
1

Cryptanalysis of a Fast Encryption Scheme for
Databases

Stéphane Jacob1

SECRET Project-Team - INRIA Paris-Rocquencourt
Domaine de Voluceau - B.P. 105 - 78153 Le Chesnay Cedex - France

stephane.jacob@inria.fr

Abstract—Protecting the confidentiality in large databases
without degrading their performance is a challenging problem,
especially when encryption and decryption must be performed
at the database-level or at the application-level. We here focus
on symmetric ciphers for database encryption since they are
the only type of ciphers with acceptable performance for most
applications. We point out that stream ciphers are the adequate
type of encryption schemes. We present an attack on a dedicated
stream cipher proposed by Ge and Zdonic in 2007.

I. INTRODUCTION

With the recent emergence of database externalisation
comes the problem of securing them. One of the main issues
is to find a suitable way to guarantee the confidentiality of
the involved data. This problem is crucial in the database
as a service paradigm [1], where the data are stored on a
host site. It is known to be a complicated problem when the
encryption and decryption is performed either at the database-
level or at the application-level [2]. Actually, it requires
more than standard straightforward encryption to produce a
queryable encrypted database with good performance. For
instance, classical encryption schemes usually forbids the use
of index on encrypted data.

Thus the database community proposed various database
dedicated encryption schemes which allow fast search, such
as order-preserving or prefix-preserving encryption. But they
generally do not provide a strong protection as they tend
to leak a lot of information. Some particular public-key
encryption schemes provide interesting features [3], but their
low throughput makes them unpractical for most applications.
Therefore, other possibilities, like using well-known symmet-
ric encryption algorithms with suitable modes of operation,
have to be taken into account.

In this paper, we will first show that stream ciphers, includ-
ing those based on a block cipher with a suitable mode of
operation, are appropriate for database encryption. Then, we
focus on a particular stream cipher, named FCE, proposed by
Ge and Zdonic in [4] for database dedicated encryption, and
we show that this cipher can be broken within a few minutes
on a standard PC.

1This work was partially supported by the French Agence Nationale de la
Recherche under Contract ANR-08-SEGI-007.

II. MODES OF OPERATION FOR DATABASES ENCRYPTION

A. Expected Properties

To protect a database system with encryption, we have
to find a trade-off between the performance of the queries
and the security of the encryption. There have been a lot of
encryption schemes proposed for database purpose, such as
order-preserving or prefix preserving encryption. They have
interesting properties for building indices on encrypted data,
but they leak a lot of information about these data. For
example, they preserve equality. Even if it is essential when
it comes to building an index, it is catastrophic for encrypting
the actual database, as it reveals the repartition of the data,
which can lead to many associations of ciphertext/plaintext.

In cryptography, a reasonable encryption scheme is meant
to be IND-CPA or IND-CCA [5], [6]. Of course, neither
order-preserving or prefix preserving encryption is IND-CPA
nor IND-CCA. Not being IND-CPA or IND-CCA is not
the only issue with such encryption algorithms. They also
both are deterministic, i.e. to one plaintext only corresponds
one ciphertext. That is problematic because it reveals the
repartition of the data and thus, in some cases, it can give
a good idea about the meaning of a given ciphertext.

Another way to achieve the first goal is to use encryption
algorithms that allow fast comparisons, i.e. comparisons that
can be done with partial decryption, in other words early stop-
ping comparisons. The concept of early stopping is described
as follows. The comparison of two ciphertexts starts from the
most significant byte, proceeds byte by byte and stops once a
difference is found. Then, to tell the greater from the smaller,
there is only to decrypt the two bytes that differed.

B. Suitable Encryption

To fulfil the above purpose, there are a wide range of
possibilities available among well-known and well-studied
encryption algorithms and modes of operation. We will focus
on symmetric encryption as all known asymmetric encryption
algorithms are clearly too expensive. Thus we can either use
block or stream ciphers.

Early stopping can clearly be achieved by stream ciphers.
FCE [4] belongs to this category. But, other strong and well-
studied stream ciphers also exist. The eSTREAM project [7]
studied such algorithms and proposed a portfolio with recom-
mended stream ciphers, such as SOSEMANUK for software

2

implementation or Grain and Trivium for hardware implemen-
tation. The CBC mode of operation [8], [9] also allows fast
comparison, as if the beginning of two data is identical, so is
the beginning of their corresponding ciphertext. But, to decide
which is the smaller, we have to decrypt all the 128-bit blocks
until where the difference appears.

The use of stream ciphers allows fast comparisons but
it raises some concerns about the updates in the database.
If a user updates the byte i from a value mi to m′i, the
corresponding encrypted value will change from ci = mi⊕ si
to c′i = m′i ⊕ si. Thus, an attacker who has access to the
encrypted database can obtain ci⊕c′i, which is exactly mi⊕m′i.
To avoid this issue, si should not remain constant throughout
the updates of the database but should depend on then. This
issue is actually mentioned in the FCE description [4]. Their
solution is to process updates by batch, and, for that purpose,
generate a new stream for every impacted page. Thus, the
stream will not only depend on the key and the page number,
but it will also depend on another variable that needs to be
stored (update number, update timestamp. . .).

The choice will also depend on how the index is handled.
In [4], it is suggested to build the index on the encrypted
database, but this choice has a big drawback. Thanks to the
index, an attacker will be able to recover an ordered version
of the encrypted table and thus the security of the encryption
will be limited to the security of an order-preserving encryp-
tion. To avoid this undesirable property, the index has to be
computed on the plain data and then encrypted with a different
encryption scheme from the one used to encrypt the data in the
database. But, as the queries to the database use the index and
not the actual database to be processed, it is important that the
index is encrypted with an encryption scheme allowing fast
comparison; this property is not predominant for encrypting
the database. Thus using a stream cipher from the eSTREAM
portfolio [7] or a AES with the CTR mode is a suitable solu-
tion to encrypt the index, the IV can either use a timestamp,
the update number or another unique indicator. AES with the
CBC mode would then be appropriate to encrypt the database.

III. DESCRIPTION OF FCE

A. Notation and Definitions

The FCE [4] encryption algorithm was built with an open-
source column-oriented DBMS called C-Store [10] in mind.
C-Store is indeed a read-optimized relational DBMS, which
explains why the database updates is not the biggest issue here.

Before describing the encryption algorithm, we first define
the notation we will use. The plaintext is divided in pages of
p bytes mi, 0 ≤ i < p. The ciphertext is also divided in pages
of p bytes, ci, 0 ≤ i < p. There is a unique k-bit length key
K for the whole database. To each plaintext page corresponds
a polynomial P (x) = ax3 + bx2 + cx + d mod p, derived
from the page number j and the key K. The keystream will
be computed from the polynomial P and the key K.

B. Algorithm

The encryption is done one page at a time. It requires an
encryption algorithm E to generate the polynomial P from the

key K and the page number j. The choice of E is not detailed
in [4], but any standard cipher like AES can be used. We
first need to define a notation before displaying the encryption
algorithm (cf. Algo. 1).

Definition 1. We denote K{di→di+7} the key byte starting at
bit position di. The k-bit key is considered as a circular bit
string, i.e. the bit positions are defined modulo k.

Algorithm 1 Fast Comparison Encryption (FCE)
Require:
• A page of plaintext (p bytes {mi}i∈{0,...,p−1}).
• The page number j.
• The k-bit length key K.

Ensure:
• The ciphertext page (p bytes {ci}i∈{0,...,p−1}).

// Generation of the polynomial for Page j
(a, b, c, d)← E(j,K) with a, b, c, d ∈ [0, p− 1]
P (x) = ax3 + bx2 + cx+ d mod p

// Encryption of this page
for all i from 0 to p− 1 do
di = P (i) mod k
ci = mi ⊕K{di→di+7}

end for

Clearly, FCE is a synchronous additive stream cipher where
the i-th keystream byte equals K{di→di+7}.

FCE is actually a practical but weaker version of r-FCE. The
difference between them is that, instead of using a polynomial
P derived from the key and the page number, r-FCE uses a
random permutation of {0, . . . , p−1}. Thanks to that, the ideal
algorithm r-FCE is proven to be INFO-CPA-DB, a new type
of resistance to chosen plaintext attacks based on the notion
of entropy, defined in [4] by Ge and Zdonik. But the authors
stress out that the relationship between this notion and the
resources in both time and space required to actually break
the scheme remains unknown. Obviously, our attack does not
work on r-FCE as it relies on ideal permutations.

But r-FCE is impractical as storing each permutation would
require to store at least log2(p!) random bits. For example, if
p = 64 KBytes, log2(p!) ∼ 954037, and this is clearly too
much of an overhead. That is why the authors of [4] proposed
to use polynomials of degree 3 instead of these permutations.

It is worth noticing that, in FCE, the authors do not
consider the use of permutation polynomials, while the use
of a permutation is mandatory in r-FCE. But it is actually
very simple to ensure that the polynomials used to encrypt
each page are permutation polynomials. Indeed, a polynomial
P (x) = ax3 + bx2 + cx + d modulo 2m is a permutation
polynomial if and only if a and b are even and c is odd [11].

C. Parameters and Security

As mentioned earlier, FCE was built with the open-source
column-oriented DBMS called C-Store [10] in mind. Thus it

3

is interesting to consider the parameters used in the context of
C-Store. They are the following:
• key size: k = 215 bits (32 Kbit),
• page size: p = 216 bytes (64 KBytes),
• (a, b, c, d) size: 64 bits per 64 KByte page.
In this case, the key size is quite big. Since the security

level of a symmetric cipher usually corresponds to its key size
(in other words, the exhaustive search for the key is the most
efficient attack), it is interesting to find out what security gives
us these parameters in the case of a known plaintext attack.

We consider that we have a page of plaintext and the
corresponding page of ciphertext (we will see later that it
is not necessary), and thus the keystream that consists of
key bytes in the order determined by the polynomial. The
first straightforward idea to retrieve the key is to perform
an exhaustive search on all the possible (a, b, c, d). For every
polynomial, we compute its values over [0, p − 1] and try to
rebuild the key from the keystream. If all the pieces match,
we then derive the polynomial from this key and this page
number. If it is the one we are working with, the couple (key,
polynomial) is the one we wanted to find. The cost of this is
25p, i.e. 280 with the proposed parameter set, if we consider
that the pieces of the keystream will only fit together with
the right polynomial. This method is already much better than
an exhaustive search for the 215-bit key and we see that the
security parameter of FCE is not the size of its key.

IV. CRYPTANALYSIS OF FCE

The attack we now present is a known plaintext attack,
as defined previously. To retrieve the whole keystream, we
need a page of plaintext and the corresponding page of
ciphertext. From them, we will retrieve the key, and thus all
the permutations of the different pages much faster than with
the previous exhaustive search method.

A. Relationship between Parameters p and k

In the proposed parameter set, the key size k = 215 equals
half the number of bytes p = 216 in each page. Thus,
the polynomial P (x) = ax3 + bx2 + cx + d mod 216 is
actually only used modulo 215, as di = P (i) mod 215. Since
∀i ∈ [0, 215− 1], P (i+215) = P (i) mod 215, we could have
defined P modulo 215 instead of modulo 216.

On top of that, this property gives ∀i ∈ [0, 216 − 1], di =
di+215 and thus only half a page of keystream, i.e. 215 bytes
of both plain and ciphertext, is needed to retrieve the whole
keystream, its second half being the exact same as the first. It
implies that, if we only have a full page of ciphertext, we get
the XOR of the plaintext. Indeed, mi+215 ⊕mi = ci+215 ⊕ ci.

Of course, even without this unsuitable property, i.e. if we
consider a modified version of FCE with p = k, our attack
works, but then requires a whole page of plaintext and the
corresponding page of ciphertext.

B. Principle of the Attack

In this part, we will use the notation k = 2κ for the key
size, and thus κ = 15 for the FCE parameter set.

As we previously saw, it is much faster to perform an
exhaustive search on the polynomials than on the key. The
idea of the attack is to reduce the set of possible polynomials
to do the search on.

The first reduction is made thanks to the following
remark. For a given page, the couples of key and polynomial(
K ′ = K ≫ d′, P ′(x) = ax3 + bx2 + cx+ (d− d′)

)
are

equivalent for all d′, meaning that given a page of plaintext,
any of these couples will result in the same page of
ciphertext. Therefore, we will search for K̃ = K ≫ d and
P̃ (x) = ax3 + bx2 + cx and we will focus on d only once
we find K̃ and P̃ .

Our problem is then the following. We want to re-
trieve (a, b, c) from the knowledge of K̃{P̃ (i)→P̃ (i)+7} =

K{P (i)→P (i)+7} where P̃ (i) = ai3 + bi2 + ci mod 2κ.
This problem will be eased thanks to the information given

by K̃{P̃ (i)→P̃ (i)+7} on the preimages under P̃ of successive
elements. It actually gives us a set of triples (α, β, γ) among
which all the preimages of (1, 2, 3) by P̃ are present; even
though there will still remain some unsatisfying triples.

Then, for every possible triple (α, β, γ) in this set, we
search, in the ring Z/2κZ, a solution of the following Vander-
monde system:α3 α2 α

β3 β2 β
γ3 γ2 γ

ab
c

 =

1
2
3

+

µ1

µ2

µ3

 2κ. (1)

We can even drop all the triples where α or γ are even, as it
is obvious from this system that they both have to be odd.

We now have to solve this Vandermonde system. In this

purpose, let M =

α3 α2 α
β3 β2 β
γ3 γ2 γ

. Thus, we search for a

solution to the following system, when M is given:

M

ab
c

 =

1
2
3

+

µ1

µ2

µ3

 2κ.

Once multiplied by the adjugate matrix of M , tMC , we have:

detM

ab
c

− tMC

µ1

µ2

µ3

 2κ = tMC

1
2
3

 ,

that can be simplified as such:

detM

ab
c

+ 2κ

λ1λ2
λ3

 =

ma

mb

mb

 .

Thus, each coefficient α ∈ {a, b, c} is a solution of an equa-
tion of the form det (M)α+2κλ = mα to solve. Such a system
has a solution if and only if gcd (detM, 2κ) divides mα. Let
(u, v) denote the corresponding Bézout coefficients, i.e., a pair
of integers satisfying det (M)u + v2κ = gcd (detM, 2κ),
when the system has a solution. Then, the solutions to the
equation are:

α = u
mα

gcd (detM, 2κ)
+ n

2κ

gcd (detM, 2κ)
,

where n ∈ Z.

4

This generally gives only a few solutions as, most of the
time, the gcd is equal to 4. But it can grow bigger and
then the search for (a, b, c) just gets too expensive. There are
two ways to solve this issue. The first one consists in using
preimages of 4, 5 . . . as well and ensures to find a system that
has fewer solutions. The second way is to simply ignore the
triple (i, j, k) that leads to the big gcd. It works most of the
times for it eliminates the triple (a, b, c) we are looking for
with probability 1

245 . This probability being very low, we can
do that at first as we only meet such triple (i, j, k) on average
twice for every attack. If the attack fails, we can always go
back to the previous case and test these triples.

We now have a set of possible values for (a, b, c) and can
proceed with a search, as described previously, but limited to
this smaller set.

C. Detailed Description of the Attack

The attack algorithm is detailed in Algo. 2. The first step
consists in computing all vi = mi ⊕ ci. The obtained vi
then correspond to all the bytes of K starting respectively
at position P (0), P (1), . . . , P (2κ − 1) with P (x) = ax3 +
bx2 + cx + d mod 2κ, but without their ordering. That will
allow us to determine a small set of triples (α, β, γ) among
which are all the potential preimages of (1, 2, 3) by P̃ .

If P̃ is the wanted permutation, v0 gives some information
on α such that P̃ (α) = 1. Actually the first 7 bits of vα
correspond to the last 7 bits of v0 since we have v0 =
K̃0, K̃1, . . . , K̃7 and vα = K̃{P̃ (α)→P̃ (α)+7} = K̃{1→8} =

K̃1, . . . , K̃7, K̃8.
That enables us to build three sets, E1, E2 and E3 containing

respectively the possible preimages of 1, 2 and 3 by P̃ . More
precisely, for x, y ∈ {0, 1}, we define:

E1 =
{
α odd |vα{0→6} = v0 � 1

}
E2(x) =

{
β |vβ{0→6} = (v0 � 2, x)

}
E3(x, y) =

{
γ odd |vγ{0→6} = (v0 � 3, x, y)

}
Their average sizes are given by the number of all possible
values for the preimage divided by 27 since 7 bits of the corre-
sponding keystream byte are known. For the given parameters,
we then have |E1| ∼ 27, |E2(x)| ∼ 28, and |E3(x, y)| ∼ 27.

The third step consists in resolving the Vandermonde sys-
tems given by the triples (α, β, γ) from E1, E2 and E3. That
gives us a small set L of possible values for (a, b, c), in which
we know that the triple we are looking for is.

In the fourth and last step we try to build the key corre-
sponding to every possible triple, and, if we succeeded we
search for the right d corresponding to this page.

D. Complexity

We now have to evaluate the cost of this attack. Table I
sums up the cost of the 4 steps of the attack.

Algorithm 2 Attack on FCE
Require:
• Half a page of plaintext, {mi}i∈{0,...,2κ−1}.
• Half a page of ciphertext, {ci}i∈{0,...,2κ−1}.

Ensure:
• The key, the polynomials and the plaintext.

// Step 1: Keystream retrieval
for all i from 0 to 2κ − 1 do
vi ← mi ⊕ ci

end for

// Step 2: Finding the preimages of (1, 2, 3) by P̃
E1 =

{
α odd |vα{0→6} = v0 � 1

}
E2(x) =

{
β |vβ{0→6} = (v0 � 2, x)

}
E3(x, y) =

{
γ odd |vγ{0→6} = (v0 � 3, x, y)

}
// Step 3: Filtering the (a, b, c)
L ← ∅
for all α ∈ E1 do
xα ← msb bit of vα
for all β ∈ E2(xα) do
yβ ← msb bit of vβ
for all γ ∈ E3(xα, yβ) do

if system (1) has a solution (a, b, c) then
L ← L ∪ {(a, b, c)}

end if
end for

end for
end for

// Step 4: Reducing L and finding d
for all (a, b, c) ∈ L do

if we succeed to build K̃ then
for all d ∈ {0, . . . , 2κ − 1} do
K ←

(
K̃ ≫ d

)(
ã, b̃, c̃, d̃

)
← E(j,K) (j is the page nb)

if
(
ã, b̃, c̃, d̃

)
== (a, b, c, d) then

return K
end if

end for
end if

end for

TABLE I
COST OF THE ATTACK

Step Cost for the proposed parameters
1 k XORs 215

2 k masks and comparisons 215

3 1
4

(
k
27

)3
3× 3 systems resolutions 222

4 k calls to the block cipher 215

The cost of the attack is thus 215 calls to the block cipher
algorithm plus ∼ 225 multiplications on 16 bits.

5

As our attack shows, the assumption that FCE is as secure
as any underlying block cipher is clearly wrong. Indeed, we
see that the attack with any underlying block cipher, either a
secure one as AES or a weaker one as DES, works with the
same complexity, the difference being the encryption time of
this algorithm.

E. Simulations

We launched 300 attacks on two distinct computers (150
on each). We adopted the method where we ignore the triples
(i, j, k) when they give a gcd greater than 16. We got a 100%
success. The number of ignored triples varied between 0 and
6 and is worth 1.85 on average. The time taken by the attack
is displayed in Table II.

TABLE II
TIME OF THE ATTACKS (IN SECONDS)

Type of processor Time
Min. Max. Av.

Intel(R) Core(TM)2 Duo 283 s 784 s 514 s
CPU E6850 @ 3.00GHz

Intel(R) Xeon(R) 479 s 1295 s 828 s
CPU 5120 @ 1.86GHz

V. CONCLUSIONS

Ge and Zdonik’s work [4] shows that a fast comparison
encryption scheme should be used for protecting the confiden-
tiality of big databases, and especially that an additive stream
cipher is particularly relevant in this case.

However the algorithm they proposed, FCE, albeit its great
performances, does not ensure a sufficient security for one can
recover the key in only a few minutes from the knowledge
of 215 bytes of plaintext and ciphertext with the suggested
parameters set. We thus suggest to use either a standard
encryption algorithm such as AES-CTR, or one of the stream
cipher from the eSTREAM portfolio [7].

ACKNOWLEDGEMENTS

Many thanks to Anne Canteaut for her great and essential
contribution to this work, to Matthieu Finiasz for his helpful
ideas and to Luc Bouganim for his meaningful comments.

REFERENCES

[1] H. Hacigümüs, S. Mehrotra, and B. Iyer, “Providing database as a
service,” in International Conference on Data Engineering - ICDE 2002.
IEEE Computer Society, 2002, pp. 29–39.

[2] L. Bouganim and Y. Guo, “Database encryption,” in Encyclopedia of
Cryptography and Security. Springer, 2010, 2nd Edition.

[3] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” in Advances in Cryptology - CRYPTO 2007, ser.
Lecture Notes in Computer Science, vol. 4622. Springer, 2007, pp.
535–552.

[4] T. Ge and S. Zdonik, “Fast, secure encryption for indexing in a column-
oriented DBMS,” in International Conference on Data Engineering -
ICDE 2007. IEEE, 2007, pp. 676–685.

[5] S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comput. Syst.
Sci., vol. 28, no. 2, pp. 270–299, 1984.

[6] M. Bellare and P. Rogaway, Introduction to Modern Cryptography, 2005,
http://cseweb.ucsd.edu/∼mihir/cse207/classnotes.html.

[7] ECRYPT - EUROPEAN NETWORK OF EXCELLENCE IN CRYPTOL-
OGY, “The eSTREAM Stream Cipher Project,” http://www.ecrypt.eu.
org/stream/, 2005.

[8] FIPS 81, “DES Modes of Operation,” Federal Information Processing
Standards Publication 81, 1980, U.S. Department of Commerce/National
Bureau of Standards.

[9] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security
treatment of symmetric encryption,” in FOCS, 1997, pp. 394–403.

[10] http://db.csail.mit.edu/projects/cstore/.
[11] R. L. Rivest, “Permutation polynomials modulo 2w ,” in Finite Fields

and their Applications, vol. 7, 1999, pp. 287–292.

