
Cryptanalysis of a White Box
AES Implementation

Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi�

France Télécom R&D
38–40, rue du Général Leclerc

92794 Issy les Moulineaux Cedex 9 — France
{olivier.billet, henri.gilbert}@francetelecom.com

charaf echchatbi@yahoo.fr

Abstract. The white box attack context as described in [1, 2] is the
common setting where cryptographic software is executed in an untrusted
environment—i.e. an attacker has gained access to the implementation
of cryptographic algorithms, and can observe or manipulate the dynamic
execution of whole or part of the algorithms. In this paper, we present an
efficient practical attack against the obfuscated AES implementation [1]
proposed at SAC 2002 as a means to protect AES software operated in
the white box context against key exposure. We explain in details how
to extract the whole AES secret key embedded in such a white box AES
implementation, with negligible memory and worst time complexity 230.

Keywords: white box, AES, block ciphers, tamper resistance, software
piracy, implementation.

1 Introduction

One of the consequences of the ever spreading use of cryptology within mass
applications—e.g. email, web servers access, digital content distribution, and so
on—implemented in software on standard terminals, like pcs, pdas, or mobile
phones, is that cryptologic algorithms are quite often executed in an untrusted
environment. The usual “black box” model, where keys and cryptographic algo-
rithms are confined and executed in a logically protected and tamper resistant
cryptographic module, like a smart card, is no longer applicable. This situa-
tion motivated the introduction of a new setting, coined “white box” context
of execution: the software representing cryptographic algorithms, cryptographic
keys when separate from the cryptographic software, and dynamic data pro-
duced during the execution of all or part of the cryptographic algorithms, are
exposed to being accessed or even manipulated by malicious processes hosted
by the same machine—which may be controlled either by an outsider or by the
legitimate user of the host terminal. Cryptographic applications running in the
white box context of execution are highly vulnerable to the most severe form

� Work performed at France Télécom R&D

H. Handschuh and A. Hasan (Eds.): SAC 2004, LNCS 3357, pp. 227–240, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

228 O. Billet, H. Gilbert, and C. Ech-Chatbi

of attack, namely the leakage of the cryptographic keys. Thus, the protection
cryptographic algorithms would offer in the black box model of execution vanish.

This security issue is at the origin of the introduction, in a pair of seminal
articles [2, 1] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot, of a new
protection technique preventing from key leakage for cryptographic software run
in the white box context. It consists in implementing key-instantiated versions of
an algorithm, as the composition of a series of lookup tables, each look-up table
concealing some components of the algorithm. Implementations of an algorithm
resulting from this protection technique are named white-box implementations.
White box implementations of the DES and AES blockciphers were respectively
described in [2] and [1]. Short after the publication of [2], it was shown by
M. Jacob, D. Boneh and D. Felten in [3], that the obfuscation technique applied
in [2] was insecure, i.e. that a low complexity attack requiring few accesses (with
partly chosen input values) to lookup tables representing external DES rounds,
allowed to extract the key from a white box DES implementation. However,
the attack technique of [3] is not applicable to the white box implementation of
AES described in [1] due to the additional protection provided by some extra
features introduced by [1]. More precisely, a fundamental difference between
both implementations results from the application, in the case of AES, of so-
called external encodings. One of the main security consequences of this extra
feature—which description is provided in Sec. 2—is that in the case of AES, and
unlike DES, the protection of external rounds is not weaker than the protection
of internal rounds. Since the attack strategy of [3] is essentially based upon the
extra weakness of external rounds, it is not applicable to the AES implementation
described in [1]. To the best of our knowledge, no realistic attack against the
white box implementation of [1] has been proposed so far.

In this paper, we present a practical low complexity attack—i.e. with negligi-
ble memory, and work factor 3·228 < 230—of the AES white box implementation
proposed in [1]. The conducting idea of the attack is that though none of the
lookup tables, when considered individually, leaks sensitive information related
to the AES key in an obvious way, the analysis (based on the observation of
related input/output values) of lookup tables composition, reveals information
on the encodings embedded in those lookup tables. We show that the informa-
tion provided by the analysis of such tables during three consecutive encoded
rounds, allows an attacker to entirely recover the AES 128-bit secret key of
an obfuscated AES implementation. The key steps of the proposed attack were
successfully implemented in C++, and confirmed by computer experiments.

This paper is organized as follows. In Section 2, we describe the white box
AES implementation as proposed by [1]. In Section 3 we show how to extract
the secret key. The last section concludes the paper.

2 Description of the White Box AES Implementation

We now describe the implementation proposed in [1]. The general strategy is to
merge several steps of the AES round function into table lookups, blended by
input/output encodings, and mixing bijections.

Cryptanalysis of a White Box AES Implementation 229

Internal encodings (resp. mixing bijections) are non-linear (resp. GF(2)-
linear) and introduce confusion (resp. diffusion) in the representation of the
intermediate blocks of the computation. Their inclusion in the implementation
must respect the fact that two consecutive tables in the data flow have match-
ing output and input encodings, as well as matching mixing bijections, at their
boundary.

Apart from the above pairwise canceling internal transformations, another
obfuscation technique called external encoding is used. It consists in feeding the
obfuscated implementation with AES inputs in an encoded form. At the same
time, the implementation also outputs the AES encrypted values in an encoded
form. Thus, the implementation does not exactly achieve an AES computation
Y = EK(X), but a modified computation Y = E′

K(X) = G◦EK ◦F−1(X). The
external input/output encodings G and F−1 have to be annihilated on the peer
site—e.g. a server when the AES obfuscated implementation is embedded in a
software player—in order to compute E′−1

K . Though the encodings G and F−1

suggested in [1] are hereafter taken into account, our attack is not highly depen-
dent upon their exact specification. One of the main consequences of using exter-
nal encodings is that internal input/output encodings can be used to blend the
first and last round, in addition to inner rounds’ blending. This prevents attack-
ers from exploiting specific weaknesses one would otherwise encounter against
external rounds of obfuscated implementations [3].

Let us hereafter denote AES-128 the AES version operating on 128 bits
blocks. Recall [4, 5] that the AES-128 round function is made of the four steps
described in Fig. 1 operating on the 16 bytes of a 4×4 state array. The AES-128

SubBytes

ShifRows

MixColumns

AddRoundKey

Fig. 1. tracking four bytes during an AES round

considered in [1] consists of 10 such rounds; a preliminary AddRoundKey step is
performed before the first round, and MixColumns is omitted in the final round.
Let us index the state bytes by their row and column numbers (i, j) in the
state array. If the S-box function operating on bytes during the SubBytes step
is denoted by S, define for any round r and any byte (i, j) with indexes taken
modulo 4:

1 ≤ r ≤ 9 T r
i,j(x) := S

(
x ⊕ kr

i,j

)
,

T 10
i,j (x) := S

(
x ⊕ k10

i,j

) ⊕ k11
i,j−i .

(Note that we shifted the round index of the original AES-128 by 1, and that the
post-whitening key k11

i,j occuring in the last round is absorbed by the definition
of the last function T 10

i,j .) Now each 4-byte column of the output of the SubByte
plus ShiftRows steps will contribute to the 4-byte column of the state array
after MixColumns, and those four bytes are related to the former by a 32 × 8

230 O. Billet, H. Gilbert, and C. Ech-Chatbi

submatrix MCi of the 32 × 32 matrix MC representing MixColumns. Now the
entire function can be described by a lookup table. However, it is necessary to
obfuscate this table, which leads to encode its 4-bit input and output nibbles—
using concatenated non-linear permutations in and out respectively.

To add to the diffusion, 8× 8 affine “mixing” bijection is inserted before T r
i,j

and a 32 × 32 affine bijection MB is inserted after the MixColumn part. The
resulting lookup table is depicted in Fig. 2 as the sub table. The 32 × 8 linear
mapping of Fig. 2 is associated with MB × MCi.

Fig. 2. sub table (type II) and xor table (type IV)

To cancel the effect of MB, a lookup table takes care of the inversion. How-
ever, instead of constructing a huge table for the entire 32×32 matrix, the map-
ping MB−1 is split into four submatrices

(
MB−1

)
i
, just like with the MixColumns

matrix MC. This results in the lookup table depicted in Fig. 3.

Fig. 3. untwist table (type III)

Finally, external input and output encodings are implemented, using two sets
of sixteen 8-bit to 128-bit lookup tables depicted in Fig. 4. Each external input
encoding table represents the linear mapping associated with one 128×8 vertical
stripe of a 128 × 128 matrix—the composition of MF and the concatenation of
the input mixing bijections for T 1

i,j ’s inverses—surrounded by 4-bit to 4-bit non-
linear encodings. Each external output encoding table represents one 128×8 ver-
tical stripe of a 128 × 128 parasitic matrix—the composition of one round 10’s
output mixing bijection’s inverse, one of the mappings T 10

i,j , and 128× 8 vertical
stripe of a 128 × 128 parasitic matrix MG—surrounded by 4-bit to 4-bit non
linear encodings. The outputs of the 16 external input encoding tables have
to be decoded, xored together and reencoded to complete the implementation.
This is done by using 15 × 32 additional xor tables per 128-block. The same
number of xor tables is needed to support the 16 extern encode tables.

Thus, in order to implement a white box instance of AES-128 associated
with a key K, 9 · 4 · 4 sub tables, 9 · 4 · 4 untwist tables, 9 · 4 · 3 · 8 xor
tables supporting sub tables, 9 · 4 · 3 · 8 xor tables supporting untwist tables,
2 ·16 extern encode tables, and 2 ·15 ·32 xor tables supporting extern encode
tables are needed. Therefore, the total size of lookup tables in an AES-128 white
box implementation is 770 048 bytes.

��

��

��� �
�
��� ����

��� ��� ��� ��� ��� ��� ��� ���

��

��

� ���

��

��

����

��� ��� ��� ��� ��� ��� ��� ���

Cryptanalysis of a White Box AES Implementation 231

Fig. 4. extern encode tables for input and output respectively (type I)

3 Cryptanalysis of the White Box AES Implementation

We now describe a very efficient attack against the white box AES implemen-
tation of [1]. The leading idea is that, though recovering information about the
key by a local inspection of the lookup tables seems difficult—lookup tables
were designed to satisfy so-called diversity and ambiguity criteria—recovering
information by analyzing compositions of lookup tables corresponding to one
encoded AES round is easier. More precisely, it is convenient to analyze each
of the four mappings between four bytes of the input state array, and the four
corresponding bytes of the output state array, which together form an encoded
AES round. Each such mapping can be conceptualized by the box in Fig. 5,
where we can choose inputs and observe outputs, whereas intermediate values
remain concealed. Let us denote this box by Rr

j . Each Rr
j box is made of four

8-bit to 8-bit parasitic input permutations P r
i,j (resp. output permutations Qr

i,j)
constructed as the composition of two concatenated 4-bit to 4-bit input (resp.
output) encodings, and one 8-bit to 8-bit linear mixing bijection. Due to the fact
that internal input encodings plus linear mixing bijections and linear mixing bi-
jections plus output encodings mutually cancel out at the boundary between two
rounds r and r + 1, each Qr

i,j is the inverse of P r+1
i,j .

Fig. 5. One of the four Rr
j mappings, j = 0, . . . , 3

The attack proceeds in three steps. First of all, we recover the non-affine
part of the parasites Qr

i in round r = 1, . . . , 9, i.e. we determine Qr
i up to

unknown affine bijections, and thus get at the same time the non-affine part
of the inverse P r+1

i of round r + 1, r = 1, . . . , 9. At this stage we are in the
setting depicted in Fig. 5, but this time the permutations Pi and Qi are now
GF(2)-affine, except for the permutation P 1

i,j whose non-affine part has not been

��

��

�����

��� ��� ��� ��� ��� ���� � �

��

��

��� �
��
���

�����

��� ��� ��� ��� ��� ���� � �

� �
���

� �
��
���

� �
��
���

� �
��
���

� �
���

� �
��
���

� �
��
���

� �
��
���

���������	

�
���

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

�
�����

��
���

��
���

��
���

��
���

��

��

��

��

��

��

��

��

232 O. Billet, H. Gilbert, and C. Ech-Chatbi

determined. In a second step, we recover those GF(2)-affine mappings (but P 1
i,j

and Q1
i,j), first up to an unknown GF(28)-affine bijection, and then entirely.

Eventually combining all this information in a third step, we extract the AES-
128 key.

3.1 Recovering Non-linear Parts

Consider the mapping Rr
j . We are trying to remove the non-linearity in the

parasites (Qr
i)i=0,...,3. To this end consider y0 as a function of (x0, x1, x2, x3),

and fix the values of x1, x2, and x3 to some constants, say c1, c2, and c3. One
easily checks that there exists two constants in GF(28), namely α independent
of c1, c2, c3, and βc1,c2,c3 , such that

y0(x, c1, c2, c3) = Qr
0,j

(
αT r

0,j

(
P r

0,j(x)
) ⊕ βc1,c2,c3

)
.

Since x only takes 256 values, those mappings are known by input/output, as
well as their inverses. Also, varying one constant (say c3) into the whole GF(28),
and keeping the other one fixed, has the effect that βc1,c2,c′3 takes all the values
in GF(28). We are thus able to produce—as lookup tables, of course—all the
functions

y0(x, c1, c2, c3) ◦ y0(x, c1, c2, c
′
3)

−1 = Q0

(
Q−1

0 (x) ⊕ β
)

, (1)

where β = βc1,c2,c′3 ⊕ βc1,c2,c3 takes all the values in GF(28). This leads to
the problem of recovering Q0, or at least its non-linear part from the set of all
those lookup tables. Note that since functions are given as lookup tables, we
are not provided with the underlying translations: we only know the unordered
set of functions corresponding to the 256 translations. As this problem is of
independent interest, we state it, along with a solution, in a standalone context.

Theorem 1. Given a set of functions S = {Q ◦ ⊕β ◦ Q−1}β∈gf(28) given by
values, where Q is a permutation of GF(28) and ⊕β is the translation by β

in GF(28), one can construct a particular solution Q̃ such that there exists an
affine mapping A so that Q̃ = Q ◦ A.

Proof. There is an isomorphism between the commutative groups
(
GF(2)8,⊕)

and (S, ◦), given by
ϕ : S −→ GF(2)8

Q ◦ ⊕β ◦ Q−1 �−→ [β] ,

where [β] denotes the embedding of the element β into the vector space GF(2)8

with canonical base ([ei])i=1,...,8. The issue is we do not know this isomorphism.
The general idea of the proof is to recover this isomorphism up to an unknown
linear bijection, i.e. to recover a known isomorphism ψ equal to ϕ up to an
unknown linear bijection. To this end, first select from S a tuple (f1, . . . , f8)
of 8 functions such that their images through ϕ constitute a base of GF(2)8.
Although we do not know ϕ—and thus the underlying translations [βi] = ϕ(fi)

Cryptanalysis of a White Box AES Implementation 233

for each fi = Q ◦ ⊕βi
◦ Q−1—this can easily be done by gradually selecting f1

to f8 so that they span the whole set S through composition, that is

∀f ∈ S, ∃!(ε1, . . . , ε8) ∈ {0, 1}8, f = fε8
8 ◦ fε7

7 ◦ · · · ◦ fε1
1 , (2)

where f1
i = fi and f0

i denotes the identity function. An efficient algorithm to
compute such a tuple of functions (f1, . . . , f8) is described at the end of this
paragraph.

Now since ([βi])i=1...8 is a base of GF(2)8, there exists a unique one-to-one
linear change of base L mapping [ei] onto [βi] for all i = 1, . . . , 8. Also define the
isomorphism ψ

def= L−1 ◦ ϕ between (S, ◦) and
(
GF(2)8,⊕)

. One checks that ψ
can be efficiently recovered, by using the unique decomposition given by Eq. 2.
Indeed, for any f ∈ S the unique tuple of binary values (ε1, . . . , ε8) verifying
Eq. 2 is easily computed—an exhaustive search would be quick enough, but we
give a better algorithm at the end of this paragraph. By successively applying ϕ

Fig. 6. Relating f , ψ(f), and Q̃

and L−1 to f , one obtains

ψ(f) = L−1
(
ϕ(f)

)
= L−1

(⊕
i=1...8

εi[βi]

)
=

⊕
i=1...8

εi[ei] .

Thus the isomorphism ψ is entirely determined.
Let us explain how to recover Q from the knowledge of ψ, up to an unknown

affine transformation A. For that purpose, consider the commutative diagram
of Fig. 6, and define the GF(2)-affine one-to-one mapping A by

A(x) def= L
(
x ⊕ (Q ◦ L)−1([‘00’])

)
= L(x) ⊕ Q−1([‘00’]) ,

and let us set
Q̃

def= Q ◦ A .

One verifies that Q̃−1(‘00’) = [‘00’]. By applying the above definition of Q̃,
or equivalently by inspecting the commutative diagram of Fig.6, one checks
that f = Q̃ ◦ ⊕ψ(f) ◦ Q̃−1. Hence,

f(‘00’) = Q̃(ψ(f)) .

From our knowledge of ψ and f , we can therefore compute Q̃ = Q ◦ A. 	

���
��� ���Æ������������

� �
���Æ������������

�

��

� ����� ����� �����

234 O. Billet, H. Gilbert, and C. Ech-Chatbi

Now, we propose an efficient algorithm—time complexity is at most 224—
that chooses a tuple (f1, . . . , f8) on the fly, and computes the corresponding
mapping ψ. It was successfully implemented in C++.

input : S
output : R ⊂ S × GF(28) such that ∀(f, β) ∈ R, ψ(f) = [β]

algorithm : R ← {(id, ‘00’)}
ψ(id) = [‘00’]
e ← ‘01’
while #R < 28 do

S ← S \ {f}
if (f, ·) �∈ R then

e ← ‘02’ × e
ψ(f) = [e]
foreach (g, η) ∈ R do

R ← R∪ {(f ◦ g, [e] ⊕ [η])}
ψ(f ◦ g) = [e] ⊕ [η]

enddo
endif

endwhile

Going back to our initial motivation, Theorem 1 enables us to recover for any
round r = 1, . . . , 9, the non-linear part Q̃r

i,j of Qr
i,j , i.e. such that Q̃r

i,j

−1 ◦ Qr
i,j

is an affine mapping Ar
i,j

−1. Given the fact that for the next round, the input
encoding P r+1

i,j must match the output encoding Qr
i,j of the previous round—

that is P r+1
i,j ◦Qr

i,j must be the identity—we have that P r+1
i,j ◦ Q̃r

i,j is exactly the
mapping Ar

i,j . Thus, we have reduced the original problem depicted in Fig. 5
where all P and Q are non-linear and matching, to one where they are affine
and still matching. The next step is to recover those affine mappings, which is
the subject of next sections.

3.2 Relations Between Affine Parasites

So let us start again with the setting depicted in Fig.5, except for the fact that
all parasitic mappings P r

i,j and Qr
i,j are now affine. Since the problem is identical

for each round, we drop the subscripts r and j without loss of generality. We
have access to the following functions as lookup tables⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y0(x0, x1, x2, x3) = Q0

(
‘02’ · T ′

0(x0) ⊕ ‘03’ · T ′
1(x1) ⊕ ‘01’ · T ′

2(x2) ⊕ ‘01’ · T ′
3(x3)

)
y1(x0, x1, x2, x3) = Q1

(
‘01’ · T ′

0(x0) ⊕ ‘02’ · T ′
1(x1) ⊕ ‘03’ · T ′

2(x2) ⊕ ‘01’ · T ′
3(x3)

)
y2(x0, x1, x2, x3) = Q2

(
‘01’ · T ′

0(x0) ⊕ ‘01’ · T ′
1(x1) ⊕ ‘02’ · T ′

2(x2) ⊕ ‘03’ · T ′
3(x3)

)
y3(x0, x1, x2, x3) = Q3

(
‘03’ · T ′

0(x0) ⊕ ‘01’ · T ′
1(x1) ⊕ ‘01’ · T ′

2(x2) ⊕ ‘02’ · T ′
3(x3)

)
with the shortcut T ′

i = Ti ◦ Pi. Actually there is one more issue, which is that
we do know the set {yi}i=0,...,3 but we do not know the labels to put on each
function. Put in another way, we know those functions have the general form

yi(x0, x1, x2, x3) = Q
(
αi,0 · T ′

0(x0) ⊕ αi,1 · T ′
1(x1) ⊕ αi,2 · T ′

2(x2) ⊕ αi,3 · T ′
3(x3)

)

Cryptanalysis of a White Box AES Implementation 235

but we do not know what the underlying coefficients αi,j occurring from the
MixColumn step are. Let us hereafter denote by Λα the matrix over GF(2)8 of
the multiplication by α.

Before going any further, let us state a very useful property. Though simple,
it is a corner stone in the strategy we designed for the affine parasites’ recovery,
as well as in resolving the above mentioned renaming issue.

Proposition 1. For any pair (yi, yj) as introduced above, there exists a unique
linear mapping L and a unique constant c such that,

∀x0 ∈ GF(28), yi(x0, ‘00’, ‘00’, ‘00’) = L (yj(x0, ‘00’, ‘00’, ‘00’)) ⊕ c . (3)

Proof. Decompose the affine maps Qi(x) = Ai(x) ⊕ qi and Qj(x) = Aj(x) ⊕ qj ,
where Ai and Aj are linear, qi and qj constants. Hence,

yi(x, ‘00’, ‘00’, ‘00’) = Ai(αi,0 · T ′
0(x) ⊕ ci) ⊕ qi ,

yj(x, ‘00’, ‘00’, ‘00’) = Aj(αj,0 · T ′
0(x) ⊕ cj) ⊕ qj .

Thus, by taking L = Ai ◦ Λαi,0/αj,0 ◦ A−1
j and c = qi ⊕ Ai(ci) ⊕ L [qj ⊕ Aj(cj)],

Eq. 3 holds, which shows the existence of a solution.
The other way round, assuming there is a linear mapping L and a constant c

such that Eq. 3 holds, amounts to saying that (Ai ◦Λαi,0 ⊕L◦Aj ◦Λαj,0)◦T ′
0 is a

constant mapping. Since T ′
0 = T0◦P0 is one-to-one, and (Ai◦Λαi,0⊕L◦Aj◦Λαj,0)

is a linear mapping, this constant must be ‘00’. Thus L = Ai ◦ Λαi,0/αj,0 ◦ A−1
j ,

which uniquely defines L. Then αi,0 ·yi⊕L◦αj,0 ·yj is constant, and this constant
uniquely defines c. 	

Obviously, there are analogous statements where one varies the second, third,
or fourth variable and keep the other one constant. Also note that given two
functions yi and yj , there is a straightforward practical algorithm to get the
corresponding affine mapping (L, c) connecting their affine parts together. In-
deed, considering the 64 entries of the matrix L as well as the 8 entries of the
constant vector of c as unknowns over GF(2), and using our knowledge of the
functions yi and yj by values, one can form a highly overdefined linear system
of 28 ×8 equations involving the 72 unknowns and solve it with time complexity
much lower than 216.

3.3 Recovering the Affine Parasites

We note that Prop. 1 of the previous section enables us to directly compute the
linear parts of Q1, Q2, and Q3 from the knowledge of Q0’s linear part. We will
therefore focus on Q0’s determination. This section is organized in two steps.
First, we show how to recover the linear part of Q0 up to Λγ , for some non-
zero γ in GF(28). Then we show how this information can be used to recover
both γ and the constant part q0 of Q0.

236 O. Billet, H. Gilbert, and C. Ech-Chatbi

About Q0’s Linear Part. Let us recall that we decompose each affine trans-
formation Qi into its linear and constant parts: Qi(x) = Ai(x) + qi. Applying
Prop. 1 with i = 0 and j = 1, we get L0 = A0 ◦Λα0,0/α1,0 ◦A−1

1 . Then, using the
variant of Prop. 1 with i = 0 and j = 1, but where one varies x1 instead of x0,
we obtain L1 = A0 ◦Λα0,1/α1,1 ◦A−1

1 . We are thus able to compute L = L0 ◦L−1
1 ,

that is L = A0◦Λβ ◦A−1
0 where β = α0,0α1,1/α0,1α1,0. Remembering that values

α are standing for the MixColumn coefficients—i.e., taking their values in the set
{‘01’, ‘02’, ‘03’}—only 16 values for β remain possible, which are collected in the
following set

B = {‘02’, ‘d8’, ‘03’, ‘6f’, ‘04’, ‘bc’, ‘06’, ‘b7’, ‘05’, ‘25’, ‘4a’, ‘f8’, ‘7f’, ‘c8’, ‘64’, ‘5f’} .

(One checks that no element of B is contained in any subfield of GF(28).)
Thus, the new starting point is a matrix L, with the form A0 ◦Λβ ◦A−1

0 , and
we want to retrieve both β and A0. Given that β is chosen from B, computing
the characteristic polynomial of L reduces the number of possibilities for β to
at most 2; actually, either β is already determined, or β ∈ {b, b2} ⊂ B. To
ease the exposition, we assume that β is known, for instance by testing the two
possibilities, and using Prop. 3 of the next section to determine the correct one.

Proposition 2. Given an element β of GF(28) not in any subfields of GF(28)
and its corresponding matrix L = A0 ◦ Λβ ◦ A−1

0 , we can compute with time
complexity lower than 216, a matrix Ã0 such that there exists a unique non-zero
constant γ in GF(28), so that Ã0 = A0 ◦ Λγ .

Proof. We seek for Ã0 such that L ◦ Ã0 = Ã0 ◦ Λβ . Considering Ã0’s entries as
unknowns, this equation gives 64 equations in the 64 unknowns. Some non-trivial
solution can be computed in time complexity 64ω < 216, which we hereafter
denote by Ã0. Then, define A = A−1

0 ◦ Ã0. The equation L ◦ Ã0 = Ã0 ◦ Λβ also
reads Λβ ◦A = A◦Λβ . The only GF(2)-affine mappings that commutes with the
multiplication by β, are the multiplications by a GF(28) element. (To see this,
write A(x) =

∑7
i=0 γi · x2i

. The commutativity constraint is then expressed by∑7
i=0 γiβ

2i · x2i

=
∑7

i=0 βγi · x2i

for all x ∈ GF(28). Since β is not contained
in any subfield of GF(28), this in turn implies γi = ‘00’ for all i but i = 0.
Therefore, as announced, A(x) = γ0 x.) Thus, there exists a unique γ ∈ GF(28)
such that A = Λγ , and remembering that A = A−1

0 ◦ Ã0, we have computed
Ã0 = A0 ◦ Λγ . 	

Now we only have to recover γ of Prop. 2 in order to fully determine A0, the
linear part of Q0. In the following paragraph we explain how to compute it, as
well as the constant part q0 of Q0, that is to recover Q0 entirely.

Recovering Pi up to the Key, and Q0. Let us return to the function we
originally studied, namely

y0(x0, x1, x2, x3) = Q0

(
3⊕

i=0

α0,i · Ti ◦ Pi(xi)

)
. (4)

Cryptanalysis of a White Box AES Implementation 237

Remember that Ti stands for the key addition, followed by the AES-128’s S-box
application, that is Ti(z) = S(z⊕ki). Hence, the mapping x �→ S−1◦Ti◦Pi(x) =
Pi(x) ⊕ ki is affine. Now, from Prop. 2 we get some matrix Ã0 = A0 ◦ Λ1/γ . We
have the following:

Proposition 3. There exists unique pairs (δi, ci)i=0,...,3 of elements in GF(28),
δi being non-zero, such that

P̃0 : x �−→ (S−1 ◦ Λδ0 ◦ Ã−1
0)

(
y0(x, ‘00’, ‘00’, ‘00’) ⊕ c0

)
,

P̃1 : x �−→ (S−1 ◦ Λδ1 ◦ Ã−1
0)

(
y0(‘00’, x, ‘00’, ‘00’) ⊕ c1

)
,

P̃2 : x �−→ (S−1 ◦ Λδ2 ◦ Ã−1
0)

(
y0(‘00’, ‘00’, x, ‘00’) ⊕ c2

)
,

P̃3 : x �−→ (S−1 ◦ Λδ3 ◦ Ã−1
0)

(
y0(‘00’, ‘00’, ‘00’, x) ⊕ c3

)
,

are affine mappings. Any pair (δi, ci) can be computed with time complexity 224.
Moreover, those mappings are exactly P̃i = Pi(x) ⊕ ki.

Proof. The proposition amounts to saying that x → S−1(δ · S(x) ⊕ c) is affine
and non-constant. Since S represent the AES-128 S-box, and δ in non-zero,
this is only possible if (δ, c) = (‘01’, ‘00’), hence the existence and uniqueness
of (δi, ci). (This is also very easy to verify by an exhaustive search, which we
have done.)

Since c is ‘00’, we have c0 = y0(x, ‘00’, ‘00’, ‘00’)⊕α0,0 · T0(P0(x)), and since
Ã0 = A0 ◦ Λ1/γ , we get P̃0(x) = S−1 ◦ Λδ0·γ·α0,0 ◦ S(P0(x) ⊕ k0), where k0 is a
byte of the corresponding round key. As shown above, δ0 · γ · α0,0 must be ‘01’,
hence P̃0(x) = P0(x) ⊕ k0. The proof goes the same for P̃1, P̃2, and P̃3.

For every possible values for the pairs (δi, ci)—there are 216 possible pairs—
we test if the corresponding mapping is affine. The lookup table has to be eval-
uated 28 times, and then 8 systems of 9 unknowns over GF(2), or equivalently
one system of 72 unknowns which can be precomputed, has to be solved. Since
the mapping evaluation through the lookup table dominates, the total time com-
plexity is bounded by 224.

	

Since δ−1

i = γ · α0,i, and given the fact that two of those α0,i are ‘01’, another
is ‘02’ and the last one is ‘03’, exactly two of the δ−1

i are equal and share the
common value γ. Therefore we know Λγ , and thus the matrix A0 = Ã0 ◦ Λγ , as
well as the underlying MixColumn coefficients α0,i.

Also note that we recover at the same time the constant q0 of the affine
mapping Q0. Indeed, let us define c4 = y0(‘00’, ‘00’, ‘00’, ‘00’). Considering Eq. 4,
it can also be written as

c4 =

(
3⊕

i=0

α0,i · Ti ◦ Pi(‘00’)

)
⊕ q0 .

238 O. Billet, H. Gilbert, and C. Ech-Chatbi

Then, remembering that

c0 = y0(x, ‘00’, ‘00’, ‘00’) ⊕ α0,0 · T0(P0(x)) ,

c1 = y0(‘00’, x, ‘00’, ‘00’) ⊕ α0,1 · T1(P1(x)) ,

c2 = y0(‘00’, ‘00’, x, ‘00’) ⊕ α0,2 · T2(P2(x)) ,

c3 = y0(‘00’, ‘00’, ‘00’, x) ⊕ α0,3 · T3(P3(x)) ,

which holds for every x and thus in particular for ‘00’, we easily check that the
constant part of Q0 is given by q0 = c0 ⊕ c1 ⊕ c2 ⊕ c3 ⊕ c4, which achieves to
fully recover the mapping Q0.

3.4 Putting Everything Together

Let us now summarize the whole process of recovering the white box AES-128
implementation’s original parasites. In Sec. 3.1 we have shown how to compute,
for any round r = 1, . . . , 9 and any index j = 0, . . . , 3, with time complexity 224,
the non-linear part of any parasitic mapping Qr

i,j , i = 0, . . . , 3—and thus at
the same time, the non-linear part of its inverse parasitic mapping P r+1

i,j —up to
some affine application x �→ Ar

i (x) ⊕ qr
i . Section 3.2 showed how to recover A1,

A2, and A3 from the knowledge of A0, with time complexity lower than 3 · 216.
Finally, Sec. 3.3 explained how to recover the affine mapping x �→ Ar

0(x) ⊕ qr
0,

for r = 2, . . . , 9, with time complexity lower than 216. At the same time, Sec. 3.3
also retrieved the missing affine part of P r

i,j up to the key addition, which will
allow us, as explained in the next section, to extract the key embedded in the
AES-128 white box implementation.

Hence the time complexity to compute the parasites for a complete obfuscated
AES-128 round, is bounded by 4 · 4 · 224 = 228.

3.5 Key Extraction

We now give the procedure for the key extraction. The white box implementation
of AES-128 key embeds round keys produced by the AES-128 key derivation
algorithm. Thus the keys for two different rounds are related to each other.
Using this property, one can obviously ease the recovery of the keys.

In a first step, we determine Qr
i,j ’s non-linear part for some round plus the

entire parasites of two consecutive AES-128 obfuscated rounds. For instance,
recover the parasitic mappings Q2

i,j , as well as P̃ 3
i,j , Q3

i,j , and P̃ 4
i,j , for i = 0, . . . , 3

and j = 0, . . . , 3 as described in Sec. 3.4. Then, since P r+1
i,j ◦ Qr

i,j must be the
identity, we get the round key bytes as the composition of the affine mappings
P̃ and the affine part of Q which is denoted here by Q̄, that is k3

i,j = P̃ 3
i,j ◦ Q̄2

i,j ,
and k4

i,j = P̃ 4
i,j ◦ Q̄3

i,j .
We now have the key bytes k3

i,j and k4
i,j , however they are not necessarily in

the right order. Still, the data flow exposed by the implementation, rules the way
each round r key bytes relates to the next round r +1 key bytes. If we assume—
according to Sec. 3.1 of [1]—that the round keys were generated using the key

Cryptanalysis of a White Box AES Implementation 239

derivation algorithm of AES-128, the added constraint between the 16 bytes k3
i,j

and the 16 bytes k4
i,j allows us to rearrange them the right way. Thus, having

correctly recovered an AES-128 round key, we are able to derive the whole set
of round keys.

4 Conclusion

This paper explained how to extract, in a very efficient way, the whole secret
key of a white box AES-128 implementation suggested in [1]. Some of our attack
methods, for instance the technique of Sec. 3.1 used to recover the non linear
parts of the encodings, are potentially applicable to other iterated blockciphers
white box implementations using similar encoding and linear mixing techniques.
However, parts of our attack take advantage from AES specificities. Therefore,
no general conclusion can be drawn about the possibility to construct a strong
white box AES implementation, or a strong white box implementations of other
iterated blockciphers. Despite the general impossibility results concerning obfus-
cation [6], there is no evidence so far that strong white box implementation of
blockciphers is unachievable; there is only some practical evidence that this is
not an easy task. An interesting avenue for further research on obfuscation tech-
niques might consist in developing a dedicated blockcipher, designed bottom-up
with white box implementation in mind.

Acknowledgements

The authors thank the anonymous referees for their valuable comments.

References

1. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-Box Cryptography
and an AES Implementation. In Nyberg, K., Heys, H.M., eds.: Selected Areas in
Cryptography – SAC 2002. Volume 2595 of Lecture Notes in Computer Science.,
Springer Verlag (2003) 250–270

2. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: A White-Box DES Imple-
mentation for DRM Applications. In Feigenbaum, J., ed.: Digital Rights Manage-
ment Workshop – DRM 2002. Volume 2696 of Lecture Notes in Computer Science.,
Springer Verlag (2003) 1–15

3. Jacob, M., Boneh, D., Felten, E.W.: Attacking an Obfuscated Cipher by Injecting
Faults. In Feigenbaum, J., ed.: Digital Rights Management – DRM 2002. Volume
2696 of Lecture Notes in Computer Science., Springer Verlag (2003) 16–31

4. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer Verlag (2002)
5. National Institute of Standards and Technology: Advanced encryption standard.

FIPS publication 197 (2001)
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

240 O. Billet, H. Gilbert, and C. Ech-Chatbi

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang,
K.: On the (Im)possibility of Obfuscating Programs. In Kilian, J., ed.: Advances in
Cryptology – CRYPTO 2001. Volume 2139 of Lecture Notes in Computer Science.,
Springer Verlag (2001) 1–18

7. Biryukov, A., Preneel, B., Braeken, A., de Cannire, C.: A Toolbox for Cryptanalysis:
Linear and Affine Equivalence Algorithms. In Biham, E., ed.: Advances in Cryp-
tology – EUROCRYPT 2003. Volume 1267 of Lecture Notes in Computer Science.,
Springer Verlag (2003) 33–50

	Introduction
	Description of the White Box AES Implementation
	Cryptanalysis of the White Box AES Implementation
	Recovering Non-linear Parts
	Relations Between Affine Parasites
	Recovering the Affine Parasites
	Putting Everything Together
	Key Extraction

	Conclusion
	Acknowledgements
	References

