
Cryptanalysis of Ascon

Christoph Dobraunig1, Maria Eichlseder1, Florian Mendel1, and Martin
Schläffer2

1 IAIK, Graz University of Technology, Austria
firstname.lastname@iaik.tugraz.at
2 Infineon Technologies AG, Austria

martin.schlaeffer@gmail.com

Abstract. We present a detailed security analysis of the CAESAR can-
didate Ascon. Amongst others, cube-like, differential and linear crypt-
analysis are used to evaluate the security of Ascon. Our results are
practical key-recovery attacks on round-reduced versions of Ascon-128,
where the initialization is reduced to 5 out of 12 rounds. Theoretical key-
recovery attacks are possible for up to 6 rounds of initialization. More-
over, we present a practical forgery attack for 3 rounds of the finalization,
a theoretical forgery attack for 4 rounds finalization and zero-sum distin-
guishers for the full 12-round Ascon permutation. Besides, we present
the first results regarding linear cryptanalysis of Ascon, improve upon
the results of the designers regarding differential cryptanalysis, and prove
bounds on the minimum number of (linearly and differentially) active S-
boxes for the Ascon permutation.

Keywords: Ascon, CAESAR initiative, cryptanalysis, authenticated
encryption

1 Introduction

The CAESAR competition [20] is an ongoing cryptographic competition, where
numerous authenticated encryption schemes are challenging each other with the
goal of finding a portfolio of ciphers, suitable for different use-cases. Currently,
more than 45 ciphers are still participating in the competition. In the near fu-
ture, this portfolio will be further reduced to focus the attention of the crypto
community on a few candidates. Therefore, analyzing the security of the can-
didate ciphers is of great importance to enable the committee to judge them
adequately.

Ascon is a submission by Dobraunig et al. [11] to the CAESAR competition.
In the submission document, the designers discuss the design rationale for the
cipher and give first cryptanalytic results, in particular on the differential prop-
erties of the Ascon permutation. Since the cipher was only recently presented,
results of external cryptanalysis are scarce so far. Jovanovic et al. [15] prove
the security of Ascon’s mode of operation under idealness assumptions for the
permutation.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-16715-2_20

http://dx.doi.org/10.1007/978-3-319-16715-2_20


Our contribution. We present a detailed security analysis of the CAESAR
candidate Ascon-128. Based on the low algebraic degree of Ascon, we are able
to construct a zero-sum distinguisher with complexity 2130 for the full 12-round
Ascon permutation in Section 3. In Section 4, we use similar algebraic prop-
erties to construct a distinguisher based on cube testers. We also use cube-like
techniques to obtain a key-recovery attack for a round-reduced version of Ascon
with 5-round initialization with practical complexity. Theoretical key-recovery
attacks are possible for up to 6 rounds of initialization. Moreover, in Section 5,
we present the first results on linear cryptanalysis, and improve the results by
the designers on differential cryptanalysis. Our results include linear and differ-
ential characteristics obtained with heuristic search, as well as a computer-aided
proof of security bounds against linear and differential cryptanalysis (minimum
number of active S-boxes). Using our results on linear-differential analysis, we
present a practical forgery attack for 3 rounds of the finalization and a theoretical
forgery attack for 4-round finalization. Our results are summarized in Table 1.

Table 1. Results for Ascon-128. Attacks performed on the initialization or finalization.

type rounds time method source

permutation distinguisher 12 / 12 2130 zero-sum Section 3

key recovery

6 / 12 266

cube-like Section 4.4
5 / 12 235

5 / 12 236

differential-linear Section 5.4
4 / 12 218

forgery
4 / 12 2101

differential Section 5.3
3 / 12 233

2 Ascon

Ascon is a submission by Dobraunig et al. [11] to the ongoing CAESAR com-
petition. It is based on a sponge-like construction with a state size of 320 bits
(consisting of five 64-bit words x0, . . . , x4). Ascon comes in two flavors, Ascon-
128 and Ascon-96, with different security levels and parameters, as summarized
in Table 2. The analysis in this paper is focused on Ascon-128. In the following,
we give a brief overview about the mode of operation and the permutation of
Ascon. For a complete description, we refer to the design document [11].

Mode of operation. Ascon’s mode of operation is based on MonkeyDu-
plex [8]. As illustrated in Fig. 1, the encryption is partitioned into four phases:
initialization, processing associated data, processing the plaintext, and final-
ization. Those phases use two different permutations pa and pb. The stronger



Table 2. Parameters for Ascon [11].

name
bit size of rounds

key nonce tag data block pa pb

Ascon-128 128 128 128 64 12 6
Ascon-96 96 96 96 128 12 8

variant pa is used for initialization and finalization, while pb is used in the data
processing phases.

const

K‖N

r

c

pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Fig. 1. The encryption of Ascon [11].

The initialization takes as input the secret keyK and the public nonceN . The
initialization ensures that we start with a random-looking state at the beginning
of the data procession phase for every new nonce. In the subsequent processing
of the associated data, r-bit blocks are absorbed by xoring them to the state,
separated by invocations of pb. If no associated data needs to be processed,
the whole phase can be omitted. Plaintext is processed in r-bit blocks in a
similar manner, with ciphertext blocks extracted from the state right after adding
the plaintext. For domain separation between associated data and plaintext,
a constant is xored to the secret part of the internal state. After all data is
processed, the finalization starts and the k-bit tag T is returned.

Table 3. The S-box of Ascon [11].

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 4 11 31 20 26 21 9 2 27 5 8 18 29 3 6 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 30 19 7 14 0 13 17 24 16 12 1 25 22 10 15 23



Permutation. Ascon uses the two permutations pa and pb. Both iteratively
apply the same round function p: a rounds for pa, and b rounds for pb. The
round transformation p consists of a constant addition to x2, followed by the
application of a nonlinear substitution layer and a linear layer.

The substitution layer uses a 5-bit S-box (Table 3), which is affine equivalent
to the Keccak [2] χ mapping. The Ascon S-box is applied 64 times in parallel
on the state. Each bit of the 5 64-bit words (x0, . . . , x4) contributes one bit to
each of the 64 S-boxes, where x0 always serves as most significant bit.

The linear layer is derived from the Σ-function of SHA-2 [19]. The Σ-function
is applied to each of the 5 state-words and uses different rotation values for each
word:

Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

3 Zero-sum distinguishers

In this section, we apply zero-sum distinguishers used in the analysis of Kec-
cak [1,6,7] to Ascon. Zero-sum distinguishers have been used to show non-ideal
properties of round-reduced versions for the Keccak permutation. With the help
of zero-sum distinguishers, Boura et al. have have been able to distinguish the
full 24-round Keccak permutation from a random permutation. Since the core
of the Ascon S-box corresponds to the Keccak S-box, we are able to construct
distinguishers for the full 12 rounds (or up to 20 rounds) of the Ascon permu-
tation.

Algebraic model of Ascon. As the name zero-sum distinguishers suggests,
we search for a set of inputs and corresponding outputs of an n-bit permutation
which sum to zero over Fn

2 . To create this set of input-output pairs, we start in the
middle of the permutation and compute outwards. Furthermore, we keep a set of
320−d bits constant and vary the other d bits through all possible assignments.
Thus, we get 2d possible intermediate states. For all these 2d intermediate states,
we calculate the respective outputs. If the degree of the function determining
the output bits is strictly smaller than d, the resulting outputs will sum to zero
over Fn

2 [1,6]. After that, we calculate the input values of the permutation using
the 2d intermediate states. Again, if the degree of the inverse function is smaller
than d, the inputs sum to zero over Fn

2 . The result is a zero-sum distinguisher,
or rather, a family of zero-sum distinguishers.

To apply the technique to Ascon, we have to bound the degree of multiple
rounds of the Ascon permutation and its inverse. The algebraic degree of one



Ascon S-box is 2, with respect to F2, and can be easily determined from its
algebraic normal form (ANF):

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

Here, x0, x1, x2, x3, x4, and y0, y1, y2, y3, y4 represent the input, and output
of an S-box, with x0/y0 representing the most significant bit. The S-boxes in one
substitution layer are applied in parallel to the state, and the linear layer and
constant addition do not increase the algebraic degree. Consequently, the overall
degree of one Ascon permutation round is 2, and the degree of r rounds is at
most 2r.

To determine the degree of the inverse permutation, we use the ANF of the
inverse Ascon S-box:

x0 = y4y3y2 + y4y3y1 + y4y3y0 + y3y2y0 + y3y2 + y3 + y2 + y1y0 + y1 + 1

x1 = y4y2y0 + y4 + y3y2 + y2y0 + y1 + y0

x2 = y4y3y1 + y4y3 + y4y2y1 + y4y2 + y3y1y0 + y3y1 + y2y1y0

+ y2y1 + y2 + 1 + x1

x3 = y4y2y1 + y4y2y0 + y4y2 + y4y1 + y4 + y3 + y2y1 + y2y0 + y1

x4 = y4y3y2 + y4y2y1 + y4y2y0 + y4y2 + y3y2y0 + y3y2 + y3

+ y2y1 + y2y0 + y1y0

The algebraic degree of the ANF of the inverse Ascon S-box is 3. Therefore,
the degree for an r-round inverse Ascon permutation is at most 3r.

Basic distinguisher for 12 rounds. To create a zero-sum distinguisher for
the 12-round Ascon permutation that is used for the cipher’s initialization and
finalization, we target the intermediate state after round 5. Thus, we attack
5 backward (inverse) rounds and 7 forward rounds. An upper bound for the
degree of the 7-round permutation is 27 = 128, while for the 5 inverse rounds,
an upper bound is 35 = 243. So we choose d = 244, fix 320 − 244 = 76 bits of
the intermediate state and vary the remaining 244 bits to create a set of 2244

intermediate states. For all these states, we calculate 7 rounds forward and 5
rounds backward. The sum of all the resulting input and output values over Fn

2 is
zero. A similar attack is possible for 11 = 4+7 rounds (with d = max{81, 128}+
1 = 129) and for 13 = 5 + 8 rounds (with d = max{243, 256}+ 1 = 257).

Improvement using Walsh spectrum analysis. The complexity of the 12-
round distinguisher can be further improved by analyzing the permutation’s



Walsh spectrum and applying the techniques by Boura and Canteaut [6]: If
the Walsh spectrum of a function F : Fn

2 → Fn
2 is 2`-divisible, then for any

G : Fn
2 → Fn

2 , we have

deg(G ◦ F ) ≤ n− `+ deg(G).

As Boura and Canteaut show, the Walsh spectrum of the Keccak S-box is 23-
divisible. The affine linear preprocessing and postprocessing that the Ascon
S-box adds compared to the Keccak S-box does not change this number. The
same holds true for the inverse S-box. The Ascon nonlinear layer applies this
S-box 64 times in parallel. The Walsh spectrum of a parallel composition is the
multiplication of the individual Walsh spectra [6]. Thus, the Walsh spectrum of
the complete nonlinear layer is divisible by 23·64 = 2192. Let p denote one round
of the Ascon permutation, and p−1 its inverse. A closer bound on the degree of
5 rounds of the inverse permutation, p−5, is then obtained by

deg(p−5) = deg(p−4 ◦ p−1) ≤ 320− 192 + deg(p−4) ≤ 320− 192 + 81 = 209.

Thus, d = max{209, 128} + 1 = 210 is sufficient for 12 = 5 + 7 rounds of the
Ascon permutation.

Adding a free round in the middle. Additionally, as Boura and Canteaut [6]
observe, an additional round can be added to the attack (almost) for free as
follows: The original attack requires an intermediate state where n− d bits are
fixed to a constant, while d bits loop through all possible valuations. Now, we
set d to be a multiple of the 5-bit S-box size and furthermore, choose the d
variable bits such that they always include complete S-boxes. Then, the inputs
(and consequently outputs) of some S-boxes are constant, while the other S-
boxes have their inputs (and consequently outputs) loop through all possible
values. If we look at the output of the nonlinear layer after this intermediate
step, we observe it adheres to the same pattern as the input: n − d bits are
fixed and d bits enumerate through all their possible values. We can now use the
original intermediate step as the starting point for the backwards rounds, and the
output of the nonlinear layer as the starting point for the forward rounds (plus
an additional, free linear layer). This way, we can extend the previous attacks
by one round each, with the only additional cost of choosing d as a multiple of
5. We get zero-sum distinguishers on 12, 13, and 14 rounds with d = 130, 210,
and 260, respectively.

More rounds. Finally, the results of Boura et al. [7, Theorem 2] are also directly
applicable to our previous results to distinguish up to 20 permutation rounds
with d = 319 (using 9 backward rounds with degree ≤ 318 and 11 forward rounds
with degree ≤ 317, no free middle round possible).

Using a zero-sum distinguisher, we can show non-random properties for the
full 12-round permutation of Ascon. However, the designers already state [11]



that the permutation is not ideal and are aware of such distinguishers. The non-
ideal properties of the permutation do not seem to affect the security of Ascon.
In particular, the complexity of 2130 is above the cipher’s claimed security level.

4 Cube attacks

Recently, Dinur et al. [9] published various cube and cube-like attacks on sev-
eral keyed primitives using the Keccak permutation. Those cube-like attacks
include cube testers, which can serve as distinguishers, and also cube-like at-
tacks to recover the secret key. In this section, we apply two attacks presented
by Dinur et al. [9] to Ascon.

4.1 Brief description of cube attacks

The cube attack is an algebraic attack developed by Dinur and Shamir [10].
This algebraic attack builds on the fact that for most ciphers, each output bit
can be represented as a polynomial over Fn

2 in algebraic normal form (ANF).
The variables xi of this polynomial may be single bits of plaintext, key-bits,
or constants. Dinur and Shamir made the following observation: If a carefully
chosen set of plaintext bits is varied over all possible values and the other bits
are kept constant, the sum of one bit of the output (cube sum) might be the
result of a linear polynomial (called superpoly) consisting solely of bits of the
secret key. By gathering many of these linear polynomials, the secret key can be
found.

To perform such a cube attack on a cipher, two things have to be done. First,
an attacker has to find such cubes (variables to vary and the resulting linear key
relations). This is done in an offline preprocessing phase. Here, the attacker
determines the cubes by selecting the cube variables randomly and check if the
resulting superpoly is linear and contains the key. This preprocessing phase has
to be carried out once for each cipher. In an online phase, the attacker uses the
knowledge of the cubes to recover the secret key of his target. To perform the
attack, the attacker has to be able to choose the plaintext according to his needs
and obtain the corresponding ciphertext outputs.

4.2 Cube attack on Ascon

Now we want to investigate the potential threat of cube attacks to Ascon.
If we look at the different phases of Ascon, the only phase where a nonce-
respecting adversary can easily keep some inputs of the permutation constant
and deterministically influence others is the initialization. In this scenario, the
key is kept secret and the attacker has the ability to choose the nonce according
to his needs.

As evaluated in Section 3, the degree of a 5-round initialization of Ascon is
at most 32. Thus, if we search for cubes of 31 variables, the resulting superpoly
is definitely linear or constant. Considering 6 rounds of the initialization, we



have to look for cubes with at most 63 variables, for 7 rounds with at most 127
variables and so on. So it is likely that a practical cube attack on 6 rounds is
already hard to achieve. However, we have not searched for cubes, but instead
performed cube-like attacks on Ascon to recover the secret key in Section 4.4.

4.3 Distinguishers using cube testers

Below, we describe a cube tester for 6 rounds of the Ascon permutation with
the property that the generated output bits sum to zero over F2. Moreover, this
cube tester has a practical complexity of only 233, although the expected degree
for 6 rounds of the Ascon permutation is about 64. To achieve this, we have to
take a closer look at the internal structure of Ascon.

The permutation of Ascon starts with the substitution layer. In this layer,
the 5-bit S-box is applied 64 times in parallel to the internal state of Ascon.
Each of the five 64-bit words of the internal state contributes exactly one bit to
each instantiation of a 5-bit S-box. So if all cube variables lie within the same
word of the state, they do not appear together in one term after the application
of the S-box layer. Hence, after 5 more rounds, at most 32 variables of one state-
word appear together in one term. As a consequence, selecting a cube of 33
variables of the same state-word definitely results in an empty superpoly and all
233 generated outputs sum to zero.

This distinguisher can be used to distinguish the key-stream generated by As-
con-128 in a nonce-misuse scenario, where the attacker can keep the nonce con-
stant while varying the plaintext. For Ascon-128, 64-bit blocks of plaintext are
xored with the state-word x0. Thus, the attacker can vary 33 bits of the first
plaintext block, while keeping the remaining 31 bits and the bits of a second
plaintext block constant. The resulting 233 second ciphertext blocks will sum
to zero. However, the designers of Ascon strictly forbid nonce reuse, and no
security claims are made for such a scenario.

Similar cube testers can be applied to reduced versions of Ascon with only
6 rounds (instead of 12 rounds) of initialization. Then, an attacker with con-
trol over the nonce can observe the first key-stream block. In contrast to the
nonce-misuse scenario, attacks on round-reduced versions of Ascon in a nonce-
respecting scenario give insight in the expected security of Ascon and are there-
fore of more value. Next, we will show how to extend the observations made in
this section to a key-recovery attack on round-reduced versions of Ascon.

4.4 Key recovery using cube-like attacks

Dinur et al. [9] published a key recovery attack where the superpoly does not
necessarily have to be a linear function of the secret key bits, but can also be
non-linear. Such attacks are also possible for round-reduced versions of Ascon,
with the initialization reduced to 5 or 6 out of 12 rounds. The attack on 5 rounds
has practical complexity and has been implemented. We will discuss the working
principle of the attack by means of a 5-round version of Ascon-128. For a 6-
round initialization, the attack works similarly. The attack itself is divided into



two steps, each with an online and an offline phase, and relies on the following
two observations.

Observations. The first observation has already been discussed in the context
of cube testers: If all cube variables are located within one state-word, they do
not appear in the same term of the output polynomial after one application of
the substitution layer.

To discuss the second observation, we have to take a look at the ANF of the
S-box and consider the positions of the initial values. During the initialization,
the constant C is written to x0, the first word K1 of the key to x1, the second key
word K2 to x2, the first word N1 of the nonce to x3, and the second nonce word
N2 to x4. We use the ANF of the S-box to get the relations for the state words
x0, . . . , x4 after the first call of the substitution layer. The index i represents the
corresponding bit position of the 64-bit word.

x0[i] = N2[i]K1[i] +N1[i] +K2[i]K1[i] +K2[i] +K1[i]C[i] +K1[i] + C[i]

x1[i] = N2[i] +N1[i](K2[i] +K1[i]) +N1[i] +K2[i]K1[i] +K2[i] +K1[i] + C[i]

x2[i] = N2[i]N1[i] +N2[i] +K2[i] +K1[i] + 1

x3[i] = N2[i]C[i] +N2[i] +N1[i]C[i] +N1[i] +K2[i] +K1[i] + C[i]

x4[i] = N2[i]K1[i] +N2[i] +N1[i] +K1[i]C[i] +K1[i]

Observe that N2[i] is only combined nonlinearly with key bit K1[i], and N1[i]
only with K1[i] and K2[i]. As demonstrated by Dinur et al. [9], we can make use
of this fact to build a so-called borderline cube. For instance, we select N2[0..15]
as our cube variables. The rest of the nonce is kept constant. After round 1, our
cube variables only appear with K1[0..15] in one term and definitely not together
with the other bits of the secret key. After 4 more rounds, all of the cube variables
may appear together in one term, possibly combined with a selection of the key
bits K1[0..15], but never together with the rest of the key bits. Thus, the cube
sum depends on K1[0..15], but it does not depend on K1[16..63], or K2[0..63].
This fact leads to the following attack.

Step 1. In the first step, we recover the key-word K1 in 16-bit chunks. Therefore,
we select 4 different borderline cubes with 16 variables in N2 and probe the online
oracle with each of these 4 sets. So we get 4 sums of key-stream blocks, each
dependent on 16 different key bits of K1. In the upcoming offline phase, we use
the fact that the sum of the outputs (key-stream blocks) only depends on 16 key
bits. So we set the rest of the key bits to a constant and calculate cube sums
for every possible 16-bit key part. If such a cube sum corresponds to the cube
sum received in the online phase, we get a key candidate. In our experiments,
we only received one key candidate per 16-bit block on average. Therefore, we
only have one key candidate on average for K1.

Step 2. In the second step, we recover K2 in 16-bit chunks. To do so, we
use N1[i] to create our borderline cubes. In contrast to the step before, we



have a dependency of the output on bits of K1, too. So we have to repeat the
offline phase for every guess of K1 received in the previous step. The rest of the
procedure works in the same manner as for the recovery of K1. Again, we only
received one key guess for K2 on average in our implementation of the attack.

The complexity of the described attack depends on the number of key can-
didates for K1 and K2. Since the attack on 5 rounds is practical and we have
implemented it, we can state that we only have one key candidate on average. So
we estimate that the time complexity is about 8 ·232. The attack works similarly
for reduced versions of Ascon with only 6 initialization rounds. Here, we need
borderline cubes of size 32. If we make the optimistic assumption that we only
have one key guess for each recovered key word, the estimated time complexity
for the 6 round attack is 4 · 264.

5 Differential and linear cryptanalysis

Differential [5] and linear [18] cryptanalysis are two standard tools for cryptanal-
ysis. New designs are typically expected to come with some kind of arguments
of security against these attacks. For this reason, the designers of Ascon pro-
vided security arguments for the individual building blocks (S-box, linear layer),
and included first practical results on the differential analysis of Ascon in the
design document. In this section, we show some improvements over the existing
differential characteristics and present the first linear characteristics for Ascon,
including computer-aided proofs on the minimum number of active S-boxes for
3-round characteristics. In addition, we use the combination of differential and
linear characteristics to perform practical key-recovery attacks on round-reduced
versions of Ascon.

5.1 Linear and differential bounds

Beside using heuristic search techniques to find actual characteristics for Ascon
(see Section 5.2), we have also used complete search tools (MILP and SAT) to
prove bounds on the best possible linear and differential characteristics. The
results are given in this section.

Linear programming. We have first modelled the problem of minimizing the
number of active S-boxes in differential characteristics for round-reduced versions
of the Ascon permutation as a mixed integer linear program (MILP). The model
for R rounds uses the following variables:
– xr,w,b ∈ {0, 1} specifies whether bit b of word w of the S-box input in round r

is different between the two messages, where b = 0, . . . , 63 and w = 0, . . . , 4.
– yr,w,b ∈ {0, 1} specifies whether bit b of word w of the S-box output in round
r is different between the two messages, where b = 0, . . . , 63 and w = 0, . . . , 4.

– dr,b ∈ {0, 1} specifies if S-box b of round r is active, b = 0, . . . , 63.
– ur,w,b ∈ {0, 1, 2} is a helper for the linear layer model in word w of round r.



The optimization objective is to minimize the number of active S-boxes,

min

R∑
r=1

63∑
b=0

dr,b.

The S-box is modelled only by specifying its branch number, and linking it with
the S-box activeness for each r = 1, . . . , R and b = 0, . . . , 63:

dr,b≤
63∑

w=0

xr,w,b ≤ 5dr,b,

63∑
w=0

(xr,w,b + yr,w,b) ≥ 3dr,b, dr,b ≤
63∑

w=0

yr,w,b ≤ 5dr,b

The linear layer is modelled explicitly for r = 1, . . . , R and b = 0, . . . , 63:

yr,0,b + yr,0,b+19 + yr,0,b+28 + xr+1,0,b = 2 · ur,0,b
yr,1,b + yr,1,b+61 + yr,1,b+39 + xr+1,1,b = 2 · ur,1,b
yr,2,b + yr,2,b+1 + yr,2,b+6 + xr+1,2,b = 2 · ur,2,b

yr,3,b + yr,3,b+10 + yr,3,b+17 + xr+1,3,b = 2 · ur,3,b
yr,4,b + yr,4,b+7 + yr,4,b+41 + xr+1,4,b = 2 · ur,4,b

Finally, at least one S-box needs to be active:

4∑
w=0

x0,w,0 ≥ 1

The model for linear cryptanalysis is essentially identical, except for different
rotation values. This MILP can then be solved using an off-the-shelf linear op-
timization tool, such as CPLEX. Unfortunately, it turns out that the highly
combinatorial nature of the problem is not well suited for linear solvers, and
that SAT solvers are a better fit for this type of problem.

SAT solvers. For SAT solvers, we can model essentially the same description
by using an extended modelling language, as is used by Satisfiability Modulo
Theory (SMT) solvers. We used the constraint solver STP by Ganesh et al. [13]
to translate a bitvector-based CVC model to conjunctive normal form (CNF).
This CNF model can then be solved using a parallel SAT solver, such as Biere’s
Treengeling [3]. Instead of an optimization problem, the problem has to be
phrased in terms of satisfiability; i.e., the questions is whether solutions below a
specific bound exist.

Modelling the S-box only in terms of its branch number is not very effective
for obtaining tight bounds. As a trade-off between the all-too-simplistic branch
number model and the complex complete differential description of the S-box
(differential distribution table), we chose the following approximation. The lin-
ear preprocessing and postprocessing part of the S-box can easily be modelled



exactly for both differential and linear cryptanalysis. The nonlinear core (equiv-
alent to the Keccak S-box) is approximated, i.e., the model allows a few tran-
sitions that are not possible according to the differential or linear distribution
table. For the differential model, we use the following word-wise constraint in
terms of input difference words a0, . . . , a4 ∈ F64

2 and output difference words
b0, . . . , b4 ∈ F64

2 :

bi = ai ⊕ ((ai+1 ∨ ai+2) ∧ ti), ti ∈ F64
2 , i = 0, . . . , 4.

For the linear model with word-wise linear input mask a0, . . . , a4 ∈ F64
2 and

output mask b0, . . . , b4 ∈ F64
2 , the constraints are similar:

ai = bi ⊕ ((bi−1 ∨ bi−2) ∧ ti), ti ∈ F64
2 , i = 0, . . . , 4.

With this model, we can easily prove that the 3-round Ascon permutation has at
least 15 differentially active S-boxes (probability ≤ 2−30), and at least 13 linearly
active S-boxes (bias ≤ 2−14, complexity ≥ 228). The bounds on the number of
active S-boxes are tight, but not necessarily those on the probability. Using
these results, we can prove that the full 12-round initialization or finalization
has at least 60 differentially active S-boxes (probability ≤ 2−120) and at least
52 linearly active S-boxes (bias ≤ 2−53, complexity ≥ 2106). These bounds are
almost certainly not tight, but we were not able to derive bounds for more than
3 rounds using SAT solvers. This motivates the use of heuristic search tools to
find explicit characteristics.

5.2 Differential and linear characteristics

In Table 4, we present an overview of our best differential and linear characteris-
tics for different round numbers of the Ascon permutation. We have been able
to improve the differential characteristic for 4 rounds of the Ascon permutation
compared to the previous best results by the designers [11]. Since the design-
ers included no results on linear cryptanalysis in the submission document, we
provide the first linear analysis. When comparing the best differential character-
istics with the best linear characteristics, we see that for more than two rounds
of the Ascon permutation, the linear characteristics have fewer active S-boxes.
This might indicate that Ascon is more vulnerable to linear cryptanalysis. Nev-
ertheless, for 5 rounds of Ascon, the best found linear characteristic has more
than 64 active S-boxes. Assuming the best possible bias for all active S-boxes,
the attack complexity is already higher than 2128.

5.3 Forgery attack on round-reduced Ascon

Usually, the characteristics from Section 5.2 cannot be directly used in an attack,
since there might be additional requirements that the characteristic has to fulfill.
In the case of an attack on the finalization of Ascon-128, suitable characteristics
may only contain differences in stateword x0 at the input of the permutation.



Table 4. Minimum number of active S-boxes for the Ascon permutation.

result rounds differential linear

proof
1 1 1
2 4 4
3 15 13

heuristic
4 44 43

≥ 5 > 64 > 64

The rest of the statewords have to be free of differences. For the output of the
finalization, the only requirement is that there is some fixed difference pattern
in x3 and x4. Knowledge about the expected differences in x0, x1, and x2 at the
output of the permutation is not required.

For round-reduced versions of Ascon, we have found suitable characteristics
for a reduced 3-round finalization with a probability of 2−33 and for 4-round
finalization with a probability of 2−101. The used characteristic for the three
round attack is given in Table 6 and the differential for the four round attack is
given in Table 7 in Appendix A.

5.4 Differential-linear cryptanalysis

In differential-linear cryptanalysis, differential and linear characteristics are used
together in an attack. This kind of analysis was introduced by Langford and
Hellman [17]. Later on, it was demonstrated that this type of analysis is also
suitable for cases where the differential and the linear part have a probability
different from 1 [4,16]. Differential-linear cryptanalysis is especially useful if the
combined success probability of one short differential characteristic and one short
linear characteristic is better than the probability of a longer linear or differential
characteristic. One reason for such a behavior might be a bad diffusion for fewer
rounds. For the attack to work, the individual probabilities of the two used
characteristics have to be relatively high. According to Dunkelman et al. [12],
the bias at the output of such a differential-linear characteristic is about 2pq2,
where q is the bias of the linear part and p the probability of the differential
characteristic. This results in a data complexity of O(p−2q−4).

Outline of the attack. For Ascon-128, we can use differential-linear charac-
teristics as key-stream distinguisher. Like for cube-tester (Section 4.3), we can
target either the initialization in a nonce-respecting scenario, or the processing
of the plaintext in a nonce-misuse scenario. Here, we focus on the initialization.
Therefore, differences are only allowed in the nonce (x3, x4), whereas the linear
active bits have to be observable and therefore must be in x0.

Analysis of the initialization. We start with the analysis of a 4-round ini-
tialization and create a differential-linear characteristic for it. For the differential



part, we place two differences in the same S-box of round 1. With probability
2−2, we have one active bit at the output of this S-box. The linear layer ensures
that 3 S-boxes are active in the second round. Those 3 S-boxes have the dif-
ference at the same bit-position of their input. All 3 active S-boxes of round 2
have the same output pattern of 2 active bits with probability 2−3. Due to the
linear layer, we then have differences on 11 S-boxes of round 3. For the linear
characteristic, we use a characteristic with one active S-box in round 4 and 5
active S-boxes in round 3. The bias of the linear characteristic is 2−8. In addi-
tion, we place the S-boxes in a way that the linear active S-boxes in round 3 do
not overlap with the 11 S-boxes that have differences at their inputs. The bias
of the generated differential-linear characteristic is 2pq2 = 2−20. In practice, we
are only interested in the bias of the output bit for the specific differences at the
input. Due to the vast amount of possible combinations of differential and linear
characteristics that achieve these requirements, we expect a much better bias.

Practical evaluation of the bias. In the best case, we place differences in
bit 63 of x3 and x4, and get a bias of 2−2 in bit 9 of x0 on the output of the
substitution layer of round 4. This is much better than the result of 2−20 that we
obtained from the theoretical analysis. It is possible to combine multiple charac-
teristics to also get to a bias of 2−2 in theory. However, we decided to reduce our
differential-linear analysis to statistical tests, where we place differences at the
input and try to measure a bias at the output bits. We think that this method
is sufficient for practical attacks. For a 5-round initialization, we observe a bias
of 2−10 on x0[16] (last substitution layer) for differences in x3[63], and x4[63].
This bias can be improved to 2−9 if we only use nonces with the same sign of
the difference (the concrete pairs for both x3[63] and x4[63] are either (0, 1) or
(1, 0)). In the case of a 6-round initialization, we were not able to observe a bias
by using a set of 236 inputs. The biases were averaged for randomly-chosen keys.

Observing key-dependency of the bias. As shown by Huang et al. [14], the
bias observed at the output depends on the concrete values of secret and con-
stant bits. They used this observation to recover the secret state of ICEPOLE in
a nonce-misuse scenario. So we expect that a similar attack is possible on round-
reduced versions of Ascon-128. In contrast to Huang et al., we want to recover
the secret key directly and attack round-reduced versions of the initialization.
This also transfers the attack to a nonce-respecting scenario. For a reduced ini-
talization of 4 out of 12 rounds, we observed the bias patterns shown in Table 5.
This table shows that the observable bias depends on the concrete values of two
key bits which contribute to the same S-box as the used difference. Moreover,
the bias is completely independent of the concrete value of the constant in x0.
This leads to the following straightforward attack.

Key-recovery attack on round-reduced Ascon. The target of this attack
is a round-reduced version of Ascon-128, where the initialization is reduced to



Table 5. Bias of bit x0[i + 1] in the S-box outputs of round 4 for differences in input
bits x3[i] and x4[i] (230 different inputs).

inputs (x1[i], x2[i]) key-bit pair (0, 0) (0, 1) (1, 0) (1, 1)

output x0[i + 1]
sign +1 −1 +1 −1
bias 2−2.68 2−3.68 2−3.30 2−2.30

4 out of 12 rounds. In this setting, the attacker has the ability to choose the
nonce and is able to observe the resulting key stream. The attacker performs
a sufficient amount of queries, with pairs of nonces which have differences in
x3[63] and x4[63], and calculates the bias of x0[0] of the key-stream. With the
help of Table 5, the attacker is able to recover two bits of the key by matching
the expected bias with his calculated bias. Since the characteristics of Ascon
are rotation-invariant within the 64-bit words, the same method can be used to
recover the other key bits by placing differences in bits i and observing the bias
at position i + 1 mod 64. Already 212 samples per bit position i are sufficient
to get stable results. This results in an expected time complexity of 218 for
the key-recovery attack on 4 rounds. However, in practice, we use the bias of
all the bits and compute the correlation with the results of a precomputation
(fingerprinting) phase to get better results. This way, we were also able to mount
a key-recovery attack on the initialization of Ascon-128 reduced to 5 out of 12
rounds. In particular, we can reliably recover all key-bit pairs with values (0, 0)
and (1, 1) with a low complexity of 236. However, we need to brute-force the
other pairs, which results in an additional complexity of 232 on average and
264 in the worst case. Thus, the expected attack complexity is about 236. The
complexities of both attacks on 4 and 5 rounds of the initialization have been
practically verified.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. The work has been supported in
part by the Austrian Science Fund (project P26494-N15) and by the Austrian
Research Promotion Agency (FFG) and the Styrian Business Promotion Agency
(SFG) under grant number 836628 (SeCoS).

References

1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. CHES rump session (2009)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak Specifications. Sub-
mission to NIST (Round 3) (2011), http://keccak.noekeon.org

3. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT Competition
2013. In: Balint, A., Belov, A., Heule, M., Järvisalo, M. (eds.) SAT Competition
2013. vol. B-2013-1, pp. 51–52 (2013), http://fmv.jku.at/lingeling/

http://keccak.noekeon.org
http://fmv.jku.at/lingeling/


4. Biham, E., Dunkelman, O., Keller, N.: Enhancing Differential-Linear Cryptanaly-
sis. In: Zheng, Y. (ed.) Advances in Cryptology – ASIACRYPT 2002. LNCS, vol.
2501, pp. 254–266. Springer (2002)

5. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) Advances in Cryptology – CRYPTO 1990.
LNCS, vol. 537, pp. 2–21. Springer (1990)

6. Boura, C., Canteaut, A.: A zero-sum property for the Keccak-f permutation with
18 rounds. In: IEEE International Symposium on Information Theory. pp. 2488–
2492. IEEE (2010)

7. Boura, C., Canteaut, A., Cannière, C.D.: Higher-order differential properties of
keccak and Luffa. In: Joux, A. (ed.) Fast Software Encryption – FSE 2011. LNCS,
vol. 6733, pp. 252–269. Springer (2011)

8. Daemen, J.: Permutation-based Encryption, Authentication and Authenticated
Encryption. DIAC – Directions in Authenticated Ciphers (2012)

9. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube Attacks
and Cube-attack-like Cryptanalysis on the Round-reduced Keccak Sponge Func-
tion. IACR Cryptology ePrint Archive 2014, 736 (2014), http://eprint.iacr.

org/2014/736

10. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In:
Joux, A. (ed.) Advances in Cryptology – EUROCRYPT 2009. LNCS, vol. 5479,
pp. 278–299. Springer (2009)

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission to the
CAESAR competition: http://ascon.iaik.tugraz.at (2014)

12. Dunkelman, O., Indesteege, S., Keller, N.: A Differential-Linear Attack on 12-
Round Serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) Progress in Cryp-
tology – INDOCRYPT 2008. LNCS, vol. 5365, pp. 308–321. Springer (2008)

13. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Com-
puter Aided Verification (CAV ’07). Springer (2007), https://sites.google.com/
site/stpfastprover/

14. Huang, T., Wu, H., Tjuawinata, I.: Practical State Recovery Attack on ICEPOLE,
http://www3.ntu.edu.sg/home/huangtao/icepole/icepole_attack.pdf

15. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 Security in Sponge-Based
Authenticated Encryption Modes. In: Sarkar, P., Iwata, T. (eds.) Advances in
Cryptology - ASIACRYPT 2014. LNCS, vol. 8873, pp. 85–104. Springer (2014),
http://dx.doi.org/10.1007/978-3-662-45611-8_5

16. Langford, S.K.: Differential-linear cryptanalysis and threshold signatures. Ph.D.
thesis, Stanford University (1995)

17. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt,
Y. (ed.) Advances in Cryptology – CRYPTO 1994. LNCS, vol. 839, pp. 17–25.
Springer (1994)

18. Matsui, M., Yamagishi, A.: A New Method for Known Plaintext Attack of FEAL
Cipher. In: Rueppel, R.A. (ed.) Advances in Cryptology – EUROCRYPT 1992.
LNCS, vol. 658, pp. 81–91. Springer (1992)

19. National Institute of Standards and Technology: FIPS PUB 180-4: Secure Hash
Standard. Federal Information Processing Standards Publication 180-4, U.S. De-
partment of Commerce (March 2012), http://csrc.nist.gov/publications/

fips/fips180-4/fips-180-4.pdf

20. The CAESAR committee: CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness (2014), http://competitions.cr.yp.to/

caesar.html

http://eprint.iacr.org/2014/736
http://eprint.iacr.org/2014/736
http://ascon.iaik.tugraz.at
https://sites.google.com/site/stpfastprover/
https://sites.google.com/site/stpfastprover/
http://www3.ntu.edu.sg/home/huangtao/icepole/icepole_attack.pdf
http://dx.doi.org/10.1007/978-3-662-45611-8_5
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html


A Differentials to create forgery

Table 6 contains the differential characteristic and Table 7 contains the differen-
tial used for the forgery attacks of Section 5.3. One column corresponds to the
five 64-bit words of the state, and the xor differences are given in hexadecimal
notation (truncated in the last round).

Table 6. Differential characteristic to create forgery for round-reduced Ascon-128
with a 3-round finalization. The differential probability is 2−33.

input difference after 1 round after 2 rounds after 3 rounds

x0 8000000000000000 8000100800000000 8000000002000080 ????????????????

x1 0000000000000000 8000000001000004 9002904800000000 ????????????????

x2 0000000000000000 → 0000000000000000 → d200000001840006 → ????????????????

x3 0000000000000000 0000000000000000 0102000001004084 4291316c5aa02140

x4 0000000000000000 0000000000000000 0000000000000000 090280200302c084

Table 7. Differential to create forgery for round-reduced Ascon-128 with a 4-round
finalization. The differential probability is 2−101.

input difference after 4 rounds

x0 8000000000000000 ????????????????

x1 0000000000000000 ????????????????

x2 0000000000000000 → ????????????????

x3 0000000000000000 280380ec6a0e9024

x4 0000000000000000 eb2541b2a0e438b0

B Differential-linear key recovery attack on 4 rounds

Fig. 2 illustrates the observed bias in bit x0[i] in the key-stream for the diffe-
rential-linear attack of Section 5.4, grouped by the values of the key-bit pair
(x1[63], x2[63]).



-0.4

-0.2

 0

 0.2

 0.4

 0  15  31  47  63

b
ia

s

bits

(a) key (0,0)

-0.4

-0.2

 0

 0.2

 0.4

 0  15  31  47  63

b
ia

s

bits

(b) key (1,1)

-0.4

-0.2

 0

 0.2

 0.4

 0  15  31  47  63

b
ia

s

bits

(c) key (0,1)

-0.4

-0.2

 0

 0.2

 0.4

 0  15  31  47  63

b
ia

s

bits

(d) key (1,0)

Fig. 2. Biases for the differential-linear attack on the initialization of Ascon reduced
to 4 (out of 12) rounds for the key-bit pair values (0, 0), (0, 1), (1, 0), (1, 1).


	Cryptanalysis of Ascon

