a non-permeable CPA to
the cryoprotective solution, in addition to DMSO (90, 134).

This sensitivity also appears to decrease after a second freeze-
thaw cycle (127), suggesting that there may be a subpopulation
of cryotolerant T cells in the original sample. Cell damage
experienced by dendritic cells (DCs) may also be different from
the other PBMCs, and seem to be best cryopreserved with a
combination of DMSO and a non-permeable sugar at a cell
density of 107 cells/mL (135).

For cell populations such as pancreatic islets and HSC, the
initial cell preparation and extraction (before cryopreservation)
can have a major impact on cryopreservation outcome. An
inverse correlation has been reported between HSC viability and
neutrophil contamination, therefore a poor collection can lead to
a poor cryopreservation outcome and poor engraftment success
regardless of cryopreservation strategy used (121, 132). A similar
situation exists for pancreatic islet cryopreservation in which
isolation of islets can result in losing up to half of the cellular
material and it is likely that poor cryopreservation outcomes
here are at least in part due to the sub-optimal condition of
the surviving cells from the collection (136). In cases where
collections cannot be practicably improved by the cryobiologist,
strategies such as replacing DMSOwith other cryoprotectants, or
conditioning cells pre- and post- cryopreservation in stabilizing
media (137) are to be considered.

For some applications, encapsulation of cells or cells seeded
onto scaffolds may be required prior to cryopreservation (138,
139). An example of the former is the cultivation of cell spheroids
within alginate beads, which is part of the manufacturing process
of many bioartificial tissues, including liver (BAL) (65, 138,
140, 141). Cell encapsulation may provide greater functional
performance, but spheroids are also difficult to cryopreserve
due to physical ice damage suffered by the spheroid and the
protracted cell dehydration times necessary during cooling to
accommodate the diffusion distances within the spheroids (59,
65). Larger aggregates of cells, perhaps included in alginate beads,
complicate cryopreservation as varying diffusion distances,
thermal gradients and limiting membrane permeabilities can be
present, and this complexity increases when the size of candidate
product is increased e.g., cells growing around a scaffold, either
natural or artificial (142, 143). Cryopreservation of cells or
spheroids attached to scaffolds or other types of 3D constructs
to support cell proliferation for tissue engineering must consider
both damage to the scaffold itself as well as cell detachment
caused by contraction and expansion of the scaffold material
during cooling and warming (144–146).

Cooling Rate
The appropriate, optimal cooling rate must be selected to
minimize cell losses during cryopreservation and aid the
effectiveness of the prepared therapy. The severe cellular injuries
that can occur during cooling are primarily a consequence of ice
formation in the system, as noted above, and cooling rate is the
key influencing factor over when and where ice forms. Having
control over cooling rate provides a level of control over ice
formation and, consequently, cell survival (6, 10, 11, 107).

For a system comprised of cells in an aqueous, suspending
medium, a relatively slow cooling rate results in ice forming first
in the bulk phase i.e., the suspending medium. As previously
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stated, solutes are excluded from the crystals of this extracellular
ice, causing an increasing osmolarity of the residual, as yet
unfrozen, suspending medium (11, 69, 72, 74). This imposes
potentially fatal osmotic stresses on the cells, commonly known
as “solution effects.” However, this risk has to be balanced against
the benefits resulting from dehydration of the cells in response
to this new osmotic situation. As cytoplasmic concentration
increases the probability of unavoidable, fatal, intracellular ice
formation diminishes. If the applied cooling rate is too rapid,
the extent of this dehydration is reduced, and the probability
of intracellular ice formation increases (6, 10, 72). If the rate is
too slow then dehydration may even become excessive and cause
injury. Other deleterious effects due to cryoprotectant toxicity
may also become apparent.

The cooling rate producing optimal survival for a particular
cell/suspending medium combination will reflect the point of
balance between the positive and negative effects of slow and
rapid cooling (72). Additional factors that can influence the
positioning of the optimal cooling rate will include biological
issues such as the type and origin the cell preparation, the
cell density of the sample, cellular surface area to volume
ratio and cell water permeability (6, 7, 147, 148). Properties of
the suspending medium, the properties of the cryoprotectants
employed and any measures taken to induce ice nucleation will
also influence the optimal cooling rate (6, 7, 10, 73).

In mammalian systems, optimal cooling rates can range
widely, from tens to hundreds of ◦C/min for human red
blood cells depending on the composition of the cryoprotective
medium used (80) and sperm samples depending on their animal
origin (149–152). Much slower rates, from 0.5 to 0.1◦C/min, are
appropriate for oocytes and embryos (153–155), ovarian tissue
(35), and liver spheroids (64). For a wide range of somatic
cell suspensions, reported cooling rates of c. 1◦C/min provide
consistent, high levels of recovery (9, 66, 119). To achieve this rate
for small cell volumes, characteristic of research investigations
and routine laboratory procedures, there are simple, passive
freezing devices that can be cooled in a −80◦C freezer (15, 156).
However, these are not appropriate for clinical applications, due
to their low sample capacity and cooling rate inconsistencies that
result from inadvertent interventions e.g., when the freezer is
opened for unrelated reasons, or from suboptimal use e.g., when
underloading the device or stacking several of them in the freezer
when limited space is available (15). Precise and reproducible
control of cooling rate is best achieved using programmable,
conductive or convective controlled rate freezing equipment that
is constructed to deal with relatively large sample volumes.

As cell clusters, spheroids, organoids, and tissues become of
increasing, therapeutic importance it may be that slower cooling
rates have to be employed. This is because in a cell mass the
diffusion distance for water between the innermost cells and the
bulk, external medium become significant and thermal transfer
will be similarly affected (59). These size-related effects have
the effect of slowing protective dehydration in response to the
osmotic gradient generated by the presence of extracellular ice,
as well as slowing the rate of heat transfer from the cell mass.
Very slow cooling rates may therefore be necessary to allow
for cell dehydration to be effective for all the aggregated cells.

FIGURE 3 | Typical temperature profile obtained during conventional, slow

freezing of an aqueous sample, showing supercooling as the difference

between ice nucleation temperature and the sample’s freezing point, as well as

the exothermic character of ice crystallization.

Inevitably, however, some cells will experience excessive osmotic
stress during this extended incubation and innovative, protective
steps will become essential to limit any likely injury (65, 157, 158).

Tissue cryopreservation has also been limited by structural
tissue damage caused by ice crystals. Typically, techniques
employed for these tissues are similar to those for cell
suspensions, and future research and development is required
to produce new protocols that better couple macrostructure
preservation with high cell survival. However, considerable
success with slow cooling can be achieved where macrostructure
is not critical for function e.g., in the cryopreservation of thymus
(159) and ovarian tissues (35, 160). Where preservation of
macrostructure is central to tissue function, as for heart and
skeletal muscle and kidney and liver tissues, ice crystals would be
avoided if appropriate vitrification could be developed, and this
may be the focus of much future investigation (63, 161).

Ice Nucleation
During continued, slow cooling ice crystals will form by
nucleation at a temperature below their melting point (Figure 3),
and aqueous solutions can cool significantly below this before
nucleation and relatively rapid, crystal formation occurs (162,
163). This effect is known as supercooling and the point at which
it ends can be detected by a rise in temperature (the ice exotherm)
as the first ice crystals form in the bulk solution. This is due to
the latent heat of fusion that is released during the transition of
liquid water to crystalline ice (162, 164). The formation of ice
crystals in a cell suspension may then impose some, or all, of
the injurious stress on the cells that have been described above.
The greater the extent of supercooling, the greater the immediate,
stresses experienced by the suspended cells when the ice begins to
form. To optimize a cryopreservation protocol, it is essential to
understand the impact of this ice nucleation on cell recovery, and
to consider if external interventions to induce it at the earliest,
possible opportunity might be of value.

Sample volume has a significant effect on ice nucleation,
with the potential for supercooling increasing as sample volume
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FIGURE 4 | The effect of sample volume on spontaneous ice nucleation in a

typical cell suspending medium. Drawn using internal data as well as data

from Daily et al. (165).

decreases (Figure 4). For small volumes, typical of in vitro
fertilization straws, multi-well-plates and small cryovials, delayed
nucleation can cause extensive cell injury and so induced
nucleation at the earliest possible, subzero temperature is often
necessary (35, 162). This can be achieved by techniques such as
mechanical agitation of the cooled samples, inducing a small,
ultra-cold spot on the outer wall surface of the sample vessel wall
or the use of additives (162).

However, cell therapy products are often cryopreserved in
larger volumes (cryobags or large cryovials (from 10mL up
to 150–200mL). Fortuitously, spontaneous ice nucleation for
these volumes will occur at a temperature significantly closer to
the melting point than would be the case for smaller volumes
(Figure 4). Consequently, a limited, damaging effect is achieved
without further intervention (165), although practical studies
investigating the impact of induced nucleation for these larger
sample volumes are lacking.

If nucleation were to be induced in these larger sample
volumes, ice nucleating agents could be included in the
samples as a practical method of choice. These agents act
as catalytic templates for nucleation and subsequent crystal
formation during cooling. Examples include cholesterol, silver
nitrate, extracted bacterial proteins (166) or inert particulate
minerals (12, 165). A major advantage of such agents is
that they require no user input beyond their addition
to the sample container, and compatibility with regulatory
requirements and the desired clinical application, including
patient contact must be ensured. Nucleation could also
be induced by ultrasound waves passed through samples,
triggering ice formation in a consistent and user-independent
way (165).

There are also cryopreservation protocols that induce
nucleation by the inclusion of a “plunge” or “seeding dip,”
programmed in as part of the controlled cooling profile. At an
appropriate point, close to the melting point of the suspending
medium, a very rapid, limited cooling excursion is included in the
protocol to lower the sample temperature by up to 10◦C before
returning to the original level. However, any beneficial impact of
such a practice over conventional, linear cooling protocols has yet
to be demonstrated (163).

HANDLING, EXTENDED STORAGE, AND
TRANSPORT

Following controlled rate freezing the cryopreserved product
must be placed in controlled frozen storage. Care must be taken
during transfer of the newly frozen sample from the controlled
rate freezer to the storage/transport container as only a few
seconds of warming may be all that is needed to compromise
viability (167–169). There may be no visible change in the
sample during a brief exposure to an elevated temperature,
apparently indicating no change in the ice, yet melting at the
microscopic level will start to occur at temperatures as low
as approximately −50◦C (170, 171). These, apparently subtle,
changes can have a negative effect on the eventual, thawed
recovery of the samples (164). For practical convenience, cooling
to a minimum of −60◦C is recommended before immediate and
very rapid transfer to the storage freezer, to limit damage due
to uncontrolled rewarming (170). If a little time is needed to
ensure an efficient and safe transfer, then a pre-cooled container
containing LN or dry ice can act as an interim holding container.

The minimum, safe storage temperature for the sample must
be maintained, without deviation, throughout the cryochain to
avoid any warming or thawing that could lead to viability loss
or weakened function of the product. For maximum stability
in this respect samples should be stored in the vapor phase
immediately above LN (below −150◦C) or in an ultra-cold
freezer at temperatures below −130◦C (10). Storage in bulk LN
(−196◦C) should be avoided in clinical situations as there is a
real risk of microbial contamination, particularly in vessels that
are accessed regularly and have been in use for an extended
period (172–174). Further, to avoid cross contamination samples
should not be stored with others known to pose a potential
contamination risk in this respect.

The required shelf life for cryopreserved cell therapy materials
will be dependent on application with, commonly, up to 1 year
for authorized CAR T cell products (122, 123) and much longer
for other, banked cell therapy products (11, 66, 97). Whilst
storage at −80◦C may be appealing as storage freezers at this
temperature are standard laboratory items, this will not provide
the stable level of recovery generally required (141, 175). In
the special case of biobanks, where required storage periods are
considered in at least decades, the extreme chemical stability
secured by storage below the glass transition temperature of
the cryoprotectant employed (c. −120◦C for DMSO) is essential
(10, 11, 170, 176).
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Also central to effective storage are physical security of the
storage facility, clear, and permanent labeling of samples (to be
legible if frosting occurs readily) and a location plan for samples
within the storage vessel. During cryostorage, care must also be
taken not to warm other samples that may have to be moved to
provide access to thematerial being located. Best practice will also
employ alarms and continual temperature monitoring to prevent
sample loss in the event of power failure ormalfunction (172, 177,
178). Containers can be purchased with barcodes, or these, and
other forms of identification, can be added as required. All access
to the containers, for whatever reason, must be recorded. Robust
sample identification ensures traceability and prevents errors in
administration. It should become a matter of routine to trace the
sample from tissue isolation to patient delivery, with sufficient
security to protect patient confidentiality (179).

Frozen products should be transported in specialist containers
that maintain the low temperature of their contained storage
space using either LN trapped in a fibrous matrix within the
container walls (dry shipper), or electrically cooled systems. Dry
ice use should be restricted to very short transit of samples,
e.g., from controlled-rate freezer to cryogenic storage, as some
molecular mobility—albeit extremely slow—that can lead to
sample deterioration can occur between the glass transition
temperature of the sample and −80◦C (170). Shippers are
relatively expensive, durable items and the expectation is that
they will be returned to sender for further use. However, the
hospital or other facility accepting the frozen cells may not have
a dedicated LN storage facility and will use the dry shipper
as a temporary storage unit. For this to be effective there
must be access to LN to top up the dry shipper as required,
and an understanding of how frequently this may be required.
Suitable, LN-free, portable devices for transport and subsequent
storage at the recipient facility are also available, allowing frozen
cells to be moved directly from the controlled rate freezer to
a LN-free unit for shipping to, and storage at, the point of
final use. Continuous temperature logging during storage and
transportation is essential to the security of the cryochain and
the accepting facility should be able to access this data up to the
point of administration to the patient. Equipment to achieve this
is available. Operation in this way should secure a tightly linked
cryochain that can provide safe, multiple movement of frozen
samples from initial tissue isolation to delivery of prepared,
therapeutic materials to the patient (180).

It is important to note that because of the various
contamination risks associated with LN-cooled equipment (172–
174), the provider of the frozen therapy may have opted to
use a LN-free controlled rate freezer for sample processing.
If the storage, transport or recipient facilities revert to using
LN-cooled containers then the hitherto clean cryochain will
be compromised.

THAWING AND RECOVERY

For successful cryopreservation, the influence of cooling rate
on the required thawing rate for optimal cell survival has
to be acknowledged, as these are co-dependent processes.

Relatively rapid cooling will result in the amount of extracellular
ice in the frozen product being lower than that predicted
by the equilibrium phase diagram for the system (69) (see
also “section Cooling rate” above). Consequently, to prevent
potential injuries due to further ice crystallization during
thawing a relatively rapid rate of warming is required.
This minimizes the level of hypertonic stress the cells will
experience as thawing progresses, with a positive effect on
survival (107). Where slower cooling rates are employed,
as is typical for cell therapies in larger volumes e.g., in
cryobags, the proportion of extracellular ice will be greater
and will be closer to the equilibrium point. Slower rates
of warming can be employed with a reduced risk of ice
recrystallization and reduced osmotic stress during thawing
(69, 107, 181, 182).

In regenerative medicine the widely accepted procedure used
to thaw frozen cryobags has developed, with little modification,
from the essentially subjective procedure used in basic research
laboratories. Most recommendedmethods require the immediate
transfer of the frozen sample from cryogenic storage into a
water bath at 37◦C, where it should be gently agitated without
removal from the water. It is important that this transfer
is made as rapidly as possible as a cryobag removed from
its cryogenic environment will warm rapidly in air with a
potentially major detrimental impact on post-thaw viability (164)
(see also “section Handling, Extended Storage, and Transport”
above). The final thawing process is accepted as complete
at the point where the very last visible ice melts away. At
this point the bag must be removed from the water bath
to minimize the risk of overheating the sample (77). This
subjective end point may vary between operators but in the
hands of an experienced person, with a full understanding of
what is required, there is no doubt that the procedure produces
consistent and successful results. However, if the operator lacks
familiarity and understanding of the process there is a risk of
unacceptably variable recovery of viable cells, with reduced post-
transplant performance (29, 183). With the increased use of
cryopreserved materials, it is increasingly likely that thawing
may be carried out by clinical staff with limited training
or experience in cryopreservation. This possibility has to be
positively managed to avoid a real risk to the clinical success of
the therapy.

The presence in clean rooms or operating theaters of open
water baths for warming presents an obvious contamination
hazard as well as operational difficulties (102–104). These
include maintaining the required water temperature, replacing
evaporative water loss, avoiding microbial contamination and
regular calibration to ensure accurate temperature control.
Programmable equipment is becoming available to avoid such
difficulties and provide the automated thawing of cryopreserved
cell samples. This equipment will provide computer control
of warming, enclosed thawing chambers and eliminate liquid
warming media. The facilities for automatic calibration, data
logging and data transmission to aid traceability and monitoring
are also available. The use of this type of equipment should
eliminate the subjective assessment of thawing and provide a
consistent procedure that requires no specific expertise on the
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part of the operator. In addition to cryobags (48, 184, 185), non-
cellular therapeutic materials such as plasma samples can be
thawed using this type of equipment (186).

Once thawed there may be a need for further manipulation
of a cell product has been before clinical use. This can include
diluting the cells (perhaps within their cryocontainer), for
immediate injection, washing the cell suspension to remove
cryoprotectant before delivery or loading into a delivery vessel
such as a syringe. However, there may be regulatory and
practical constraints as to where and how this may be done,
which may limit delivery of a treatment only to sites with
appropriate culture facilities. Therefore, the development of
cryopreservation protocols that avoid post-thaw manipulation
can carry significant benefits.

It is essential that an immediate post-thaw assessment of
viability is made to confirm the probable effectiveness of the
delivered therapy. Cells should be thawed only as required
and not maintained for any extended period of time before
use, as viability can decline due to the inherent toxicity of
the cryoprotectants. This difficulty may be reduced if the
protocol being followed includes a post-thaw wash to dilute
the cryoprotectants. When this is not included then thawed
cells should be maintained for the shortest possible time at low
(non-freezing) temperatures e.g., 4◦C. The viability test must,
of necessity, provide rapid results and should not require more
than easily accessible, immediate laboratory support. Strong
candidates for such a test are those that rely upon dye exclusion
from cells e.g., trypan blue, indicating outer cell membrane
integrity, and determined by simple light microscopy (187).
However, these tests do not indicate viability in terms of
coordinated cell structure and function and it essential that
the positive correlation between the dye exclusion results and
genuine cell functional recovery is understood. Such a correlation
has been demonstrated for apheresis samples, where it is evident
that dye exclusion consistently overestimates cell viability (188,
189). However, once such a relationship has been determined
and understood the dye exclusion can be used as good indicator
of eventual cell recovery in the administered therapy. Similar
constraints apply to slightly more complex, immediate tests, such
as the detection of fluorescein released from fluorescein diacetate
by active esterase enzymes contained within an intact outer
membrane. Viability assays which use these types of stain are
non-specific and do not detect apoptotic or destroyed cells, which
may be generated as a result of the cryopreservation process.
Overlooking them may give a misleading picture of the state of
a sample post-thaw, and co-staining strategies of each specific
cell type of interest together with Annexin V and propidium
iodide may be of value (78, 190). Finally, combining several types
of assays (membrane integrity assay/enzymatic assay/functional
assay) is recommended to achieve a comprehensive assessment
of preservation efficacy (191).

To fully understand the possible effectiveness of an
administered therapy it is also important to understand the
likely reduction in viable, thawed cells in the hours or days after
thawing. During this critical period, it is probable that some cell
damage is repaired but there will be other structural or functional
injuries, not readily identifiable, that are not repairable and may
lead to cell death. In some instances, cryopreservation can

also activate apoptotic pathways (192–194). The cell number
contributing to the required therapeutic effect is, therefore, going
to be lower than the estimated immediate post-thaw viability.
The extent of such losses is an important piece of information
when calculating dosage. These post-thaw effects argue strongly
for the retention of sufficient quality control material from
individual, cryopreserved samples so that incontrovertible
viability tests, such as cell colony formation can be carried
out, at different post-thaw time points. This information will
contribute to ensuring the effectiveness of the therapy and
inform discussions over the need for protocol optimization
or modification.

REGULATORY ISSUES

Cell therapy materials are likely to be controlled by enforceable
regulations where they are intended for routine treatment.
The requirements likely to be needed for the approval of a
regenerative medicine therapy should be considered during the
development phase of the product. Where cryopreservation is
involved in the preparation and/or storage of such materials,
then regulations will probably also apply. The details may vary
between national and international bodies, but quality control
and traceability will be key elements of any effective, regulatory
procedure. Common themes to be routinely considered will
include sample sterility, reproducibility, efficacy, traceability, and
the safety of cryoprotectants.

For example, the sample containers employed in the study
should be capable of being hermetically sealed, favoring closed
systems as much as possible to reduce contamination risks
to a minimum (195), and the cryoprotectants and medium
components should also be approved. Final delivery to the
patient should also be considered for if the regulations prevent
cryoprotectants being infused directly into the patient then a
washing step will be required, with possible risks to post-thaw cell
viability and performance. It is important that complete details
of the cryopreservation process, including storage, transport, and
thawing are tracked, recorded and retained together with the
details of the samples and their history. This information must
be held in a secure, and yet accessible, way.

Validation of processes is an important aspect to consider,
both for regulatory issues and for ensuring that optimal
cooling processes established are in fact followed during the
cryopreservation process. For example, cryobags’ temperatures
will typically lag behind the programmed temperature of a
controlled rate freezer—this is an inevitable consequence of the
time taken for heat to flow out of a cryocontainer and larger
volume (64, 107). It should be ensured that the key parameters
such as cooling rate over the critical temperature range [i.e.,
from ice nucleation to intracellular glass transition (170)] are
followed even when a temperature lag is taken into account.
Often “dummy” cryocontainers are used—for example a cryovial
of equal type and cryoprotectant fill but without cells—complete
with a thermocouple to validate appropriate stages of the cooling
process (12). Re-validation of a process is critical when any
aspect of the process (for example volume, cryocontainer, or
freezing/cooling device) is altered.
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Quality control (QC) samples are commonly retained for
use before cell therapy treatment and are also an important,
contributory part of effective regulation. Consequently, it is
important to ensure that the QC sample has a cryopreservation
history that is as close as possible to that of the bulk therapy.
This can pose practical challenges as, typically, the QC sample
is of significantly lower volume than the bulk sample. During
freezing, even when frozen together, there may be a significant
difference in rate of heat loss and degree of supercooling before
ice nucleation between the two volumes. This can produce
differences in their post-thaw survival (133, 163). Recovery of
the smaller, QC sample may therefore not accurately reflect the
outcome when the bulk sample is thawed and it is essential to be
aware of, and compensate for, such issues. Recent developments
considering “mini-bags” as opposed to vials or segments of tubing
as is currently most common may present a solution to these QC
challenges (196).

FUTURE DIRECTION

Effective cryopreservation and an efficiently managed cryochain
are becoming increasingly recognized as providing a key enabling
technology to support the delivery of successful cell therapies
to the patient. The recent and ongoing development of CAR
T cell therapies and the increasing administration of dendritic
and mesenchymal stromal cells (13, 197) argue for increased
employment of cryopreservation in collection centers, CT
manufacturing sites and clinical settings. This is an important
change as allogeneic hematopoietic stem cell transplantations
were traditionally carried out using fresh grafts, just after
collection from a related or unrelated donor (14). The ability
to handle larger quantities of material and to provide suitable
cryogenic storage and shipment solutions are necessary to
ensure an effective cryochain is available to link the laboratory
to the clinical front line. The recent recommendation from
hematopoietic transplant networks worldwide to cryopreserve
all stem cell products ahead of allogeneic transplantation (26–
28, 198, 199) is a strong argument in support of development
in this direction. During a pandemic, cryopreservation could
provide additional time to assess whether a cell donor carries
a disease such as Covid-19 before a graft is infused, as well as
increasing flexibility in the transplantation process to provide a
more streamlined experience for donors, patients and healthcare
systems (14, 198–200).

Despite extensive experience in using cryopreserved products
for autologous stem cell transplantation there are concerns
regarding the limited amount of published data confirming that
cryopreserved allogeneic stem cell products achieve equivalent
outcomes to freshly infused ones (200). It has been pointed
out that where cryopreservation cannot be performed at the
collection site or where transport delays or travel restrictions
unpredictably delay cryopreservation (27, 200), there is an
enhanced risk of reduction of cell viability and engraftment
success when the sample is eventually cryopreserved (200, 201).
It has to be accepted that deterioration of cell function will
begin immediately after sample collection and will continue up
to the time of cryopreservation. This highlights the importance
of managing clinical situations, where possible, to provide for

cryopreservation at the same site and time as sample collection.
In this way a secure and efficient cryochain all the way from the
donor to the patient can be provided.

For the continuing development of effective cell therapies
in regenerative medicine there is a parallel, continuing need
to develop new cryopreservation protocols. These are likely to
be based on relatively large cell volumes of suspended cells
in cryobags or similar containers, and must meet the clinical
requirements, and handling practicalities, for efficient delivery
to the patient. For this type of material, relatively slow cooling
rates together with relatively slow warming will be employed. To
be as effective as possible, the details of recommended protocols
will need to be aligned as closely as is practicable to the specific
requirements of the cell types concerned, leading to a growth
in studies of optimized processing. The design of innovative
protocols will also become increasingly necessary as new types
of cell materials become important and available.

The successful cryopreservation of larger volumes, as in
engineered constructs (>1mm in any dimension) is also going to
become increasingly important. This will include cells attached to
fabricated structures, spheroids, and organoids, where problem
areas include increased diffusion distances that affect the transfer
of heat and cryoprotectants. There may also be issues related
to mechanical damage, caused by ice crystals, that disrupts the
cell-to-cell contacts that are an essential feature of a functioning
construct. Exceptions do exist, however, as with ovarian and
thymus material where tissue architecture is less important for
cellular function.

The valuable contribution that cryopreservation can make
to regenerative medicine will be accelerated, and enhanced, by
the interchange of information between clinical teams and those
involved in basic research and development. Importantly, this
dialog will contribute to ensuring a good understanding of the
process by all those involved in operating and maintaining
effective cryochains.
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