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Abstract: Cryopreservation is an expanding strategy to allow not only fertility preservation for
individuals who need such procedures because of gonadotoxic treatments, active duty in dangerous
occupations or social reasons and gamete donation for couples where conception is denied, but also for
animal breeding and preservation of endangered animal species. Despite the improvement in semen
cryopreservation techniques and the worldwide expansion of semen banks, damage to spermatozoa
and the consequent impairment of its functions still remain unsolved problems, conditioning the
choice of the technique in assisted reproduction procedures. Although many studies have attempted
to find solutions to limit sperm damage following cryopreservation and identify possible markers of
damage susceptibility, active research in this field is still required in order to optimize the process.
Here, we review the available evidence regarding structural, molecular and functional damage
occurring in cryopreserved human spermatozoa and the possible strategies to prevent it and optimize
the procedures. Finally, we review the results on assisted reproduction technique (ARTs) outcomes
following the use of cryopreserved spermatozoa.

Keywords: sperm cryopreservation; fertility preservation; sperm DNA damage; assisted reproduction;
gonadotoxic treatments; cryoprotectants

1. Introduction

The possibility to cryopreserve gametes and embryos represents an important advance-
ment in reproductive biology. Such procedures are indeed essential for the maintenance of
endangered animal species, for animal breeding via artificial insemination and, importantly,
to give hope for future parenthood to individuals who must undergo therapies or surgery
which can compromise gonadal function. In particular, according to the last edition of
the WHO laboratory manual for the examination and processing of human semen [1],
fertility preservation should be offered for autologous use to men before treatments with
cytotoxic agents or radiotherapy [2], vasectomy, social freezing in cases of active duty in
a dangerous occupation, male-to-female transsexual adults and adolescents before the
initiation of hormonal therapies. In addition, semen cryopreservation can be advised to
men before assisted reproduction techniques (ARTs) in the case of patients being unable
to ejaculate, or with severe oligozoospermia or the inability to provide a fresh sample on
the day of the ART procedure. Finally, the technique is used to cryopreserve spermatozoa
from healthy donors for future use in couples where the male partner is azoospermic,
to prevent the transmission of an inherited disorder, for women who wish to conceive
but do not have a partner (the latter in those countries where the procedure is allowed)
or for lesbian and transgender couples. Figure 1 reports the various conditions where
cryopreservation is advised.
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From the first attempts to cryopreserve human male gametes, many advancements
have been made, effective cryoprotectants have been discovered, the possibility to cry-
opreserve in liquid nitrogen has been developed and, nowadays, semen cryobanks are
distributed widely around the world.

There are several procedures/protocols to cryopreserve semen and spermatozoa in
liquid nitrogen or vapors (for review, see [3] and Figure 2). The research in this field has
been focusing on finding solutions to minimize the generation of ice crystals within the
cytoplasm, leading to the development and use of two types of cryoprotectants, perme-
ating and non-permeating. The former (including DMSO, glycerol, ethylene glycol and
others) creates an osmotic gradient to limit the formation of ice and stabilize the lipid
bilayer. Non-permeating cryoprotectants (including sugars and lipoproteins) contribute to
water leakage from the cytoplasm and protect membrane integrity. Cryoprotectants used
nowadays usually include glycerol, a sugar and egg yolk mix used as a non-permeating
cryoprotectant [4]. Antibiotics are also added to the mixture to fight the detrimental effect
of microorganisms that may be present in semen.

Another critical point in the process of cryopreservation is represented by the cooling
rate, which should be controlled, for instance by the use of programmable freezers or
through a standardized manual fast vapor freezing method [1]. Similarly, the thawing
process is also critical, and different thawing methods can be used. At present, the WHO
manual advises to proceed with fast thawing at 37 ◦C [1]. It should also be noted that semen
processing before cryopreservation should be performed in a sterile environment [1] accord-
ing to good manufacturing practice (GMP) guidelines, to avoid additional contaminations
to those already present in semen that may further compromise sperm performances.

Based on their particular structural and morphological characteristics, including the
low amount of cytoplasm, spermatozoa are considered to be quite resistant to potential
cryodamage [5]. Due to the particular lipid composition of the plasma membrane, which
contains higher levels of cholesterol and a lower ratio of unsaturated vs. saturated fatty
acids, human spermatozoa are less susceptible to cryodamage with respect to the sperma-
tozoa of other mammals [6]. Despite this, human spermatozoa may be heavily damaged by
the freezing/thawing procedure both at structural and functional levels (see below). There
is evidence that the susceptibility to the deteriorating effects not only depends on the initial
quality of semen [7] but, also, may differ from one subject to another and vary among the
different types of pathology for which cryopreservation is indicated [7–10]. At present, the
intrinsic sperm characteristics responsible for the different susceptibility to cryodamage
are not known. Furthermore, the issues producing the damage should be better defined.
Besides intracytoplasmic ice formation, the generation of reactive oxygen species (ROS) is
considered to be one of the main causes responsible for the damage [11] but whether other
toxic products are generated during the procedure is less known and poorly studied.

Although most studies agree that sperm damage is induced by freezing and thawing
processes per se rather than by long storage in liquid nitrogen [12–14], there is at least one
study reporting storage–time-dependent structural damages [15]. Importantly, the attain-
ment of pregnancy with long-term cryopreserved spermatozoa has been reported [16,17]
and a recent study demonstrated that storage up to 15 years does not affect clinical ART
outcomes with donor spermatozoa [18].

Semen banks must use safety procedures in order to prevent infectious disease trans-
mission with cryopreserved semen and the risks of cross-contamination inside storage
tanks. For this reason, men should be screened for the main transmitted viral diseases
(Hepatitis B or C, CMV and HIV) and other pathogens according to local legislations. For
virus/pathogen positive samples, it is advised to use separate tanks and other strategies to
avoid cross-contamination [1]. The recent SARS-CoV-2 pandemic raised some questions
regarding semen cryopreservation safety for COVID-19-affected individuals [19,20]. How-
ever, the occurrence of SARS-Cov2 mRNA in human semen has been only occasionally
reported [21,22], and whether the virus may be transmitted through semen remains to be
defined. A recent study [23] reporting the results of a survey administered to 22 European
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semen banks showed that the majority of them did not adopt particular safety measures
during the pandemic period and the most common strategy consisted of the adminis-
tration of an anamnestic questionnaire to patients, as only half of the centers required a
nasopharyngeal swab.
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The present review describes the structural, functional and molecular damage of
cryopreserved human spermatozoa with a focus on “omics” studies. In addition, we
review recent studies with new strategies to prevent or limit the damage as well as novel
approaches to sperm preservation. Finally, a paragraph is dedicated to the outcomes of
ARTs using cryopreserved semen.

2. Functional and Structural Damage

Several damages may occur to the sperm structure during freezing and thawing
processes. Despite some controversy in the literature [24], alterations in sperm morphology
following cryopreservation with various protocols have been reported in several studies.
Both the percentage of abnormal spermatozoa [25–27] and the teratozoospermia index (TZI,
i.e., the number of abnormalities/spermatozoon) may increase after the procedure [28].
Most alterations involve tail and acrosome structures.

Considering that the acrosome is of fundamental importance during the process of fer-
tilization both in vivo and in vitro [29,30], alterations in acrosomal structure, the depletion
of its content and a loss of the ability to respond to stimuli may severely compromise sperm
functionality. Several studies have reported ultrastructural acrosome alterations, including
wrinkling of the plasmalemma, loss of acrosomal content and vesiculations [31], likely due
to ice crystal formation, osmotic changes, ROS generation and an influx of liquid due to
membrane alterations occurring during the process. Gomez-Torres et al. [32] reported an
increase in spontaneous acrosome reaction in a high percentage of spermatozoa both for
high- and low-quality semen samples using a test yolk/glycerol buffer as an extender and
a slow freezing protocol. An increase in the spontaneous acrosome reaction may impair the
fertilizing ability when cryopreserved spermatozoa are used in more physiological assisted
reproduction procedures such as first level intrauterine insemination (IUI) or second level
in vitro fertilization (IVF), where, different from intracytoplasmic sperm injection (ICSI),
the integrity of the acrosome is required to allow the penetration of oocyte vestments. In
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a subsequent study [28], the same group reported that the employment of a vitrification
protocol strongly reduces the spontaneous post-thawing acrosome reaction.

Tail morphological alterations might be responsible for the decrease in sperm motility
observed after thawing and may occur in a high percentage of spermatozoa [28]. Such
alterations are mostly due to osmotic changes during the process (leading to the coiling up
of the tail), or an incorrect distribution/content of tubulins [15,32,33], which are the major
component of the microtubules.

Sperm motility decrease can also be due to altered mitochondrial structure and func-
tion that may be severely compromised by cryopreservation. Mitochondria play important
roles in spermatozoa, being involved in the generation of ATP to support motility and other
functions requiring energy [34]. Electron microscopy studies have demonstrated several
post-thawing alterations, including loose structures, widened crests and the appearance
of vacuoles [35]. The mitochondrial membrane may be also damaged and its fluidity
may be severely modified. All of these alterations may be responsible for the decreased
mitochondrial membrane potential (MMP) observed in various studies [36,37], as well as
in the generation and release of ROS by the organelle [38].

Cryopreservation severely damages sperm motility and viability. The decrease in
the percentage of motile spermatozoa varies from 30 to 50% depending on the freez-
ing/thawing protocols as well as on the initial semen quality [7,39,40]. In particular, our
study [7], conducted on 788 semen samples from patients cryopreserving for testicular and
hematological cancers, oligozoospermia and other pathologies demonstrated that initial
semen quality predicts with high accuracy, sensitivity and specificity motility recovery
after thawing. Moreover, we showed that total and progressive motility recovery was,
on average, close to 0% for samples where at least one parameter (motility, concentration
or morphology) of the initial semen quality was below the fifth percentile of WHO 2010
reference limits [41]. In such a situation, finding a motile spermatozoon may become a hard
task for ICSI operators. In particular, the situation is critical for patients cryopreserving for
testicular cancer, whose basal semen quality may already be compromised [42–45]. It is
well known that when ICSI is performed with an immotile spermatozoon, where viability
cannot be guaranteed, the outcomes may be worse [46,47]. Similarly to motility, sperm
viability also decreases following cryopreservation in a variable measure (from 30 to 50
depending on the study) [7,48–51]. There is evidence that ROS production during the
cryopreservation procedure may induce an apoptotic pathway [52,53], but other issues
leading to sperm death cannot be excluded such as the peroxidation of fatty acids in the
plasma membrane [53–55].

The occurrence of structural and functional alterations following cryopreservation may
condition the choice of the technique in ART laboratories, such as the different procedures
requiring a minimum number of motile spermatozoa. For instance, for IUI, a minimum
of 1.5 × 106 progressive motile spermatozoa are required, as there is evidence of lower
outcomes below such a number [56,57]. The minimum requirement of progressively motile
spermatozoa for the IVF procedure is lower (between 50 and 100 thousands/oocyte), but
even such a procedure can be hampered in the case of cryopreserved spermatozoa, leading
to the forced choice of ICSI application. In these cases, where no motile spermatozoa
are found after thawing, chemical inducers, such as pentoxyfilline [58], dimethylxantines,
myoinositol and mechanical or laser-assisted maneuvers [59], can be used to induce tail
movement in viable immotile spermatozoa to select them for oocyte insemination. Such
procedures have been successfully used in IVF laboratories producing live embryos [59].

In cases of low semen quality, the bank should assure an adequate number of cryopre-
served devices [1] by banking repeated ejaculates and appropriate counseling should be
given to the patient regarding the possibilities for future use in ARTs.

3. Damage to DNA

The integrity of sperm DNA plays a major role in offspring health and develop-
ment [60]. Among the different DNA anomalies that can be present in the male gamete,
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DNA fragmentation is the most frequent [60]. Several studies have demonstrated that men
with a high percentage of sperm DNA fragmentation (sDF) have less chance of success
both in in vivo [61–64] and in vitro reproduction [65–67]. This type of damage may be
further increased by in vitro manipulation [68] and, in particular, the negative impact of
sperm cryopreservation on sDF is well documented [69–75], although there is not a general
consensus. Indeed, a few studies did not find significant differences in sDF levels between
fresh and cryopreserved semen samples [76,77]. Such discrepancies may depend on the
technique used to evaluate sDF [78].

The extent of the damage is highly dependent on the individual cryotolerability.
Sperm DNA from infertile men is more susceptible to freezing damage than that from
fertile men [79]. Cancer patients, those who most of all resort to cryopreservation, show
higher average sDF values with respect to fertile or healthy age-matched men [80–83]. In
these cases, additional damage can be introduced with cryopreservation, making the topic
of fertility preservation even more problematic.

Different mechanisms have been suggested as the cause of the increase in sDF after
cryopreservation. Some studies have reported an increase in caspase activity during the cry-
opreservation process, leading to the hypothesis of an involvement of apoptotic pathways
in sperm DNA cryo-injury [77,84]. However, adding caspase inhibitors to cryoprotectant
medium, Thomson and colleagues [69] did not observe a reduction in the amount of DNA
damage generated during cryopreservation, suggesting that caspases are probably not
responsible for the observed sDF increase. As mentioned above, during sperm cryopreser-
vation and thawing, increased ROS production [85] and decreased antioxidant levels [86]
are known to occur. This imbalance in the redox state could be responsible for most of the
deleterious effects on DNA observed after these procedures. Changes in mitochondrial
membrane fluidity may trigger an excessive release of ROS and a consequent increase in
oxidative stress [87]. For this reason, different mitochondria-targeted antioxidants have
been added to freezing media in order to improve post-thaw sperm motility and decrease
ROS levels. Among these, Elamipretide, Vitamine E and L-carnitine [39,88,89] have been
shown to have some efficacy in protecting sperm DNA from cryodamage.

An excess of ROS can induce DNA base modifications. 8-hydroxy-2′-deoxyguanosine
(8-OHdG) is one of the more abundant forms of free-radical-induced oxidative lesions,
being widely used as a biomarker of oxidative DNA damage. A significant increase in the
percentage of 8-OHdG-positive spermatozoa was observed after cryopreservation [69,72].
ROS-induced DNA base modifications may facilitate genome instability and mutations by
limiting the DNA repairing capacity of spermatozoa [90]. Studies on other cell types have
demonstrated that beyond the mutagenic effect, oxidized DNA bases can negatively affect
the methylation of adjacent cytosines [91,92]. Excessive ROS production, on the other hand,
may up-regulate DNA methyltransferases (DNMT), triggering hypermethylation [93]. It
is conceivable that ROS may also alter the sperm epigenetic status. More comprehensive
studies on non-human mammalian species, focusing on the global epigenome, support this
hypothesis, demonstrating significant changes in sperm DNA methylation after cryopreser-
vation [94–97]. These data give rise to concerns, considering that sperm cryopreservation
is frequently used in ART and that sperm DNA methylation may play a decisive role in
offspring health [98]. Results on human spermatozoa published so far seem more reassur-
ing because they have not shown significant alterations in the DNA methylation pattern
after cryopreservation [99–101]. In particular, Khosravizadeh investigated the effects of
cryopreservation on DNA methylation in specific genes in the chromosome 15q11–q13
region. It is known that epigenetic changes in this region lead to imprinting disorders
including Angelman syndrome (AS) and Prader–Willi syndrome (PWS), two distinct neu-
rogenetic disorders [102,103]. Although an increase in intracellular ROS levels and sDF
in cryopreserved compared to fresh spermatozoa was observed, DNA methylation of the
selected gene regions was not affected. A recent study, through an analysis of alternative
splicing, concluded that the cryopreservation of human spermatozoa can cause epigenetic
instability in a small percentage of patients [104]. Clearly, more studies with a larger sample
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size and different cryopreservation protocols are needed to resolve the issue of whether the
sperm epigenetic pattern is altered by cryopreservation.

Freezing–thawing may also impact the degree of sperm chromatin condensation.
Sperm chromatin decondensation at the right time is essential for the zygote formation
and reduced condensation may predispose sperm DNA to oxidative damage. Royere and
colleagues observed abnormal ‘overcondensation’ of the chromatin after cryopreservation
via acridine orange staining and Feulgen DNA cytophotometric studies [105,106]. Other
studies, however, revealed an increase in sperm nuclear chromatin decondensation after
cryostorage, both through high-magnification microscopy analysis [107] and aniline blue
staining [108]. Similar results were obtained by Rarani and colleagues [109] by using
aniline blue and toluidine blue staining in semen samples from 30 normozoospermic men.
Finally, a study demonstrated that not only the cryopreservation process alters chromatin
compaction, but that this damage is also dependent on the storage time [110], as it was
found that this further increased after 90 days of storage. Overall, most studies seem
to indicate that cryopreservation procedure may decondense sperm chromatin, likely
contributing to increased oxidative damage to DNA.

Cryopreservation can also induce genetic damage. Valcarce and colleagues [111]
studied the effect of sperm cryopreservation on six genes with roles in fertilization and
embryo development (BIK, FSHB, PRM1, ADD1, ARNT and PEG1/MEST) and two genome
regions related to Prader–Willi and Angelman syndrome (UBE3A and SNORD116/PWSAS).
The results of this study showed a detrimental effect in some important imprinted regions
of these genes, highlighting a different vulnerability of the genome to the damage; the
maximum number of lesions was detected in SNORD116/PWSAS, PRM1, UBE3A and BIK,
whereas the minimum number of lesions was detected in PEG1/MEST and FSHB [111].

4. Damage to mRNAs, Proteins and Metabolites

As described, cryopreservation provokes both structural and biochemical damages to
spermatozoa which may lead to an impairment of fertilization ability or embryo develop-
ment [52].

Recent advances in omics coupled with bioinformatic approaches could be useful to
uncover molecular and cellular changes in sperm molecules, such as RNAs and proteins.
Discovering new possible markers of sperm tolerance to freezing/thawing could be helpful
to optimize the current cryopreservation protocols. Most studies investigating these new
frontiers were performed in animal models such as bovine and pig above all because in
these animals artificial insemination mainly uses frozen spermatozoa.

Although mature spermatozoa are considered to be transcriptionally silent, recent
evidence has demonstrated the presence of various types of RNAs representing epigenetic
marks involved in spermatogenesis but also transmitted to the next generations, reflecting
paternal environmental exposure [112].

Transcriptome analysis using RNA sequencing showed a differential expression of mR-
NAs and miRNAs between fresh and frozen–thawed boar and bull spermatozoa [113,114]
suggesting that this procedure could alter the abundance of sperm transcripts related to
fertility-associated functions. In humans, little is known about sperm RNAs after cryop-
reservation. A recent study of the group of Isachenko revealed differentially expressed
genes comparing fresh, conventionally frozen and vitrified spermatozoa [115]; however,
the two cryopreservation methods seem to be epigenetically safe, although vitrification
induced minor changes in terms of fertilization impact with respect to the conventional
procedure. Valcarce and colleagues observed a significant reduction in most analyzed
mRNAs chosen among the considered markers of male quality and pregnancy success,
hypothesizing that cryopreservation can commission transcripts to degrade [116].

Among sperm mRNA, miRNAs and small non-coding RNA not only regulate post-
transcriptional gene expression and mediate epigenetic inheritance in spermatozoa but
also contribute to maternal mRNA degradation after fertilization [117]. Moreover, different
studies have demonstrated the role of miRNA in mammals’ embryo development [117,118].
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Only two studies investigated the expression of miRNAs after cryopreservation in human
spermatozoa, finding a downregulation of those implicated in fertilization [119,120].

The advent of proteomic analysis has allowed the evaluation of the protein profile and
its changes in certain physiological or pathological contexts. To date, only a few studies
have evaluated the effects of cryopreservation on the human sperm proteome [121,122].

The first study on the proteomic profile of cryopreserved human spermatozoa from
sperm donors published by Wang and colleagues [122] identified twenty-seven differ-
entially expressed proteins mostly associated with sperm motility, acrosome integrity,
capacitation, viability and mitochondrial activity [122].

Subsequent studies, using high-throughput technologies, demonstrated a higher
number of differentially expressed proteins [121,123]. Moreover, in these studies, a change
in sperm proteomic profile has been reported not only by comparing fresh and frozen
spermatozoa but also by evaluating different methods, steps and actors involved in the
cryopreservation process [121,124]. Differentially expressed proteins have been found
by examining both different preservation methods, such as slow or rapid freezing and
vitrification [125,126], and by modifying freezing/thawing conditions [121], as well as
by using different types of cryoprotectants [121] or different cryopreservation carriers
(cryovials or cryostraws [124]). Although the identity of most of the up- or down-regulated
proteins found in the different experimental conditions varies in these studies, they are
almost always involved in important sperm functions for achieving oocyte fertilization,
such as energy production, motility, apoptosis, DNA damage and repair, capacitation,
acrosome reaction, sperm–egg fusion, etc. Some of these proteins could be revealed
as potential markers of sperm freezability once validation studies are performed. An
example is represented by the Arylsulfatase A, a protein implicated in gametes fusion,
whose levels decreased after both slow- and rapid-freezing, suggesting that it could be
used as a marker of sperm quality after cryopreservation [126,127]. Of note, it has been
reported that oncological patients show already altered proteomic profiles before cancer
treatments [128–130] and, therefore, at the moment of cryopreservation. In such a situation,
eventual cryodamage to protein expression is added to already-existing damage.

It should be highlighted that the heterogeneity in proteins found among the studies
could also be ascribed, besides the different conditions of cryopreservation procedure
(type of cryoprotectant, freezing method, thawing procedure and temperature, etc.), to
the protein analysis procedure as well as the use of whole semen or selected spermatozoa.
Indeed, semen is a heterogeneous fluid also containing non-sperm cells that can contribute
to the proteome modifications.

Recent advances in mass-spectrometry have allowed for also exploring, besides the
cell transcriptome and proteome, the metabolome, offering the opportunity to assess and
quantify small molecules as the final results of transcriptional and translational events. This
approach can facilitate the understanding of the mechanisms of biological and biochemical
processes, answering the specific research questions. A few studies, most of which were
conducted on animal species, have investigated the differences in metabolomic profiles
between fresh and frozen spermatozoa, finding the significant deregulated metabolites
implicated in the main sperm energy pathways [131–133]. Interestingly, the only study
on human spermatozoa identified 16 significantly deregulated metabolites between fresh
and post-thawed spermatozoa, suggesting that metabolomic changes during the cryop-
reservation process could be helpful in order to identify new markers of human sperm
freezability [123].

5. Possible Strategies to Prevent the Damage and New Approaches to
Sperm Cryopreservation

As mentioned, although cryopreservation is a valuable option for preserving male
fertility when required, cryo-injury represents a problem for the future use of cryopreserved
gametes, especially when basal semen characteristics do not guarantee the effectiveness of
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the procedure. In such situations, semen banks should adopt strategies aimed to prevent or
to reduce the cryodamage.

One possible strategy is represented by the pre-cryopreservation selection of motile
spermatozoa with standard procedures such as density gradient centrifugation (DGC) or
swim up, which eliminate dead, immotile and morphologically abnormal spermatozoa as
well as immature germ cells and leucocytes that can be present in whole semen. Such a
strategy can be adopted in particular situations (for example, when high levels of leukocytes
are present [1]) or in the case of elevated percentages of immotile spermatozoa. Leucocytes,
apoptotic/damaged spermatozoa and immature germ cells may indeed produce high levels
of ROS, aggravating the damage induced by cryopreservation. Alternatively, and when
possible, the IVF laboratory may attempt post-thawing selection in order to enrich the
sample with motile spermatozoa. It should be considered that selection procedures such as
DGC and, to a lesser extent, swim up, may induce damage to DNA per se [134,135] and that
removal of seminal fluid eliminates the protective effects of antioxidant substances present
in semen [136]. As a matter of fact, an increase in post-thawing DNA damage has also
been reported when swim up or DGC procedures were used to select spermatozoa before
cryopreservation, and no improvement in sperm motility was observed [70]. However, a
recent study demonstrated that performing DGC selection before cryopreservation resulted
in better post-thaw parameters with respect to selection after thawing [137].

Improvements in sperm parameters, including decreased DNA damage, have been re-
ported when DGC was followed by a more sophisticated sperm selection procedure such as
annexin V-magnetic assisted cell sorting (MACS) both pre- or post-cryopreservation [138,139].
In particular, post-thawing selection procedures have been attempted in a few studies,
reporting an improvement in sperm motility [140,141]. Successful live births after sperm
sorting with annexin V-MACS of cryopreserved spermatozoa with high levels of sDF from
a cancer patient survivor were reported [142]. The paucity of studies on pre- or post-
cryopreservation sperm selection, however, does not allow one to draw firm conclusions
regarding whether they can be applied on a large scale.

In view of the fact that ROS generation during the freezing/thawing process is the
main thing responsible for cryodamage, several studies have evaluated the effects of the
addition of natural agents with antioxidant properties (vitamins, endogenous substances,
herbal extracts, antioxidant enzymes and others) to semen extenders (reviewed in [4,143])
with the aim of mitigating the possible toxic effects of extenders. Most of these studies re-
ported some efficacy in sperm parameters and DNA integrity, but no clear-cut conclusions
could be drawn and the need for further studies was evidenced [4,144]. Kumar et al. [125]
have shown that mitoquinone, a mitochondrial-targeted antioxidant, both attenuates ul-
trastructural changes and protects several proteins involved in sperm key functions from
alterations induced by vitrification. Emerging studies in the last few years have investigated
the effects of the supplementation of freezing media with taurine and hypotaurine [145,146],
melatonin [147,148] and gallic acid [25] as antioxidants. Some beneficial effects have been
reported with taurine and its precursor hypotaurine which slightly but significantly im-
proved sperm parameters, including DNA integrity, when supplemented to extenders both
for standard cryopreservation [146] and vitrification [145] methods. Among the tested
antioxidant agents, the most efficient in mitigating the cryodamage in human spermatozoa
was melatonin, as reported in a recent meta-analysis [144]. Indeed, the addition of the
hormone, a physiological regulator of the circadian rhythm, to cryoprotectants exerts a sig-
nificant positive effect on sperm progressive motility and viability [144], is currently used
for the cryopreservation of spermatozoa from several animal species [149–151] and has
been also shown to improve the survivability of oocytes and embryos [148]. Such beneficial
effects are not surprising considering that melatonin, besides showing antioxidant activity,
is an anti-apoptotic and ROS scavenging agent [147].

A recent study has demonstrated that preconditioning sperm cells before cryop-
reservation with sublethal nitric oxide levels not only improves sperm motility, viability
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and fertilizing capability [152] but also maintains the redox balance without altering the
metabolism of sperm proteins [127].

Another approach recently investigated concerns surrounding the addition of growth
factor- or platelet-rich plasma to cryoprotectants. Mirzaei et al. [51] demonstrated that the
addition of a plasma rich in growth factors at different percentages (from 1 to 10%) could
significantly improve sperm parameters and DNA integrity with the best results at 1%
concentration. The authors attribute such positive effects to the action exerted by growth
factors on their receptors on the human sperm surface more than a direct antioxidant or
ROS scavenging effect [51]. Minimal improving effects were observed with platelet-rich
plasma [49,153] in a small number of samples. No studies so far have addressed the
question of whether cryopreserved spermatozoa with enriched plasma retain the ability to
fertilize and support embryo development.

Vitrification has been successfully used to cryopreserve oocytes and embryos [154].
The group of Isachenko first introduced this method [5,155–157] which is based on the
direct exposure of the sample to liquid nitrogen, allowing for ultrarapid freezing that avoids
or strongly reduces the formation of ice crystals in the cell. In the case of spermatozoa,
both the direct plunge of semen (after dilution with an extender) in liquid nitrogen or after
aspiration in closed devices (in straw vitrification) can be performed. Vitrification is easy to
perform, is less time-consuming with respect to the standard procedure and can be applied
both for whole semen and selected spermatozoa free of seminal plasma. Clinical studies
have demonstrated that vitrified spermatozoa retains its fertilizing ability both in IVF, ICSI
and IUI techniques, achieving live births [158]. A recent meta-analysis evidenced some
advantages in post-thawing parameters after vitrification with respect to conventional
methods [159]. In particular, progressive motility and morphology appear to be better pre-
served. Concerning DNA damage, although some studies promote vitrification [160], other
authors have not observed differences in post-thaw DNA damage between the two meth-
ods [161–164]. The heterogeneity of studies does not allow one to draw firm conclusions
on whether vitrification should be preferred to the standard cryopreservation [163–166]
and, at present, vitrification for human spermatozoa should be considered to be experimen-
tal [1]. A recent study analyzed post-thawing parameters after vitrification vs. vapor fast
freezing of low semen volumes in different experimental conditions including the use of
cell sleepers [167] (also see below). They showed that vapor fast freezing better prevents
cryodamage independently of the type of cryoprotectant and the support used. It should
be noted that vitrification can present some disadvantages with respect to conventional
cryopreservation, such as the higher concentration of cryoprotectants used (increasing their
toxicity), a higher risk of potential contamination with pathogens (requiring sterilization of
liquid nitrogen) and, finally, requiring skilled operators for manipulation procedures [168].

The attainment of the successful generation of embryos [169] and even live births [170–172]
in some mammalian species after sperm lyophilization (freeze-drying) is certainly attractive
for semen banks and ART centers. Lyophilization is indeed a more sustainable technique
which would avoid the use of expensive liquid nitrogen, allowing easy storage, packaging
and transfer of the samples. At present, only few studies, with conflicting results, have
evaluated the eventual damaging effect of lyophilization on human spermatozoa. Kusak-
abe et al. [173] demonstrated that only a low percentage of sperm showed chromosomal
alterations and Gianaroli et al. [174] did not find increased DNA damage after dry storage
with respect to the standard procedure. However, lyophilization may harm cell mem-
branes [175] and produce detrimental effects on the sperm head [176]. Considering that
after lyophilization spermatozoa do not preserve viability or motility, the fact that they
can support embryo development and live births after ICSI in some mammalian species
(see above) indicates that the maintenance of DNA integrity [173,174] is an important
achievement of the freeze-dry procedure. Whether non-viable spermatozoa may support
embryo development and live birth in humans as well is presently poorly known, as only a
case report on the attainment of live birth with an unviable testicular spermatozoon [177]
is present in the literature. Clearly, further studies are needed regarding this interesting
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and sustainable method of sperm storage, which, if successful, could open important
perspectives both for human and animal reproduction.

In view of the variety of studies regarding the additional components to be added to
standard cryoprotectants and different procedures to freeze/thaw spermatozoa, it is not
possible at present to define the optimal mixture of cryoprotectants and the best freezing
procedure. Hopefully, further well-designed comparative studies or metanalyses will help
to define a gold standard procedure for semen or sperm cryopreservation.

Finally, it is worth mentioning that in the last edition of the WHO laboratory manual
for examination and processing of human semen [1] it is stated that “as only a single
spermatozoon is needed for ICSI of each oocyte, cryopreservation of any live spermatozoon
is worthwhile”. The cryopreservation of small sperm numbers can be of clinical value
for some male infertility factors such as severe oligozoosermia or criptozoospermia, cryp-
torchidism and obstructive azoospermia. Clearly, the use of standard procedures for very
low sperm numbers is inadequate and may be time-consuming for the ICSI operators due
to the dilution with the cryoprotectant, but also considering the cryodamage (see above).
There are some alternative strategies to cryopreserve low sperm numbers, including the use
of biological or non-biological carriers [178]. In particular, the latter (cryoloops, cell sleepers,
cryotops and others) appear to be quite promising as they allow for the recovery of good
percentages of motility and viability [167] and can also be used for spermatozoa recovered
after TESE [179]. Such methods have been used in clinical settings demonstrating their
efficiency in supporting live birth [180–182]. One important drawback of cryopreserving
single spermatozoa is the necessity of using a micromanipulator with ICSI needles to pick
single spermatozoa, requiring skilled operators, time and expensive instrumentation.

All of the possible strategies to prevent cryopreservation-induced damage and new
alternative approaches are represented in Figure 2.

6. ART Outcomes after Use of Cryopreserved Spermatozoa

The usage rate of cryopreserved spermatozoa after cancer survival is quite low, esti-
mated between 3 and 10% depending on the study and the length of follow up [42,183–186].
Such a rate is even lower for patients cryopreserving in a prevision of an ART procedure
because, if present, fresh semen is always preferred. In most cancer cases, cryopreserved
semen is destroyed after patient death, the attainment of a natural pregnancy or because
of restored fertility after chemo- or radiotherapies. Regarding the latter point, studies on
juvenile hematological cancers [187,188] indicate that most Hodgkin and non-Hodgkin
lymphoma patients recover spermatogenesis 2 years after therapies, although the recov-
ery highly depends on the therapy regimens (with worse results when chemotherapy is
associated with radiotherapy) and is unpredictable. Similar results have been reported
for testicular cancer patients [189]. One important aspect is related to the possible effects
of chemo- and radiotherapies on sperm DNA integrity, also considering that there are
studies reporting higher sperm DNA fragmentation levels in cancer patients before any
therapy (see above). Most studies report an increase in sDF post-chemo or radiotherapies in
testicular (reviewed in [190]) and hematological [80,81] cancer patients, which may persist
for years after the end of the therapies. In consideration of the fact that cryopreservation
may damage sperm DNA per se (see above), important clinical questions arise about the op-
portunity to use cryopreserved or fresh semen in cases of the recovery of spermatogenesis
and when it is the right moment to attempt natural conception after cancer treatments, in
order to avoid/decrease the risk of transmitting defective paternal genome to the offspring.
Regarding the second question, as mentioned above, couples whose male partner regains
fertility are requested to wait 1–2 years after the last cycle of therapy before attempting to
conceive naturally or by ART using fresh semen. In any case, larger follow up studies are
requested to give precise answers. Regarding the first question, it should be considered
that the results of studies evaluating ART outcomes and the health of offspring with cryop-
reserved semen from cancer patients are highly conditioned and limited by the low usage
rate of cryopreserved semen. In the bulk of them, these studies are quite reassuring about
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the attainment of clinical pregnancy and healthy offspring, with rates that do not differ or
are only slightly lower with respect to control cycles [45,190–192].

Few studies have compared ART outcomes with fresh and frozen semen. In a ran-
domized prospective study, Kuczynski et al. [193] demonstrated that the use of frozen
spermatozoa from men with poor semen quality in ICSI cycles resulted in similar out-
comes to freshly ejaculated spermatozoa and, actually, the rate of ongoing pregnancies was
slightly, although insignificantly, higher in the frozen group. Similarly, a recent systematic
review [194] on the use of fresh or frozen testicular spermatozoa from non-obstructive
azoospermic men did not evidence significant differences in fertilization or pregnancy
rates after ICSI. It should be noted, however, that Hauser et al. [195] reported, on average,
lower implantation rates with frozen testicular spermatozoa. A retrospective study by
Zhu et al. [196] compared the results of a consistent number of cycles from the fresh semen
of normozoospermic men to those obtained with donor frozen semen. Clinical pregnancy
and live birth rates after IVF were significantly higher and birth defects were reduced in
the donor group.

Lower outcomes in terms of pregnancy rates are achieved when intrauterine insemi-
nation (IUI) is used in ART cycles. Botchan et al. [184], comparing the outcomes of ICSI
and IUI cycles with the frozen spermatozoa of 184 cancer patients, found significantly
higher pregnancy rates in the former (37.4 vs. 11.5%). Pregnancy rates per IUI cycle are
also lower when cryopreserved donor semen samples are used [197–199]. Overall, these
results suggest that IUI should be employed only in cases of attainment of adequate semen
quality after thawing [184].

7. Conclusions

In this review, we highlight the various aspects concerning the sperm cryopreservation
process, including the categories of subjects to whom it is recommended, the methods
currently used in clinical practice (summarized in Figure 1) and also the experimental
or promising new procedures that could be used in order to reduce cryodamage and to
improve the efficiency of the process (Figure 2).

Although several advances in the study of cryopreservation since its discovery have
been made, further research is still needed to improve all of the critical points. The
knowledge acquired so far on sperm structural and functional damages as well as on
alterations of sperm DNA and chromatin integrity should be used as the foundations for
the optimization of the protocols. In particular, it will be necessary to perform comparative
studies to define which are the most favorable freezing method(s), the optimal cooling and
thawing conditions, the best cryoprotectant(s) and whether supplements of antioxidants
or other substances to extenders can be of help to minimizing cryodamage. Recent results
on melatonin and platelet-rich plasma appear to be quite promising but further studies
are needed.

The characterization of genes, transcripts, proteins and metabolites that change their
expression following cryopreservation could identify potential markers of sperm suscep-
tibility to cryoinjury. Such markers could be used to identify samples at risk of higher
cryodamage allowing for better patient counseling, and could be used as targets for the
development of possible additions to cryoprotectants to prevent the damage. In addition,
omics studies conducted until now evidence that every single step of the cryopreservation
process should be carefully analyzed in order to understand which are the critical ones
for the generation of ultrastructural alterations as well as epigenetic, transcriptomic and
proteomic cryoinjuries. Therefore, each step is part of a puzzle where every single piece
contributes to determining the future of each spermatozoon after freezing and thawing.
We cannot exclude that the critical steps may vary in relation to different semen quality
or categories of patients. Ideally, future research should be devoted to identifying “per-
sonalized” solutions. Of note, one limitation of “omics” studies in the case of semen is the
concomitant presence of non-sperm cells which can condition the results. So far, only few
studies have attempted to eliminate non-sperm cells from the analysis.
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It must be noteworthy that a cryopreserved male gamete with good motility and
morphology that is usually chosen to fertilize the oocyte via the ICSI procedure could
hide injuries not identified with semen analysis, impair fertilization and/or subsequent
embryo development and even damage the progeny. Thus, if so far only sperm motility
and viability are usually evaluated after cryopreservation, the occurrence of “hindered”
damages makes it necessary to introduce second level analyses to understand further
aspects before ART application. Finally, although available studies are quite reassuring
regarding the use of cryopreserved spermatozoa in ART, reporting no or only slightly
lower outcomes with respect to control cycles, they are heterogeneous and with limited
caseloads. Larger, multicenter studies with extended follow ups of offspring are necessary
in order to better understand whether cryopreserved spermatozoa have the same outcomes
as fresh ones.
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