
Cryptanalysis of an Authentication Protocol 

Bogdan Groza 
“Politehnica” University of Timisoara 
Automation and Applied Informatics 

Department 
Bd. Vasile Parvan nr. 2,Timisoara, Romania 

E-mail: bogdan.groza@aut.upt.ro 

Dorina Petrica 
“Politehnica” University of Timisoara  
Automation and Applied Informatics 

Department 
Bd. Vasile Parvan nr. 2,Timisoara, Romania 

E-mail: dorina.petrica@aut.upt.ro

Abstract 

Authentication protocols have applications in many 
fields. The security of authentication protocols is 
commonly based on cryptographic primitives. 
Constructing secure authentication protocols is not an 
easy challenge and there is a large number of 
authentication protocols that prove to be insecure. 
Wulf et al. have proposed in [1] a protocol by which 
an entity can authenticate in a distributed system 
environment without using any shared secret. This 
paper will make a brief analysis of the proposed 
protocol and will show how it can be broken. The 
protocol will be broken by using multiplicative 
inverses of the integers from nZ , where n  is a prime 
number.

1. Introduction 

In this paper we will analyze the security of the 
authentication protocol proposed by Wulf et al. in [1]. 
Some of the ideas from [1] were also proposed more 
recently in the case of a publish-subscribe system [2]. 

Authentication protocols are probably the most 
commonly used security protocols. Entity 
authentication is a process in which an entity proves 
his identity and his presence to another entity. 
Authentication requires both an identity guarantee, 
which is usually connected to the presence of a secret 
(for example a password), and a time guarantee which 
will be made by some time variant parameters - to 
ensure that this authentication did not happened before. 
Authentications are usually challenge-response 
protocols in which an entity sends a random challenge 
to another entity who wishes to prove his identity.  

The security of authentication protocols was much 
debated especially in the last decade when many 

protocols that were known to be secure failed under a 
more careful analysis.  

There is long list of protocols that were proved to be 
insecure; probably the most well known cases are that 
of Needham-Schroeder, Otway-Rees, TMN. Finally, 
the most important thing is that understanding why 
security fails has an important role in constructing 
stronger solutions.  

In this paper we will show that the proposal from 
[1] can be broken easily only by using multiplicative 
inverses of integers from nZ , where n  is a prime 
number.  

Section 2 shows the description of the protocol from 
[1] and section 3 outlines some mistakes in the 
proposal. In section 4 the protocol is analyzed while 
section 5 shows how to break the protocol. In section 6 
some additional remarks will be made and section 7 
holds the conclusion of the paper. 

2. The Description of the Protocol 

In order to build an authentication protocol, the use 
of two functions f , g  with the following properties 
was proposed in [1]: 

f  and g  are one-way functions (1) 

( ) ( )( ) ( )( )yxgfyfxfg ,, =  (2) 

The fact that these functions are one-way means 
that by giving x  it is easy to compute )(xf  but by 
giving )(xf  it is infeasible or hard to compute x .

Functions f  and respectively g  are chosen in 
secret by each entity and will remain secret on the 
respective side. One entity will use g  to compute a 
challenge for the other while the response can be 
computed only by the other entity which is in 
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possession of f . The notations A and B will be used 
to denote the entities and it will be considered that A 
needs to authenticate to B. In the first step A will send 
to B a value x  and the value of ( )xf . This will be the 
first step: 

Step1. A B: A, x , ( )xf

Now, in order to authenticate to B, A will send a 
request and B will send him back a challenge which 
consist on a randomly selected number y  and the 
value of ( )yxg , . In order to respond to this challenge 
A will compute ( )yf  and ( )( )yxgf , . The following 
are the steps of the authentication protocol: 

Step 2. A B: A  
Step 3. B A:  y , ( )yxg ,
Step 4. A B: ( )yf , ( )( )yxgf ,

Now B has to verify that A is authentic and he 
achieves this by computing ( ) ( )( )yfxfg ,  and 
checking that indeed ( ) ( )( ) ( )( )yxgfyfxfg ,, = .

The reader may now easily remark why it was 
necessary for f  and g  to remain secret: in case that 
f  is known the attacker can easily respond to the 

challenge by computing ( )yf , ( )( )yxgf , ; otherwise if 
g  is known to the attacker he can respond with 

( )( )rxfgr ,,  for some arbitrary value r  and the 
authentication will also hold. 

In order to increase the effectiveness of the protocol 
it was also proposed that verifier values which is the 
pair ( )xfx,  to be replaced in every protocol run with 
the newly sent values ( )yfy,  or else with 

( ) ( )( )yxgfyxg ,,, . In section 4 we will show how this 
replacement will lead an attacker to both impersonate 
A and make impossible for A to authenticate ever 
again. 

This was the formal description of the protocol and 
in order to obtain a practical implementation the use of 
two functions based on discrete exponentiation was 
proposed. The functions proposed in [1] were: 

( ) nxxf a mod=  (3) 

( ) ( ) nyxyxg b mod, ⋅=  (4) 

These functions will remain secret in the sense that 
each entity will choose an arbitrary value for a  and 
respectively for b  and keep the value secret.  

These functions are suitable to be used in the 
proposed authentication scheme. Both functions will 
be hard to be deduced by an adversary because in order 
to determine a  or respectively b  the adversary had to 
compute a discrete logarithm. Therefore, the secrecy of 
these functions relies on the difficulty of computing 
discrete logarithms in nZ . It is commonly known that 
the discrete logarithm is infeasible to compute, this 
means that giving nxb mod , x , n  it is infeasible to 
compute b  for large values of n .

The composition property (2) is also easy to verify 

since indeed ( ) ( )( ) ( ), mod
ba ag f x f y x y n= ⋅ =

( )( ),f g x y= .
The following additional conditions were imposed 

for the parameters: n , a  and b  are all large primes. 
With the previously defined functions f  and g  the 

protocol can be rewritten as follows: 

Step 1. A B: A, x , ( ) nxxf a mod=
Step 2. A B: A  
Step 3. B A: y , ( ) ( ) nyxyxg b mod, ⋅=

Step 4. A B: ( ) nyyf a mod= , ( )( ),f g x y =

( )( ) mod
abx y n= ⋅

The identity of  A will be verified  by computing 

( ) ( )( ) ( ) nyxyfxfg
baa mod, ⋅=  and checking that 

( ) ( )( ) ( )( )yxgfyfxfg ,, = .

3. Some Shortcomings of the Proposal 

We will now outline some shortcomings of the 
proposal from [1]:  

1) The conditions imposed for functions f  and g
are not sufficient to guarantee security. One may note 
that the protocol can be broken if an attacker can 
determine for a given value γ  two values α  and β
such that ( ) βαγ =,g . This attack is possible because 
in the verification step B will compute and verify the 
value of ( ) βαγ =,g  for the newly received values 

( )yf=α , ( )( )yxgf ,=β  and the verifier ( )xf=γ  - 
so if such α  and β  can be determined the 
authentication holds. This additional condition should 
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be stated in [1] and also in [2] because there is no proof 
that the previous two conditions (1),(2) for functions 
f  and g  can guarantee the security of the protocol. 

The attack in section 4 is based on this remark. 
2) The condition imposed for the values of n , a

and b  to be large primes might not be appropriate for 
achieving stronger security. It is natural to choose n  a 
large prime because it is needed to make the discrete 
logarithm intractable. But we do not see any argument 
for requesting  a  and b  to be also primes. More, we 
see that in fact it should be requested for x  to be a 
generator of nZ  in order to make the discrete 
logarithm hard to compute – otherwise if the order of 
x  is small it will be  much easier to compute the 
discrete logarithm. If the verifier is always changed it 
is also recommended for the value of the verifier to 
have a high order because again the intractability of the 
discrete logarithm depends on this order.  

3) It is possible for an attacker to mount chosen-
text attacks against the protocol; these are attacks in 
which an adversary strategically chooses challenges in 
order to learn information about the secret. The 
attacker can lunch such an attack by selecting some 
elements from nZ  with low order. The attacker can 

take some divisors kii ,1, =δ   of the order group of the 

group nZ  (i.e. kini ,1,1| =−δ  when n  is prime) 
such that they are relatively prime to each other (i.e. 

( )gcd , 1,  i j i jδ δ = ≠ , gcd  denotes the greatest 

common divisor) and it is feasible to compute discrete 
logarithms on elements with order ( )1 , 1,in i kδ− = .
Let χ  be a generator of nZ  and compute elements 

kini
i ,1,mod == δχω , obviously each iω  will have 

the order ( )1 , 1,i in i kζ δ= − = . Suppose that the 
values of iω  are offered as challenges to entity A. 
Since it will be feasible to compute discrete logarithms 
on each element iω  the adversary can learn from the 
responses of A the congruence of the secret exponent 
modulo each iζ . This leads to congruencies of the 

form kia ii ,1,mod =≡ ζλ  which results in a system 
that can be solved by Chinese Remaindering Theorem 

and has a unique solution modulo ∏
=

k

i
i

1

ζ . If we 

compute the values of ( ) iii ζρσ mod1−=  and 

1

k

i
i

i
i

ζ
ρ

ζ
==

∏
  then the solution of these congruencies 

will be 
=

⋅⋅=
k

i
iii

1

σρλτ  and for the secret exponent 

holds ∏
=

≡
k

i
ia

1

mod ζτ .

4) The authors sustained that there is a connection 
between this protocol and zero knowledge protocols. 
Zero-knowledge protocols are build to address the fact 
that an adversarial verifier may be able to select 
challenges in such a way that he can obtain responds 
that provide certain information about the secret on 
which authentication is made (i.e. chosen text attacks). 
In this protocol an adversarial verifier can strategically 
give such challenges, as seen previously, so this 
protocol is certainly not zero-knowledge. In the form 
presented and with the selected candidates for 
functions f  and g  this is certainly a public key 
challenge-response authentication (section 6 examines 
the similarities between this protocol and a public key 
protocol). 

4. Analyzing the Protocol 

A careful analysis of the proposed functions will be 
done.  

First we will remark an additional property of g
that was not taken into account in [1], observe that: 

( ) ( )1,, yxgyxg ⋅=  (5) 

Although it may appear trivial this property has 
some fundamental implications.  

The most important is that the claim that an 
adversary cannot compute ( )yxg ,  for some arbitrary 
values of x  and y  is not always true. It is easy to 
observe that if one knows ( )bag ,  he also knows 

( )1, −⋅⋅ ξξbag  for any integer ξ , here 1−ξ  denotes the 
multiplicative inverse of ξ . Now, because of (5) the 
following relation holds: 

( ) ( ) ( )bagbagbag ,,, 11 =⋅⋅=⋅⋅ −− ξξξξ  (6) 

Define now the function kψ , where k  is a constant 
integer: 
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( ) nxx k
k mod=ψ  (7) 

Observe also that  ψ  has the following property: 

( ) ( ) ( )yxyx kkk ψψψ ⋅=⋅  (8) 

Redefine f  using ψ :

( ) ( )xxf aψ=  (9) 

Also remark that function g  is from the same 
family as f  and the fact that it has two parameters it is 
not so important since: 

( ) ( )yxyxg b ⋅=ψ,  (10) 

Now, by using  ψ  redefine the authentication steps 
as follows: 

Step1. A B: A, x , ( )xaψ
Step 2. A B: A  
Step 3. B A:  y , ( )yxb ⋅ψ
Step 4. A B: ( )yaψ , ( )( )yxba ⋅ψψ

And the verification will be done by checking that 
( ) ( )( ) ( )( )yxyx baaab ⋅=⋅ ψψψψψ . This is certainly a 

more elegant and realistic description of the protocol. 
Define also: 

( )[ ] ( )11 −− = xx aa ψψ  (11) 

By using (8) observe that: 

( )[ ] ( ) ( ) ( ) 1111 ==⋅=⋅ −−
aaaa xxxx ψψψψ  (12) 

It is now easy to see how an attacker can 
impersonate entity A, let cψ  denote an arbitrary 
instance of ψ  chosen by the attacker: 

Step 2. Attacker B: A  
Step 3. B Attacker:  y , ( )yxc ⋅ψ

Step 4. Attacker B: ( ) ( )1
a cx x yψ ψ− ⋅ ⋅ , ( )( )yxbc ⋅ψψ

The authentication of the attacker certainly holds 
since one may easily verify that indeed 

( ) ( ) ( )( )1
b a a cx x x yψ ψ ψ ψ−⋅ ⋅ ⋅ ( )( )c b x yψ ψ= ⋅ .

If we remember the security issue from the previous 
chapter, we can see that this attack was possible 
because the adversary was capable to compute 

( ) ( )1
a cx x yα ψ ψ−= ⋅ ⋅  and ( )( )c b x yβ ψ ψ= ⋅  such 

that for the given ( )xaψγ =  it holds that ( ) βαγ =,g .
Computation of such α  and β  was possible because 
property (6) let the adversary predict the result of g
over the authentication values.   

It worth also to note that the attack was possible 
because even if an attacker does not know the value of 

( )xaψ  he can make the verification not depend on it 

by computing the multiplicative inverse  ( )1−xaψ  and 
since (12) holds the verification does not depend 
anymore on the value of the verifier ( )xaψ .

As a brief conclusion the attacker can break the 
protocol if he has the ability to compute ( )1−xaψ  given 

( )xaψ  - this is certainly the case of this protocol and 
the next section will describe the concrete attack over 
the protocol. 

5. How to Break the Protocol 

By using the elements form the previous section it 
is easy to break the protocol. 

We will remark that when n  is prime nZ  forms a 
group with the operation of multiplication - this means 
that all elements have a multiplicative inverse. 
Multiplicative inverses are easy to compute in nZ ,
whether n  is prime or not, with the extended 
Euclidean algorithm [3, page 67]. 

Now an attacker can easily compute the values 

nyxx kka mod⋅⋅= −α  and ( )( ) nyx
kb mod⋅=β ,

here k  is a random integer selected by the attacker. 
This is possible since x , ax , y  and ( )byx ⋅  are not 

secret and the multiplicative inverse of ax  , that is  
ax − , is easy to compute. The attacker will use these 

values α , β  in the third step of the authentication.  
The following would be the run of the protocol in 

the case when the attacker impersonates the real user 
(we will suppose that Step1 of the protocol was already 
run as in section 2 ): 

Step 2. Attacker B: A 
Step 3. B Attacker:  y , ( ) ( ) nyxyxg b mod, ⋅=

Step 4. Attacker B: nyxx kka mod⋅⋅= −α ,

( )( ) nyx
kb mod⋅=β
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The attacker has successfully impersonated A and 
the verification of the identity holds because it is easy 
to check that indeed 

( ) ( ) βα =⋅⋅⋅= − nxyxxxg
bakkaa mod, . Again notice 

that even if an attacker does not know the value of a
he can make the verification not depend on it by 
computing the multiplicative inverse of  ax  and since 

1=⋅ −aa xx  - the authentication protocol does not 
depend anymore on the verifier ax .

Example: In order to make things more clear we 
will consider this example. Suppose that A chooses the 
prime 12457=n , 2351=a , 509=x  while B will 
choose 673=y , 2953=b . The first step will be: 

Step1. A B: A, 509=x , 778mod =nx a

Now the attacker request an authentication and B 
sends him a challenge: 

Step 2. Attacker B: A  
Step 3. B Attacker:  673=y , ( ) 1074mod =⋅ nyx b

The attacker chooses an arbitrary 253=k ,
computes the multiplicative inverse of nx a mod  (that 
is 9687mod =− nx a  since 

nxx aa mod19687778 ≡⋅=⋅− ) and responds with the 
following values: 

Step 4. Attacker B: 7586mod =⋅⋅= − nyxx kkaα ,

( )( ) 6795mod =⋅= nyx
kbβ

Entity B verifies authenticity by checking that 

( ) βα =⋅ nx
ba mod  and this holds since 

( ) 679512457mod7787586 2953 =⋅ .
Now if the values of the verifier are always replaced 

with the newly sent values it is easy to see that after an 
attack the real user will never be able to authenticate 
again. For example if we suppose that the previous 
attack took place and B had replace the verifier pair 

axx,  with the newly sent values 
nyxxy kka mod, ⋅⋅= −α  (about which B believed 

although cannot verify that is ny a mod ) when A 
request an authentication and B sends him a new 
challenge 'y  the following will be steps of the 
authentication: 

Step 5. A B: A 

Step 6. B A:  'y , ( ) ( ) nyyyyg
b

mod, '' ⋅=

Step 7. A B: ( )'yf , ( )( ) ( ) nyyyygf
ab

mod, '' ⋅=

The authentication fails and A will be rejected 
because B will verify that ( )( ) ( )( )'' ,, yygfyfg =α  and 
B will decide that A is not authentic since 

( ) nyyyyxx
abbakka mod'' ⋅≠⋅⋅⋅− .

Example: Consider the previous attack on the 
protocol, now the verifier is 673=y , 7586α = .
Entity A wants to authenticate and B sends the 
challenge 129' =y , the protocol run will be the 
following: 

Step 5. A B: A 
Step 6. B A:  129' =y , ( ) 11708, ' =yyg

Step 7. A B: ( ) 9969' =yf , ( )( ) 3272, ' =yygf

Now B will verify that A is authentic by checking 

that ( )( ) ( )( )'' , yygfyf
b

=⋅α  but since 

( )( ) 4444' =⋅
b

yfα the authentication will certainly 
fail. 

Also if the verifier pair axx,  is replaced by 

( ) ( ) nyxyxg b mod, ⋅= , ( )( ) nyx
kb mod⋅=β  the 

authentication of A will again fail. The following will 
be the steps of the authentication in this case: 

Step 5. A B: A 

Step 6. B A: 'y , ( )( ) ( )( ) nyyxyyxgg
bb mod,, '' ⋅⋅=

Step 7. A B: ( ) ( ) nyyf
b

mod'' = ,

( )( )( ) ( )( ) nyyxyyxggf
abb mod, '' ⋅⋅=⋅

The authentication fails because B will verify that 
( )( ) ( )( )( )( )'' ,, yyxggfyfg ⋅=β  and this is false since: 

( )( ) ( )( ) nyyxyyx
abb

bakb mod'' ⋅⋅≠⋅⋅ .

Example: We will again consider the first attack on 
the protocol, now the verifier is ( ) 1074, =yxg  and 

6795=β . Entity A wants to authenticate and B sends 
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the challenge 129' =y , the protocol run will be the 
following: 

Step 5. A B: A 
Step 6. B A:  129' =y , ( )( ) 4364,, ' =yyxgg

Step 7. A B: ( ) 9969' =yf , ( )( )( ) 4206, ' =⋅ yyxggf

In order to check that A is authentic B will verify 

that that ( )( ) ( )( )( )( )'' , yyxggfyf
b

⋅=⋅β  but since 

( )( ) 5027' =⋅
b

yfβ the authentication will certainly 
fail. 

6. Some Additional Remarks 

It is commonly known that any public-key 
encryption technique may be used to construct an 
authentication protocol and there are mainly two ways 
to achieve this [1, page 403]: 

1) by making the claimant to decrypt a challenge 
encrypted with his public key 

2) by making the claimant digitally sign a message 
with his private key 

As an example, one can derive the following 
authentication protocol from ElGamal public key 
encryption [4] (consider the same function ψ  from the 
previous section and that Step 1 has run in the same 
manner proposed in section 3): 

Step 2. A B: A  
Step 3. B A:  ( )xbψ , ( )( )xy ab ψψ⋅
Step 4. A B: y

In Step 3 A will decrypt the challenge y  by 

computing ( )( ) ( )( )[ ] 1−⋅⋅= xxyy baab ψψψψ  and he 
sends back the value of y  proving that he can decrypt 
arbitrary messages encrypted under its public key.  

It should be also stated that such constructions 
should be carefully done since the use of the same 
private-public key pair for different purposes can result 
in security loss. 

The proposal from [1] might appear interesting but 
with the candidates proposed it is nothing more than a 
challenge-response authentication based on a public-
key primitive. It is obviously that the authentication 
from [1] is very similar to the previous authentication 
based on El-Gamal public key encryption, in fact the 
authentication from [1] requires much more 
computation and it is insecure. 

Once defined the function ψ  (see section 4) it is 
also easy to observe that: 

( )( ) ( )( )xx baab ψψψψ =  (13) 

We will now rewrite the steps of the authentication 
from section 3 in order to make some observations 
(remember that this is the authentication from [1] 
redefined by using ψ , Step1 has run as in section 2): 

Step 2. A B: A   
Step 3. B A:  y , ( )yxb ⋅ψ
Step 4. A B: ( )yaψ , ( )( )yxba ⋅ψψ

We will underline that the purpose of the challenge 
is to verify that A is capable to compute aψ  for an 
arbitrary value. The authentication as described above, 
and with the selected candidates, contains redundant 
elements in Step 4 because A computes aψ  for two 
distinct values and it will be sufficient to compute on 
only one value if there is a way to verify this. Notice 
that ( )xbψ , if b  is selected at random, is an arbitrary 
value and can be use in Step 2 as a  challenge. Now the 
response of A to this challenge should be ( )( )xba ψψ
and B could verify this since (13) holds and he can 
check that the response is equal to ( )( )xab ψψ . So the 
protocol can be rewritten in the following simpler way: 

Step 1. A B: A, x , ( )xaψ  - initialization 
Step 2. A B: A - request 
Step 3. B A:  ( )xbψ  - challenge 
Step 4. A B: ( )( )xba ψψ  - response 

But with the proposed functions this is nothing new 
but Diffie-Hellman key-exchange [4] in which A will 
prove that he can recover the key and therefore is 
authentic. So if redundant elements are removed from 
the authentication proposed in [1] it can be reduced to 
Diffie-Hellman key exchange. 

7. Conclusions 

The proposal from [1] has two main weak-points: 
1) the description on a formal level of the two 

functions f  and g  with the requested properties 
cannot guarantee security 

2) the selected functions were not carefully 
examined and some essential properties of integers 
from nZ  neglected 
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As a consequence the authentication protocol does 
not resist cryptanalysis and the attacker can 
successfully impersonate the user.  

A new protocol can be added on the long and 
always open list of insecure protocols.  

The proposal from [1] can appear interesting but 
with the selected candidates for functions f  and g  it 
results in an insecure authentication protocol. Finding 
some good candidates for these functions can finally 
lead to a functional authentication scheme – but this is 
the hardest task faced by cryptography. 
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