
Cryptanalysis of a Generic Class of White-Box

Implementations

Wil Michiels, Paul Gorissen, and Henk D.L. Hollmann

Philips Research Laboratories, High Tech Campus 34, Eindhoven, The Netherlands
wil.michiels@philips.com

Abstract. A white-box implementation of a block cipher is a software
implementation from which it is difficult for an attacker to extract the
cryptographic key. Chow et al. published white-box implementations for
AES and DES. These implementations are based on ideas that can be
used to derive white-box implementations for other block ciphers as well.
In particular, the ideas can be used to derive a white-box implementa-
tion for any substitution linear-transformation (SLT) cipher. Although
the white-box implementations of AES and DES have been cryptana-
lyzed, the cryptanalyses published use typical properties of AES and
DES. It is therefore an open question whether an SLT cipher exists for
which the techniques of Chow et al. result in a secure white-box imple-
mentation. In this paper we largely settle this question by presenting an
algorithm that is able to extract the key from such an implementation
under a mild condition on the diffusion matrix. The condition is, for in-
stance, satisfied by all MDS matrices. Our result can serve as a basis to
design block ciphers and to develop white-box techniques that result in
secure white-box implementations.

Keywords: white-box cryptography, AES, Serpent, cryptanalysis,
substitution linear-transformation network, MDS matrix.

1 Introduction

The classical ‘black-box’ attack model used for symmetric block ciphers assumes
that an attacker can at most mount chosen text attacks on the implementation.
An attacker is assumed to have no access to the execution of the implementation.
In practice, this model is often not realistic. Consider, for instance, a content
provider who sends encrypted data to a PC platform. Then the owner of this PC
may benefit from illegally distributing the key for decrypting the data to other
users. In this case, it is more realistic to consider the severe ‘white-box attack
model’ in which an attacker is assumed to have full access to and full control
over the implementation of a cryptographic algorithm.

White-box cryptography is the discipline that aims at solving the problem
of how to implement a cryptographic algorithm in software, such that the key
cannot be extracted by a white-box attack. A software implementation of a
cryptographic algorithm that has the objective to resist a white-box attack on

R. Avanzi, L. Keliher, and F. Sica (Eds.): SAC 2008, LNCS 5381, pp. 414–428, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Cryptanalysis of a Generic Class of White-Box Implementations 415

its key is called a white-box implementation. Chow et al. present white-box
implementations for the block ciphers AES and DES [4,5]. These white-box
implementations are based on ideas that naturally extend to any substitution-
linear transformation cipher, as defined below.

Definition 1 (Substitution-Linear Transformation Cipher (SLT
cipher)). A cipher is called an SLT cipher if it can be specified as follows.
It consists of R rounds for an R ≥ 1. A single round r is a bijective function
F (r)

SLT(x1, x2, . . . , xs) on GF(2)n with xi ∈ GF(2)m and n = m · s. This func-
tion consists of the following operations. It starts with xoring an n-bit round key
k(r) = (k(r)

1 , k
(r)
2 , . . . , k

(r)
s ) to its input. That is, the value yi = k

(r)
i ⊕ xi is com-

puted. Next, the round computes zi = S
(r)
i (yi) for all yi, where the (non-linear)

invertible S-boxes S(r)
1 , S

(r)
2 , . . . , S

(r)
s are part of the cipher specification and thus

key-independent. These two steps realize confusion. The diffusion is realized by
multiplying the outcome z = (z1, z2, . . . , zs) ∈ GF(2)n of the S-boxes with an
n × n invertible matrix M (r) over GF(2). This diffusion matrix is also part of
the cipher specification.

In our notation we will often omit the index r denoting the round when this
value is clear from the context. White-box attacks have been published for ex-
tracting the 128-bit AES key and the 56-bit DES key from the white-box AES
and DES implementations of Chow et al. [2,7,8,9,12]. The attacks use typical
properties of AES and DES and do not apply to white-box implementations of
other block ciphers. Hence, it remains an open question whether the white-box
techniques proposed by Chow et al. can result in a secure white-box implemen-
tation for other SLT ciphers than AES, such as, for instance, Serpent [1]. In this
paper we present an algorithm that, under a mild condition on the diffusion ma-
trix, can extract the round keys from the white-box implementation of any SLT
cipher. If the key scheduling algorithm is invertible, then having these round
keys suffices to also derive the main key. Otherwise, we at least have a com-
pact description of the main key. Although the time complexity of the algorithm
depends on the choice of the S-boxes and the diffusion matrices, we were only
able to find impractically large time complexities for unrealistic choices of these
operators, e.g. linear S-boxes or diffusion matrices that are close to the identity
matrix. To demonstrate the effectiveness of the proposed algorithm, we show
in this paper that the algorithm can be applied successfully to AES and
Serpent.

The remainder of this paper is organized as follows. In Section 2 we give a
precise formulation of the result that is proved in this paper. Essential in this
formulation is a specification of the information that is available to an attacker
in a white-box implementation. In Sections 3-6 we present our cryptanalysis
and in Section 7 we show how our ideas can be used to extract the round keys
from a white-box AES and a white-box Serpent implementation. We end with a
conclusion in Section 8.



416 W. Michiels, P. Gorissen, and H.D.L. Hollmann

2 Problem Formulation and Notation

In order to discuss the attack of a white-box implementation of an SLT cipher,
we have to specify what kind of information we can obtain from such an im-
plementation by a white-box attack. To answer this question, we briefly discuss
how Chow et al. derive a white-box implementation of a block cipher.

First, they derive an implementation that, in each round of the block cipher,
only performs a sequence of table lookups. The input to a lookup table is either
the input to the round or it is obtained by concatenating the outputs of one or
more other lookup tables. Such an implementation can be modeled by a network
of lookup tables, where an arc from table T to T ′ means that (part of) the output
of table T is used as (part of the) input to table T ′.

In the design of the white-box implementation, they next obfuscate the lookup
tables by encoding their inputs and outputs. Encoding the input and output
of a table T with bijective functions fin and fout, respectively, corresponds to
replacing table T by fout◦T ◦f−1

in . Hence, we incorporate in T an input decoding
and an output encoding. To see that such encodings realizes obfuscation, observe
that encoding the input of a lookup table changes the order of its rows and that
encoding the output changes the value of the rows.

The lookup tables are encoded in such a way that the functionality of the entire
implementation does not change. Chow et al. show how this can be done with a
combination of linear and a non-linear encodings. The non-linear encodings are
applied as follows. The first tables in the network do not get an input decoding
and the last ones do not get an output encoding. Furthermore, we choose the
input encoding of a table, such that it matches the encoding that has been put on
its input data by the tables that directly precede it in the network. To illustrate
this, suppose that the entire output of a table T serves as the entire input of
another table T ′. We then encode the output of T by a randomly chosen encoding
f and we decode the input of table T ′ accordingly, that is, as input decoding
of table T ′ we employ f−1. The result is that the output encoding of T and
the input decoding of T ′ cancel out. This concludes the strategy employed by
Chow et al. to add non-linear encodings. For the strategy to add additional linear
encodings we refer to [4,5]. We note, however, that our cryptanalysis applies to
the case that both the linear and non-linear encodings are applied.

Let (x1, x2, . . . , xs) be the input to a round r of an SLT cipher, where xi is the
m-bit input to S-box Si. Then, before applying the encodings, the network of
lookup tables has the property that each word xi is input to some lookup table
Ti. For details, we refer to [4,5]. For the white-box implementation obtained after
applying the (linear and non-linear) encodings, this has as a consequence that
an attacker who has access to the inputs of all tables in the implementation,
which holds in a white-box attack, has access to the encoded version f (r)

i (xi) of
each value xi. Here f (r)

i is a secret bijective function that is used as input encod-
ing for Ti. Furthermore, having access to f (r)

i (xi) means that we can determine
this value as well as set it to any given other value. This, for instance, implies that



Cryptanalysis of a Generic Class of White-Box Implementations 417

the attacker can choose the encoded input to a round r and next observe the
effect of this for the input to a later round.

In our cryptanalysis we assume that for each value f (r)
i (xi) an attacker knows

the index i and the round r that are associated to this value. The index r can
be derived by inspecting an execution of the white-box implementation. With
respect to the value i we can in general at least limit the number of candidate
values to a number that is feasible for performing an exhaustive search. We can
do this by using the definition of the diffusion matrices and S-boxes and by
generalizing parts of the cryptanalysis. For the sake of readability and as the
difficulty of finding the value i is not considered to be the essence of the strength
of a white-box implementation, we do not further discuss this problem in this
paper and assume the value to be known.

This brings us at the following property, which specifies the information that
is available to an attacker who tries to extract the round keys from a white-box
implementation that is based on the techniques of Chow et al.

Property 1. In a white-box attack, an attacker has for each round r and for each
m-bit input word xi of round r access to the encoded version f (r)

i (xi) of xi. The
attacker also knows the values of r and i that are associated with f (r)

i (xi). The
attacker does not know the value of the m-bit input word xi nor the definition
of the function f

(r)
i , which is an arbitrary m-bit bijective function. �

In order to formulate the main result of this paper, we need the following defi-
nitions. We note that in this paper all matrices are over GF(2).

Definition 2. If N is an n × n matrix with n = m · s, then we consider N to
be partitioned into s vertical strips of size n×m. We denote the jth strip by Nj

That is,
(Nj)x,y = Nx,(j−1)·m+y ,

where the rows and columns have indices in {1, 2, . . . , n}.
Furthermore, we will consider each strip Nj to be partitioned further into s

blocks Ni,j of size m×m. That is,

(Ni,j)x,y = N(i−1)m+x,(j−1)m+y,

so that

N = (N1 · · ·Ns) =

⎛
⎜⎜⎜⎝

N1,1 N1,2 . . . N1,s

N2,1 N2,2 . . . N2,s

...
...

...
...

Ns,1 Ns,2 . . . Ns,s

⎞
⎟⎟⎟⎠ .

We will refer to the ith row

N(i) = (Ni,1 Ni,2 . . . Ni,s)

of blocks of N as the ith block row of N .



418 W. Michiels, P. Gorissen, and H.D.L. Hollmann

Definition 3. Let N be an n × n matrix with n = m · s. We say that a subset
U ⊆ {1, 2, . . . , s} is a spanning block set for block row i if the collection of all
the m-bit columns from the blocks Ni,j with j ∈ U spans GF(2)m.

If two subsets U, V ⊆ {1, 2, . . . , s} with U ∩ V = ∅ both represent spanning
block sets for block row i, then we say that block row i has disjoint spanning
block sets.

MDS (Maximum Distance Separable) matrices are often used as diffusion matrix
in block ciphers because of their good diffusion properties [6,10,11]. In an MDS
diffusion matrix N each block Ni,j defines the multiplication with a non-zero
element in GF(2m). Hence, each block Ni,j is non-singular, which implies that
any pair of blocks from a block row i defines a spanning block set. This means
that the main result of this paper, which is stated below, covers the class of SLT
ciphers in which the diffusion is realized by MDS matrices.

Main Result. Consider an SLT cipher for which the diffusion matrices have the
property that all their block rows have disjoint spanning block sets. Then, given
a white box implementation for this cipher that satisfies Property 1, we present
an algorithm for extracting the round key of any round r with 1 < r < R.

The result above does not cover the first and last round of the cipher. This has
the following reason. In order not to change the functionality of the white-box
implementation, the input of the first round and the output of the last round
cannot be encoded. However, by omitting these external encodings the white-box
implementations of the first and last round become less secure. As as solution to
this problem, Chow et al. propose to add the external encodings and to either
undo these encodings elsewhere in the software or to include these encodings in
the definition of the block cipher that is implemented. In both cases it will not
only be the goal of an attacker to derive the round keys of the first and last
round, but also to determine the external encodings. To simplify the discussion
we exclude the attack of these rounds in this paper. We note, however, that
these rounds can also be attacked. The attack is based on the following result.
By applying our cryptanalysis, an attacker can determine the output encoding of
the first round and the input encoding of the last round. This gives the attacker
the plain output of the first round and the plain input to the last round. Using
this, the first and last round can be attacked.

We end this section with the description of some notational conventions used
throughout this paper.

– By abuse of notation, if N is a matrix, then the map x 	→ Nx corresponding
to a matrix multiplication by N will also denoted by N .

– If T denotes a lookup table, then, by abuse of notation, we also write T to
denote the function that it defines.

– We define ⊕c as the map ⊕c(x) = x ⊕ c. Using this, we can write the key
addition of an SLT cipher as ⊕k(r) .



Cryptanalysis of a Generic Class of White-Box Implementations 419

– Let g1, g2, . . . , gs be maps on m-bit vectors, and let n = ms. The map g =
(g1, . . . , gs) defined by

g(x) = (g1(x1), g2(x2), . . . , gs(xs))

for each n-bit vector x = (x1, x2, . . . , xs) ∈ GF(2)n with xi ∈ GF(2)m is
called the diagonal map with components g1, . . . , gs. When considering a
diagonal map h, we will always assume that the components are maps hi;
conversely, given maps h1, . . . , hs, we will denote the diagonal map with
components hi by h.

Remark 1. Note that if c is a vector and N a matrix, then the addition map ⊕c

is always diagonal and the matrix map N is diagonal if and only if N is a block
diagonal matrix. Here, N is called a block diagonal matrix if all off-diagonal
blocks Ni,j , i �= j, are zero. More general, it is easily verified that an affine map
α : x 	→ a ⊕ Ax is a diagonal map if and only if A is a block diagonal matrix.
Note also that the ith component of the diagonal map x 	→ Nx associated with
a block diagonal matrix N is just the diagonal block Ni,i of N .

As an example of the above conventions, we can now write the function F (r)
SLT

describing the rth round of an SLT cipher in Definition 1 as

F (r)
SLT = M (r) ◦ S(r) ◦ ⊕k(r) , (1)

where M (r) is the diffusion matrix, S(r) is the S-box diagonal map with as
components the S-boxes S(r)

i , and ⊕k(r) the round-key addition map x 	→ x⊕k(r),
a diagonal map with as components the maps xi 	→ xi ⊕ k

(r)
i .

3 Determination of the Encodings Up to an Affine Part

According to Property 1, an attacker has access to the encoded version x̃i =
f

(r)
i (xi) of each input word xi of a round r, where f (r)

i is an unknown bijective
function. In the first step of our cryptanalysis, we will show how to determine
the encodings up to an affine part.

Consider a fixed round r of the white-box implementation with 1 ≤ r < R,
and a block row i of the diffusion matrix M . Let sets U = {u1, u2, . . . , ul}
and V = {v1, v2, . . . , vl′} be two disjoint spanning block sets for block row i of
M . Without loss of generality we may assume that U ∪ V = {1, 2, . . . , s}, i.e.,
l′ = s − l. This partitions the s input words of a round input into two parts:
words that are input to an S-box Si with i ∈ U and words that are input to an
S-box Si with i ∈ V . We write x̃′ as the vector containing all l input words x̃i

with i ∈ U and we write x̃′′ as the vector containing all l′ input words x̃i with
i ∈ V . Then the ith output word z̃i of this round r is given by z̃i = h(x̃′, x̃′′),
where

h(x̃′, x̃′′) = f
(r+1)
i (ψU (x̃′) ⊕ ψV (x̃′′)).



420 W. Michiels, P. Gorissen, and H.D.L. Hollmann

Here ψU (x̃′) =
⊕
j∈U

ψj(x̃j) and ψV (x̃′′) =
⊕
j∈V

ψj(x̃j), with

ψj(x̃j) = Mi,j ◦ Sj ◦ ⊕kj ◦ (f (r)
j )−1(x̃j).

Note that by Property 1 an attacker has access to function h, but not, for
instance, to functions ψj . In what follows, we denote the range of a function g
by im(g). Now im(ψj) is the vector space spanned by the columns of matrixMi,j .
Hence, as U defines a spanning block, we have im(ψU ) = GF(2)m. Similarly, we
have im(ψV ) = GF(2)m. In other words, both ψU and ψV are surjective on the
vector space GF(2)m. In the full paper we prove Theorem 1 below, which bounds
the time complexity for the construction of sets WU and WV which are mapped
bijectively onto GF(2)m by ψU and ψV , respectively.

Theorem 1. In O(s + m · 2m) time, we can construct sets WU and WV , with
|WU | = |WV | = 2m, such that
(i) for each fixed x̃′′, the map x̃′ 	→ h(x̃′, x̃′′) is a bijection on WU , and
(ii) for each fixed x̃′, the map x̃′′ 	→ h(x̃′, x̃′′) is a bijection on WV .

Let hc denote the bijective function x̃′ 	→ h(x̃′, c) from WU onto GF(2)m. Let
c1, c2 ∈ WV , and put d = ψV (c1)⊕ψV (c2). Now if z̃i = hc2(x̃

′) = f
(r+1)
i (ψU (x̃′)⊕

ψV (c2)), then ψU (x̃′) = ψV (c2) ⊕ (f (r+1)
i )−1(z̃i), and hence

hc1 ◦ h−1
c2

(z̃i) = f
(r+1)
i (ψU (x̃′) ⊕ ψV (c1)) = f

(r+1)
i ◦ ⊕d ◦ (f (r+1)

i )−1(z̃i).

Now fix c1 ∈WV . Then to each c2 ∈WV there corresponds a unique d ∈ GF(2)m.
Hence by letting x̃′ run through WU , we can construct for each d in GF(2)m a
lookup table for the function f

(r+1)
i ◦ ⊕d ◦ (f (r+1)

i )−1. We can then use the
following result of Billet et al. [2] to determine f (r+1)

i up to an affine part.

Theorem 2. Let f (r+1)
i be an arbitrary bijective function on GF(2m). Suppose

that the set of functions {f (r+1)
i ◦ ⊕d ◦ (f (r+1)

i )−1 | d ∈ GF(2m)} is given by
means of lookup tables. Then we can construct in O(23m) time a function g(r+1)

i

for which the map α(r+1)
i = g

(r+1)
i ◦ f (r+1)

i is affine.

Combining Property 1 with the above theorem shows that for any input word xi,
an attacker can obtain the value of the affine map α(r+1)

i (xi) = g
(r+1)
i ◦f r+1

i (xi).
So we have the following.

Property 2. In a white-box attack, an attacker has for each round r with 2 ≤
r ≤ R and for each m-bit input word xi of round r access to the encoded version
x̃i = α

(r)
i (xi) of xi. Here, α(r)

i (xi) = A
(r)
i x⊕a(r)

i is an m-bit affine function. The
attacker also knows the values of r and i that are associated with f (r)

i (xi). �



Cryptanalysis of a Generic Class of White-Box Implementations 421

4 Transformation into Table Network

From Property 2 it follows that upon completion of the first step of the cryptanal-
ysis, an attacker has for each round r with 1 < r < R access to the input-output
behavior of the function

G(r)
SLT = α(r+1) ◦ F (r)

SLT ◦ (α(r))−1. (2)

As before, fix a round r. Then we have GSLT = α(r+1) ◦ FSLT ◦ (α(r))−1, and by
(1), we have that FSLT = M ◦ S ◦ ⊕k. Hence, if we write N = A(r+1)M and
R = S ◦ ⊕k ◦ (α(r))−1, then we have that

GSLT(x̃) = ⊕a(r+1) ◦N ◦R(x̃) = a(r+1) ⊕
s⊕

j=1

Nj ◦Rj(x̃j), (3)

where Nj denotes the jth strip of matrix N and Rj denotes the jth component
of diagonal map R.

We will first derive an implementation of GSLT involving s lookup tables
only. More specifically, we will define tables T1, T2, . . . , Ts such that GSLT(x̃1,

x̃2, . . . , x̃s) equals
s⊕

i=1

Ti(x̃i). To this end, we define Tj as

Tj(x̃j) =
{GSLT((x̃1, 0, . . . , 0)), if j = 1;
GSLT((0, . . . , 0, x̃j, 0, . . . , 0)) ⊕ GSLT(0), otherwise.

We have GSLT(0) = ⊕a(r+1) ◦N ◦R(0) and, for all j ≥ 1,

GSLT((0, . . . , 0, x̃j , 0, . . . , 0)) = GSLT(0) ⊕Nj ◦Rj(0) ⊕Nj ◦Rj(x̃j).

Hence,

Tj(x̃j) =

⎧⎨
⎩
a(r+1) ⊕N1 ◦R1(x̃1) ⊕

s⊕
i=2

Ni ◦Ri(0), if j = 1;

Nj ◦Rj(0) ⊕Nj ◦Rj(x̃j), for j = 2, . . . , s,
(4)

and hence we immediately see that GSLT(x̃) =
s⊕

i=j

Tj(x̃j) as desired.

5 Transformation into SAT Cipher

In an SLT cipher, we can merge a key-addition operation into the S-box operation
that succeeds it. The resulting S-box is then given by Si ◦ ⊕ki . Hence, an SLT
cipher can be viewed as a generic SAT cipher, which is defined as follows.

Definition 4 (Generic Substitution-Affine Transformation Cipher
(generic SAT cipher)). A cipher is called a generic SAT cipher if it can be spec-
ified as follows. It consists of R rounds for an R ≥ 1. A single round r is a bijective
function Fgen−SAT(x1, x2, . . . , xs) on GF(2)n with xi ∈ GF(2)m and n = m · s.



422 W. Michiels, P. Gorissen, and H.D.L. Hollmann

A round consists of the following operations. First, the values yi = Q
(r)
i (xi) are

computed for all input words xi, where the specification of an S-box Q(r)
i is derived

from the key. Next, an invertible affine function ε(r)(y) = E(r) · y ⊕ e(r) is applied
to the outcome y = (y1, y2, . . . , ys) ∈ GF(2)n of the S-boxes. The specification of
this affine function ε(r) is also derived from the key.

So the round function Fgen−SAT of a generic SAT cipher can be written as
Fgen−SAT = ε ◦Q, where ε is affine and Q is a diagonal map, with both Q and ε
fully specified by the key.

We can consider GSLT as a generic SAT cipher. Indeed, according to (3),
GSLT = θ ◦R, where θ = ⊕a(r+1) ◦N is affine and R is a diagonal map. However,
since the functions θ and R are not accessible to an attacker, this form is not
suitable for cryptanalysis. In what follows, we will develop an alternative speci-
fication for GSLT as a SAT cipher GSLT = ε ◦Q, with an affine function ε and a
diagonal map Q that are both accessible to an attacker. We will then use this
expression to attack the round key of the original STL cipher FSLT.

We begin with a simple observation. Since both the diffusion matrix M and
the diagonal matrix A(r+1) from the affine map α(r+1) are invertible, the matrix
N = A(r+1)M = (N1 · · ·Ns) is also invertible, and hence the columns of each of
the n ×m matrices Nj are also independent. Let Uj denote the m-dimensional
vector space spanned by the columns of Nj . Next, we consider again Expression
(4) for the lookup tables Tj. Putting w1 = a(r+1) ⊕N ◦ R(0) ⊕N1 ◦R1(0) and
wj = Nj ◦Rj(0) for j = 2, . . . , s, it follows from (4) that im(Tj) = wj⊕Uj. Hence
the 2m rows of lookup table Tj together comprises all vectors from wj ⊕ Uj .

Now, select an arbitrary row vj from each table Tj, and define

e =
s⊕

j=1

vj .

Note that for each x̃j , we have that vj ⊕ Tj(x̃j) ∈ Uj . Indeed, since both vj and
Tj(x̃j) are rows of Tj , there are uj and u′j in Uj such that vj = wj ⊕ uj and
Tj(x̃j) = wj ⊕ u′j . But then vj ⊕ Tj(x̃j) = uj ⊕ u′j ∈ Uj , as claimed. Next, by
selecting words x̃j,1, . . . , x̃j,m for which the vectors ej,i = vj ⊕ Tj(x̃j,i) in Uj are
independent, we can construct a basis ej,1, . . . , ej,m for each Uj . We use these
bases to define the submatrices Ej of E = (E1, E2, . . . , Es) as

Ej = (ej,1 · · · ej,m).

Since the m columns of Ej span Uj and since Tj(x̃j) ∈ vj ⊕ Uj for each x̃j ∈
GF(2)m, there is a vector Qj(x̃j) ∈ GF(2)m such that

Tj(x̃j) = vj ⊕ EjQj(x̃j).

We will consider Qj as a map from GF(2)m to GF(2m). As all rows of table Tj

are different, this map is a bijection. Now let Q = (Q1, . . . , Qs) be the diagonal
map with components Qj , and define the affine map ε by ε = ⊕e ◦ E. By the
above analysis, we have that



Cryptanalysis of a Generic Class of White-Box Implementations 423

ε ◦Q(x̃) = e⊕ E ◦Q(x̃) =
s⊕

j=1

vj ⊕
s⊕

j=1

EjQj(x̃j) =
s⊕

j=1

Tj(x̃j) = GSLT(x̃),

hence GSLT = ε ◦Q is a representation of GSLT as a SAT cipher where both the
affine map ε and the diagonal map Q are explicitly known and accessible to an
attacker.

6 Extracting the Key

In this chapter we describe the last step of our cryptanalysis. We adopt the follow-
ing strategy.First,we derive a relationbetween the S-boxesS(r)

i of the white-boxed
SLT cipher and the S-boxesQ(r)

i of the generic SAT cipher that we constructed in
Section 5. This relation will be of the formQ

(r)
i = γ

(r)
i ◦ S(r)

i ◦ δ(r)
i for affine func-

tions γ(r)
i , δ

(r)
i . The diagonal map δ(r) = (δ(r)

1 , δ
(r)
2 , . . . , δ

(r)
s ) depends on both the

round key k(r) of F (r)
SLT and the affine encoding α(r) that G(r)

SLT puts on the input
of round F (r)

SLT. The function γ(r) = (γ(r)
1 , γ

(r)
2 , . . . , γ

(r)
s ) depends on the encoding

α(r+1) that G(r)
SLT puts on the output of F (r)

SLT. By comparing the functions γ(r−1)

and δ(r), we can recover the key k(r) contained in δ(r).
We now make the last step of our cryptanalysis more precise. Fix a round r.

From the previous step we get S-boxes Qj and an affine function ε, such that
GSLT = ε ◦Q. By (1) and (2), we also have that

GSLT = α(r+1) ◦M ◦ S ◦ ⊕k ◦ (α(r))−1.

Since the functions ε, α(r+1), M , ⊕k, and α(r) are all affine, we conclude that

Q = γ ◦ S ◦ δ, (5)

for affine functions
γ = ε−1 ◦ α(r+1) ◦M (6)

and
δ = ⊕k ◦ (α(r))−1. (7)

Note that both γ and δ are diagonal maps. For δ this is true because α(r) is
a diagonal map. For γ this property follows from (5) and the observation that
δ, Q, and S are all diagonal maps. Biryukov et al. [3] present an algorithm for
efficiently determining the set Γi of all pairs (γi, δi) satisfying Qi = γi ◦ Si ◦ δi.
So we can use this algorithm to determine the set Γ consisting of all pairs (γ, δ)
that satisfy (5). Note that this set Γ contains the pair (γ, δ) that satisfies all
of (5), (6), and (7). To complete our cryptanalysis it now suffices to solve the
following two problems.

– Which pairs (γ(r−1), δ(r−1)) ∈ Γ (r−1) and (γ(r), δ(r)) ∈ Γ (r) of affine
functions satisfy (6) and (7)?

– If we have the pairs (γ(r−1), δ(r−1)) ∈ Γ (r−1) and (γ(r), δ(r)) ∈ Γ (r) of affine
functions that satisfy (6) and (7), how can we derive round key k(r) from this?



424 W. Michiels, P. Gorissen, and H.D.L. Hollmann

Observe that the former problem need not be solved completely. If we can limit
the number of candidate pairs to a value 	, then we can apply an algorithm for
the second problem to all 	 candidate solutions to obtain 	 candidate round keys.
The correct round key can next be derived by exhaustive search.

By (6) for round r−1 and (7) for round r, we have that ε(r−1)◦γ(r−1) = α(r)◦
M (r−1) and α(r) = (δ(r))−1◦⊕k(r) , and hence δ(r)◦ε(r−1)◦γ(r−1) = ⊕k(r)◦M (r−1).
So if we let γ(t) = ⊕c(t) ◦ C(t) and δ(t) = ⊕d(t) ◦D(t), then we obtain that

d(r) ⊕D(r)e(r−1) ⊕D(r)E(r−1)C(r−1)y ⊕D(r)E(r−1)c(r−1) = k(r) ⊕M (r−1)y,

for all y. For this equality to hold, the constant parts as well as the linear parts
are the same in both sides of the equation. This implies that

D(r)E(r−1)C(r−1) = M (r−1)

and that the round key k(r) is given by

k(r) = d(r) ⊕D(r)e(r−1) ⊕D(r)E(r−1)c(r−1).

The above analysis now leads to the algorithm described in Fig. 1 for finding
k(r).

Known: Q, E, S, M .

– Step 1: For a particular pair (r−1, r) of successive rounds, construct for each S-box
Si the set

Γi = {(γi, δi) | Qi = γi ◦ Si ◦ δi ∧ γi, δi affine}
and let Γ be such that (γ, δ) ∈ Γ if (γi, δi) ∈ Γi for all i.

– Step 2: Construct the subset Λ(r) ⊆ Γ (r−1) × Γ (r) of pairs of affine functions
(γ(r−1), δ(r−1)) ∈ Γ (r−1) and (γ(r), δ(r)) ∈ Γ (r) such that

D(r)E(r−1)C(r−1) = M (r−1), (8)

where matrices C(r−1) and D(r) define the linear part of γ(r−1) and δ(r), respec-
tively.

– Step 3: The round key k(r) of round r is contained in the set

K(r) =
{

D(r)E(r−1)c(r−1) ⊕ D(r)e(r−1) ⊕ d(r) | (γ(r−1), δ(r−1), γ(r), δ(r)) ∈ Λ(r)
}

.

Fig. 1. Basic algorithm for finding the round key of a round r

For implementing Step 1 of the algorithm, we already referred to [3]. We now
describe how Step 2 can be implemented.

6.1 Solving the Linear Equivalence Problem for Matrices

Step 2 of the algorithm of Fig. 1 deals with the matrices C and D specifying the
linear parts of the affine m-bit diagonal maps γ = ⊕c ◦C and δ = ⊕d ◦D. Note
that as observed in Remark 1, C and D are block diagonal matrices.



Cryptanalysis of a Generic Class of White-Box Implementations 425

Definition 5. Let X = X1×X2×. . .×Xs, where Xi consists of m×m matrices.
Then we denote by D(X) the collection of all block diagonal matrices with ith
diagonal block contained in Xi, for all i.

We can now formulate the problem of Step 2 as an instance of the Linear Equiv-
alence Problem of Matrices (LEPM) defined below.

Definition 6 (Linear Equivalence Problem of Matrices (LEPM)). A
problem instance is defined by (M,E,X, Y ) for invertible n×n matrices M and
E and sets X = X1×X2× . . .×Xs and Y = Y1×Y2× . . .×Ys, where Xi and Yj

contain invertible m×m matrices and n = m ·s. Find all pairs of block-diagonal
n× n matrices (C,D) ∈ D(X) ×D(Y ) such that M = D ·E · C.

In Fig. 2 we describe an algorithm for solving LEPM. The algorithm gradually
reduces the sets Xi and Yj , as follows. If a pair (C,D) ∈ D(X) ×D(Y ) satisfies
M = D · E · C, then Mi,j = DiEi,jCj holds for all i, j. So if for some Cj ∈ Xj

there does not exist a Di ∈ Yi for which Mi,j = DiEi,jCj , then Cj can never
be used as jth component in C, and so can be removed from Xj . A similar
argument can be used to remove a matrix Di from a set Yi.

We proceed with such removal steps until no more removals are possible. If
some set Xj or some set Yi is empty, then the LEPM problem has no solution.
Next, if all sets Xj and Yi contain exactly one linear mapping, then the only
candidate solution to the LEPM problem instance is the solution defined by
these linear mappings; moreover, since no Xj or Yi was further reduced, this
solution must indeed be valid. So in this case, the LEPM problem is solved.

On the other hand, suppose that a set Xj or a set Yi exists that contains more
than one linear mapping. If all Xj have size one, then C is uniquely determined,
and hence D = E−1C−1M is also uniquely determined. As a consequence, all
sets Yi must also have size one. So we may assume without loss of generality
that some set Xj has size bigger than one. In that case, for each matrix Cj in
Xj , we rerun the algorithm with Xj replaced by the set X ′

j = {Cj}. Obviously,
in this way all solutions are found.

To know whether the algorithm presented is effective for attacking a white-box
implementation, we have to know an upper bound on the number of solutions
returned and the number of recursive invocations. The former number is related
to the cardinality of the set K of candidate round keys in the algorithm of
Fig. 1. The latter number determines the time complexity of the algorithm of
Fig. 2. The problem is that we do not want to answer the question for one
particular white-box implementation of a block cipher, but for any white-box
implementation of that block cipher. Hence, we want to derive upper bounds on
these numbers that only depend on the block cipher specification and not, for
instance, on the encodings put on the input and output of a round FSLT by the
white-box implementation. The following theorem, which is proved in the full
version of this paper, can be used to derive such bounds.

Theorem 3. For a round r of an SLT cipher, let I = (M,E,X, Y ) be the prob-
lem instance of LEPM that is associated with the cryptanalysis of its white-box



426 W. Michiels, P. Gorissen, and H.D.L. Hollmann

algorithm LEPM solver(X, Y )

begin
repeat

for all Xj do
for all Cj ∈ Xj do

if ¬∃Di∈YiMi,j = Di · Ei,j · Cj then
Xj := Xj \ {Cj};

for all Yi do
for all Di ∈ Yi do

if ¬∃Cj∈Xj Mi,j = Di · Ei,j · Cj then
Yi := Yi \ {Di};

until X and Y do not change;
if a set Xj or Yi is empty then

return ∅;
else if ∀j |Xj | = 1 ∧ ∀i|Yi| = 1 then

return {(C, D)} with Cj ∈ Xj and Di ∈ Yi;
else /* case ∃j |Xj | > 1 */

select smallest j with |Xj | > 1;
return

⋃
Cj∈Xj

LEPM solver(X(Xj = {Cj}), Y );

end;

Fig. 2. Algorithm for solving LEPM problem in pseudo code. In the algorithm X(Xj =
{Cj}) denotes X, where Xj is replaced by {Cj}.

implementation. Furthermore, let I ′ = (M,M,X ′, Y ′) be the problem instance
in which X ′

i and Y ′
i are given by

X ′
i = {L | S(r−1)

i = λ ◦ S(r−1)
i ◦ φ with λ : x 	→ l ⊕ Lx and φ affine}

and

Y ′
i = {P | S(r)

i = λ ◦ S(r)
i ◦ φ with λ and φ : x 	→ p⊕ Px affine}.

Then, applying the algorithm of Fig. 2 to I results in the same number of recur-
sive invocations and the same number of solutions as when applying the algorithm
to problem instance I ′.

7 Proof of Concept

As proof of concept, we briefly discuss our cryptanalysis for attacking white-
box AES and white-box Serpent. It can be verified that the diffusion matrices
of both AES and Serpent satisfy the property that all their block rows have
disjoint spanning blocks. Recall that this is a necessary property to perform the
first step of the cryptanalysis. After applying the steps described in Sections 3-
5, the cryptanalysis runs the algorithm of Fig. 1 to find a set K of candidate



Cryptanalysis of a Generic Class of White-Box Implementations 427

round keys for a given round r. The algorithm first derives for each S-box Si

the set Γi. For the AES S-box these sets can be shown to have a cardinality of
2040, while for the Serpent S-boxes the cardinality of these sets is either 4 or
1. Next, the algorithm solves an LEPM problem instance to find the set Λ. For
AES and Serpent it can be shown that the pairs (γi, δi) from a set Γi satisfy the
property that all affine functions γi have a unique linear part and that all affine
functions δi have a unique linear part. Hence, the cardinality of set Λ is given
by the number of solutions of this LEPM problem instance. Using Theorem 3 it
can be proved that for any LEPM problem instance associated with a white-box
implementation the algorithm does not go into recursion and that it returns only
one solution. As a consequence, Λ consists of only one solution. It now follows
from the third step of the algorithm of Fig. 1 that the set K of candidate round
keys consists of only one solution as well. This is the round key we are looking
for. The time complexity of the attack is dominated by the algorithm of Biryukov
et al. [3] to determine the sets Γi.

8 Conclusion

Chow et al. published white-box implementations for AES and DES. As these
white-box implementations have been broken, it is an interesting research direc-
tion to design a block cipher that results in a secure white-box implementation.
This paper can serve as a basis for such research. In this paper we presented an
algorithm for extracting the round keys from the white-box implementation of
an SLT cipher in case that all block rows of the diffusion matrices of the cipher
have disjoint spanning block sets. The condition on the diffusion matrices is, for
instance, satisfied by all MDS matrices. Furthermore, we conjecture that our
attack can be generalized to arbitrary diffusion matrices. From our result we
can conclude that, unless we design new white-box techniques, SLT ciphers are
less suited for white-box implementations. A weakness of SLT ciphers that is ex-
ploited by our attack is the linearity of the diffusion operator. A linear diffusion
matrix is difficult to hide with non-linear encodings. Hence, a possible direction
for deriving secure white-box implementations is to resort to alternative diffu-
sion operators. Another weakness of SLT ciphers that we exploit is that, except
for a key addition, all operations in the cipher are fixed (i.e., key-independent).
It may help to make a larger part of the block cipher operations key-dependent.

References

1. Anderson, R.J., Biham, E., Knudsen, L.R.: Serpent: A proposal for the advanced
encryption standard. In: Proceedings of the First AES Candidate Conference
(1998)

2. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357,
pp. 227–240. Springer, Heidelberg (2004)



428 W. Michiels, P. Gorissen, and H.D.L. Hollmann

3. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A Toolbox for Cryptanal-
ysis: Linear and Affine Equivalence Algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

4. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES implemen-
tation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696,
pp. 1–15. Springer, Heidelberg (2003)

5. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

6. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
7. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES

implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 278–295. Springer, Heidelberg (2007)

8. Jacob, M., Boneh, D., Felten, E.W.: Attacking an obfuscated cipher by injecting
faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer,
Heidelberg (2003)

9. Link, H.E., Neumann, W.D.: Clarifying Obfuscation: Improving the Security of
White-Box DES. In: International Symposium on Information Technology: Coding
and Computing, pp. 679–684 (2005)

10. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: The
Twofish Encryption Algorithm: A 128-Bit Block Cipher. Wiley, Chichester (1999)

11. Vaudenay, S.: On the Need for Multipermutations: Cryptanalysis of MD4 and
SAFER. In: Proceedings of the 2nd International Workshop on Fast Software En-
cryption, pp. 286–297 (1995)

12. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007)


	Cryptanalysis of a Generic Class of White-Box Implementations
	Introduction
	Problem Formulation and Notation
	Determination of the Encodings Up to an Affine Part
	Transformation into Table Network
	Transformation into SAT Cipher
	Extracting the Key
	Solving the Linear Equivalence Problem for Matrices

	Proof of Concept
	Conclusion
	References


