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Abstract

Cryptography is a major enabler of the modern way of life. It provides secure elec-
tronic commerce, digital signatures, secure protocols, secure satellite set-top boxes,
secure phone calls, electronic voting, and much more. Cryptanalysis verifies the
promises of the cryptography. For example, we are interested in verifying that en-
cryption algorithms are indeed secure, as well as the protocols in which they are
embedded. In many cases, it is better having a system without any security claims
than having a poorly designed cipher in a badly designed system, as the user of a
system with no security is aware of the fact that it is insecure, while users of a com-
promised communications system might believe that the system is secure, and trust
it with their secrets.

This thesis contains four independent contributions in the field of cryptanalysis.
In the first contribution we consider the cipher Rijndael, which was recently chosen as
the United-States’ Advanced Encryption Standard (AES). Like many other ciphers,
Rijndael has constant values that are used during the encryption process. We ask
what happens when we replace all the constant in the cipher. We show that such
replacements can create many dual ciphers which are isomorphic to the original one.
Dual ciphers have several possible applications, including insight for cryptanalysis,
protection against side-channel attacks (such as measuring the power used during the
encryption process to recover the encryption key), and finding faster implementations
of existing ciphers. As a result of our work, researchers used our dual ciphers to
construct a very efficient implementation of Rijndael in hardware.

In the second contribution, we consider the most deployed cellular system —
the Global System for Mobile communications (GSM). We present a very practical
ciphertext-only attack (an attack that can recover the encryption key given just some
encrypted information) on encrypted GSM communications that works whenever
the “weaker” cipher A5/2 is used. The attack takes less than a second to complete
on a personal computer. Then, we adapt the attack to a more complicated and
slower passive attack on the stronger cipher A5/1. We also describe a fast attack on
networks using A5/1. This attack is an active attack, i.e., the attacker is required to

1

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



transmit. We stress that the attack is on the protocol of GSM, and it works whenever
the mobile phone supports the weaker cipher A5/2. This attack can also be used to
attack the newest and strongest GSM cipher A5/3, by breaking A5/1 or A5/2, and
can be used to attack GPRS (an internet-like service on GSM) in a similar way. We
have provided early warnings to the GSM authorities about these attacks, and the
authorities are working to correct the flaws.

Our third contribution is a new attack that we present on stream ciphers that
use Linear Feedback Shift Registers (LFSRs) in a certain way that is called irregular
clocking. The attack uses a new method called conditional estimators that can
overcome some of the cryptanalytic difficulties induced by the irregular clocking. We
apply the attack to GSM’s A5/1, and achieve the best known-plaintext attack on
A5/1 so far. With 1500–2000 frames of known keystream, i.e., about 6.9–9.2 seconds
of communication, the attack can find the encryption key within a couple of tens of
seconds to a couple of minutes of computation on a personal computer.

Our fourth contribution relates to generic attacks on ciphers, in particular, we
prove bounds on cryptanalytic time/memory tradeoffs. In generic attacks, the cipher
is treated as a black-box function f : {0, 1, . . . , N} 7→ {0, 1, . . . , N}, and the goal
of the attack is to invert f on a value y, i.e., to find an x such that f(x) = y.
Two extreme generic attacks are the exhaustive search attack which goes over all
the values x in search for a pre-image of y, and the table lookup attack which
uses a huge table that stores for each image y a preimage x. In 1980, Hellman
presented the best known cryptanalytic time/memory tradeoff, which can be seen
as a compromise between exhaustive search and table lookup. In a time/memory
tradeoff, the attacker uses several tables which together consume significantly less
memory compared to the table needed for table lookup, but the attack also works in
a significantly shorter time than exhaustive search. Since Hellman’s discovery, many
improvements to time/memory tradeoff followed, including a new scheme from 2003,
called the Rainbow scheme, which claims to save a factor two in the worst-case time
complexity. In our work, we set a general model for cryptanalytic time/memory
tradeoffs, which includes all the existing schemes as special cases. The model is
based on a new notion of stateful random graphs, in which the evolution of paths
depends on a hidden state. Through a rigorous combinatorial analysis, we prove
an upper bound on the number of images y = f(x) for which f can be inverted
using a tradeoff scheme, and derive from it a lower bound on the number of hidden
states. These bounds hold with an overwhelming probability over the random choice
of the function f . With some additional natural assumptions on the behavior of
the online phase of the algorithm, we prove a tight lower bound on its worst-case
time complexity T = Ω( N2

M2 ln N
), where M is the memory complexity. We describe

2
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new variants of existing schemes, including a method that can improve the time
complexity of the online phase (by a small factor) by performing deeper analysis
during the preprocessing phase.

3
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Chapter 1

Introduction

While historically cryptography was used mostly in military settings, it has become
a leading enabler in everyday modern life. From secure purchasing over the Inter-
net to digital satellite decoders, from encrypting cellular conversations to automatic
toll collection, from smart cards to electronic voting, cryptography is an essential
component.

Cryptanalysis is the science that evaluates the promises of cryptography: When
we make a purchase over the Internet, we would like our transaction to be “secure”.
We wish that attackers would not be able to tap to our personal information, change
the results of electronic voting without being detected, make fraudulent calls on
our account, etc. Cryptanalysis focuses in evaluating the strength of cryptographic
primitives and protocols.

It is commonly believed that the fate of entire nations was affected by cryptog-
raphy. One example is the German Enigma machine. It started as a commercial
cipher, and later continuously improved and used by the German army. The Polish
broke the Enigma in the 1930’s, and improved their methods side by side with the
German improvement of the Enigma. A few weeks before the break of World War II
the Polish transferred their knowledge to the French and to the British. The British
further improved the Polish methods, and created a huge intelligence organization
of deciphering German encrypted communications. Later, the British shared their
information with the US forces. Although the French had an active military unit
for decrypting German Enigma communications even during the German occupa-
tion, and although the British used decrypted information in battles and to sink
German submarines, the fact that Enigma could be broken did not leak to the Ger-
mans. Many believe that the allies’ ability to decrypt German communication had
an overwhelming role in the result of the war.

4
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Cryptography has greatly evolved since. The Data Encryption Standard [62]
(DES) is probably the best known and studied modern cipher. It was designed in
the 1970’s, adopted as a standard in 1977, and later became the most widely used
cryptosystem. Although it has short keys of 56 bits, and although there are several
attacks on DES, it is still used today in some applications. It is the first modern
cipher that was designed as a standard, with open specifications, and was widely
accepted.1

Shortly after DES was published (and just before it was adopted as a standard)
the complementation property of DES was discovered, namely, given the ciphertext
T of a plaintext P , encrypted under a key K, i.e., T = DESK(P ), we know that
T̄ = DESK̄P̄ , where X̄ denotes the 1-complement of X. This property can be used
to reduce the complexity of exhaustive search by a factor of two.

The first attack on DES was a generic method of cryptanalysis, called a crypt-
analytic time/memory tradeoff, and it was introduced by Hellman [48] in 1980. The
basic idea of the attack is to choose a fixed plaintext P and treat the function
f(x) = DESx(P ) from the key to the ciphertext as a random function. Success
in inverting f is equivalent to finding the secret key. In a preprocessing phase the
whole key space is explored, and relevant data is stored in many tables (each table
covers only a small fraction of the images of f). In the inversion (online) phase
the ciphertext is processed, and the tables are searched in order to invert f on the
given ciphertext. As the ciphertext must be the encryption of the fixed plaintext
P , this method is generally considered a chosen plaintext attack. However, in many
settings it can be applied as a known-plaintext attack or a ciphertext-only attack,
e.g., when a fixed message is expected to be encrypted (like “login:”). The tradeoff
curve of Hellman’s time/memory tradeoff is

√
TM = N , where M is the memory

complexity (which corresponds to the total number of rows in the tables), T is the
time complexity of the inversion phase, and N is the size of the key space. Hellman’s
method was improved over the years. With an additional idea due to Rivest, the
number of memory accesses in the inversion phase can be reduced to

√
T (from T

in Hellman’s original method). Golic [46] and Babbage [5] independently discovered
that a better time/memory tradeoff exists for stream ciphers. Later, Biryukov and
Shamir [20] presented an improved time/memory/data tradeoff for stream ciphers
reaching a tradeoff curve of TM2D2 = N2, where D is the data that is available
for the attacker. Recently, Oechslin [67] presented a new scheme for cryptanalytic
time/memory tradeoff, whose tradeoff curve is

√
2TM = N .

1Not all standards set their cipher specification open. For example, the internal design of many
of the encryption algorithms of the GSM cellular standard, which was designed in the late 1980’s,
were never officially published.
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A major development in cryptanalysis of stream ciphers occurred in 1985, when
Siegenthaler [75] introduced correlation attacks on stream ciphers (which at that time
were commonly based on Linear Feedback Shift Registers — LFSRs). Siegenthaler
observed that there is a correlation between the output of the cipher and the internal
state of the registers. If the cipher is poorly designed (and most stream ciphers of the
time were in fact poorly designed), an attacker can reconstruct some of the internal
state of the cipher given enough bits of the output of the cipher. In the following
years, there were many improvements to correlation attacks, which reduced the time
complexities of the attacks, and extended them to situations where the basic attack
could not work.

In 1990, Biham and Shamir introduced differential cryptanalysis [16], which
marked a breakthrough in the cryptanalysis of block ciphers and hash functions.
Differential cryptanalysis was the first general method of analysis of block ciphers
that could, in principle, be applied to any iterated block cipher (although the result-
ing attack might be worse than exhaustive search). Being a general framework for an
attack, differential cryptanalysis revolutionized the science of cryptanalysis. When
applied to DES, differential cryptanalysis reduces the complexity of key recovery of
DES to an equivalent of 237 encryptions, given 247 chosen plaintexts.

In 1993, Matsui presented linear cryptanalysis [57]. Unlike differential cryptanal-
ysis, which is in its core a chosen-plaintext attack, linear cryptanalysis is a known
plaintext attack. Similarly to differential cryptanalysis, it is a statistical method that
can be applied, in principle, to any cipher. When applied to DES, it can recover a
DES key given only 243 known plaintexts.

Although theoretically DES is considered “broken”, differential and linear attacks
require a considerable amount of plaintext and ciphertext pairs. The Internet gave
a new chance for a collaborative work. RSA Security published a series of “DES
Challenges”: each contains a plaintext and its DES encryption under a secret key, and
offered a prize for the first person to recover each secret key. A collaborative effort of
tens of thousands of computers was formed over the Internet to solve the challenges.
Later, the Electronic Frontier Foundation developed a US$ 210,000 DES cracking
machine, specially designed to perform exhaustive search. In 1998 it recovered a
DES key in 56 hours. Consequently, Triple-DES, which encrypts a plaintext three
times under three different keys, replaced DES as the de-facto standard. However,
the need for a new encryption standard was already clear.

In 1997 NIST initiated an open contest [63] for the Advanced Encryption Stan-
dard — the AES. The intent was to choose a block cipher which will be secure well
into the 21st century. The requirements were a secure block cipher with 128-bit block
size, and key sizes of 128, 196, and 256 bits. The algorithms for encryption and de-
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cryption had to be efficient both in software and in hardware on various devices.
Five ciphers made it to the second round of the contest: MARS [27], RC6 [69], Ri-
jndael [65], Serpent [3], and Twofish [73]. Rijndael was selected in October 2000 as
the AES, and was officially declared the AES [65] in November 2001.

Rijndael was suggested by a research group that studied and promoted ciphers
that operate over the algebraic Galois field GF (2n). Using this kind of ciphers is
now a trend. The researchers’ motivations for using this kind of ciphers were com-
putational efficiency and mathematical simplicity: Modern computers process byte
operations very fast, while bit operations require more time. Thus, by representing
an element of GF (28) as a byte, these ciphers are very fast in software. In addi-
tion, the non-linear component of the cipher is often chosen to be the multiplicative
inversion in GF (28), as it has simple mathematical representation and optimal re-
sistance to linear and differential cryptanalysis. The drawback is that the resulting
cipher has a clear and simple algebraic structure. Algebraic structures may be used
to develop cryptographic attacks that exploit the simple algebraic description of the
cipher. Rijndael, being algebraic in nature, and being designed to resist linear and
differential cryptanalysis, has motivated new kinds of algebraic attacks.

In recent years there has been an increasing interest in algebraic attacks, both in
developing algorithms to efficiently solve the kind of systems of equations that arise
in cryptology, and also in developing attacks against specific cryptosystems. In 1999
Kipnis and Shamir introduced the relinearization [52] algorithm, which is focused
at solving overdefined systems of quadratic equations, and used it in an attempt
to attack the HFE public key cryptosystem. Later Courtois, Klimov, Patarin, and
Shamir presented the XL [30] algorithm that can be seen as an improvement of
relinearization. In 2002 Courtois and Pieprzyk developed the XSL [31] algorithm,
which is focused at solving sparse systems, in an attempt to attack block ciphers
in general, and Rijndael in particular. They claim that XSL can attack Rijndael
faster than exhaustive search. However, it appears difficult to estimate XSL’s time
complexity, so its time complexity remains in debate. In 2003 Courtois and Meier
successfully mounted an algebraic attack against the stream cipher Toyocrypt [29]
in a time complexity of about 249 CPU cycles, given 20 Kilobytes of keystream. In
spite of these advances, there is no known attack on Rijndael that can provably work
in a time faster than exhaustive key search.

Our motivation is to increase the knowledge and understanding of cryptanalysis.
Our main focus in this thesis is set on evaluating the strength of symmetric cryp-
tographic primitives, and the way these primitives are embedded in communication
protocols. In particular, we study structures of ciphers and the protocols in which
they are embedded, and develop methods to exploit these structures for cryptanaly-
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sis. The lessons learned from this thesis can serve designers in their mission to build
stronger systems and to improve the security of existing ones.

In our first contribution, we research into the importance of the specific choice
of constants in a cipher. We take Rijndael as an example, and ask what happens if
we replace all the constants in Rijndael (including the irreducible polynomial, the
coefficients of the MixColumns operation, the affine transformation in the S box,
etc). We show that such replacements can create new dual ciphers, which are iso-
morphic to the original cipher. We present several such dual ciphers of Rijndael,
such as the square of Rijndael, and dual ciphers with the irreducible polynomial
replaced by primitive polynomials. We also describe another family of dual ciphers
consisting of the logarithms of Rijndael. Then, we discuss self-dual ciphers, and show
that they can be attacked in a time faster than exhaustive search. We conclude this
contribution by discussing possible applications of dual ciphers, including insight for
cryptanalysis, protection against side-channel attacks, and finding faster implemen-
tations of existing ciphers. As a result of our work, [78] used our dual ciphers to
construct a very efficient implementation of Rijndael in hardware.

In our second contribution, we present a very practical ciphertext-only cryptanal-
ysis of communication encrypted in the most deployed cellular technology — GSM
(Global System for Mobile communication), and various active attacks on the GSM
protocols. These attacks can even break into GSM networks that use “unbreakable”
ciphers. We first describe a ciphertext-only attack on A5/2 which is the “weak”
cipher of GSM A5/2. The attack is an algebraic attack in its nature, and given a few
dozen milliseconds of encrypted off-the-air cellular conversation, it finds the correct
key in less than a second on a personal computer. We extend this attack to a (much
more complex) ciphertext-only attack on the stronger A5/1 cipher. We then describe
new (active) attacks on the protocols of networks that use A5/1, the newest GSM
cipher A5/3, or even the GPRS cipher (General Packet Radio Service, which is a
technology for implementing internet connectivity over GSM). These attacks exploit
flaws in the GSM protocols, and they work whenever the mobile phone supports a
weak cipher such as A5/2. We emphasize that these attacks are on the protocols,
and are thus applicable whenever the cellular phone supports a weak cipher, for ex-
ample, they are also applicable for attacking A5/3 networks using the cryptanalysis
of the weaker A5/1. Unlike previous attacks on GSM that require unrealistic infor-
mation, like long known plaintext periods, our attacks are very practical and do not
require any knowledge of the content of the conversation. Furthermore, we describe
how to fortify the attacks to withstand reception errors. As a result, our attacks
allow attackers to tap conversations and decrypt them either in real-time, or at any
later time. We discuss several attack scenarios such as call hijacking, altering of
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data messages and call theft. We have warned the GSM authorities of the securities
flaws prior to the publication, and they are changing the way GSM works in order
to overcome these flaws.

In our third contribution, we research into irregularly-clocked linear feedback
shift registers (LFSRs), which are commonly used in stream ciphers. The irregu-
lar clocking of the LFSRs causes an obfuscation effect by hiding the clockings of
the registers. We present a new attack method called conditional estimators, and
harness their cryptanalytic strength to mount correlation attacks on these ciphers.
Conditional estimators compensate for some of the obfuscating effects of the irreg-
ular clocking, resulting in a correlation with a considerably higher bias. On GSM’s
cipher A5/1, a factor two is gained in the correlation bias compared to previous
correlation attacks. We mount an attack on A5/1 using conditional estimators and
using three weaknesses that we observe in one of A5/1’s LFSRs (known as R2). The
weaknesses imply a new criterion that should be taken into account by cipher design-
ers. Given 1500–2000 known-frames (about 6.9–9.2 conversation seconds of known
keystream), our attack completes within a few tens of seconds to a few minutes on
a personal computer, with a success rate of about 91%. To complete our attack,
we present a source of known-keystream in GSM that can provide the keystream for
our attack out of 3–4 minutes of GSM ciphertext, thus transforming our attack to a
ciphertext-only attack.

In our fourth contribution, we formally define a general model of cryptanalytic
time/memory tradeoffs for the inversion of a random function f : {0, 1, . . . , N−1} 7→
{0, 1, . . . , N − 1}. The model contains all the known tradeoff techniques as special
cases. It is based on a new notion of stateful random graphs. The evolution of paths
in the stateful random graph depends on a hidden state such as the color in the
Rainbow scheme or the table number in the classical Hellman scheme. We prove an
upper bound on the number of images y = f(x) for which f can be inverted using
a tradeoff scheme with S hidden states, and derive from it a lower bound on the
number of hidden states. These bounds hold with an overwhelming probability over
the random choice of the function f , and their proofs are based on a rigorous combi-
natorial analysis. With some additional natural assumptions on the behavior of the
online phase of the algorithm, we prove a lower bound on its worst-case time com-
plexity T = Ω( N2

M2 ln N
), where M is the memory complexity. We describe several new

variants of existing schemes, including a method that can improve the time complex-
ity of the online phase (by a small factor) by performing deeper analysis during the
preprocessing phase, and adaptations of the Rainbow scheme to time/memory/data
tradeoffs.

The four independent contributions are detailed in the following four chapters,
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where each chapter is self contained. For completeness and general background, we
include a short introductions to some of the modern methods of cryptanalysis in
Appendix A.
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Chapter 2

In How Many Ways Can You
Write Rijndael?

In this chapter, we ask the question what happens if we replace all the constants in
Rijndael, including the irreducible polynomial, the coefficients of the MixColumns
operation, the affine transformation in the S box, etc. We show that such replace-
ments can create new dual ciphers, which are isomorphic to the original cipher. We
present several such dual ciphers of Rijndael, such as the square of Rijndael, and
dual ciphers with the irreducible polynomial replaced by primitive polynomials. We
also describe another family of dual ciphers consisting of the logarithms of Rijndael.
Then, we discuss self-dual ciphers, and show that they can be attacked in time faster
than exhaustive search. Finally, we discuss possible applications for dual ciphers, in-
cluding insight for cryptanalysis, protection against side-channel attacks, and finding
faster implementations of existing ciphers.

The work described in this chapter is a joint work with Prof. Eli Biham. It was
originally published in [7].

2.1 Introduction

In 2000, the cipher Rijndael [33] was selected as the Advanced Encryption Stan-
dard (AES) [65]. Rijndael was designed to withstand known attacks such as dif-
ferential [16] and linear [57] attacks. The cipher structure is (mostly) specified in
terms of algebraic operations of the Galois field GF (28). The motivation behind
this structure is computational efficiency, as GF (28) elements can be represented by
bytes, which can be very efficiently processed by modern computers, unlike bit-level
operations that are usually more expensive in computer power. The drawback is

11

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



that algebraic structures are inherited from the simple GF (28) operations (see for
example [42, 77]), and the fear is that cryptographic attacks exploiting these elegant
algebraic structures would be developed. An example for such attacks are interpola-
tion attacks [50]. In an attempt to avoid some of these drawbacks, other mechanisms
are introduced to Rijndael, such as GF (2) affine transformations. However, an affine
transformation can be expressed as a (linear) polynomial over GF (28), thus, all the
operations of Rijndael are expressed in GF (28) (Rijndael with this representation is
called Rijndael-GF [33, Appendix A.5]). Newer attacks [31] claim to be successful at
breaking Rijndael, however, the complexity of these attacks is not well understood.

Rijndael’s operations, like most secret-key ciphers, involve constants. These con-
stants include the irreducible polynomial over which GF (28) multiplications are per-
formed, coefficients in the MixColumns operation, the affine transformation in the
S box, etc. The choice of the specific constants raises some natural questions for the
cryptanalyst: does this choice of constants provides the highest level of security? Is
there another choice of constants that provides the same or higher level of security?
Does the choice of constants have any relevance to security of the cipher, i.e., is there
a choice of constants that provides a lower level of security?

In this chapter we ask the question what happens if we replace all the constants
in Rijndael, including the irreducible polynomial, the coefficients of the MixColumns
operation, the affine transformation in the S box, etc. We show that such replace-
ments can create new dual ciphers, which are isomorphic to Rijndael. Although in
the dual ciphers the intermediate values during encryption are different than Ri-
jndael’s, we show that they are isomorphic to Rijndael. Examples of such ciphers
include ciphers with a primitive polynomial (replacing the irreducible polynomial of
Rijndael), the cipher Square of Rijndael that encrypts the square of the plaintext
under the square of the key to the square of the ciphertext, and a cipher with a
triangular affine matrix in the S box.

The following definition stands in the center of this chapter:

Definition 1 Two ciphers E and E ′ are called Dual Ciphers, if they are isomorphic,
i.e., if there exist invertible transformations hk(·), hp(·) and hc(·) such that

∀P, K hc(EK(P )) = E ′
hk(K)(hp(P )).

Trivial dual ciphers are very easy to find for all ciphers. For example, every cipher
is dual to itself with the identity transformations. Also, for any cipher, the addition
of non-cryptographic invertible initial and final transformations creates a trivial dual
cipher. We are not interested in these kinds of dual ciphers. The interesting question
is whether there exist non-trivial dual ciphers of widely-used or well-known ciphers.
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We define a class of ciphers, which includes many stream ciphers and block ci-
phers. We call the ciphers in the class EGF (28) ciphers. Examples of ciphers in
the class are: Shark [23], Square [32], Scream [47], Crypton [56], Anubis [11], and
Khazad [12]. Rijndael (AES) [33], which is the focus of this chapter, is also included
in this class. We show that any cipher in the class has a family of at least 239 dual
ciphers in addition to the original cipher. These dual ciphers can be generated by
careful replacements of the constants in the cipher. We note, however, that the exis-
tence of dual ciphers for a specific cipher does not necessarily mean that the security
of the cipher is compromised, and in fact, dual ciphers can be used to strengthen the
cipher against side-channel attacks.

We present another family of Log Dual Ciphers for EGF (28) ciphers. In a log
dual cipher, the logarithm of the plaintext is encrypted by the logarithm of the key
to the logarithm of the ciphertext. We show that Rijndael has a family of log dual
ciphers.

An interesting extension of dual ciphers, are semi-dual ciphers:

Definition 2 A cipher E ′ is called a semi-dual cipher of E, if there exist transfor-
mations hk(·), hp(·) and hc(·) such that

∀P, K hc(EK(P )) = E ′
hk(K)(hp(P )).

where hk,hp and hc are not necessarily invertible (and even not necessarily length-
preserving).

Semi-dual ciphers potentially reduce the plaintext, the ciphertext, and the key spaces,
and thus may allow to develop efficient attacks on their original cipher.

A special case of dual ciphers is the case of self-duality, i.e., the case where a cipher
is a (non-trivial) dual of itself. We study this case and show that such ciphers can
be attacked faster than exhaustive search. We discuss what change in the constants
of Rijndael would lead to a self-dual cipher. In the context of self-dual ciphers, it is
interesting to mention that RSA [70] is an example of a self-dual public key cipher.
Let e and n be the RSA public key, and let c = me (mod n), where m is the plaintext
and c is the ciphertext. Then it follows that RSA is a dual of itself, e.g., c3 = (m3)e

(mod n). Another known example of self-duality, is the complementation property
of DES, i.e., DESk(p) = DESk(p), where k is the key, p is the plaintext, and x
denotes the 1-complement of x.

We indicate a variety of possible applications for dual ciphers: On the analysis
side, they might provide insight to new attacks; on the protection side, they could
protect against side-channel attacks; and on the implementation side, dual ciphers
could be used to find more efficient implementations of existing ciphers.
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This chapter is organized as follows: We begin with a short description of Ri-
jndael, which is given in Section 2.2. In Section 2.3, we present the square dual
cipher. Then, we change the irreducible polynomial in Section 2.4, and show the
family of 240 dual ciphers for each EGF (28) cipher. Section 2.5 shows how to define
log dual ciphers. We discuss the special case of self-duality, and show how to mount
an attack on self-dual ciphers in Section 2.6. We discuss applications of dual cipher
in Section 2.7. The chapter is summarized in Section 2.8. Appendix 2.9 gives the
affine matrix of the square of Rijndael. In Appendix 2.10 we describe the relation
between dual ciphers of different constants but with the same irreducible polynomial,
while in Appendix 2.11 we describe the relation where the irreducible polynomial is
also replaced. Appendix 2.12 details properties related to log dual ciphers. Some of
the details of the attack on self-dual ciphers are detailed in Appendix 2.13.

2.2 Description of Rijndael

In this section we give a short description of Rijndael. For a full description of
Rijndael the reader may consult [33]. The AES [65] consists of Rijndael with 128-bit
blocks, and three key sizes of 128, 192 and 256 bits. For simplicity, in the rest of this
section we describe Rijndael with a key length of 128 bits (though our results hold
for all variants of Rijndael). The 128-bit blocks are viewed as either 16 bytes or as
four 32-bit words. The bytes are organized in a square form:

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

where bi notes the i’th byte of the block.

Each column in this representation can be viewed as a 4-byte word. Rijndael
has operations that work on columns, operations that work on rows, and operations
that work on each byte separately. The combination of these operations ensures a
complete mixture of all data bits after several rounds, i.e., every input bit affects
every output bit (note however, that this property does not necessarily mean that
the cipher is secure).

Rijndael encryption is performed as follows: The plaintext is XORed with an
initial subkey (via the AddRoundKey operation mentioned later) to form the input to
the first round. Then, ten rounds are performed. Their final output is the ciphertext.

The round function is composed of 4 consecutive operations:
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1. SubBytes: An S box is applied in parallel to each of the 16 bytes of the data.

2. ShiftRows: Byte-wise rotation of bytes in each row.

3. MixColumns: Every column is mixed by a linear operation. MixColumns is
not perform in the last round.

4. AddRoundKey: The data is XORed with a 128-bit subkey.

The S box of Rijndael first calculates the multiplicative inverse of the input
in GF (28) (modulo the irreducible polynomial of Rijndael z8 + z4 + z3 + z + 1,
which is denoted in binary notation by 11Bx (the coefficient of the polynomial in a
binary notation); for the purpose of inversion the inverse of 00x is defined to be 00x).
The resulting inverse x is transformed by the affine transformation to produce the
output y:















y0

y1

y2

y3

y4

y5

y6

y7















=















1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





























x0

x1

x2

x3

x4

x5

x6

x7















+















1
1
0
0
0
1
1
0















where the xi’s and the yi’s are coefficients of x and y (i.e., the bits of the bytes), and
x0 and y0 are the least significant bits.

The ShiftRows operation is a byte-wise rotation of the bytes as as follows:

• Leaving the first first row unchanged.

• Shifting the second row by one byte to the left (cyclically).

• Shifting the third row by two bytes to the left (cyclically).

• Shifting the fourth row by three bytes to the left (cyclically).

Taking the square form as the input of the ShiftRows operation, the ShiftRows
operation has the following effect:

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

−−−−−−→
ShiftRows

b0 b4 b8 b12

b5 b9 b13 b1

b10 b14 b2 b6

b15 b3 b7 b11
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The MixColumns operation mixes each column independently. The new state is
defined by

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

−−−−−−−−−→
MixColumns

b′0 b′4 b′8 b′12
b′1 b′5 b′9 b′13
b′2 b′6 b′10 b′14
b′3 b′7 b′11 b′15

where each column (bi, bi+1, bi+2, bi+3), i ∈ {0, 4, 8, 12} is mixed by:







b′i
b′i+1

b′i+2

b′i+3







=







02x 03x 01x 01x

01x 02x 03x 01x

01x 01x 02x 03x

03x 01x 01x 02x













bi

bi+1

bi+2

bi+3







.

Note that the multiplication and additions are performed over GF (28). A mixing
of a column can also be seen as a multiplication of the column by the polynomial
c(x) = 03xx

3 + 01xx
2 + 01xx + 02x in GF (28)4 modulo the polynomial x4 + 1.

The AddRoundKey simply XORs the 128-bit subkey to the data. The subkey is
generated by the key expansion.

When the key size is 128 bits the round-function is repeated 10 times. The
number of rounds is higher when longer keys or blocks are used: there are 12 rounds
if the key or block size is 192 bits, and 14 rounds if the key or block size is 256 bits.

The key expansion of Rijndael generates the subkeys from the key using a blend
of the above operations, and using the round constants Rcon[i] = (02x)

i−1 (i starts
at 1). The input to the key expansion is the 128-bit key, and the output are the
eleven 128-bit subkeys. The first subkey K0 is equal to the key. Each one of the
rest of the subkeys Ki is defined as a function of the previous round’s subkey Ki−1

and the round number i ∈ {1, . . . , 10}. Let Ki,j be the jth byte of the subkey of
round i, j ∈ {0, . . . , 15}. Then, Ki,0 = Rcon[i] ⊕ S[Ki−1,13], Ki,1 = S[Ki−1,14],
Ki,2 = S[Ki−1,15], Ki,3 = S[Ki−1,12]. For every j > 3, Ki,j = Ki−1,j⊕Ki,j−4. The key
schedule is slightly different for the 192-bit and 256-bit keys, although it follows the
same operations.

2.3 Square Dual Ciphers

We begin with defining the EGF (28) class of ciphers.

Definition 3 Consider the operations:

16

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



• Basic field operations in GF (28):

1. Addition (i.e., XOR: f(x, y) = x⊕ y).

2. XOR with a constant (e.g., f(x) = x⊕ 3Fx).

3. Multiplication (f(x, y) = x · y).
4. Multiply by a constant (e.g., f(x) = 03x · x).

5. Raise to any power (i.e., f(x) = xc, for any integer c). This includes the
inverse of x: x−1.

6. Any replacement of the order of elements (e.g., taking a vector containing
the elements [a, b, c, d], and changing the order to [d, c, a, b]).

• Complex (with respect to GF (28)) 8-bit operations:

7. Linear transformations f(x) = Ax, for any boolean matrix A.

8. Any unary operation over elements in GF (28). (i.e., a look-up table,
S(x) = LookUpTable[x] or F (x) : {0, 1}8 −→ {0, 1}8).

We call these operations EGF (28) operations. If a cipher is specified in terms of
operations in EGF (28) we call it a cipher in EGF (28), or an EGF (28) cipher.

Note that our notation implies that in item 7 of Definition 3, the variable x,
which is an element in GF (28), is converted to an 8-bit vector (in GF (2)8) before
being multiplied by the matrix A. The result is converted back to be an element
of GF (28). It should be noted that since XOR with a constant is also allowed in
item 2, any affine transformation is included in the operations we consider (i.e.,
F (x) = Ax⊕ b).

It is important to understand that any operation covered by item 7 or item 8 can
be expressed as a polynomial in GF (28) (thus, “covered” by previous operations).
In fact, practically all ciphers can be translated to operations in EGF (28), but the
resulting specification would be unnatural and complex. As our main motivation is
to gain insight to the specific design of the cipher and the choice of constants in the
cipher, we limit our discussion to ciphers specified only in terms of the above opera-
tions (rather than equivalent representations that result by translating the cipher’s
operations to EGF (28) operations).

We now show the existence of square dual ciphers. Given a cipher E that uses
only operations of EGF (28), we define the cipher E2 by modifying the constants
of E. In the terms of Definition 1, we set hk(x) = hp(x) = hc(x) = x2, where x2

is squaring each byte of x, independently, in GF (28). The notation K2, and P 2
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denote the square operation of each byte of K and P (and similarly for any other
byte vector). We define E2 such that E2

K2(P 2) = (EK(P ))2.
All the operations that do not involve constants remain unchanged. There are

only four operations that involve constants:

1. f(x) = c · x.

2. f(x) = c⊕ x.

3. f(x) = Ax, where A is a constant matrix.

4. S(x) = LookUpTable[x], where the look-up table is constant.

In the first two operations we change the constant c in E to be c2 in E2, where
c2 is the result of squaring c in GF (28). In the affine transformation, A is replaced
by QAQ−1, where in the case of Rijndael Q and Q−1 are:

Q =















1 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1
0 1 0 0 0 1 0 0
0 0 0 0 1 1 1 1
0 0 1 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1















Q−1 =















1 0 0 1 0 1 0 1
0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0
0 1 0 1 0 0 1 0
0 1 0 0 0 0 0 1
0 1 0 1 0 0 0 0
0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1















(2.1)

We show later that given an element x the value of Qx is x2, i.e., multiplying by the
boolean matrix Q is actually squaring.

From now on we denote QAQ−1 by A2, as for any x, QAQ−1x2 = QAx = (Ax)2.
A2 of Rijndael is given in Appendix 2.9. The matrices Q and Q−1 depend on the
irreducible polynomial of GF (28). The matrices above suit Rijndael’s irreducible
polynomial z8 + z4 + z3 + z + 1.

Finally, we replace look-up tables of the form S(x) with S2(x), where S2(x) is
defined as S2(x) = QS(Q−1x).

Remark: To make it clear, in our notation, E2 is not E(E(·)) nor (E(·))2, A2 is
not the matrix A multiplied with itself, and S2(x) is not (S(x))2, nor S(S(x)).

We can now define the dual cipher E2 of a cipher E: we take the specifications
of the cipher E, raise all the constants in the cipher to their second power, replace
matrices A by A2 = QAQ−1, and replace look-up tables S(x) by S2(x) = QS(Q−1x).
If we take Rijndael as an example of E, the polynomial 03xx

3 + 01xx
2 + 01xx + 02x

of the mix column operation is replaced by 05xx
3 + 01xx

2 + 01xx + 04x.
1 The affine

1In GF (28), 032

x = 05x.
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transformation Ax+b is replaced by the affine transformation A2x+b2 = QAQ−1x+
b2.

The key expansion consists of S boxes, XORs, and XORs with constants in
GF (28) (called Rcon) which are powers of 02x. These operations are replaced by
the replacement operations as mentioned above, with the Rcon constants being re-
placed by their squares.

We now show that E and E2 are dual ciphers, with f(x) = x2:

Theorem 1 For any K and P , E2
K2(P 2) = (EK(P ))2.

This theorem states that if P is the plaintext, K is the key and the result of
encryption with cipher E is C, then the result of encrypting P 2 under the key K2

with the cipher E2 is necessarily C2.

Proof Any Galois field is congruent to a Galois field of the form of GF (qm), where q
is a prime. The number q is called the characteristic of the field. It is well known that
for any a, b ∈ GF (qm) it follows that: (a+b)q = aq+bq. In GF (28): (a+b)2 = a2+b2.
That actually means that squaring an element in GF (28) is a linear operation, which
can be applied by a multiplication by a binary matrix Q of size 8×8. Eq. (2.1) gives
the Q matrix of Rijndael. It follows that Q−1 is the matrix that takes out the square
root of an element in GF (28). In Appendix 2.10, we give a brief proof of the fact that
(a + b)2 = a2 + b2 implies that multiplication can be performed by a multiplication
by a matrix Q, and we show how to compute Q in other representations and other
Galois fields.

To complete the proof of the theorem, it suffices to show that for each operation
f(·) in E, the corresponding operation f 2(·) in E2 satisfies f 2(x2) = (f(x))2:

1. f(x, y) = x⊕ y. In this case f 2(x2, y2) = x2 ⊕ y2 = (x⊕ y)2 = (f(x, y))2.

2. f(x) = x⊕ c. By definition f 2(x2) = x2 ⊕ c2 = (x⊕ c)2 = (f(x))2.

3. f(x, y) = x · y. In this case f 2(x2, y2) = x2 · y2 = (x · y)2 = (f(x, y))2.

4. f(x) = x · c. By definition f 2(x2) = x2 · c2 = (x · c)2 = (f(x))2.

5. f(x) = xc. In this case f 2(x2) = (x2)c = (xc)2 = (f(x))2.

6. It is clear that replacing the order of elements after they are raised to their
second power is equal to raising elements to their second power, and then
replacing their order.
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7. f(x) = Ax. By definition f 2(x2) = A2x2 = QAQ−1x2 = QAx = (Ax)2 =
(f(x))2, as Q is the matrix which corresponds to the squaring operation in
GF (28).

8. f(x) = S(x) = LookUpTable[x]. By definition

f 2(x2) = S2(x2) = QS(Q−1x2) = QS(x) = (S(x))2 = (f(x))2.

The cipher E4 = (E2)2 is a dual cipher of E2, and thus also of E. Moreover,
all ciphers E2i

(for all i), i.e., E, E2, E4, E8, E16, E32, E64 and E128, are all dual
ciphers of each other (there are 8 such ciphers as E28

= E).
It is interesting to note that Rijndael has these dual ciphers, independently of

the key size, the block size, the number of rounds, and even the arrangement of
operations in the cipher. These dual ciphers exist for any cipher whose all operations
are EGF (28) operations.

2.4 Modifying the Polynomial

An EGF (28) cipher E can include multiplication modulo an irreducible polynomial.
The irreducible polynomial in Rijndael is used for the inverse computation in the
S box and also in the multiplications in the MixColumns operation. Several re-
searchers asked why the irreducible polynomial of Rijndael was not selected to be
primitive (there are 30 irreducible polynomials of degree 8, of which 16 are primitive,
and any one of these 30 polynomial could have been used in Rijndael). We show
that it is irrelevant if the irreducible polynomial is primitive or not, due to existence
of dual ciphers of Rijndael with any of the above irreducible polynomials.

In Appendix 2.11, we show that replacing the irreducible polynomial creates an
isomorphic GF (28) field, and that the isomorphism function is linear. We denote this
linear function by R. Let x be a binary vector representing an element under Rijn-
dael’s irreducible polynomial g(x). The representation of x under another irreducible
polynomial ĝ(x) is given by R·x, where R is an 8×8 binary matrix. In Appendix 2.11,
we further show that the matrix R is always of the form R = (1, a, a2, a3, a5, a6, a7),
where the columns ai are computed modulo the irreducible polynomial ĝ(x).

We define a new cipher ER using the new irreducible polynomial ĝ(x), such that
ER is a dual cipher of E, with hk(x) = hp(x) = hc(x) = R · x. We define ER using
the matrix R in the same way that we used the matrix Q to define the square dual
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cipher. As a result, the operations in ER are identical to the operations in E, upto
a change of constants. To fully specify ER replace Q with R in Section 2.3, and
replace x2 with R · x. The proof of duality follows.

Note that the Q matrix (Appendix 2.10) is actually a special case of the R matrix,
where ĝ(x) = g(x). For each irreducible polynomial we can define its eight square
dual ciphers. Since there are 30 irreducible polynomials, we get that there are 240
dual ciphers for each EGF (28) cipher. As there can be no other R matrices (as the
remaining 256− 240 = 16 R matrices are singular), it follows that there are exactly
240 dual ciphers for each EGF (28) ciphers under our constraints.

For example, we describe one of these 240 dual ciphers of Rijndael: the irreducible
polynomial of Rijndael is replaced by the primitive polynomial z8 + z4 + z3 + z2 + 1
(denoted in binary notation by 11Dx). In this example, the R matrix is

R =















1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1















R−1 =















1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1















.

The inverse matrix R−1 takes an element of the dual cipher to Rijndael’s represen-
tation. It is interesting to note that in this particular example the affine matrix of
the S box becomes lower triangular:

Â =















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0
0 1 1 0 0 1 0 0
0 0 1 1 0 0 1 0
0 0 0 1 1 0 0 1















.

Also, the constant 63x in the S box becomes 64x, and the coefficients 03x, 02x of
the MixColumns operation are interchanged (i.e., to 02x, 03x). The coefficients 0Bx,
0Dx, 09x, 0Ex are also interchanged in pairs to 0Dx, 0Bx, 0Ex, 09x. The Rcon
constants (02x)

i−1 are replaced by (03x)
i−1. The full description of these 240 dual

ciphers of Rijndael can be found in The Book of Rijndaels [9].
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Due to the existence of a dual cipher with any irreducible polynomial, we conclude
that the choice of the irreducible polynomial of Rijndael can be chosen arbitrarily. In
particular, there is no advantage to selecting a primitive polynomial over the current
polynomial of Rijndael.

2.5 Log Dual Ciphers

In this section we discuss another family of dual ciphers for EGF (28) ciphers. We
we call this family log dual ciphers.

Let g be a generator of the multiplicative group of GF (28). Since the cipher
works on elements of GF (28) we can write any element x as an exponent of g, i.e.,
x = gi, except for x = 0, which we define as g−∞. In a logarithmic notation we
write: logg x = i, where logg0 = −∞. In the log cipher we use the logarithm
representation of the elements, instead of the polynomial representation used in the
original description of the cipher.

Let x and y be elements of GF (28), and let i = logg x, j = logg y.
We use the notation Elogg , or shortly Elog, to denote the log dual cipher. We

show that Elog is a dual cipher of E, where hk(x) = hp(x) = hc(x) = logg x. The log
dual cipher is defined by taking the specifications of the cipher, and replacing the
following operations:

1. The operation f(x, y) = x⊕ y is replaced by the operation

f log(i, j) = j + T (i− j) (mod 255) (2.2)

or by
f log(i, j) = i + T (j − i) (mod 255), (2.3)

where the Zech logarithm [71] T (i) is defined as T (i) = logg(g
i ⊕ 1). In cases

where −∞ appears in f log, we define f log(−∞, j) = j, and f log(i,−∞) = i.
Note that an alternative solution for the case that −∞ is an argument is a
careful definition of T (·) for cases that involve −∞. This alternative definition
preserves consistency with Equations (2.2) and (2.3). f log(i, j) = f log(j, i) =
f log(j, i) = j + T (i− j) (mod 255).

2. The operation f(x) = x⊕ c is replaced by the operation f log(i) = k + T (k− i)
(mod 255) where k = logg c.

3. The operation f(x, y) = x · y is replaced by the operation f log(i, j) = i + j
(mod 255). If either x or y is −∞, then the result is −∞.
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4. The operation f(x) = x·c is replaced by the operation f log(i) = i+k (mod 255),
where k = logg c.

5. The operation f(x) = xm is replaced by the operation f log(i) = i·m (mod 255).
If i = −∞ then the result is −∞.

6. Changing the arrangement of elements.

7. The operation S(x) = LookUpTable[x] is replaced by the operation Slog(i) =
logg(S(gi)).

8. The linear transformation L(x) = Ax is written as a polynomial
∑

ai · x2i

, and
treated as a combination of exponentiations, multiplications, and additions.

The following theorem suggests that if P is the plaintext, K is the key, and
C is the result of encrypting P under the key K with cipher E, then the result of
encrypting logg(P ) under the key logg(K) with the cipher Elog is necessarily logg(C).

Theorem 2 Let g be a generator in GF (28). For any K and P :

Elog
logg K(logg P ) = logg(EK(P )).

In the context of this chapter logg X denotes the logarithm of each byte of X, where
X is one of P , C, or K.

Proof It suffices to show that for each operation f(x) in E, and the correspond-
ing operation in Elog, which we denote by f log(x), it follows that f log(logg x) =
logg(f(x)).

1. f(x, y) = x ⊕ y. By definition f log(i, j) = j + T (i − j) = j + logg(g
i−j ⊕ 1) =

logg(g
j · (gi−j ⊕ 1)) = logg(g

i ⊕ gj) = logg(x⊕ y) = logg(f(x, y)). The proof is
trivial for cases that involve −∞.

2. f(x) = x⊕ c, in the same way as the previous item.

3. f(x, y) = x · y. In this case f log(i, j) = i + j = logg(g
i+j) = logg(x · y) =

logg(f(x, y)).

4. f(x) = x · c, in the same way as the previous item.

5. f(x) = xc. In this case f log(i) = i · c = logg(x
c) = logg(f(x)).
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6. It is clear that changing the arrangement of elements after their log-value is
taken is equal to first changing the arrangement of elements and then taking
the log-value of the elements.

7. f(x) = S(x) = LookUpTable[x]. In this case, by definition of f log it follows
that: f log(i) = Slog(i) = logg(S(gi)) = logg(S(x)) = logg(f(x)).

8. L(x) = Ax. This follows from items 1,2,4, and 5.

The above equations hold also in the case that −∞ is an argument.

Note that the non-linear part of the SubBytes transformation of Rijndael in the
log dual cipher, i.e., finding the multiplicative inverse of an element, becomes very
simple (and linear). This operation is replaced by negation in the log dual cipher:

x −→ i⇔ x−1 −→ −i.

The T transformation is non-linear. It has interesting properties. Here are some
of the properties of the T transformation:

1. T (x)− T (−x) = x

2. T (2x) = 2T (x)

3. T (T (x)) = x

Additional properties of T (x) can be found in Appendix 2.12.
How does the 240 mentioned representations of Rijndael affect the number of log

dual ciphers? The group of 240 representations of Rijndael has a single group of 128
log dual ciphers. Choosing a generator g in Rijndael’s representation generates the
same dual cipher as choosing the generator R · g in another dual cipher. Therefore,
the number of log dual cipher is the same as the number of generators, i.e., there are
only 128 log dual ciphers.

2.6 Self-Dual Ciphers

We mention that any cipher is trivially dual to itself. However, it is possible to find
ciphers that are self-dual in a non-trivial way. One such interesting case of self-dual
ciphers can be derived from square dual ciphers. Let E be a square self-dual cipher.
It follows that:

(EK(P ))2 = EK2(P 2),
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i.e., by encrypting the square of P by the square of K under the cipher, we get
the square of the original ciphertext. For that, we require that each constant is the
square of itself. In GF (28) it means that the constants are either 0 or 1.

We take Rijndael as an example and modify it to become a self-dual cipher.
We need to change the constant 63x in the affine transformation in the S box to
either 00x or 01x. We also need to change the constants of the MixColumns operation
to either 00x or 01x. A possible alternative matrix for the mix column operation,
whose entries consist of only 00x’s and 01x’s is:

M =







1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1







.

Note that in this case M−1 = M , but there are other possible matrices for which
this is not the case.

In the key expansion we need to change the round constant. Any selection of
values from {00x, 01x} can be made for the Rcon constants. There are various such
selections that can still prevent related key attacks [14].

We replace the affine transformation by a self-dual one. We can easily find eight
affine transformations that are self-squares (i.e., QAQ−1 = A): The matrix Q (shown
in Eq. (2.1)) is the square of itself under our definition, since Q2 = Q(Q)Q−1 = Q
(remember that the notation Q2 is not Q · Q, but rather Q2 is what the matrix Q
is transformed to in the square dual cipher). The order of Q is eight, therefore, the
following eight transformations are self-square transformations:

1. Q

2. Q ·Q

3. Q ·Q ·Q

4. Q ·Q ·Q ·Q

5. Q ·Q ·Q ·Q ·Q

6. Q ·Q ·Q ·Q ·Q ·Q

7. Q ·Q ·Q ·Q ·Q ·Q ·Q

8. Q ·Q ·Q ·Q ·Q ·Q ·Q ·Q = I
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Notice that all the linear combinations with coefficients from {0, 1} of these matrices,
are also self-squares matrices. Therefore, there are at least 256 such self-square
matrices. Detailed analysis shows that these are all the self-square matrices. Of
these 256 matrices, only 128 matrices are involutions.

A property of such self-dual ciphers is that if all the bytes of the key and all the
bytes of the plaintext are in {00x, 01x}, then so are all the bytes of the ciphertext.

Note that the notion of simple relations, presented by Knudsen in [53] in another
context, is related to self-dual ciphers. In fact, the property of a cipher being dual
to itself is a simple relation in the terms of [53] (given that hk(·), hp(·) and hc(·) are
easy to evaluate).

2.6.1 Higher-Order Self-Dual Cipher

We define the 4’th power self-dual cipher as follows: E is a 4’th power self-dual cipher
if:

(EK(P ))4 = EK4(P 4).

We take Rijndael for example, and modify it so it becomes a 4’th power self-dual
cipher. We require that each constant in the cipher is the 4’th power of itself. There
are four such values: 00x, 01x, and the two elements of order 3, BCx and BDx (in
Rijndael’s representation), which are g85 and g170, where g is a generator.

We modify the affine transformation in the S box to a 4’th power self-dual affine
matrix, i.e., that A4 = Q ·Q · (A) ·Q−1 ·Q−1 = A. We can see that:

1. Q

2. Q ·Q

3. Q ·Q ·Q

4. Q ·Q ·Q ·Q

5. Q ·Q ·Q ·Q ·Q

6. Q ·Q ·Q ·Q ·Q ·Q

7. Q ·Q ·Q ·Q ·Q ·Q ·Q

8. Q ·Q ·Q ·Q ·Q ·Q ·Q ·Q = I
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satisfy the requirement for the affine transformation in a similar way to satisfying the
requirements for the affine transformation in the square self-dual case. All the linear
combinations of the above eight matrices with coefficients from {00x, 01x, g

85, g170}
(which is GF (22)) also satisfy the requirements for the affine transformation. The
total number of linear combinations is 216, of which 3 · 213 are involutions.

The resulting ciphers are 4’th power self-dual cipher. In addition, to the self-
duality property, these ciphers have the property that if all the bytes of the plaintext
and key are chosen from the set of the above four elements {00x, 01x, g

85, g170}, then
the bytes of the ciphertext also belong to this set of four elements.

For the 16’th power self-dual cipher, we require that all the constants are of
00x, 01x, and the 14 elements of orders 3, 5, and 15. The 16’th power self-dual
matrices are all the linear combinations of the Qi matrices, with coefficients from the
above constants. The total number of 16’th power self-dual matrices is 232, of which
7 · 5 · 32 · 222 matrices are involutions. Fortunately, Rijndael’s A matrix is none of
these matrices. An additional property for 16’th power self-dual cipher is that if all
the bytes of the plaintext and key are chosen from the set of the above 16 constants,
then the bytes of the resulting ciphertexts are also from this set.

2.6.2 Cryptanalysis of Self-Dual Ciphers

The self-duality property of a cipher can be used to mount an attack, which reduces
the complexity of exhaustive search by a factor of about 8 for a square dual cipher the
case above (or by a factor of the number of the self-duals in the more general case).
For example, if the key size is 128 bit, exhaustive search requires 2128 applications
of the cipher E, and the attack we propose requires about 2125 applications of E
using 8 chosen plaintexts. If we consider the expected time to complete the attack,
exhaustive search takes about 2127 applications of E, and our attack takes about 2124

applications of E.
The attack takes advantage of cycles of keys under the squaring operation: A cycle

is a set of keys where each key is the square of its predecessor, i.e., {K ′, K ′2, . . . , K ′27},
and where the square of the last element equals the first element : K ′ = K ′28

. Note
that the possible cycle lengths are 8, 4, 2, and 1. The attacker’s algorithm is as
follows.

1. Choose a plaintext P , and compute Pi = P 2i

, for i = 0, . . . , 7.

2. Ask for the encryption of P0, . . . , P7, and denote the corresponding ciphertexts
by C0, . . . , C7. For every i, compute Ĉi = (Ci)

2−i

, where the square root is
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defined to be the operation that finds for every byte its square root in GF (28)
(there is only one square root for each value).

3. Choose one key K ′ in each cycle, and compute C = EK′(P ). If C = Ĉi for

some i ∈ {0, . . . , 7}, K ′2i

is a candidate to be K. Otherwise, K is not one of

{K ′2i}.

An equality C = Ĉi in step 3 ensures that encryption of Pi under the key K ′2i

gives Ci: If C = Ĉi, then C2i

= Ĉ2i

i = Ci. Therefore, C2i

= (EK′(P0))
2i

= Ci =

EK(P 2i

0 ) = E2i

K(P 2i

0 ). From the self-duality property it follows that: K = K ′2i

(unless this is a false-alarm, which can then be easily checked with another block).

Note that the correct key is always found by this method: divide the key space to

cycles, and therefore, the correct key K must be in some cycle {K ′, K ′2, . . . , K ′27}.
Let j be the index in the above cycle such that K = K ′2j

. Since K ′2j

is the correct
key it holds that EK′2j (Pj) = Cj. Using the self-duality property, it follows that

EK′(P0) = C2−j

j . This equality is detected in step 3, and thus the key is found.
Thus, by encrypting one key of every cycle, we cover all the keys.

We test about eight keys by every trial encryption. It is easy to choose the keys
K ′ in such a way that we choose only one key out of each cycle of keys. Therefore,
this attack finds the key in about 2125 applications of E. In Appendix 2.13, we
show how to enumerate the keys (choosing only one key of each cycle), and show
that the total number of cycles, and thus, the maximal complexity of this attack,
is 2125 + 261 + 230 + 215, using 8 chosen plaintexts. The average case complexity is
2124 + ε where ε = 2−4 + 2−67 + 2−98.

We note that a similar attack can be designed for higher-order self-dual ciphers.
It is also interesting to note that the number of rounds of the cipher does not affect
the complexity of this attack (in terms of the number of applications of E).

2.6.3 Application to BES

BES [61] (Big Encryption System) was proposed by Murphy and Robshaw. BES
is basically an 8-fold Rijndael, with a special relation between the 8 applications of
Rijndael. In this design, the affine operation in Rijndael’s S box is replaced by its
interpolation polynomial in GF (28) (with some more details that we describe below).
The result is a cipher with a 128 · 8 = 1024-bit keys and blocks, as follows:

Ĉ = BESK̂(P̂ ),
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where P̂ = (P1, P2, . . . , P8), K̂ = (K1, K2, . . . , K8), Ĉ = (C1, C2, . . . , C8), where Pi,
Ki and Ci are 128-bit blocks.

BES is defined in such a way that encryption with Rijndael, C = RijndaelK(P ),
can be performed as follows:

(C, C2, C4, C8, C16, ...,C128) =

BES(K,K2,K4,K8,K16,...,K128)(P, P 2, P 4, P 8, P 16, ..., P 128),

where K and P are the key and plaintext of Rijndael, and C is the ciphertext.
The internal structure of BES is quite similar to parallel applications of Rijndael

and its dual-ciphers: Rijndael2, Rijndael4, Rijndael8, Rijndael16, Rijndael32,
Rijndael64, Rijndael128. The difference is that the affine matrix is replaced by
its interpolation polynomial

∑
ai · x2i

. The values x2i

are not computed directly,
but are taken instead from a parallel value in one of the parallel applications (since
if we have an intermediate value x in a parallel application of Rijndael then we have
the value x2i

in the same location in the application of Rijndael2
i

).
We observe that BES is a self-dual cipher with h(·) = hk(·) = hp(·) = hc(·)

h(X1, X2, X3, X4, X5, X6, X7, X8) = (X2
8 , X

2
1 , X

2
2 , X

2
3 , X

2
4 , X

2
5 , X

2
6 , X

2
7 ).

Therefore, a variant of the attack we present for self-dual ciphers applies to BES.
The expected time complexity is 8 times faster than exhaustive search.

However, the fact that BES is a self-dual cipher does not seem to have con-
sequences on the security of Rijndael: Observe that when limiting the plaintext,
ciphertext, and key space of BES so it performs Rijndael encryption, the self-duality
function h(·) (that rotates to the right and squares) does not change the data blocks,
as performing rotation to the right and squaring of a tuple (X, X2, X4, X8, ..., X128)
leaves us with the same tuple (X, X2, X4, X8, ..., X128) (recall that in GF (28), X256 =
X).

2.7 Applications of Dual Ciphers

Dual ciphers might be used to gain insight to linear and differential cryptanalysis,
and provide insight for developing new attacks. In such cases the insight gained from
the dual ciphers could be used to attack the dual cipher, an attack which can be easily
transformed to the original (as the original and dual cipher are isomorphic they are
of the same strength against attacks). A possible example for such insight might be
the simplification of the affine transformation in the S box to a triangular matrix (see
Section 2.4), which reduces the effect of modifying bits in the input on the resultant

29

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



output of this transformation (e.g., the first bit is determined only by a single bit). It
should be noted that dual ciphers do not change the resistance of ciphers to linear and
differential cryptanalysis. It is actually possible to study the linear and differential
properties of Rijndael in GF (28) regardless of the representation of GF (28) that is
chosen, as is shown in Appendix A of [33].

The existence of dual ciphers can also be used to protect implementation against
side channel attacks, such as fault-analysis [17] and power-analysis [54], by selecting
a different dual cipher at random each time an encryption or decryption is desired.
Alternatively, different rounds of the encryption process can be performed using
different dual ciphers, with a conversion layer between them. The conversation layer
converts the data from one dual to another.

An interesting application of dual ciphers might be an optimization of the speed
of the cipher, as in some cases the dual cipher might actually be faster to compute
than the original cipher. For example, many ciphers include multiplications by con-
stants. The Hamming weight and the size of the constant has implications on the
implementation efficiency. Thus, finding a more efficient dual cipher might be a good
optimization strategy. Also, in some cases encryption might be most efficient using
one dual cipher, and decryption be most efficient using another dual cipher. In [72] a
resembling approach is taken, representing elements of GF (28) as the composite field
GF (24)2, achieving a more efficient implementation. A more sophisticated approach
combining our dual ciphers with composite fields was taken in [78], reaching a faster
implementation of AES in hardware using a fewer number of gates.

2.8 Summary

In this chapter, we show how to write many different implementations of Rijndael
using its various dual ciphers. We describe hundreds of non-trivial dual ciphers of
Rijndael, many of them differ from Rijndael only by the replacement of constants.
Thus, a program implementing a dual cipher would differ only in the constants. We
discuss a special class of ciphers — self-dual ciphers — and mount an attack on
these ciphers. Finally, we indicate several applications for dual ciphers, including
insight for cryptanalysis, protection from side-channel attacks, and finding faster
implementations of existing ciphers.

One result of this chapter is that the irreducible polynomial of Rijndael can be
chosen arbitrarily, and that it is in fact possible to replace the irreducible polynomial
of Rijndael by any other irreducible or primitive polynomial (of degree 8) without
changing the strength of cipher, and even without changing the cipher itself.

We would also like to mention that there are other kinds of dual ciphers of
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Rijndael that are not described in the chapter. For example, in [19] the following
dual ciphers are suggested: Given a non-zero α ∈ GF (28), create a dual cipher with
h(x) = α · x, where the multiplication by α 6= 0 is byte-wise. Multiplication by α in
GF (28) can be performed by a multiplication by boolean matrix which is denoted
by [α]. Therefore, the affine transformation of the S box of the first round can be
modified to cancel the multiplication, thus the result of encryption by the dual cipher
E ′ is equal to the result of encryption by the original cipher E. I.e., the S box in E ′

is S ′(x) = A′ · x−1 ⊕ b = (A · [α])x−1 ⊕ b. Many variations are also possible.
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2.9 Appendix: The Affine Transformation of Ri-

jndael and Rijndael2

A =















1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1















A2 =















0 1 1 0 0 1 0 0
1 0 1 0 0 0 1 1
1 0 0 1 1 0 1 1
1 0 0 0 1 1 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0
1 1 0 1 0 0 0 1
0 1 0 0 1 0 0 1















2.10 Appendix: The Matrix Q

We prove that from the equation (a+b)2 = a2+b2 it follows that the square operation
can be done by multiplication by a matrix. While doing it we discover how to
compute such a matrix Q for any irreducible polynomial as vectors of GF (2)8.

Given a vectorial representation of an element a ∈ GF (28), we can write the
vector as a =

∑8
i=1 ai · ei, where ei is the i’th element of the basis (i.e., the vectors
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whose i’th bit is 1, and all the other bits are 0). ai is the i’th bit of the vector a.
Note that ai = a2

i ∈ GF (28), since ai is either 0 or 1. Note that ei can be written as
ei = 2i−1.

So a2 = (
∑8

i=1 ai · ei)
2 =

∑8
i=1 a2

i · e2
i =

∑8
i=1 e2

i · ai = Q · a, where Q is the matrix
whose i’th column (i ∈ {0, . . . , 7}) contain the vectorial representation of e2

i . The
matrix Q of Rijndael is given in Eq. (2.1). It can be seen there that the columns are
powers of 4(≡ 22), where the first element 1 = 40, the next is 41, then 42, 43, . . ., 47,
i.e., Q = (40, 41, 42, . . . , 47)

2.11 Appendix: The Matrix R

We show that the isomorphism transformation denoted by R that replaces the irre-
ducible polynomial g(x) of a representation of GF (28) to another representation of
GF (28) with a different irreducible polynomial ĝ(x) is linear: Let x, y be elements in
the representation using g(x). They are transformed to R(x) and R(y), respectively,
with the representation ĝ(x). If we XOR the two elements in the two representation,
due to the isomorphism it must hold that R(x ⊕ y) = R(x) ⊕ R(y), therefore, R
is linear with respect to XOR. Using a similar justification, R must be linear with
respect to multiplication.

We now show that R is of the structure R = (1, a, a2, ..., a7), where the ai’s are
computed modulo the irreducible polynomial ĝ(x). The value of the first column of
R is R · (1, 0, . . . , 0)T , and the first column is also the value that 01x is transformed
to. From the multiplicative linearity of R it follows that

Rx = R(x · 1) = (Rx) · (R · (1, 0, . . . , 0)T ),

i.e., (R · (1, 0, . . . , 0) = 1. Therefore, the first column of R must be 1. The
second column determines were 02x is transformed to, i.e., the second column is
R · (0, 1, 0, 0, . . . , 0)T . We denote the value of the second column of R (i.e., R · 02x)
by a. The third column of R is the value that 04x is transformed to, i.e., R · 04x.
From the multiplicative linearity of R, it follows that:

R · 04x = R · (02x · 02x) = (R · 2) · (R · 2) = a · a = a2 (mod ĝ(x)).

We continue this way to show that column i ∈ {1, . . . , 8} of R is R · (02x)
i−1 =

ai−1 (mod ĝ(x)). Note that the Q matrix computed in Appendix 2.10 is of the
same form as the R matrix, for the same reasons, with ĝ(x) = g(x), and a = 04x

(i.e., Q(02x) = 04x).
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There are 240 non-trivial dual ciphers of an EGF (28) cipher. We now show
how to find the exact description of these dual ciphers. For simplicity we focus on
showing the 240 non-trivial dual ciphers of Rijndael. All we need to find in order to
describe a dual cipher is the R matrix that takes from Rijndael’s representation to
that dual cipher. After we choose ĝ(x) of the dual cipher, we need to know which a
can be used. Obviously, there are 8 different a’s that can be used, each one creates
a different cipher, and all of them are square dual ciphers (or higher degree dual
ciphers) of each other. We cannot choose any a, as the resulting R might not be
a transformation from Rijndael’s representation, but from another dual ciphers. A
practical solution is to first find R−1 and then find its inverse R.

R−1 takes an element in a dual cipher to Rijndael’s representation. Thus, R−1 is of
the form R−1 = (1, a, a2, ..., a7), where the ai’s are computed modulo the irreducible
polynomial of Rijndael. There are 240 possible a values, one for each dual cipher.
The a can take any value in GF (28), which does not belong to GF (24) (if a is in
GF (24) then R−1 is singular and does not span GF (28)). We compute R as the
inverse matrix of R−1.

We can find the polynomial ĝ(x) out of R as follows: ĝ(x) is of the form: x8 ⊕
α7x

7⊕α6x
6 · · ·⊕α1x⊕1, where αi ∈ {0, 1}. In polynomial representation of elements

in GF (28) x8 = ĝ(x)⊕x8 (mod ĝ(x)), since 2 is x in polynomial representation and
x8 = ĝ(x)⊕ x8 (mod ĝ(x)) it follows that 28 = ĝ(2)⊕ 28. Let b = 28 (mod ĝ(x))
then b in polynomial representation is ĝ(x)⊕ x8, and also R−1b = a8. Therefore, to
obtain ĝ(x) compute b = Ra8, transform b to its polynomial representation and add
x8.

2.12 Appendix: Properties of the T (x) Transfor-

mation

Theorem 3 The following properties hold for the T (x) transformation:

1. T (x)− T (−x) = x

2. T (2x) = 2T (x) (therefore, ∀i, T (2ix) = 2iT (x))

3. T (T (x)) = x

4. Let g , g′y, yTg(x) = Tg′(yx)

5. Tg = Tg2i
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6. T (x) = −T (−T (−x))

7. T (85) = 170, T (170) = 85, and if T (x) = x/2 then x ∈ {85, 170}. Note that
85/2 ≡ 170 (mod 255)

8. T (0) = −∞.

9. T (−∞) = 0.

10. T (x) = T (x± 255) - The cycle size of T is 255.

Proof Omitted.

Also if we define S(x) = T (−x), we find the following properties:

1. S(x)− S(−x) = −x

2. S(2x) = 2S(x)

3. S(S(S(x))) = x

4. S(−S(x)) = −x

5. Let g , g′y, ySg(x) = Sg′(yx)

6. Sg = Sg2i

7. S(170) = 170, S(85) = 85, and there is no other x that satisfies S(X)=X.

8. S(x) = S(x± 255). The cycle of S is 255.

The table of T (x) with generator 03x is described in Table 2.1.

2.13 Appendix: How to Enumerate the Keys of

Self-Dual Ciphers

First thing to notice, is that the square operation in GF (28) organizes the elements
in groups of different sizes, as summarized in Table 2.2. Each element a belongs to
the group of its square closure: {a, a2, a4, a8, a16, a32, a64, a128}. We also refer to the
square closure as cycle. Note that no matter which element of this group we choose
as a, we would still get the same group by repeatedly squaring a. The size of the
group is limited by 8, as in GF (28) for any element a it holds that a28

= a256 = a.
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Table 2.1: The Table T (x) with Generator 03x and Irreducible Polynomial 11Bx

(Rijndael)
✭❧❝♣✐✐①✮ 11Bx ✇✐①t ❵❧ ♠❡♣✐❧❡t❡ 03x ①❡❤①♣❜ ♠r T (x) ③❧❛❤

T [x] =

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 −∞ 25 50 223 100 138 191 112 200 120 21 245 127 99 224 33

16 145 68 240 92 42 10 235 196 254 1 198 104 193 181 66 45
32 35 15 136 32 225 179 184 106 84 157 20 121 215 31 137 101
48 253 197 2 238 141 147 208 63 131 83 107 82 132 186 90 55
64 70 162 30 216 17 130 64 109 195 236 103 199 113 228 212 174
80 168 160 59 57 40 170 242 167 175 203 62 209 19 158 202 176
96 251 190 139 13 4 47 221 74 27 248 39 58 161 71 126 246

112 7 76 166 243 214 122 164 153 9 43 117 183 180 194 110 12
128 140 239 69 56 60 250 177 144 34 46 5 98 128 52 218 150
144 135 16 217 53 206 188 143 178 226 119 201 159 169 41 93 155
160 81 108 65 182 118 227 114 87 80 156 85 211 229 232 79 88
176 95 134 151 37 124 29 163 123 38 249 61 204 149 219 97 6
192 247 28 125 72 23 49 26 75 8 154 94 89 187 207 148 205
208 54 91 241 171 78 233 116 44 67 146 142 189 252 102 237 3
224 14 36 152 165 77 172 231 230 173 213 244 22 73 222 51 129
240 18 210 86 115 234 11 111 192 105 185 133 96 220 48 24 —

and
T [−∞] = 0.

T [i − (−∞)] = −(−∞) + i

Elements of order 255 will therefore organize in groups of 8. Groups of 8 are also
formed by the elements of orders: 17, 51 and 85. So in total there are 30 groups of 8
elements each. Elements of order 15 will organize in groups of 4 elements, as for any
element a of order 15 it follows that a16 = a. A similar argument holds for elements
of the order 5, as a16 = (a5)3a = a. In total there are 3 groups of size 4. The two
elements of order 3 fall into one group of size 2, and the remaining two elements
are 0 and 1, each in a group of his own.

These cycles induce cycles on the keys. For each key, the length of the cycle is
the maximal length of the cycles of its bytes. We want to find the minimal subset
of keys covering all the cycles, e.g., a set of exactly one key from each cycle of
{K,K2, . . . , K27}.

To find them, use the following algorithm:

1. Output a representative from each cycle of keys that has an element of order
8 in at least one of its bytes.

2. Then, output a representative from each cycle of keys that has an element of
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Table 2.2: The Element Cycles Under the Squaring Operation
r❡❛✐①❞ ③❧❡rt ③❣③ ♠✐①❛✐❵❞ ①❡❢❣♥

Group Size Number of Groups Total
1 2 2
2 1 2
4 3 12
8 30 240

Total 36 256

order 4 in at least one of its bytes, but has no byte that belongs to a cycle of
higher order.

3. Then, output a representative from each cycle of keys that has an element of
order 2 in at least one of its bytes, but has no byte that belongs to a cycle of
higher order.

4. Finally, output all the keys with cycle of size 1, in all their bytes.

It can be easily verified that the algorithm outputs exactly one representative key
from each cycle.

The following algorithm outputs all the representative keys that have at least one
byte that belongs to a cycle of size c > 1, such that there is no byte that belongs to
a cycle with size higher than c.

This algorithm holds for c ∈ {2, 4, 8}:
For each byte i = 0 . . . 15, For each cycle of size c:

1. fix the value of byte i to be an element of the cycle.

2. Output all the possibilities of keys such that

(a) for bytes j ∈ {0, . . . , i− 1}, choose their values as all the combinations of
bytes that belong to cycles of size smaller than c.

(b) for bytes j ∈ {i + 1, . . . , 15}, choose their values as all the possible com-
binations of bytes that belong to cycles of size smaller or equal to c.

The algorithm for c = 1 is: output all the 216 combinations of 16 bytes of {0, 1}
(whose order is 1).

The number of cycles of keys of each size and the number of keys in each cycle
are summarized in Table 2.3.

36

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



Table 2.3: The Key Cycles Under the Squaring Operation
r❡❛✐①❞ ③❧❡rt ③❣③ ③❡❣③t♥❞ ①❡❢❣♥

Key Cycle Order Number of Cycles Total Keys

8
∑16

i=1 30 · (16)i−1 · (256)16−i 2128 − 264

= 2125 − 261

4
∑16

i=1 3 · (4)i−1 · (16)16−i 264 − 232

= 262 − 230

2
∑16

i=1 1 · (2)i−1 · (4)16−i 232 − 216

= 231 − 215

1 216 216

Total (2125 − 261) + (262 − 230)
+(231 − 215) + 216

= 2125 + 261 + 230 + 215
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Chapter 3

Instant Ciphertext-Only
Cryptanalysis of GSM Encrypted
Communications

In this chapter we present a very practical ciphertext-only cryptanalysis of GSM
encrypted communication, and various active attacks on the GSM protocols. These
attacks can even break into GSM networks that use “unbreakable” ciphers. We
first describe a ciphertext-only attack on A5/2 that requires a few dozen millisec-
onds of encrypted off-the-air cellular conversation and finds the correct key in less
than a second on a personal computer. We extend this attack to a (more complex)
ciphertext-only attack on A5/1. We then describe new (active) attacks on the pro-
tocols of networks that use A5/1, A5/3, or even GPRS. These attacks exploit flaws
in the GSM protocols, and they work whenever the mobile phone supports a weak
cipher such as A5/2. We emphasize that these attacks are on the protocols, and
are thus applicable whenever the cellular phone supports a weak cipher, for example,
they are also applicable for attacking A5/3 networks using the cryptanalysis of A5/1.
Unlike previous attacks on GSM that require unrealistic information, like long known
plaintext periods, our attacks are very practical and do not require any knowledge of
the content of the conversation. Furthermore, we describe how to fortify the attacks
to withstand reception errors. As a result, our attacks allow attackers to tap conver-
sations and decrypt them either in real-time, or at any later time. We present several
attack scenarios such as call hijacking, altering of data messages and call theft.

The work in this chapter is a joint work with Prof. Eli Biham and Nathan Keller.
A significantly shorter version of this chapter was published in [8, 10].
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3.1 Introduction

GSM is the most widely used cellular system in the world, with over a billion cus-
tomers around the world. The system was developed during the late 1980s, and
the first GSM network were deployed in the early 1990s. GSM is based on second
generation cellular technology, i.e., it offers digitalized voice (rather than analog, as
used in prior systems).

GSM was the first cellular system which seriously considered security threats.
One example is a secure cryptographic hardware in the phone (the SIM — Sub-
scriber Identity Module), which was introduced in GSM. Previous cellular systems
had practically no security, and they were increasingly the subject of criminal activity
such as eavesdropping on cellular calls, phone cloning, and call theft.

The security threat model of GSM was influenced by the political atmosphere
around cryptology at the 1980s, which did not allow civilians to use strong cryptog-
raphy. Therefore, the objective was that the security of GSM would be equivalent to
the security of fixed-line telephony. As a result, only the air-interface of GSM was
protected, leaving the rest of the system un-protected. The aim of the protection on
the air-interface is to provide two kinds of protections: protect the privacy of users
(mostly through encryption), and protect the network from unauthorized access to
the network (by cryptographic authentication of the SIM).

The privacy of users on the air-interface is protected by encryption. However,
encryption can start only after the mobile phone identified itself to the network.
GSM also protects the identity of the users by pre-allocating a temporary identifi-
cation (TMSI — Temporary Mobile Subscriber Identity) to the mobile phone. This
temporary identification is used to identify the mobile phone before encryption can
commence. The temporary identification for the next call can safely be replaced once
the call is encrypted.

Authentication of the SIM by the network occurs at a beginning of a radio con-
versation between the mobile phone and the network. After the phone identifies itself
(e.g., by sending its TMSI), the network can initiate an authentication procedure.
The procedure is basically a challenge-response scheme based on a pre-shared secret
Ki between the mobile phone and the network. In the scheme, the network challenges
the mobile phone with a 128-bit random number RAND; the mobile phone trans-
fers RAND to the SIM, which calculates the response SRES = A3(Ki, RAND),
where A3 is a one-way function; then, the mobile phone transmits SRES to the
network, which compares is to the SRES value that it pre-calculated. The en-
cryption key Kc for the conversation is created in parallel to the authentication by
Kc = A8(Ki, RAND), where A8 is also a one-way function. The remainder of the
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call can be encrypted using Kc, and thus, the mobile phone and the network remain
mutually “authenticated” due to the fact that they use the same encryption key.
However, encryption is controlled by the network, and it is not mandatory. There-
fore, an attacker can easily impersonate the network to the mobile phone using a
false base station with no encryption. In general, it is not advisable to count on an
encryption algorithm for authentication, especially in the kind of encryption that is
used in GSM.

The exact design of A3 and A8 can be selected by each operator independently.
However, many operators used the example, called COMP128, given in the GSM
memorandum of understanding (MoU). Although never officially published, the de-
sign of COMP128 was reverse engineered by Briceno, Goldberg, and Wagner [25].
They have performed cryptanalysis of COMP128 [26], allowing to find the pre-shared
secret Ki of the mobile phone and the network. Given Ki, A3 and A8 it is easy to
perform cloning. Their attack requires the SRES for about 217 values of RAND.
The required data for this kind of attack can obtained within a few hours over-the-air
using a fake base station.

The original encryption algorithm for GSM was A5/1. However, A5/1 was export
restricted, and as the network grew beyond Europe there was a need for an encryption
algorithm without export restrictions. As a result, a new (weakened) encryption
algorithm A5/2 was developed. The design of both algorithms was kept secret (it
was disclosed only on a need-to-know basis, under an non-disclosure agreement, to
GSM manufacturers). In 2002, an additional new version A5/3, was added to the
A5 family. Unlike, A5/1 and A5/2, it’s internal design was published. A5/3 is based
on the block-cipher KASUMI, which is used in third generation networks [1]. A5/3
is currently not yet deployed in GSM, but deployment should start soon.

The internal design of both A5/1 and A5/2 was reverse engineered from an actual
GSM phone by Briceno [24] in 1999. The internal design was verified against known
test-vectors, and it is available on the Internet [24].

After the reverse engineering of A5/1 and A5/2, it was demonstrated that A5/1
and A5/2 do not provide an adequate level of security for GSM. However, most of
the attacks are in a known-plaintext attack model, i.e., they require the attacker not
only to intercept the required data frames, but also to know their contents before
they are encrypted.

A5/1 was initially cryptanalyzed by Golic [46] when only a rough outline of A5/1
was leaked. After A5/1 was reverse engineered, it was analyzed by Biryukov, Shamir,
and Wagner [21]; Biham and Dunkelman [15]; Ekdahl and Johansson [35]; Maximov,
Johansson and Babbage [58]; and recently by Barkan and Biham [6].

As for A5/2, it was cryptanalyzed by Goldberg, Wagner and Green [45] imme-

40

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



diately after the reverse engineering. This attack on A5/2 works in a negligible
time complexity and it requires only two known-plaintext data frames which are
exactly 26 · 51 = 1326 data frames apart (about 6 seconds apart). Another attack
on A5/2 was proposed by Petrović and Fúster-Sabater [76]. This attack works by
constructing a systems of quadratic equations whose variables describe the internal
state of A5/2 (i.e., equations of the form c =

⊕

i,j ai · aj, where ai, aj, c ∈ {0, 1},
ai and aj are variables and c is a constant). This attack has the advantage that
it requires only four known-plaintext data frames (thus the attacker is not forced
to wait 6 seconds), but it does not recover the encryption key, rather, it allows to
decrypt most of the remaining communications.

3.1.1 Executive Summary of the New Attacks

In this chapter we describe several attacks on the A5 variants and on the GSM
protocols. We first show a passive known-keystream attack on A5/2 that requires a
few dozen milliseconds of known keystream. In this attack, we construct systems of
quadratic equations that model the encryption process. Then, we solve the system
to recover the internal state, and thus the key that was used.

We improve this attack on A5/2 to work in real time (finding the key in less
than a second on a personal computer) by dividing the attack into two phases, a
precomputation phase and a real-time phase. The attacker first performs a one-
time precomputation of a few hours, in which he finds how to solve all the equation
systems and stores instructions for the solution in memory. In the real-time phase,
the attacker uses the instructions quickly solve the equations.

We then transform this known-keystream attack on A5/2 into a ciphertext-only
attack. The key idea is to take advantage of the fact that GSM employs error
correction before encryption in the transmission path (instead of the well established
reverse order). The error correction introduces linear dependencies between the bits.
Assume that it is known that the parity (XOR) of some subset of bits is 0. XORing
the same subset of bits after encryption reveals the parity of the corresponding
keystream bits. We use an attack similar to the known-keystream attack, in which
the parity of keystream bits is used instead of the keystream bits themselves. The
resulting optimized attack completes in less than a second on a personal computer.

The above attacks assume that there are no reception errors. To overcome this
restriction, we improve the attack on A5/2 to withstand a class of reception errors.

Next, we present a ciphertext-only attack on A5/1 whose complexity is consider-
ably higher than the previous two attacks on A5/2. However, it demonstrates that
passive A5/1 eavesdropping is feasible even for a medium-sized organization. We uti-
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lize the same technique as in the passive attack on A5/2, to reveal the parity of bits
of the keystream. We then view the function from the internal state to the known-
keystream bits as a random function, and perform a (generic) time/memory/data
tradeoff attack, taken from the published literature [20]. Once the internal state is
found, a candidate key is found (and can be checked using trial encryptions). It
should be noted that the time/memory/data tradeoff requires a lengthy preprocess-
ing phase and huge storage, but still the key can be recovered in a relatively short
time. It should also be noted that the recovery process is probabilistic in nature,
and that given enough data the success probability becomes close to one.

We then deal with another family of attacks, which are active attacks on the GSM
protocol. These attacks can work even if the network supports only A5/1 or A5/3,
as long as the mobile supports A5/2. The key flaw that allows the attacks is that
the same key is used regardless of whether the phone encrypts using A5/2, A5/1, or
A5/3. Therefore, the attacker can mount a man-in-the-middle attack, in which the
attacker impersonates the mobile to the network, and the network to the mobile (by
using a fake base station). The attacker might use A5/1 for communication with
the network and A5/2 for communications with the mobile, and due to the flaw,
both algorithms encrypt using the same key. The attacker can gain the key through
the passive attack on A5/2. Since the attacker is in the middle, he can eavesdrop,
change the conversation, perform call theft, etc. The attack applies to all the traffic
including short message service (SMS).

A similar active attack applies to GPRS, which is a 2.5 generation service that
allows mobile internet supporting services such as Internet browsing, e-mail on the
move, and multimedia messages.

The security of GPRS is based on the same mechanisms as of GSM: the same
A3A8 algorithm is used with the same Ki, but the authentication and key agreement
of GPRS occurs in different times than in GSM, using a different RAND value. Since
the RAND is different, the resulting SRES and Kc are different, and are referred
to as GPRS-SRES and GPRS-Kc, respectively. The GPRS cipher is different from
A5/1 and A5/2, and is referred to as GPRS-A5, or GPRS Encryption Algorithm
(GEA). Similarly to A5, GEA is implemented in the phone (rather than in the SIM),
thus an old SIM card can work in a GPRS-enabled phone. There are currently three
versions of the algorithm: GEA1, GEA2, and GEA3 (which is similar to A5/3).
Much like A5/1 and A5/2, the internal design of GEA1 and GEA2 was never made
public.

Although GPRS uses a different set of encryption algorithms, the key for GPRS
is generated using the same A3A8 algorithm using the same Ki but with a dif-
ferent RAND called GPRS-RAND. Therefore, an attacker can use a fake base
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station to initiate a (non-GPRS) conversation with the mobile using A5/2, and send
the GPRS-RAND instead of RAND. Thus, the resulting key is identical to the key
that is used in GPRS, and the attacker can recover it using the attack on A5/2.

3.1.2 Organization of this Chapter

This chapter is organized as follows: In Section 3.2, we give a short description of
A5/2 and the way it is used. We present our new known plaintext attack in Sec-
tion 3.3. This attack is improved in Section 3.4 to a ciphertext-only attack. We
enhance our attack to withstand radio reception errors in Section 3.5. We then de-
scribe a passive ciphertext-only attack on A5/1 in Section 3.6. Active attacks on
GSM are presented in Section 3.7, in which we show how to leverage the ciphertext-
only attack on A5/2 to an active attack on any GSM network. We discuss the
implications of the attacks under several attack scenarios in Section 3.8. Finally, we
describe several ways of identifying and isolating a specific victim in Section 3.9. Sec-
tion 3.10 summarizes the chapter. In Appendix 3.11, we improve Goldberg, Wagner,
and Green’s attack to a ciphertext-only attack. We give a technical background on
GSM in Appendix 3.12.

3.2 Description of A5/2

The stream cipher A5/2 accepts a 64-bit key Kc, and a 22-bit publicly known initial
value (IV) called COUNT (which is derived from the publicly known frame num-
ber, as described in Appendix 3.12). We denote the value of COUNT by f . The
internal state of A5/2 is composed of four maximal-length Linear Feedback Shift
Registers (LFSRs): R1, R2, R3, and R4, of lengths 19-bit, 22-bit, 23-bit, and 17-bit,
respectively, with linear feedback as shown in Figure 3.1. Before a register is clocked
the feedback is calculated (as the XOR of the feedback taps). Then, the register is
shifted one bit to the right (discarding the rightmost bit), and the feedback is stored
into the leftmost location (location zero).

A5/2 is initialized with Kc and f in four steps, as described in Figure 3.2, where
the i’th bit of Kc is denoted by Kc[i], the i’th bit of f is denoted by f [i], and
i = 0 is the least significant bit. We denote the internal state after the key setup
by (R1, R2, R3, R4) = keysetup(Kc, f). This initialization is referred to as the key
setup. Note that the key setup is linear in both Kc and f (without bits R1[15],
R2[16], R3[18], and R4[10] that are always set to 1).

A5/2 works in cycles, where at the end of each cycle one output bit is produced.
During each cycle two or three of registers R1, R2, and R3 are clocked, according to
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Figure 3.1: The Internal Structure of A5/2
A5/2 ❧② ✐♥✐♣t❞ ❞♣❛♥❞

the value of three bits of R4. Then, R4 is clocked. At the beginning of each cycle, the
three bits R4[3], R4[7], and R4[10] enter a clocking unit. The clocking unit performs
a majority function on the bits. Then, the registered are clocked as follows: R1 is
clocked if and only if R4[10] agrees with the majority. R2 is clocked if and only if
R4[3] agrees with the majority. R3 is clocked if and only if R4[7] agrees with the
majority. After these clockings, R4 is clocked, and an output bit is generated from
the values of R1, R2, and R3, by XORing their rightmost bits to three majority
values, one of each register. See Figure 3.1 for the exact details. It is important
to note that the majority function (used for the output) is quadratic in its input:
maj(a, b, c) = a · b⊕ b · c⊕ c · a. Thus, an output bit is a quadratic function of bits
of R1, R2, and R3.

The first 99 bits of output are discarded,1 and the following 228 bits of output
are used as the output keystream. The keystream generation can be summarized as
follows:

1Some references state that A5/2 discards 100 bits of output, and that the output is used with
a one-bit delay. This is equivalent to stating that it discards 99 bits of output, and that the output
is used without delay.
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1. Set R1 = R2 = R3 = R4 = 0.

2. For i = 0 to 63

• Clock all four registers.

• R1[0]← R1[0]⊕Kc[i]; R2[0]← R2[0]⊕Kc[i]; R3[0]← R3[0]⊕Kc[i];
R4[0]← R4[0]⊕Kc[i].

3. For i = 0 to 21

• Clock all four registers.

• R1[0]← R1[0]⊕ f [i]; R2[0]← R2[0]⊕ f [i]; R3[0]← R3[0]⊕ f [i];
R4[0]← R4[0]⊕ f [i].

4. Set the bits R1[15]← 1, R2[16]← 1, R3[18]← 1, R4[10]← 1.

Figure 3.2: The Key Setup of A5/2
A5/2 ❧② ❣③t♥❞ ❧❡❣③❵ ♠③✐①❡❜❧❵

1. Run the key setup with Kc and f (Figure 3.2).

2. Run A5/2 for 99 cycles and discard the output.

3. Run A5/2 for 228 cycles and use the output as keystream.

The output of 228 bits (referred to as keystream) is divided into two halves. The
first half of 114 bits is used as a keystream to encrypt the link from the network to
the phone, and the second half of 114 bits is used to encrypt the link from the phone
to the network. Encryption is performed as a bitwise XOR of the message with the
keystream.

It is worth noting that A5/2 is built on top of A5/1’s architecture. The feedback
functions of R1, R2 and R3 are the same as A5/1’s feedback functions. The ini-
tialization process of A5/2 is also similar to that of A5/1, with the only differences
is that A5/2 also initializes R4, and that one bit in each register is forced to be 1
after initialization, while A5/1 does not use R4, and no bits are forced. Then A5/2
discards 99 bits of output while A5/1 discards 100 bits of output. The clocking
mechanism is the same, but the input bits to the clocking mechanism are from R4
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in the case of A5/2, while in A5/1 they are from R1, R2, and R3. The designers
meant to use similar building blocks to save hardware in the mobile phone [74].

3.3 Known Plaintext Attacks on A5/2

In this section we present a new known plaintext attack (known keystream attack)
on A5/2. Namely, given a keystream divided into frames, and the respective frame
numbers, the attack recovers the session key. For completeness we start by describing
in details Goldberg, Wagner, and Green’s attack on A5/2.

3.3.1 Goldberg, Wagner, and Green’s Known Plaintext At-
tack on A5/2

The first observation that this attack is based on is that since R4[10] is forced to
be “1” after initialization, R4 has the same value after initialization regardless of
whether the bit f [10] of COUNT is zero or one. Since R4 controls the clockings
of R1, R2, and R3, the clockings of these registers is independent of the value of
f [10]. Taking into account the fixed permutation between the TDMA frame number
and COUNT (see [41, annex C] or Appendix 3.12), two frames which are exactly
26 · 51 = 1326 TDMA frames (about 6 seconds) apart are required, where the first
frame’s f [10] is zero. Note that the first frame’s f [10] might be one, in this case
the attacker is forced to wait at most another six seconds for f [10] to be zero. The
attacker cannot use a frame with f [10] = 1 as a first frame, since due to the carry
(remember that the TDMA frame number is incremented by one every frame) other
bits of the COUNT are changed, and thus register R4 is different in the two frames.
We conclude that the attacker is forced to wait between 6 to 12 seconds to obtain
the required data for the attack.

The attack is as follows: Let f1 and f2 be the respective COUNT value for two
frame numbers as described above, with respective key-streams k1, k2. Denote the
values of registers R1, R2, R3, and R4 in the first frame, just after the key setup
(before the 99 clockings), by R11, R21, R31, and R41, respectively. We use a similar
notation for the initial internal state of the second frame, i.e., we denote the value
of the registers in the second frame after the key setup by R12, R22, R32, and R42.
Note that the special choice of f1 and f2 ensures that R41 = R42, and we denote
its value by R4. The other registers are not equal, however, since the initialization
process is linear in f1 and f2, the difference between R11, R21, R31 and R12, R22,
R32, respectively, is also linear in the difference between f1 and f2. These differences
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are fixed, as f1⊕f2 = 0000000000010000000000b. Thus, we can write R11 = R12⊕δ1,
R21 = R22 ⊕ δ2, R31 = R32 ⊕ δ3, where δ1, δ2, and δ3 are some constants.

We now show that given the value of R4, the keystream difference k1⊕k2 is linear
in R11, R21, and R31. Given R4, the entire clocking of the registered is known (and
is equal in the two frames as R41 = R42. Let l1, l2, and l3 be the number of clocks
that registers R1, R2, and R3 have been clocked by the end of cycle i. Therefore,
the values of the three registers at the end of cycle i of the first frame are L1l1 ·R11,
L2l2 ·R2, and L3l3 ·R3, where L1, L2, and L3 are matrices that express one clocking
of the respective registers. Similarly, the values of the registers at the second frame
at the end of cycle i are L1l1 · (R11 ⊕ δ1), L2l2 · (R2⊕ δ2), and L3l3 · (R3⊕ δ3).

Let g1(R1)⊕ g2(R2)⊕ g3(R3) be the output bit of A5/2 given that the internal
state of the registers is R1, R2, and R3; g1(·), g2(·), and g3(·) are quadratic (as
they involve one application of the majority function). To better understand that
the output is quadratic in the internal state, consider the following example. Let
x0, . . . , x18, y0, . . . , y21, z0, . . . , z22 be variables representing the bits of R1, R2, and
R3, respectively, just after the first bit of the keystream is produced. Then, the first
bit of the keystream is

k1[0] = x12x14 ⊕ x12 ⊕ x12x15 ⊕ x14x15 ⊕ x15 ⊕ x18 ⊕ y9y13 ⊕ . . .⊕ z16z18 ⊕ z22

(which is quadratic in the variables representing the internal state).
Goldberg, Wagner, and Green observed that the difference of the output bits

can be expressed as a linear function of the internal state of the first frame. The
difference in the output bit of cycle i is given by:

g1(L1l1 ·R11)⊕ g1(L1l1 ·R11 ⊕ δ1)⊕
g2(L2l2 ·R21)⊕ g2(L2l2 ·R12 ⊕ δ2)⊕
g3(L3l3 ·R31)⊕ g3(L3l3 ·R13 ⊕ δ3) =

gδ1(L1l1 ·R11)⊕ gδ2(L2l2 ·R21)⊕ gδ3(L3l3 ·R31),

where gδ1(·), gδ2(·), and gδ3(·) are linear function. Thus, the output difference is
linear in R11, R22, and R33. It remains to show that given a quadratic function
g(x1, . . . , xn) and ∆ = ∆1, . . . , ∆n, g∆ , g(x1, . . . , xn)⊕ g(x1⊕∆1, x2⊕∆2, . . . , xn⊕
∆n) is linear in x1, . . . xn, where xi, ∆i ∈ {0, 1}.

Since g is quadratic, it can be written as

g(x1, . . . , xn) =
∑

1≤i,j≤n

ai,jxixj ⊕ a0,0,

47

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



where ai,j ∈ {0, 1} are fixed for a given g. Thus,

g∆ =
∑

1≤i,j≤n

ai,j(xixj ⊕ (xi ⊕∆i)(xj ⊕∆j))

=
∑

1≤i,j≤n

ai,j(xixj ⊕ xixj ⊕ xi∆j ⊕∆ixj ⊕∆i∆j)

=
∑

1≤i,j≤n

ai,j(xi∆j ⊕∆ixj ⊕∆i∆j).

The last expression is linear in x1, . . . , xn given ∆1, . . . , ∆n.

Therefore, given R4 and k1⊕ k2, the initial internal state R11, R21, and R31 can
be recovered (solving a linear systems of equations). Kc can be recovered from the
initial internal state (R11, R21, R31, R41) and f1 by reversing the key setup of A5/2.
As R4 is not known, the attacker needs to guess all possible 216 values of R4, and for
each value solve the resulting linear equation, until a consistent solution is found.

A faster solution is possible by filtering for the correct R4 values. The initial
internal state of R1, R2, and R3 is 61 bits (recall that three bits of R1, R2, and
R3 are set to 1). Thus, 61 bits of k1 ⊕ k2 are required to reconstruct Kc, while
k1⊕k2 is 114 bits long. It is therefore possible to construct an overdetermined linear
system whose solution is the internal state. The 114− 61 = 53 dependent equations
would zero during the Gauss elimination. These equations depend on the value of
R4, thus, for every value of R4, it is possible to write 53 equations VR4 · (k1⊕k2) = 0,
where VR4 is a 53× 114 bits matrix, and 0 is a vector of 53 zeros. The redundancy
is used to filter wrong R4 values by checking that VR4 · (k1 ⊕ k2) = 0. On average
it takes two dot products (out of the 53 equations) to disqualify a wrong R4 value.
As there are 216 possible values for R4, and as on average the correct R4 would be
found after trying 216/2 values, the average attack time is about 216 dot products,
plus a single solution of the equation system. A straightforward implementation on a
32-bit personal computer, where all possible VR4 systems are pre-loaded to memory,
consumes 216(16 · 114)/8 = 216 · 228 bytes (about 15 MBs of volatile memory), and
requires a few milliseconds of CPU time (on a 2GHz personal computer) to filter for
the correct value of R4. Once R4 is found, we can solve the linear equations for this
specific R4 in order to recover R11, R21, and R31. Storing these systems of equations
after Gauss elimination takes about 216 · 64 · 114/8 = 216 · 912 bytes, i.e., about 60
MBs of memory. Note that this memory can be stored on a hard-disk, and can be
indexed by R4. Given R4, the relevant system can be fetched to volatile memory.
The complexity can be further reduced by considering fewer bits of k1 ⊕ k2.

The attack as described above requires a relatively short preprocessing consisting
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of the computation of the equations. The preprocessing can be completed within a
few minutes on a personal computer.

3.3.2 Our Non-Optimized Known-Plaintext Attack on A5/2

We present an attack on A5/2 that requires the keystream of (any) four frames. Our
attack recovers the internal state (R1, R2, R3, and R4), and by reversing the key
setup, it finds the session key.

Our known-plaintext attack can be viewed as an improvement of Goldberg, Wag-
ner, and Green’s attack. We guess the initial value of R4, and write every output
bit as a quadratic term in R1, R2, and R3. We describe a way to write every output
bit — even if on different frames — as a quadratic term of R1, R2, and R3 of the
first frame. Given the output bits of four frames, we construct a system of quadratic
equations, and solve it using linearization. Thus, we recover the initial value of R1,
R2, and R3.

Let k1, k2, k3, and k4 be the keystream of A5/2 for frames f1, f2, f3, and f4,
respectively. Note that each kj is the output keystream for a whole frame, i.e., each
kj is 114-bit long.2 We denote the i’th bit of the keystream of fj by kj[i]. The
initial internal state of register Ri of frame j (after the initialization but before the
99 clockings) is denoted by Rij.

As we discussed in Section 3.3.1, given R4, each output bit can be written as
a quadratic function of the initial internal state of R1, R2, and R3. We like to
construct a system of quadratic equations that expresses the equality of the quadratic
terms for each bit of the output, and the actual value of that bit from the known-
keystream. The solution of such a system would reveal the internal state. However,
solving a general system of quadratic equations is NP complete. Fortunately, there
are shortcuts when the quadratic system is over defined (in our case there are 61
variables and 114 quadratic equations, so the system is overdefined). The complexity
drops significantly as the system becomes more and more overdefined. Therefore, we
improve this attack by adding equations from other frames, while making sure the
equations are over the same variables, i.e., the initial value of R1, R2, R3 at frame f1.
Once we combine the equations of four frames, we solve the system by linearization.

A system of equations is built for each of the 216 possible values for R41 and
solved, until we find a consistent solution. The solution of such a system is the
initial internal state at frame f1.

2Note that by keystream for a frame, we refer to the 114-bit keystream half that is used in the
encryption process of the frame for a single direction, e.g., the network-to-mobile link.
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There are at most 656 variables after linearization: We observe that each majority
function operates on bits of a single register. Therefore, the quadratic terms consist
of pairs of variables of the same register only. Taking into account that one bit in
each register is set to 1, R1 contributes 18 linear variables and all their 17·18

2
= 153

products. In the same way R2 contributes 21 + 21·20
2

= 21 + 210 variables and R3
contributes 22+ 22·21

2
= 22+231 variable, totaling 18+153+21+210+22+231 = 655

variables after linearization. We include the constant 1 as a variable to represent the
affine part of the equations, thus our set of variables contains 656 variables. We
denote the set of these 656 variables for frame fi by Si.

It remains to show how given the variables in the set S1 of frame f1, we can
describe the output bits of frames f2, f3, and f4 as linear combinations of variables
from the set S1. Assume that we know the value of R41, and recall that the key
setup is linear in COUNT (see Section 3.2) (and that COUNT is publicly known for
both frames). Therefore, given the COUNT difference of the frames, we know the
difference in the values of each register after key setup: R41 is given, and thus we
know R42. As R11, R21, and R31 are unknown, we only know the XOR-differences
between R11, R22, R33 and R12, R22, R32 respectively.

We translate each variable in S2 to variables in S1: Let x1 be the concatenated
value of the linear variables in S1, and g a quadratic function such that V1 = g(x1).
We know that the concatenated value of the linear variables of S2 can be written
as x2 = x1 ⊕ δ1,2, and clearly S2 = g(x2). Much like in Section 3.3.1, the difference
between S2 and S1 is linear in x1, which implies that S2 can be expressed in linear
terms of the variables in S1. Thus, we construct a system of quadratic equations
using the keystream of four frames with the variables taken only from S1. In total,
we create an equation system of the form: SR41 · S1 = k, where S is the system’s
matrix, k = k1||k2||k3||k4, and “||” denotes concatenation. Note that SR41 depends
on the value of R41, and on the difference between COUNT value of the frames.

Clearly, once we obtain 656 linearly independent equations the system can be
easily solved using Gauss elimination. We observe that it is practically very difficult
to collect 656 linearly independent equations, due to the low order of the output
function and the frequent initializations of A5/2 (A5/2 is re-initialized once 228
of output bits are generated). However, we do not actually need to solve all the
variables, as it suffices to solve the linear variables of the system. We have tested
experimentally and found that about 450 linearly-independent equations are always
sufficient to solve the original linear variables in V1 using linearization and Gauss
elimination.3

3In case the data available for the attacker is scarce, there are additional methods that can be
used to reduce the number of required equations. For example, whenever a value of a linear variable
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It is interesting to see that we can gain 13 additional linear equations for free, due
to the knowledge of R41, and the frame number. Let R12341 , R11||R21||R31||R41,
where ‘||’ denotes concatenation. We treat R12341 as a 77-bit vector, throwing away
the four bits that are set to 1 during the key setup. R12341 is linear in the bits of
Kc and f1, i.e., we can write

R12341 = NK ·Kc ⊕Nf · f1, (3.1)

where NK is a 77 × 64 matrix, and Nf is a 77 × 22 matrix that represents the key
setup. The linear space which is spanned by the columns of Nk is of degree 64, but
each vector in that space has 77 bits, therefore, 13 linear equations always hold on
NK ·Kc; let HK be the matrix 13× 77 that expresses these equations, i.e.,

HK ·NK = 0,

where 0 is the 13× 64 zero matrix. We multiply Equation (3.1) on the left by HK :

HK ·R1234f = HK ·NK ·Kc ⊕Hk ·Nf · f1 = HKNf · f1.

We can divide HK into two parts HL
K and HR

K such that

HK ·R1234f = HL
K ·R123f ⊕HR

K ·R4f ,

where HK = HL
K ||HR

K , HL
K is 13×61 (the leftmost 61 columns of HK), HR

K is 13×16
(the rightmost 16 columns of HK), and R123f = R1f ||R2f ||R3f . It follows that

HKNf · f1 = HK ·R1234f = HL
K ·R123f ⊕HR

K ·R4f ,

which we can reorganize to:

HL
K ·R123f = HKNf · f1 ⊕HR

K ·R4f .

Namely, given R41 and the relevant COUNT (i.e., f1), we gain 13 linear equations
(HL

K) over the bits of registers R1, R2, and R3.
We summarize the attack of this section as follows: we try all the 216 possible

values for R41, and for each such value, we solve the linearized system of equations
that describe the output bits for four frames. The solution of each system gives us
a suggestion for the internal state of R1, R2, and R3, which together with R4 is a

xi is discovered, any quadratic variable of the form xi · xj can be simplified to 0 or xj depending
whether xi = 0 or xi = 1, respectively. The XL algorithm [30] can also be used in cases of scarce
data.
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suggestion for the full internal state. Most of the 216 − 1 wrong states can be easily
identified due to inconsistencies in the Gauss elimination. If two or more consistent
internal states remain, they are verified by trial encryptions.

The time complexity of the attack is as follows: There are 216 guesses of the value
of R4f . For each guess, we solve a linear binary system of 656 variables, which is
about 6563 ≈ 228 XOR operations. Thus, the total complexity is about 244 bit-XOR
operations. When performed on a 32-bit machine, the complexity is 239 register-XOR
operations.

An implementation of this algorithm on a Linux 800MHz Pentium III personal
computer finds the internal state within about 40 minutes, and requires relatively
small amount of memory (holding the linearized system in memory requires 6562 bits
≈ 54KB).

3.3.3 An Optimized Attack on A5/2

We now describe an optimized implementation of the attack. The optimized version
of the attack finds Kc in a few milliseconds of CPU time, and uses precomputed
tables stored in memory. However, it requires slightly more data compared to the
un-optimized attack.

The key idea of the optimized attack is similar to the one used in 3.3.1 for a faster
attack: In a precomputation phase, we compute the dependencies that occur during
the gauss elimination of the system of equations for each R41 value. Then, in the
realtime phase, we filter for the correct R41 value by applying the consistency checks
on the known keystream, and keeping only the R41 values that are consistent with
the keystream.

In other words, we perform a precomputation phase, in which we calculate the
equation systems for all values of R41 in advance. We solve each such system in
advance, i.e., given a system of equations SR41 · S1 = k, we compute a “solving
matrix” TR41 , such that TR41 · SR41 is the result of Gauss elimination of SR41 . Since
SR41 not only depends on R41 but also on the difference between the COUNT values
of the frames, we have to perform the precomputation for several COUNT value
differences, as we discuss later. In the realtime phase, we calculate t = TR41 · k
for each value of R41. The first elements of the vector t are the (partially solved)
variables in S1, but as some of the equations are linearly dependent (described in
Section 3.3), the remaining elements of t should be zeros (representing the dependent
equations). Therefore, we check that the last elements in t are indeed zero, i.e,. that
the keystream k is consistent with the tested value for R41. Once a consistent
value for R41 is found, we can verify it by calculating the key and performing trial
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encryptions. In an even faster implementation, we do not need to hold in memory
the entire matrices TR41 . We only hold the last rows T 0

R41
of the matrices TR41 , i.e.,

the rows that correspond to the zero elements in t). Then, to verify consistency of a
value R41, we only need to check that t′ = T 0

R41
· k is a vector of zeros. We do not

need to keep more than 16 rows in T 0
R41

, as 16 would ensure that on the average case
there would be two values of R41 that are consistent, one of them is the correct R41.

We now analyze the time and memory complexity of the attack using a single
precomputed table (for a single difference between the COUNT value of the frames).
The time that is required for the precomputation is comparable to performing the
un-optimized attack, i.e., takes about 40 minutes on our computer. In the realtime
phase, we must keep the filtering matrices in volatile memory for fast operation. A
single system matrix is about 456 · 16 bits, thus, about 60 MBs are required to hold
the table for the 216 possible values of R41. Additional 64 · 456 · 216 ≈ 240 MBs are
required to hold the matrices that are used to find the full internal state given R41

and the keystream. However, these matrices can be stored on hard-disk. The attack
time is about 250 CPU cycles for multiplying and checking a single matrix, or about
16M cycles in total (a few milliseconds on a personal computer). The limiting factor
is the bus speed between the memory and the CPU. After finding an R41 candidate,
loading the relevant solution matrix from disk takes another few tens of milliseconds
(and a negligible time to find Kc). In our implementation, the attack takes less than
a second on a personal computer.

As we mentioned, SR41 depends on the value of R41 and on the difference between
the COUNT value of the different frames, i.e., when we perform the precomputation,
we must know the XOR difference between the COUNT values of the frames. The
difference between the COUNT values is used while translating the sets of variables
S2, S3, and S4, to S1.

We satisfy the requirement of knowing in advance the XOR difference between
the COUNT values of the frames as follows: We perform the precomputation several
times, for different possible difference, and store the results in different tables. Then,
in the real time phase, we use the tables that are appropriate for the COUNT values
of our frames. If we are given known keystream for frames with COUNT values that
is not covered by our precomputation, then we are forced to abandon this keystream,
and wait a for keystream with COUNT difference as we precomputed.

From this point to the end of the section, we give a technical example of a real
GSM channel and how we deal with the requirement of knowing in advance the XOR
difference between COUNT values. Consider the downlink of the SDCCH/8 channel
(see Appendix 3.12 for more details about the channel). This channel is used many
times in GSM call initiation, even before the mobile phone rings. In this channel, a
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message is transmitted over four consecutive frames out of a cycle of 51 frames. The
four frames are always transmitted on the same values of the frame number modulo 51
and starting when the two least significant bits of the frame number modulo 51 are
zero. Clearly, the frame number modulo 26 can take any value between zero to 25
(and it is actually decreased by one every cycle as 51 ≡ −1 (mod 26)). Let fr denote
the first frame number of these four frames, i.e., the four frames are f1 = fr, (and
the two lower bits of fr (mod 51) are zero) f2 = fr+1, f3 = fr+2, and f4 = fr+3.
Detailed analysis shows that by repeating the precomputation for specific 13 values
of fr mod 26, a success rate of 100% is reached. Alternatively, we can perform
the precomputation for only some of the values, and discard some frames until the
received frames match the ones meeting the pre-computed conditions.

During the precomputation for a specific fr in the downlink SDCCH/8, the
differences fr ⊕ f2 (mod 26), fr ⊕ f3 (mod 26), and fr ⊕ f4 (mod 26) must be
fixed. By performing precomputation for the cases where the lower bits of fr mod 26
are 00, 001, 010, and 011 we cover the XOR-difference for the cases where the first
frame number fr modulo 26 is 0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20. When the
lower bits fr (mod 26) are 0101, we cover the cases where fr mod 26 is: 5 and 21.
When the lower bits fr mod 26 are 0110, we cover fr mod 26 values 6 and 22. We
cover each of the following fr mod 26 values by its own: 7, 13, 14, 15, 23, 24, 25.
Thus, by repeating the precomputation 13 times we build a full coverage, i.e., given
the output of A5/2 for four consecutive frames, we use the relevant precomputed
tables to perform the attack. Alternatively, we can perform precomputation only for
some of the possible values of fr mod 26, and during the attack, discard frames until
we reach a set of four frames whose differences are covered by the precomputation.
For example, if we precompute the equation systems for the cases where the lower
bits of fr mod 26 are 00, then the following fr mod 26 values are covered by the
tables: 0, 4, 8, 12, 16, 20. The worst case is when fr mod 26 equals 25. In this case,
the next quartets of frames begin with fr mod 26 of 24, 23, 22, 21, i.e., we throw
five quartets of frames, and perform the attack using the sixth quartet for which
fr mod 26 equals 20 (i.e., we waste about 1.1 second of data).

In the above example of the SDCCH/8, a full optimized implementation requires
the keystream of four consecutive frames. After a one-time precomputation of about
40 · 13 = 520 minutes, and using 780 MBs of RAM, and another 3.1 GBs on disk,
the attack works in less than a second. Note that we can refrain from saving the
Kc matrices, and thus save 3.1 GBs on the hard-disk, and in return recompute the
system of equations for the correct R41, once found (in this case the total attack
time is still less than one second on a personal computer).
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3.4 An Instant Ciphertext-Only Attack on A5/2

In this section, we transform the attacks of Section 3.3.2 and Section 3.3.3 to a
ciphertext-only attack on A5/2.

GSM must use error correction to withstand reception errors. However, in the
GSM protocol a message is first subjected to an error-correction code, which consid-
erably increases the size of the message. Only then, the coded message is encrypted
and transmitted (see [40, Annex A]). This transmission path contradicts the common
practice of first encrypting a message, and only then subjecting it to error-correction
codes. Some readers may wonder how it is even possible to correct errors (on the
reception path) after decryption, as decryption often causes single bit errors to prop-
agate through the entire message. However, since GSM decrypts by bitwise XORing
the keystream to the ciphertext, an error in a bit before decryption causes an error in
the corresponding bit after decryption, without any error-propagation. This trick of
reversing the order of encryption and error-correction would not have been possible
if a block-cipher was used for encryption. Subjecting a message to error-correction
codes before encryption introduces a structured redundancy in the message, which
we use to mount a ciphertext-only attack.

There are several kinds of error-correction methods that are used in GSM, and
different error-correction schemes are used for different channels (see [36] for exact
description of GSM channel coding). For readers unfamiliar with GSM channels,
we recommend reading Appendix 3.12. However, most of this section is intelligible
without reading the appendix.

We focus on the error-correction codes of the Slow Associated Control Channel
(SACCH), which is also used in the SDCCH/8 channel. Both channels are commonly
used in the beginning of the call. Other channels are used in other stages of the
conversation, and our attack can be adapted to these channels (although it’s enough
to find the key on the SDCCH/8 at the beginning of the call, as the key does not
change during the course of a conversation).

In the SACCH, the message to be coded with error-correction codes has a fixed
size of 184 bits. The result after the error-correction codes are employed is a 456-bit
long message. The 456 bits of the message are then interleaved, and divided into
four frames. These frames are then encrypted and transmitted.

The coding operation and the interleaving operation can be modeled together as
a multiplication of the message (represented as a 184-bit binary vector, and denoted
by P ) by a constant 456 × 184 matrix over GF (2), which we denote by G, and
XORed to a constant vector denoted by g. The result of the coding-interleaving
operation is: M = (G ·P )⊕g. The vector M is divided into four data frames. In the
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encryption process, each data frame is XORed with the output keystream of A5/2
for the respective frame.

Since G is a 456× 184 binary matrix, there are 456− 184 = 272 equations that
describe the kernel of the inverse transformation. The dimension of the kernel is
exactly 272 due to the properties of the matrix G. In other words, for any vector
M ⊕ g, such that M = G · P ⊕ g, there are 272 linearly independent equations
on its elements. Let H be a matrix that describes these 272 linear equations, i.e.,
H · (M ⊕ g) = 0 for any such M (In coding theory such H is called the parity-check
matrix).

We now show how to use the redundancy in M to mount a ciphertext-only attack.
The key observation is that given the ciphertext, we can find linear equations on the
keystream bits. Recall that the ciphertext C is computed by C = M ⊕ k, where
k = k1||k2||k3||k4 is the keystream of the four frames, and “||” denotes concatenation.
We use the same 272 equations on C ⊕ g, namely:

H · (C ⊕ g) = H · (M ⊕ k ⊕ g) = H · (M ⊕ g)⊕H · k = 0⊕H · k = H · k.

Since the ciphertext C is known (and g is fixed and known), we actually have linear
equations over the bits of k. Note that the linear equations are independent of P
— they depend only on k. Thus, we now have a linear equation system over the
bits of the keystream. For each guess of R41, we substitute each bit of k in this
equation system with its description as linear terms over V1 (see Section 3.3.2), and
thus get a system of equations on the 656 variables of V1. Each 456-bit coding block
provides 272 equations, hence after two blocks, we have more than 450 equations.
In a similar way to the attack of Section 3.3.2, we perform Gauss elimination, and
about 450 equations are enough to find the value of all the original linear variables
in V1. Kc is then found by inverting the key setup of A5/2.

The rest of the details of the attack and its time complexity are similar to the
case in the previous sections. The major difference is that in the known-plaintext
attacks we know the keystream bits, and in the ciphertext-only attack, we know
only the value of linear combinations of keystream bits (through the ciphertext and
error-correction codes). Therefore, the resulting equations in the ciphertext-only
attack are the linear combinations of the equations in the known-plaintext attack:
Let SR41 · V1 = k be a system of equations from Section 3.3.3, where SR41 is the
system’s matrix. In the ciphertext-only attack, we multiply this system by H on
the left as follows: (H · SR41) · V1 = (H · k). Recall that H is a fixed known matrix
that depends only on the coding-interleaving matrix G, and that H · k is computed
from the ciphertext as previously explained. Therefore, we can solve this system and
continue like in previous sections. In the known-keystream attack, we try all the
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216 possible equation systems S. In the ciphertext-only attack, we try all the 216

possible equation systems H ·SR41 instead. In the pre-computation of the optimized
ciphertext-only attack, for such system we find linear dependencies of rows by a
Gauss elimination. In the real-time phase of the ciphertext-only attack, we filter
wrong values of R41 by checking if the linear dependencies that we found in the
pre-computation step hold on the bits of H · k.

A technical difference between the ciphertext-only attack and the known plain-
text attacks is that while four frames of known plaintext provide enough equations,
about eight ciphertext frames are required in the ciphertext-only attack. The reason
is that in the ciphertext-only attack from 456 bits of ciphertext, we extract only 272
equations. A consequence of using eight frames instead of four in the optimized
version of the attack is that the constraint on the XOR differences of the frame
numbers is stronger, as we need to know in advance the XOR differences between
eight frames (instead of four in the case of known-keystream). This constraint has
a very slight implication, for example, in the case of the SDCCH/8 channel, it in-
creases the number of precomputations that need to be performed to 16 (compared
to 13 in the optimized known-plaintext attack). However, depending on the attack
configuration, with a small probability we might need extra four frames of data (as
T1 might change, see Appendix 3.12).

We summarize that the time complexity of an optimized ciphertext-only attack
is identical to the case of the optimized known-plaintext attack. The preprocessing
and memory consumption of the optimized attack (in case of downlink SDCCH/8
channel) is 16/13 ≈ 1.23 times the respective complexity of known plaintext attack.
We have implemented a simulation of the attack, and verified these results.

Our methods allow to enhance the attack of Goldberg, Wagner, and Green and
the attack of Petrović and Fúster-Sabater to ciphertext-only attacks. We give a
description of the enhancement of Goldberg, Wagner, and Green’s attack in Ap-
pendix 3.11.

3.5 Withstanding Errors in the Reception

A possible problem in a real-life implementation of the attacks is the existence of
radio reception errors. A single flipped bit might fail an attack (i.e., the attack ends
without finding Kc). Once the attack fails, the attacker can abandon the problematic
data, and start again from scratch. But in a noisy environment, the chances are high
that the new data will also contain errors. An alternative approach that we present
in this section is to correct these errors.

Two kinds of reception error can occur: flipped bits, and erasures. A flipped bit is
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a bit that was transmitted as “1” and received as “0”, or vice versa. Erasures occur
when the receiver cannot determine whether a bit is ”1” or “0”. Many receivers can
report erased bits (rather than guessing a random value).

A possible inefficient algorithm to correct reception errors exhaustively tries all
the possibilities for errors. For flipped bits, we can first try to employ the attack
without any changes (assuming no errors occurr), and if the attack fails we repeat it
many times, each we time guess different locations for the flipped bits. We try the
possibilities with the least amount of errors first. The time complexity is exponential
in the number of errors, i.e., about

(
n
e

)
A, where A is the time complexity of the

original attack, n is the number of input bits, and e is the number of errors. The
case with erasures is somewhat better, as we only need to try all the possible values for
the erased bits. The time complexity is thus 2eA, where e is the number of erasures.
In the un-optimized known-plaintext attack, an erased plaintext bit translates to an
erased keystream bit. Each keystream bit contributes one equation, thus, we can
simply remove the equations of the erased keystream bits. If not too many erasures
occur, we still have sufficiently many equations to perform the attack. However, in
the optimized attack, we pre-compute all the equation systems, and thus we cannot
remove an equation a posteriori. We could pre-compute the equation systems for
every possible erasure pattern, but it would take a huge time to compute, and it
would require huge storage. Therefore, another method is needed.

In the rest of this section, we present an (asymptotically) better method to apply
the optimized attack with the presence of erasures. For simplicity, we focus on the
optimized known-plaintext attack on A5/2, but note that the optimized ciphertext-
only attack can be similarly improved.

Assume that e erasures occur with their locations known, but no flips. We view
the keystream as the XOR of two vectors, the first vector contains the undoubted
bits of the keystream (with the erased bits set to zero), and the second vector has
a value for the erased bits (with the undoubted bits set to zero). Let r be the first
vector. Let wi be the ith possibility (out of the 2e possibilities) for the second vector,
where i is the binary value of the concatenated erased bits. Thus, given the correct
value for i, the correct keystream is k = r ⊕ wi.

We can find the correct value of i without an exhaustive search. Recall the
consistency-check matrices TR41 of Section 3.3.3. The linear space spanned by TR41 ·
wi, where i ∈ [0, . . . , 2e − 1], has a maximum dimension of e (if the columns of TR41

are linearly independent the degree is exactly e, for simplicity we assume that this
is indeed the case). We denote this linear space by ~TR41 .

We reduce the problem of finding the correct i to a problem of solving a linear
system. For each candidate R41, we compute TR41 · r. Clearly, for the correct R41
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value and for the correct wi value, TR41 · (wi ⊕ r) is a vector of zeros. Therefore,
for the correct wi, TR41 · wi = TR41 · r. Thus, the problem of finding the correct i is
reduced to finding the wi that solves this equation.

An efficient way to solve such a system is as follows: First find e vectors that
span the space ~TR41 . Such e vectors are given by bj = TR41 · w2j , where j ∈
{0, 1, 2, . . . , e−1}. Then, we define a new matrix B whose columns are the vectors bj:
B = (b0, . . . , be−1). Finally, we find the correct i by requiring that B · i = TR41 ·r, and
solving the system (e.g., using Gauss elimination) to find i. If inconsistencies occur
during the Gauss elimination, we move on to the next candidate R41, otherwise we
assume we found the value of R41 and the keystream, and use the attack to recover
Kc (which is verified using a trial encryption). Note that if the degree of ~TR41 is
smaller than e, then Gauss elimination might result in more than one option for i.
In such case, the number of options for i is always less or equal to 2e.

The number of needed rows in TR41 in order to correct e erasures is about 16+ e:
For each of the 216 candidate values of R41 the e erasures span a space of at most 2e

vectors, thus, there are about 216+e candidate solutions. Therefore, the number of
rows in TR41 needs to be about 16+e in order to ensure that only about two consistent
solution remain.

The time complexity of correcting the erasures for a single candidate of R41 is
composed of first calculating the matrix B and TR41 ·r, and then solving the equation
system B · i = TR41 · r. Calculating B and TR41 · r is comparable to one full vector
by matrix multiplication, i.e., about 456(16 + e) bit-XORs. The Gauss elimination
takes about O((16 + e)3) bit-XOR operations. The processes is repeated for every
possible value of R41. Thus, the time complexity is about 216(456(16+e)+(16+e)3)
bit-XOR operations. Assuming that ten erasures need to be corrected, the total
time complexity is about 231 bit-XOR operations, i.e., about three and a half times
the complexity of the optimized known-plaintext attack without reception errors. A
naive implementation for correcting ten erasures would take about 210 ≈ 1000 times
longer to execute than the optimized known-plaintext attack. It can be seen that
the benefit of the method grows as the number of erasures increases because the
method’s time complexity is polynomial in the number of erasures, compared to an
exponential time complexity in the case of the naive method.

For the ciphertext-only attack, the time and memory complexity is doubled, as
the length of the required bits is doubled. Therefore, instead of working with T 0

R41

in memory, we would have to store T 0
R41

H (which is about twice as large). Using
another approach, we can leave the required memory as in the optimized attack,
and pay with higher time-complexity. We can store T 0

R4f
in memory, and calculate

the multiplication by H on the fly. This method increases the time complexity by a
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factor of about e + 1 compared to the optimized ciphertext-only attack.

3.6 A Passive Ciphertext-Only Cryptanalysis of

A5/1 Encrypted Communication

In this section, we generalize the attack of Section 3.4. We show how to construct
passive ciphertext-only attacks on networks that use A5/1, i.e., attacks that require
the attacker to receive transmissions, but do not require the attacker to transmit.
This attack can be adapted to other ciphers, as long as the network performs error-
correction before encryption.

The classic approach of implementing a ciphertext-only attack is guessing the
GSM traffic (or control messages), thus, known plaintext is gained. In such a case, we
can use one of the known-plaintext attacks on A5/1, as published in the literature.
In this section, we discuss a different approach of implementing a ciphertext-only
attack — using the fact that error-correction codes are employed before encryption.
An advantage of this approach over the classic approach is that the attacker is not
required to guess the contents of the traffic. The disadvantage is that the complexity
of the attack is higher in the new approach.

We overview the process of the attack on A5/2 of Section 3.4, and generalize it.
In Section 3.4, we constructed a function H · k of the keystream k. This function
can be seen as a function h(x) from the internal state x of the cipher at the first
frame, where the internal state x determines the keystream k. The special property
of this function is that it can also be efficiently computed from the ciphertext of any
message that was encrypted using k, as H · k = H · (C ⊕ g), where g is a known
constant. Therefore, we have a function h(x) from the internal state x of the cipher,
such that h(x) can be also computed from the ciphertext. h(x) was then reversed to
reveal the internal state x (by guessing all possible R41 values, and solving a system
of equations). We can find the key Kc from the internal state x by reversing the
(linear) key setup.

We now follow the same lines to mount an attack in case A5/1 is used instead
of A5/2. We begin by constructing the same function h(x) : {0, 1}64 → {0, 1}64
from the internal state of A5/1 just after the key setup (i.e., H · k, where k is the
keystream resulting from initial internal state x at the first frame). We would like
to reverse h(x) = H · k to reveal the internal state x, knowing that the inversion
of h(x) is expected to be computationally intensive, as it includes inversion of A5/1.
Given D data points (i.e., images under h(x)), it suffices to invert h(x) for only one
of them, as it would reveal Kc. Therefore, we treat h(x) as if it is a random function,
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and we can use a time/memory/data tradeoff from the literature to invert it. In
this discussion, we use the time/memory/data tradeoff presented by Biryukov and
Shamir in [20].

Time memory tradeoffs are composed of two phases: a one-time precomputation
phase and a real-time phase. The time/memory/data tradeoff in [20] has a prepro-
cessing time complexity of N/D applications of h(x), where N is the search space
(264 in our case), and D is the number of data points h(x) that are available. The
real-time phase is composed of T application of h(x) and

√
T disk accesses. The

attack has a good success rate (greater than 60%) when the parameters are on the
tradeoff curve TM2D2 = N2 and D2 ≤ T ≤ N , where M is the disk space of the
attacker divided by 2 log2 N , e.g., M = 240 is a 240 × 128-bit of disk space — about
17.6 terabytes (using efficient representation, the memory complexity can drop by a
factor of about 3). From the tradeoff curve, it is clear that increasing the number of
available data points D by a factor of 2 reduces the time complexity of the precom-
putation by a factor of 2, and reduces the time complexity of the real-time phase by
a factor of 4. Thus, the number of available data points is an important parameter
of the attack, and the attacker benefits from having many data points.

There are a few technical issues that reduce the number of available data points
of our desired form. The problem is very similar to the problem of knowing the
differences between COUNT value that we encounter in Section 3.3.3. At the time
of the preprocessing, we must be able to derive the initial internal state of A5/1 over
four frames (in case of SDCCH/8) from the initial internal state x in the first frame.
In Section 3.3.3, this problem was solved by repeating the precomputation 13 times.
In this section, we would not perform the precomputation several times, rather, we
would wait for a data point that is covered by the precomputation, and use some
other tricks.

In the rest of this section, we discuss implementations of the ciphertext-only
passive attack on A5/1 under various GSM channels, and various parameters of the
time/memory/data tradeoff. We compare the attacks in Table 3.1. Readers that are
not interested in the technicalities of GSM can skip the rest of this section.

For comparison with our attacks, we analyze the time/memory/data tradeoff
attack of [20] given a single known message (four frames).4 The random function
that is analyzed h(x) is the function from internal state x to the 64 bits of output
that are generated from x, i.e., the first bit of output is generated when the internal
state is x. Thus, in a 114-bit frame, there are 114−64+1 = 51 (overlapping) strings
of 64 consecutive bits (the first 64 are at the beginning of the frame; the next 64 bits
begin in the second bit of the frame, etc), with 51 internal states that are associated

4In Section 3.7 we show that it is possible to gain a known message in certain conditions.
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Table 3.1: Four Points on the Time/Memory/Data Tradeoff Curve for a Ciphertext-
Only attack on A5/1

r❝✐♥✴♦❡①❦❢✴♦♥❢ ③❡①❡♥③❞ ③t❧❣❞ ③♥❡✇r ❧r ③❡❝❡✇♣ r❛①❵

Attacked Available Data Number Number of PCs Duration of
Channel in Coded Messages of 250GBs to Complete Online Phase

(Four Frames) Disks Preprocessing on a Single PC
in One Year in Minutes

KP∗ [21] A Single Message ≈ 200 680 3.33
SACCH∗∗ 204 ( ≈ 3.5 min) ≈ 200 2800 13.33
SACCH∗∗ 600 ( ≈ 10 min) ≈ 200 930 1.53
SACCH∗∗ 600 ( ≈ 10 min) ≈ 67 930 13.83
SDCCH/8 204 ( ≈ 64 sec) ≈ 200 2800 13.33
∗ Known plaintext.
∗∗ The SACCH of the TCH/FS.

with them. It is enough to recover one of these internal states, as A5/1’s internal
state can be rolled back efficiently. As a message is transmitted over four frames, it
is enough to invert h(x) on one out of the 51 · 4 = 204 available 64-bit outputs of
A5/1 (i.e., D = 204).

The preprocessing phase invokes A5/1 264/204 times (therefore, it takes about 684
computer years, assuming 222 applications of A5/1 per second can be performed on a
personal computer). On a network of 1000 personal computers, the preprocessing can
be completed in about eight months. Using about 50 terabytes of disk storage (200
disks of 250GBs, with M ≈ 241.5), finding a key takes about 200 seconds of CPU
time (T ≈ 229.65), and about 30000 disk accesses (which takes less than a second
when averaged on the 200 disks). Note that it is possible to reduce the number of
disk accesses using A5/1’s low sampling resistance (see [20, 21] for details).

We now analyze the ciphertext-only attack when employed on the SACCH of a
TCH/FS and on an SDCCH/8 channel (see Appendix 3.12 for more details on these
channels). We assume that h(x) can be applied 220 times every second on a personal
computer, and that a random access to disk takes about 5 milliseconds.

Focus on the SACCH of a TCH/FS. In this channel, a frame is transmitted
every 26 frames, therefore, the counter T2 (frame number modulo 26) remains fixed.
The counter T3 (frame number modulo 51) is increased by 26 modulo 51 with each
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frame of the SACCH. Note that every two frames of SACCH T3 is increased by one
modulo 51 (as 26 · 2 ≡ 1 modulo 51).

We have to make an assumption on the frame number, such that given the internal
state x of A5/1 after initialization at the first frame, we know the internal state after
initialization in the other three frames of the message. We show a method that
slightly loosens the assumption on the frame numbers. In the method, we use only
two of the four encrypted frames. Furthermore, 20 bits of each SACCH message are
fixed (the protocol requires that these bits always have the same value), therefore,
we construct H with additional 20 rows, i.e., H is 292× 456. While creating H, we
change the order of bits in k such that k = k1||k3||k0||k2, where ki are the keystream
of the individual frames (we make the corresponding changes in H’s columns). Since
the number of rows is 292, and due to the structure of H, we can eliminate the
variables of k1 and k3 (i.e., 114 · 2 = 228 variables) from all the rows except for the
first 228 rows by using Gauss’s elimination. We define the matrix H ′ as the rows
229–292 and columns 229–456, i.e., H ′ is 64 × 228. Using H ′, we define h′ in a
similar way to the way H defines h. Our assumption on the frame numbers is that
T1 (the frame number divided by 26 · 51 = 1326) is the same in both the generation
of k0 and k2, in addition we know that T2 remains fixed. We further assume that
the value of T3 is even when k0 is generated, therefore, T3 is larger by one in the
generation of k2 (and the two T3 values differ only in their LSB). These conditions
are met on average about once a second. To achieve a similar tradeoff to the one
given above in the BSW example, we need D = 204, i.e,. about three and a half
minutes of conversation (since this time a single data point is four frames, compared
to 51 data points in one frame in the case of known plaintext). Furthermore, the
attack time, and preprocessing time is expected to take about four times longer, as
the application of h′ takes more CPU time than finding the output of A5/1 given an
internal state. Other possible choice of parameters are given in Table 3.1.

Another example is the downlink SDCCH/8 channel with SACCH. In every cycle
of 102 frames, three messages are transmitted for a specific phone (two SDCCH
messages and one SACCH with the same error-correction code), i.e., about 6.37
messages a second. We would like to be able to calculate the XOR difference between
of the COUNT values in the four frames that constitute the message. Therefore,
our assumption on the frame numbers is that lower two bits of the counter T3 are
zero (this part of the assumption always holds), and that the lower two bits of the
counter T2 are zero (and the rest of the bits of T2 are the same in all four frames,
i.e., the counter’s values (not modulo 26) in the three other frames are T2 + 1,
T2 + 2, and T2 + 3). The assumption on T2 holds in six out of the 26 cases,
therefore, on average the assumption holds for 1.47 messages in a second. To follow
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the previous tradeoff with D = 204, two minutes and 19 seconds are needed, which
is unreasonably long data requirements for a SDCCH/8 channel on a single session.
We increase D by employing a similar trick to the one we employ in the SACCH of
a TCH/FS: each GSM message can contain 184 bits, but if the message is shorter
the message is padded with fill bits at its end. Assume that at least 20 such bits
are fill bits. It’s a reasonable assumption, although not always true. We perform a
similar trick to one we made for the SACCH of the TCH/FS, to construct h′ from
the keystream of the first two frames of the message. We modify our assumption
on the frame numbers, and assume that the LSB of T2 is zero in the first frame,
therefore, T2 in the second frame equals to T2 of the first frame with the LSB
changed to 1. This assumption holds for exactly half of the possible values of T2,
i.e., for about 6.37/2 ≈ 3.18 messages a second. To achieve the previous tradeoff of
D = 204, we need to collect encrypted data for a duration of about 204/(3.18) ≈ 64
seconds. The data complexity can be lowered using the tradeoff curve with a price
of increased preprocessing complexity, and higher time/memory complexity. Note
that the available data can be taken from several conversations, as long as they are
encrypted with the same key.

3.7 Leveraging the Attacks to Any GSM Network

by Active Attacks

In this section, we present several attacks which are based on flaws in the GSM call-
establishment protocol (which is shortly described in Appendix 3.12.1). Through
these flaws, an attacker can compromise any GSM encrypted communication based
on his ability to break one weak cipher of the GSM family that is supported by
the victim handset. The time complexity of the new attacks are the same time
complexity of breaking the weak cipher. For the sake of simplicity, we assume that
the attacker wishes to compromise conversations in networks that use A5/1 through
the cryptanalysis of the weaker A5/2.

Unlike the attacks of Section 3.4 and Section 3.6 which requires only tapping the
communications, the attacks in this section also require the attacker to transmit,
and thus, the attacker takes a greater risk of being detected. However, active attacks
brings many advantages to the attacks.

The major advantage that comes with the active attacks of this section is tap-
ping into A5/1 networks with the time complexity of breaking A5/2, but there are
also other advantages. In most of the active attacks that we present, the attacker
impersonates the network towards the victim handset by using a fake base station.
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As the handset views the attacker as the network, the attacker controls the transmis-
sion power of the mobile phone, and command it to first use high power to reduce
reception errors that can cause problems during the cryptanalysis, but then use a
lower power to reduce the chances of detection. Another advantage is the freedom of
choosing the channel that is used, including the time slot in the TDMA frame that is
allocated to the mobile. The attacker can use this freedom to reduce the complexity
of the attack. For example in SDCCH/8, the uplink subchannel allocation is not
as uniform as the downlink subchannel allocation. It is easier for an attacker em-
ploying a ciphertext-only attack to allocate the victim to an SDCCH/8 subchannel
that he prepared for in advance (by pre-computing tables for it). The attacker can
also wait a little before he commands the mobile to start encryption, such that the
mobile starts encryption in a TDMA frame number that the attacker prepared for
in advance (for example the attacker can precompute tables only for some values of
the TDMA frame number modulo 26). For similar reasons, the attacker can also
allocate a TDMA slot that is convenient to him, and he can choose the frequencies
that he favors (for example, frequencies that minimize the risk of detection).

The protocol flaws that are used by the attacks are as follows:

1. The authentication and key agreement protocol can be executed between the
mobile and the network at the beginning of a call, at the sole discretion of
the network. The phone cannot ask for authentication. If no authentication
is performed, Kc stays the same as in the previous conversation. In this case,
the network can “authenticate” the phone through the fact that the phone
encrypts using Kc, and thus the phone “proves” that it knows Kc.

2. The network chooses the encryption algorithm (or either not to encrypt at all).5

The phone only reports the list of ciphers that it supports (in a message called
class-mark.

3. The class-mark message is not protected, and can be modified by an attacker.

4. During authentication, only the phone is authenticated to the network, while
there is no mechanism that authenticates the network to the phone. This fact
allows for fake base-stations.6

5Note that if the conversation is not encrypted, a ciphering indicator in the phone might indicate
the situation to the user.

6It should be noted that the network “authenticates” itself to the phone through the fact that
it knows how to encrypt, and thus proves knowledge of Kc. This “authentication” cannot be
considered a real authentication, especially since the network can choose not to encrypt. As a
result, a fake base station does not need to know the encryption key.
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5. There is no key separation: the key-agreement protocol is independent of the
encryption algorithm that is used, and it is even independent of method of com-
munication, i.e., Kc depends only on RAND (which is chosen by the network),
regardless of whether A5/1, A5/2, A5/3, or even GPRS encryption algorithms
is used.

6. RAND reuse is allowed: the same RAND can be used as many times as the net-
work pleases, and for different types of communications (i.e., GSM or GPRS).

3.7.1 Class-Mark Attack

In the simplest attack on the protocol, the attacker changes the class-mark informa-
tion that the phone sends to the network at the beginning of the conversation, such
that the network thinks that the phone supports only A5/2. Although the network
prefers to use A5/1, it must use either A5/2 (or A5/0 — no encryption), as it be-
lieves that the phone does not support A5/1. The attacker can then listen in to the
conversation through the cryptanalysis of the weaker A5/2 cipher.

The attacker can change the class-mark message in several ways. He can trans-
mit his alternative class-mark message at the same time that the victim’s handset
transmits the class-mark message, but using a much stronger radio signal. Thus, at
the cellular tower, the attacker’s signal overrides the handsets original message. As
an alternative, the attacker can perform a man-in-the-middle attack (enter between
the handset and the cellular tower by using a fake handset and a fake base station),
such that all messages pass through the attacker. Then, he can simply replace the
class-mark message with another message.

Note that some networks may decide not to select A5/2, but drop the conversa-
tion. As all phones should support A5/1, this kind of attack can be easily spotted by
the network, and can be prevented by insisting that the phone uses A5/1 or dropping
the conversation.

3.7.2 Recovering Kc of Past or Future Conversations

The remaining attacks are mostly based on the fact that the protocol does not provide
any key separation, i.e., the key is fixed regardless of the encryption algorithm that
is used. The idea behind the attacks is to use a fake base-station7 that instructs the
phone to use A5/2, and through the attack of Section 3.4 on A5/2 the value of Kc

7It is easy (and cheap) to build and operate a fake base station in GSM, using off-the-shelf
equipment. The fact that the phone does not authenticate the network also helps.
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is retrieved. As there is no key separation, this key is the same one used for the
stronger cipher. Thus, the phone with A5/2 acts as an oracle for retrieving Kc.

In this section we present an attack in which we recover the encryption key of an
encrypted conversation that was recorded in the past. As the encryption key might
not change during next few conversation (the network might choose not to perform
the key-agreement protocol), the encryption key that we obtain might be valid for
future conversations.

The simplest way of decrypting recorded conversations is when the attacker has
access to the SIM card of the victim. Then, the attacker can feed the SIM card with
the RAND that was used in the conversation. The SIM card then calculates and
returns to the attacker the respective value of Kc (this attack is possible as GSM
allows re-use of RANDs).

Clearly, it might not be easy for the attacker to gain physical access to the
victim’s SIM card. Instead, the following attack simulates such an access through
the use of a fake base station. As a preparation for the attack, the attacker records
encrypted conversations (that may be encrypted using different Kc’s). At the time of
the attack, the attacker initiates a radio-session with the victim phone through the
fake base station. Then, the attacker initiates an authentication procedure, using
the same RAND value that was used during the encrypted conversation. The phone
returns SRES, which is equal to the SRES of the recorded conversation. Next, the
attacker commands the phone to start encryption using A5/2. The phone sends an
acknowledgement which is already encrypted using A5/2 and the same Kc that was
used in the recorded conversation (as Kc is a function of RAND, and the RAND is
identical to the one in the recorded conversation). Finally, the attack employs the
attack on A5/2 of Section 3.4 to obtain Kc from the encrypted response. The attack
can be repeated several times for all the RANDs that appear in the recording.

The above attack leaves some traces, as the phone remembers the last Kc for use
in the next conversation. The attacker can return the phone to its state before the
attack by performing another authentication procedure using the last (legitimate)
RAND that was issued to the phone.

In a variation of this attack, the attacker can recover the current Kc that is stored
in the phone by performing the attack, but skipping the authentication procedure. In
this case, the attack does not change the state of the phone with respect to Kc. The
attacker can use this Kc to tap into future conversations until the network initiates
a new authentication procedure.
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Figure 3.3: The Man-in-the-Middle Attack
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3.7.3 Man in the Middle Attack

The attacker can tap conversations in real time by performing a man-in-the-middle
attack, as depicted in Figure 3.7.3. The attacker uses a fake base-station in its
communications with the mobile phone, and impersonates the mobile phone to the
network. When authentication is initiated by the network, the network sends an
authentication request to the attacker, and the attacker forwards it to the victim. The
victim computes SRES, and returns it to the attacker, which holds it and does not
send it back to the network, yet. Next, the attacker asks the phone to start encryption
using A5/2. This request seems legitimate to the phone, as the attacker impersonates
the network. The phone starts encryption using A5/2, and sends an encrypted
acknowledgment. The attacker employs the ciphertext-only attack of Section 3.4
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to find Kc in less than a second. Only then, the attacker returns SRES to the
network. Now, when the attacker is “authenticated” to the network, the network
asks the attacker to start encryption using A5/1. The attacker already knows Kc,
and can send the response encrypted using A5/1 under the correct Kc. From this
point on, the network views the attacker as the mobile phone, and the attacker can
continue the conversation, relay the conversation to the mobile, etc. It should be
clear that the same attack applies when using A5/3 instead of A5/1, and we note
that although A5/3 can be used with key lengths of 64–128 bits, the current GSM
standard only allows the use of 64-bit A5/3.

Some readers may suspect that the network may identify this attack, by identi-
fying a small delay in the authentication procedure. However, the GSM standard
allows 12 seconds for the mobile phone to complete his authentication calculations
and to return an answer, while the delay incurred by this attack is less than a second.

Another issue that might concern some readers is whether the amount of infor-
mation available from the mobile is suffices to mount the ciphertext only attack of
Section 3.4. After the attacker asks the mobile to start encryption using A5/2, the
mobile must reply with (an encrypted) Cipher mode complete (CIPHMODCOM)
message, which acts as an acknowledgment that encryption has started. This mes-
sage is 456 bits long (after the error-correction coding takes place). It is enough
for a known-plaintext attack, but the ciphertext-only attack of Section 3.4 requires
two such messages. Note that the attacker cannot acknowledge the CIPHMODCOM
message, as he needs Kc for that. Therefore, he can wait for the retransmission
mechanism of the mobile phone to transmit the encrypted CIPHMODCOM message
again. Thus, the attacker obtains two differently encrypted messages, enough for the
ciphertext-only attack.

It should be noted that the retransmission mechanism of GSM ensures that the
CIPHMODCOM is retransmitted immediately (in the first opportunity) after the
first CIPHMODCOM not acknowledged by the network, as the size of the transmis-
sion window is one. Therefore, the same message (CIPHMODCOM) is retransmit-
ted by the mobile (but under a different frame number), and only one message bit
is changed from zero to one to indicate that the message is a retransmission. As a
result, not only do we gain another encrypted message, but we also gain 184 extra
bits of information, which we can express as 184 extra equations for the attack of
Section 3.4 (but we can apply the attack even without these extra equations). For
full details on the data-link layer of GSM, we refer the reader to [38].

It appears that with a small preparation, we can infer the plaintext of the CI-
PHMODCOM and use the known-plaintext attack of Section 3.3.3. The contents
of the CIPHMODCOM message that the mobile returns is known or can be easily
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derived, except for an optional field called IMEISV. When the network asks the mo-
bile to start encryption, it can ask that the phone’s 64-bit IMEISV — International
Mobile Equipment Identity (the hardware number of the phone) plus the Software
Version — would be included in the CIPHMODCOM that the phone returns. If the
network does not ask the phone to include the IMEISV, then the entire contents of
CIPHMODCOM can be inferred from the previous un-encrypted messages.

For the case that the network asks for the IMEISV, the attacker can find the
IMEISV of a victim phone by some preparation. The IMEISV does not change
unless the phone is replaced, or its software is upgraded. In the preparation work,
the attacker can ask the mobile (through a fake base station) not to encrypt, but to
include its IMEISV. Thus he gains the IMEISV, and in future attacks he can employ
the known-plaintext attack of Section 3.3.3. Alternatively, the attacker can ask the
mobile to encrypt, but not to include the IMEISV, and employ the known-plaintext
attack to find Kc. Then, the attacker releases the connection, and initiates a new
connection skipping the authentication, this time the attacker asks the mobile to
encrypt using A5/2 and to include the IMEISV. Since Kc is known from the previous
section, the attacker gains the IMEISV for future attacks. It should be noted that
the known plaintext that is achieved through guessing the CIPHMODCOM can be
used for attacks on other GSM ciphers, such as A5/1. For a full description of the
CIPHMODCOM message, see [37].

A possible pitfall of the attack is that some networks employ protective measures
that spot the event that two radio sessions are maintained from a single identity.
This event implies that the phone has been cloned, and the network freezes the
subscriber’s account. This kind of event might occur during the establishment of a
man-in-the-middle attack, when the attacker impersonates the phone to the network,
but lost the acquisition on the mobile victim, which holds another radio-session. It is
very easy to avoid this event if the attacker identifies (as the victim) to the network,
only after he has an active radio-session with the victim. The GSM protocol also
allows the attacker to prevent the mobile from accessing (non-faked) base station,
by noting to the mobile that there are no other base stations except the faked one.

3.7.4 Attack on GPRS

GPRS can be attacked by an active attack, due to the fact that there is no key
separation between voice conversation and GPRS data, even if the ciphers used in
GPRS are secure. For example, the attacker can listen in to the GPRS-RAND
sent by the network to the handset, while impersonating the voice network towards
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the handset.8 Then, the attacker initiates a radio session on the voice network with
the handset and performs the attack that retrieves the Kc using RAND = GPRS-
RAND. As GPRS uses the same SIM (with the same algorithms and without any
key separation from regular GSM), Kc equals GPRS-Kc. The attacker can now
decrypt/encrypt the customer’s GPRS traffic using the recovered Kc. Alternatively,
the attacker can record the customer’s traffic, and perform the impersonation at any
later time to retrieve the GPRS-Kc. Then, the recorded data can be decrypted. It
is rumored that the first two GPRS encryption algorithms (which are kept in secret)
are weaker than the newer ones. If indeed they are weak, it is also possible to mount
the attack the other way round, finding GPRS-Kc, and using it to decrypt voice
communication.

3.8 Possible Attack Scenarios

The attacks presented in this chapter can be used in several scenarios. In this section,
we present four of the scenarios: call wire-tapping, call hijacking, altering of data
messages (SMS), and call theft — dynamic cloning.

3.8.1 Call Wire-Tapping

The most naive scenario that one might anticipate is eavesdropping conversations
in real-time. Communications encrypted using GSM can be decrypted and eaves-
dropped by an attacker, once the attacker has the encryption key. The attacker
can tap voice conversation, but he can also tap data conversations and SMS mes-
sages. The attacker can tap video and picture messages that are sent over GPRS,
etc. Real-time eavesdropping on A5/2 networks can be performed using a passive
attack on A5/2 as shown in Section 3.4. On networks using encryption other than
A5/2, the man-in-the-middle attack of Section 3.7 is required, or the passive attack
of Section 3.6 can be used (but with a very long precomputation, and a very large
storage).

In another possible wire-tapping attack against ciphers such as A5/1, the attacker
records the encrypted conversation (making sure that he knows the RAND value
that that is sent unencrypted). Then, he uses a fake base station to attack the
victim phone and retrieve the respective Kc. Once the attacker has the key, he simply
decrypts the conversation. Note that an attacker can record many conversations, and

8The handset can work with one cellular tower for regular GSM, and another cellular tower for
GPRS.
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with subsequent later attacks recover all the keys. This attack has the advantage of
transmitting only in the time that is convenient for the attacker. Possibly even years
after the recording of the conversation, or when the victim is in another country, or
in a convenient place for the attacker.

3.8.2 Call Hijacking

While a GSM network can perform authentication at the initiation of the call, en-
cryption is the means of GSM for preventing impersonation at later stages of the
conversation. The underlying assumption is that an imposter does not have Kc,
and thus cannot conduct encrypted communications. Using our passive attacks, the
attacker can obtain the encryption key. Once an attacker has the encryption keys,
he can cut the victim off the conversation (by transmitting a stronger signal, for
example), and impersonate the victim to the other party using the retrieved key.
Therefore, hijacking the conversation after authentication is possible. Hijacking can
occur during early call-setup, even before the victim’s phone begins to ring. The
operator can hardly suspect that an attack is performed. The only clue of an attack
is a moment of some increased electro-magnetic interference.

In another way of call hijacking, the attacker mounts the man-in-the-middle at-
tack. Then, at any point in time (even before the phone rings), the attacker can
disconnect the victim handset and take over the conversation (including forwarding
the conversation to another location).

3.8.3 Altering of Data Messages (SMS)

Once a call has been hijacked, the attacker decides on the content, including on the
content of SMS messages (which are encrypted by the same Kc as the speech). The
attacker can eavesdrop on the contents of a data message being sent by the victim
(or being received), and send his own version instead. The attacker can also stop the
message from being received, or even send his own SMS message, thus compromising
the integrity of GSM traffic.

3.8.4 Call Theft — Dynamic Cloning

GSM was believed to be secure against call theft due to the authentication procedures
of A3A8 (at least for operators that use a strong primitive for A3A8 rather then
COMP128).
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However, due to the weaknesses discussed in this chapter, an attacker can make
outgoing calls on the expense of a victim. When the network asks for authentica-
tion, the attacker performs the attack that uses the victim’s phone as an oracle for
obtaining the SRES and Kc for the given RAND (as described in Section 3.7): the
attacker initiates an outgoing call to the cellular network in parallel to a radio ses-
sion to a victim. When the network asks the attacker for authentication, the attacker
asks the victim for authentication, and relays the resulting authentication back to
the network. The attacker then recovers Kc as described in Section 3.7. Now the
attacker can close the session with the victim, and continue the outgoing call to the
network. This attack is hardly detectable by the network, as the network views it as
normal access. The victim’s phone does not ring, and the victim has no indication
that he is a victim (until his monthly bill arrives).

3.9 How to Acquire a Specific Victim

We distinguish between attacks that are targeted against a specific victim (e.g.,
eavesdropping), and attacks that are not targeted against a specific victim (e.g.,
call-theft). When performing eavesdropping, the attacker is usually interested in a
specific victim which he targets. However, in call theft, the attacker’s aim is to steal
calls, and he does not care whether victim A pays the bill, or victim B pays the bill,
as long as the attacker does not pay. This section focuses on targeting a specific
victim.

GSM includes a mechanism that is intended to provide protection on the identity
of the mobile phone. Each subscriber is allocated a TMSI (Temporary Mobile Sub-
scriber Identity) over an encrypted link. The TMSI can be reallocated every once in
a while, in particular when the subscriber changes his location. The TMSI is used to
page the subscriber on incoming calls and for identification during the un-encrypted
part of a session. On first sight, it seems that an attacker that performs eaves-
dropping with cryptanalysis using one of the methods of the previous sections can
follow the decrypted data, and obtain the TMSI of his targeted victim. However,
the fixed identification of a mobile is its International Mobile Subscriber Identity
(IMSI), which might be unknown to the attacker. If both the IMSI and TMSI are
unknown to the attacker, he may be forced to listen in to all the conversations in the
area until he recognizes the victim’s voice.

The attacker might only have the victim’s phone number, and wish to associate
the phone number with the subscriber’s IMSI or TMSI. There are several possible
solutions to this problem: In one solution the attacker calls the victim’s phone, and
pretend it to be a mistake in dialing. By monitoring all communications in the area
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the attacker can distinguish the victim’s phone, by recognizing his own caller ID,
for example. Another more covert solution is to send a malformed SMS message
to the target phone. For example, the attacker can send an SMS message as if it
is part of a multi-part SMS message, but actually send only one part of the SMS.
This part is received in the victim’s phone, but since the entire SMS message is
never fully received, the phone does not indicate to the user of the received SMS.
However, the SMS passes through the radio-interface, and thus the victim can be
identified. This solution can also be used as a source of known-plaintext, even during
a call (when an SMS is transmitted during a call on a voice channel, an un-encrypted
flag signals that data is transmitted instead of voice. If the SMS is transmitted on
the SACCH, the attacker would have to guess on which bursts the SMS is carried).
The attacker might be successful in identifying the victim’s TMSI by correlating the
paging information on the serving base station with, for example, the SMS that the
attacker sends.

When performing an active attack, the attacker needs to lure the mobile into
his own (fake) base station. The luring is accomplished by a suitable choice of the
parameters of the fake base station, causing the victim mobile to prefer the attacker’s
base station. However, the fake base station might lure “innocent” handsets in
addition to the victim handset. Therefore, the acquisition is composed of four phases:

1. luring many mobiles including the victim,

2. sensing the victim,

3. isolating the victim, and

4. returning the “innocent” mobiles back to the original network.

The sensing of the victim can be performed in a few ways. One way to sense the
victim is to set a parameter called the location area of the fake base station to be
different than the surrounding legitimate base stations. Once lured, the mobile has
to perform a procedure called location area update, which includes contacting the
fake base station and identifying (a mobile must perform location area update when
switching between base stations with different values of the location area parameter).
Another way (assuming the TMSI or the IMSI is known) is to use the same location
area, and to page the victim in the fake base station using its TMSI/IMSI until the
victim responds (once the victim handset is parked on the fake base station, it must
respond). If the TMSI/IMSI is not known, the attacker can use the radio-session of
the location area update to interrogate the mobile for its IMSI (if only the TMSI is
known), or to perform an acquisition as previously described. The attacker can relay

74

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



the paging messages of the real network to the lured mobiles, so they do not miss
incoming calls.

The next steps for the attacker are to isolate the victim and return the “innocent”
handsets to the real network. The isolation can be performed by changing the fake
base station parameters, such that it transmits on its beacon frequency that the fake
base station is the only cell in the area. This change prevents the lured mobiles from
switching to another base stations. The attacker can now page the victim to make
sure that the victim is still parked on the fake base station.

Next, the attacker returns the “innocent” handsets back to the real network by
initiating a radio-session with each one of them, and return them to the real network:
During the radio session, the handsets are made to believe that they are handed-
over to a neighbor base station, while actually the attacker uses another transceiver
(fake base station without the beacon frequency) to impersonate that neighbor base
station. After the “handover” is complete, the radio-session is released, and the
“innocent” mobile returns to the real neighbor base station. In another option for
returning innocent mobiles to the real network, the attacker establishes a radio-
session with the victim, and “scares away” all the other mobiles, for example by
stopping transmission on the beacon frequency. After a short time, the beacon can
be restored with parameters that are unlikely to attract mobiles, but claiming to
be the only base station in the area. Before releasing the radio-session with the
victim, the victim is handed over to the fake base station with the new parameters.
Accidental entrance of other mobiles to the base station can be identified using a
different location area for the fake base station, and a radio session can then be
established with these mobiles, during which they are returned to the real network.
It is stressed that a correct choice of parameters for the fake-base station should
almost entirely eliminate accidental entries to the base station.

3.10 Summary

In this chapter, we present new methods for attacking the encryption and the security
protocols used by GSM and GPRS. The described attacks are easy to apply, and do
not require knowledge of the conversation. We stress that GSM operators should
replace the cryptographic algorithms and protocols as soon as possible, or switch to
the more secure third generation cellular system (although it still possess some of
the weaknesses described in this chapter).

Even GSM networks that use the new A5/3 succumb to our attacks. We suggest
to change the way A5/3 is integrated into GSM, in order to protect the networks
from such attacks. A possible correction is to make the keys used in A5/1 and A5/2
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unrelated to the keys that are used in A5/3. The integration of GPRS suffers from
similar flaws that should be taken into consideration.

We would like to emphasize that our ciphertext-only attack is made possible by
the fact that the error-correction codes are employed before the encryption. In the
case of GSM, the addition of such a structured redundancy before encryption is
performed crucially reduces the security of the system.

As a result of the initial publication of these attacks, the GSM association security
group together with the GSM security working group are working to remove the A5/2
algorithm from handsets (which should be completed during 2006).
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3.11 Appendix: Enhancing The Attack of Gold-

berg, Wagner, and Green on GSM’s A5/2 to

a Ciphertext-Only Attack

We now describe a ciphertext-only attack on A5/2 based on Goldberg, Wagner, and
Green’s Attack [45]. We use the same matrix H as in Section 3.4. Recall that the
attack of [45] requires the XOR difference of the keystream of two frames. The
enhanced ciphertext-only attack uses eight encrypted frames. We denote the eight
encrypted frames by C1, . . . , C8, where the first four frames have consecutive frame
numbers f1, f2, f3, f4, and the second four frames have consecutive frame numbers
f5, f6, f7, f8. We require that fi+4 is exactly 51 · 26 = 1326 frames after fi, for
i ∈ {1, 2, 3, 4}. We also require that f1/1326 is even (required by the original attack),
and that Ci, Ci+1, Ci+2, Ci+3, where i ∈ {1, 5}, constitute an encrypted message. The
latter requirement does not hold for the SACCH of the TCH/FS, due to the locations
of TDMA frame numbers that can be used to transmit a SACCH message, however,
it holds for the SDCCH/8 channel (an adjusted requirement can be constructed for
other channels, including the TCH/FS).
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Due to the reasons shown in Section 3.4, it holds that

H · (C1 ⊕ g||C2 ⊕ g||C3 ⊕ g||C4 ⊕ g) = H · (k1||k2||k3||k4),

where ki is the keystream used in frame fi. Similarly it holds that

H · (C5 ⊕ g||C6 ⊕ g||C7 ⊕ g||C8 ⊕ g) = H · (k5||k6||k7||k8).

Due to linearity, it holds that:

H · ((C1||C2||C3||C4)⊕ (C5||C6||C7||C8)) = H · ((k1||k2||k3||k4)⊕ (k5||k6||k7||k8)).

Let
C ′ = (C1||C2||C3||C4)⊕ (C5||C6||C7||C8),

and let
k′ = (k1||k2||k3||k4)⊕ (k5||k6||k7||k8).

Therefore, HC ′ = Hk′.
The rest of the attack is similar to the attack of [45], using Hk′ = HC ′ instead

of the keystream difference. Using a similar argument to the one in Section 3.3.1
and given the initial value of R41, we express the bits of the 272-bit H ·C ′ as linear
expressions of the bits of the initial value of R11, R21, and R31 at the first frame.
The flaw observed in [45] causes R4 to have the same value in fi and fi+4, where
i ∈ {1, 5}. Thus, the clockings are the same in these frames, and each bit of ki and
ki+4 can be expressed using exactly the same quadratic terms over the bits of R1,
R2, and R3. The XOR difference of these terms is linear in the bits of R1, R2, and
R3. To further simplify the analysis, we assume that the XOR difference among the
frame numbers is known in advance. Since the difference between the frame numbers
is known, a guess for a value for R4 of the first frame causes a known value for R4
of the other frames. In addition, the respective differences between the values of
registers R1, R2, and R3 in the four frames are also known in advance. In this way,
we can express Hk′ as linear terms. It should be noted that we do not have to use
the whole 272 bits of H · C ′, and actually less than a hundred bits suffices.

The attack follows a similar path as the original attack, using the redundancy to
filter wrong R4 values. The time complexity of this attack is similar to the one of
the original attack (i.e., a few milliseconds on a personal computer), and the memory
requirement is also similar, i.e., about 15 MBs of volatile memory and another 60 MBs
of memory that can be stored on disk. The pre-computation takes similar time. The
time complexity of this enhanced attack is better than the ciphertext-only attack of
Section 3.4, however, the fact that f5 should be exactly 1326 frames after f1 (about
six seconds) limits the usability of this attack compared to the one in Section 3.4,
which can complete in less than a second given eight encrypted frames.
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time

TN 0 1 2 3 4 5 6 7

114 bits of info.

120/26 ms

15/26 ms

Figure 3.4: A TDMA frame
TDMA ③①❜q♥

3.12 Appendix: Technical Background on GSM

In this appendix we describe some technical aspects of the GSM system, which are
relevant to attacks presented in this chapter.

We first elaborate on the concept of a TDMA frame. In GSM the same physical
channel can serve up to eight different phones, by allocating the physical channel to
different phones through round-robin, where each phone transmits in a time slot that
lasts 15/26 ms. This method is known as Time Division Multiple Access (TDMA).
Each frame is composed of eight time slots, which are referred to by their Time slot
Number (TN). In Figure 3.4 we depict a typical TDMA frame. Each TDMA frame
has a TDMA frame number associated with it. The TDMA frame number is fixed
for all the time slots in the TDMA frame, and is incremented by one before the next
TDMA frame begins. In each time slots, 114 bits of information can be transmitted.
Therefore, the physical channel between the network and a phone has a maximum
throughput of 114 bits per TDMA frame, or 24.7 Kbits/second.9 In this chapter,

9Note that the actual throughput is lower due to error-correction codes that must be employed,
protocols overhead, and the fact that several logical channels between the phone and the network
share the same physical channel. In GPRS, a higher data rate is accomplished by allocating several
time slots to the same phone.
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msb lsb msb lsbmsb

Figure 3.5: The coding of COUNT
COUNT ❝❡❝✐✇

we always focus on the link between a single phone and the network, and therefore,
when referring to a frame we refer to the data in the relevant slot for the phone in
the TDMA frame.

The keystream generation (using A5) for a specific frame depends on the TDMA
frame number. In Section 3.2, we describe the way that COUNT affects the A5 key
setup. COUNT is derived from the TDMA frame number as shown in Figure 3.5,
where T1 is the quotient of the frame number divided by 51 · 26 = 1326, T2 is the
remainder of the frame number divided by 26, and T3 is the remainder of the frame
number divided by 51. It should be noted that many times in our attacks, we know
in advance the additive difference between two frame numbers, but we do not know
in advance (with 100% certainty) the XOR-difference between the COUNT values
of the two frames. This fact complicates our attack at certain points. Note that the
above description is true only when the mobile is allocated a single time slot. When
the mobile is allocated several time slots (or in GPRS), a different method is used.

There are many kinds of messages in GSM, but most of them consume 456 bits
after error correction. The allocation of the 456-bit message into frames depends on
the channels. Here are two extreme examples: the 456-bit message is transmitted on
four consecutive frames in some channels, but there is also a channel in which the
456-bit message is transmitted over 22 frames (interleaved with other messages). In
the following paragraphs, we give two examples of two specific channels. For exact
description of GSM channels see [40].

The slowest dedicated channel in GSM is a Stand alone Dedicated Control CHan-
nel (SDCCH/8), which is used mostly for signaling in the beginning of a call, or for
SMS transfer (while not in a voice conversation). In this channel, the same TN is
used by up to eight different mobiles, i.e., the SDCCH contains eight subchannels
0, . . . , 7. The subchannel is determined by the value of T3 and the LSB of T2. Each
mobile is also allocated a Slow Associated Control CHannel (SACCH). The downlink
(from the network to the mobile) frame arrangement is shown in Figure 3.6, where a
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Figure 3.6: The SDCCH/8 channel — downlink.
SDCCH/8 — ❝①❡✐ ✉❡①r
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6120/13 ms
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Figure 3.7: The SDCCH/8 channel — uplink.
SDCCH/8 — ❞❧❡r ✉❡①r

number “x” denotes messages belonging to a SDCCH subchannel x, Sx denotes the
SACCH of subchannel x, and an empty frame is denoted by “–”. Each 456-bit mes-
sage is transmitted in four consecutive frames. When T3 ≡ 48, 49, or 50 no frames
are transmitted. The uplink frame arrangement of SDCCH/8 is shown in Figure 3.7.

Another highly-used channel in GSM is the full rate traffic channel for speech
(TCH/FS), which is used to carry speech. In this channel, the 456-bit speech mes-
sages are transmitted on eight frames, using the even-numbered bits of the first four
frames, and the odd-numbered bits of the second four frames (the remaining bits
carry parts of the previous and next speech messages). Each mobile in TCH/FS is
also allocated a SACCH channel, as shown in Figure 3.8, where a SACCH frame is

time

T2 0 4 8

1 1 1 1 2 2 2 20 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4 5 5 5 5
3 3 3 3 4 4 4 4−1 −1 −1 −1 S

S

12 13 17 21 25

120 ms

Figure 3.8: The TCH/FS.
TCH/FS✲❞ ✉❡①r
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denoted by “S”, a number inside a frame denotes a speech message (the value at
the top of an entry denotes a speech message carried on odd-numbered bits, and the
value at the bottom of an entry denotes a speech message carried on even-numbered
bits), and an empty frame is denoted by “–”. In each period of T2 one SACCH
frame is transmitted, either when T2 is 12 or when T2 is 25 (using both the even-
numbered bits and the odd-numbered bits), the the other frame (when T2 is 25 or 12,
respective) is left empty. The choice if the frame in which the SACCH is transmitted
depends on the LSB of the TN that is allocated to the mobile (when the LSB is
zero the SACCH is transmitted when T2 is 12). A 456-bit SACCH message starts
whenever the TDMA frame number modulo 104 equals 12 + 13 · TN . For further
details on the TDMA frame number in which a message can begin, see [39].

There are many types of channels, the above are only a few examples.

3.12.1 GSM Call Establishment

Calls in GSM are established as follows:

1. (In case the call is initiated by the network:) The network pages the phone
with PAGING REQUEST by its IMSI or TMSI on the cell’s paging channel
(PAGCH). The configuration of the PAGCH is a part of a cell’s broadcast
information. If the call is initiated by the mobile it starts directly from stage 2.

2. Immediate assignment procedure10:

(a) The phone sends a CHANNEL REQUEST message on the random access
channel (RACH). The CHANNEL REQUEST message includes a very
small amount of information — only 8 bits. It does not contain an identi-
fication of the mobile, rather it includes a random discriminator (5 bits).
The remaining three bits contain the establishment cause.

(b) The network broadcasts an IMMEDIATE ASSIGNMENT message on the
PAGCH. This message contains the random discriminator (and also the
TDMA frame number in which the CHANNEL REQUEST was received),
and the details of the channel that is allocated to the mobile (including fre-
quency hopping information, if needed). The messages also includes other

10The procedure is initiated by the mobile phone. It can be triggered by a PAGING REQUEST,
or by a service request originated by the mobile.
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technical information such as timing advance. The mobile immediately
tunes to the the assigned traffic channel.11

3. Service Request and Contention Resolution:

(a) The mobile sends a service request message (e.g., paging response, service
request, etc.), this message includes the TMSI of the mobile. The message
also includes the mobile class-mark (including the A5 versions that are
supported), and a ciphering key sequence number (0, . . . , 6).

(b) The network acknowledges the service request message, and repeats the
TMSI. The reason for repeating the TMSI is contention resolution: It
is possible that two mobiles used the same random discriminator on the
same TDMA frame, and therefore, both “think” that they are assigned
to the same channel. The mobile that his TMSI is acknowledged by the
network, stays on the channel, and the other mobile quits.

4. Authentication:12

(a) The network sends authentication request (AUTHREQ). The authentica-
tion request includes a random 128-bit value RAND, and a ciphering key
sequence number, in which the resulting Kc should be stored.

(b) The mobile answers the authentication with the computed signed response
(SRES), in an authentication response message (AUTHRES).

(c) The network asks the mobile to start encryption using a cipher mode
command (CIPHMODCMD). The network can specify the encryption al-
gorithm to be used, and it specifies the encryption key by a ciphering
key sequence number (0, . . . , 6). The network starts to decipher incom-
ing communication. This message can also be used to ask the mobile
to send its international mobile equipment identity, and software version
(IMEISV).

(d) The mobile starts to encrypt and decrypt, and responds with (encrypted)
cipher mod complete message (CIPHMODCOM). If requested, the mobile
sends its IMEISV.

11Unlike the PAGCH and the RACH which are uni-directional, a traffic channel is a bi-directional
channel

12The network can choose to perform authentication every call, but may also choose to skip this
procedure (and use an already existing Kc for encryption, or choose not to encrypt).
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5. The network and the mobile “talk” on the channel. It might well be that the
network changes the channel. For example, if it is a voice conversation the
channel might need to be changed to suit a voice conversation, etc. In case
a channel is changed or a handover is needed, the new channel information is
sent by the network (including the frequency hopping information). Note that
if the conversation is encrypted, then the new channel information is encrypted
as well.

It is important to understand the concept of traffic channels in GSM. A traffic
channel in GSM is composed of a list of frequencies, and frequency hopping param-
eters: Mobile Allocation Index Offset (MAIO), which takes a value from zero to
the number of frequencies in the list minus one, and the Hopping Sequence Number
(HSN), which takes a value from zero to 63. Therefore, given n frequencies there
are 64n different hopping sequences. Usually, traffic channels in the same cell bear
the same HSN and different MAIOs. After a traffic channel is assigned, the mobile
and the network compute the frequency for each burst according to the above infor-
mation given at the time of assignment, and according to the TDMA frame number
(which is publicly known). The channel remains the same one even when encryption
is turned on. The channel may be changed during the course of the conversation. In
this case, the new channel parameters are passed on the current channel.
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Chapter 4

Conditional Estimators: an
Effective Attack on A5/1

Irregularly-clocked linear feedback shift registers (LFSRs) are commonly used in
stream ciphers. We propose to harness the power of conditional estimators for corre-
lation attacks on these ciphers. Conditional estimators compensate for some of the
obfuscating effects of the irregular clocking, resulting in a correlation with a consid-
erably higher bias. On GSM’s cipher A5/1, a factor two is gained in the correlation
bias compared to previous correlation attacks. We mount an attack on A5/1 using
conditional estimators and using three weaknesses that we observe in one of A5/1’s
LFSRs (known as R2). The weaknesses imply a new criterion that should be taken
into account by cipher designers. Given 1500–2000 known-frames (about 6.9–9.2
conversation seconds of known keystream), our attack completes within a few tens
of seconds to a few minutes on a PC, with a success rate of about 91%. To complete
our attack, we present a source of known-keystream in GSM that can provide the
keystream for our attack given 3–4 minutes of GSM ciphertext, transforming our
attack to a ciphertext-only attack.

The work described in this chapter is a joint work with Prof. Eli Biham. It was
originally published in [6].

4.1 Introduction

Correlation attacks are one of the prominent generic attacks on stream ciphers. There
were many improvements to correlation attacks after they were introduced by Siegen-
thaler [75] in 1985. Many of them focus on stream ciphers composed of one or more
regularly clocked linear feedback shift registers (LFSRs) whose output is filtered
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through a non-linear function. In this chapter, we discuss stream ciphers composed
of irregularly-clocked linear feedback shift registers (LFSRs), and in particular, on
stream ciphers whose LFSRs’ clocking is controlled by the mutual value of the LF-
SRs. The irregular clocking of the LFSRs is intended to strengthen the encryption
algorithm by hiding from the attacker whether a specific register advances or stands
still. Thus, it should be difficult for an attacker to correlate the state of an LFSR
at two different times (as he does not know how many times the LFSR has been
clocked in between).

Assume the attacker knows the numbers of clocks that each LFSR has been
clocked until a specific output bit has been produced. Then with some success
probability p < 1, the attacker can guess the numbers of clocks that each LFSR is
clocked during the generation of the next output bit. A better analysis that increases
the success probability of guessing the number of clocks for the next output bit could
prove devastating to the security of the stream cipher. Our proposed conditional
estimators are aimed at increasing this success probability.

In this chapter, we introduce conditional estimators, aimed to increase the proba-
bility of guessing the clockings of the LFSRs correctly. We apply conditional estima-
tors to one of the most fielded irregularly clocked stream ciphers — A5/1, which is
used in the GSM cellular network. GSM is the most heavily deployed cellular phone
technology in the world. Over a billion customers world-wide own a GSM mobile
phone. The over-the-air privacy is currently protected by one of two ciphers: A5/1 —
GSM’s original cipher (which was export-restricted), or A5/2 which is a weakened
cipher designated for non-OECD (Organization for Economic Co-operation and De-
velopment) countries. As A5/2 was discovered to be completely insecure [10] (see
Chapter 3), the non-OECD countries are now switching to A5/1.

4.1.1 Previous Correlation Attacks on A5/1

The first correlation attack on A5/1 was publish in 2001 by Ekdahl and Johans-
son [35]. Their attack requires a few minutes of known-keystream, and finds the key
within minutes on a personal computer. In 2004, Maximov, Johansson, and Bab-
bage [58] discovered a new correlation between the internal state and the output bits
and used it to improved the attack. Given about 2000–5000 frames (about 9.2–23
seconds of known-plaintext), their attack recovers the key within 0.5–10 minutes on
a personal computer. These are not the fastest attacks, and in some scenarios other
(non-correlation) attacks can perform better (for a comprehensive list of attacks on
A5/1 see Chapter 3).

The attacks on GSM demonstrate that fielded GSM systems do not provide an
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adequate level of privacy for their customers. However, breaking into fielded A5/1
GSM systems using previous attacks requires either active attacks (e.g., man-in-
the-middle attacks), a lengthy (although doable) precomputation step, a high time
complexity, or a large amount of known keystream.

One advantage of correlation attacks on A5/1 over previous attacks is that they
do not require long-term storage or a preprocessing phase, yet given a few seconds
of known-keystream, they can find the key within minutes on a personal computer.
Another advantage of correlation attacks over some of the previous attacks is the
immunity to transmission errors. Some of the previous attacks are susceptible to
transmission errors, e.g., a single flipped bit defeats Golic’s first attack. Correlation
attacks can naturally withstand transmission errors, and even a high bit-error-rate
can be accommodated for.

4.1.2 Our Contribution

In this chapter, we introduce conditional estimators, which can compensate for some
of the obfuscating effects caused by the irregular clocking. Using conditional estima-
tors, we improve the bias of the correlation equation that was observed in [58] by a
factor of two. In addition, we discover three weaknesses in one of A5/1’s registers.
We mount a new attack on A5/1 based on the conditional estimators and the three
weaknesses. Finally, we describe a source for known keystream transforming our
attack to a ciphertext-only attack.

One of the weaknesses relates to the fact that register R2 of A5/1 has only two
feedback taps, which are adjacent. This weakness enables us to make an optimal use
of the estimators by translating the problem of recovery of the internal state of the
register to a problem in graph theory. Thus, unlike previous attacks [35, 58], which
were forced to use heuristics, we can exactly calculate the list of the most probable
internal states. We note that in 1988, Meier and Staffelbach [59] warned against
the use of LFSRs with few feedback taps. However, it seems that their methods are
difficult to apply to A5/1.

An alternative version of our attack can take some advantage of the fact that many
operators set the first bits of the key to zero (as reported in [24]); this alternative
version slightly simplifies the last step of our attack, and results with a somewhat
higher success rate. We are not aware of any other attack on A5/1 (except for
exhaustive search) that could benefit from these ten zero bits.

Our last contribution is a new source for known-plaintext in GSM. We point at
the Slow Associated Control CHannel (SACCH), which is a control channel that
accompanies any voice channel, and show that its content can be derived from in-
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formation which is available to the attacker. We also discuss the frequency hopping
in GSM and how to overcome it. Using this new source for known-plaintext, our
attacks can be converted to ciphertext-only attacks. However, this is a slow channel,
that provides only about eight known frames each second.

We have performed simulations of our attacks. Given 2000 frames, our simula-
tions take between a few tens of seconds and a few minutes on a PC to find the key
with a success rate about 91%. For comparison, the simulations of [58] with a similar
number of frames take about four times longer to run and achieve a lower success
rate of about only 5%. A comparison of some of the results of previous works and
our results is given in Table 4.1. With our new source for known keystream, the
required 1500–2000 known frames can be obtained from the ciphertext of about 3–4
minutes of conversation.

4.1.3 Organization of the Chapter

This chapter is organized as follows: We give a short description of A5/1 in Sec-
tion 4.2. Then, we set our notations and review some of the main ideas of previous
works in Section 4.3. In Section 4.4 we describe the conditional estimators and three
weaknesses, and then use them in our new attack in Section 4.5. The results of
our simulations are presented in Section 4.6. We describe the new source of known-
plaintext in Section 4.7. Finally, the chapter is summarized in Section 4.8.

4.2 A Description of A5/1

The stream cipher A5/1 accepts a 64-bit session key Kc and a 22-bit publicly-known
frame number f . GSM communication is performed in frames, where a frame is
transmitted every 4.6 millisecond. In every frame, A5/1 is initialized with the session
key and the frame number. The resulting 228 bit output (keystream) is divided into
two halves: the first half is used to encrypt the data from the network to the mobile
phone, while the second half is used to encrypt the data from the mobile phone to
the network. The encryption is performed by XORing the data with the appropriate
half of the keystream.

A5/1 has a 64-bit internal state, composed of three maximal-length Linear Feed-
back Shift Registers (LFSRs): R1, R2, and R3, with linear feedbacks as shown in
Figure 4.1. The basic operation of each register is called clocking, in which the
feedback of the register is calculated (as the XOR of the feedback taps), then, the
register is shifted one bit to the right (discarding the rightmost bit), and the feed-
back is stored into the leftmost location (location zero). The registered are clocked
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Figure 4.1: The Internal Structure of A5/1
A5/1 ❧② ✐♥✐♣t❞ ❞♣❛♥❞

1. Set R1 = R2 = R3 = 0.

2. For i = 0 to 63

• Clock all three registers.

• R1[0]← R1[0]⊕Kc[i]; R2[0]← R2[0]⊕Kc[i]; R3[0]← R3[0]⊕Kc[i].

3. For i = 0 to 21

• Clock all three registers.

• R1[0]← R1[0]⊕ f [i]; R2[0]← R2[0]⊕ f [i]; R3[0]← R3[0]⊕ f [i].

Figure 4.2: The Key Setup of A5/1.
A5/1 ❧② ❣③t♥❞ ❧❡❣③❵ ♠③✐①❡❜❧❵

regularly during the initialization of the state with Kc and f (the key setup), and
irregularly during the keystream generation, as described in detail later on.

A5/1 is initialized with Kc and f in three steps, as described in Figure 4.2, where
the i’th bit of Kc is denoted by Kc[i], the i’th bit of f is denoted by f [i], and
i = 0 is the least significant bit. We denote the internal state after the key setup by
(R1, R2, R3) = keysetup(Kc, f).

Observe that the key setup is linear in the bits of both Kc and f , i.e., once the
key setup is completed, every bit of the internal state is an XOR of bits in fixed
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locations of Kc and f . This observation is very helpful in correlation attacks.
The keystream generation is performed in cycles, where in each cycle one output

bit is produced. A cycle is composed of irregularly clocking R1, R2, and R3 according
to a clocking mechanism (described later), and then outputting the XOR of the
rightmost bits of the three registers (as shown in Figure 4.1). The first 100 bits of
output are discarded (bits 0, . . . , 99), i.e., the 228 bits that are used in GSM are
output bits 100, . . . , 327. The keystream generation can be summarized as follows:

1. Run the key setup with Kc and f (Figure 4.2).

2. Run A5/1 for 100 cycles and discard the output.

3. Run A5/1 for 228 cycles and use the output as keystream.

It remains to describe the clock control mechanism, which is responsible for the ir-
regular clocking. Each register has a special clocking tap near its middle (in locations
R1[8], R2[10], and R3[10]). The clocking mechanism algorithm:

1. Calculate the majority of the values in the three clocking taps.

2. Then, clock a register if and only if its clocking tap agrees with the majority.

For example, assume that R1[8] = R2[10] = c and R3 = 1 − c for some c ∈ {0, 1}.
Clearly, the value of the majority is c. Therefore, R1 and R2 are clocked, and R3
stands still.

Note that in each cycle of A5/1, either two or three registers are clocked (since
at least two bits agree with the majority). Assuming that the clocking taps are
uniformly distributed, each register has a probability of 1/4 for standing still and a
probability of 3/4 for being clocked.

4.3 Notations and Previous Works

In this section, we set our notations, and describe some of the main ideas of the
previous works. Let S1, S2, and S3 be the initial internal state of registers R1, R2,
and R3 after the key-setup using the correct Kc, where the frame number is chosen to
be zero, i.e., (S1, S2, S3) = keysetup(Kc, 0). For i = 1, 2, 3, denote the output bit of
Ri after it is clocked li times from its initial state Si by S̃i[li].

1 Similarly, let F j
1 , F j

2 ,
and F j

3 be the initial internal state of registers R1, R2, and R3 after a key setup using

1Note that as a register has a probability of 3/4 of being clocked in each cycle, it takes about
li + li/3 cycles to clock the register li times.
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all zeros as the key, but with frame number j, i.e., (F j
1 , F j

2 , F j
3 ) = keysetup(0, j). For

i = 1, 2, 3, denote by F̃ j
i [li] the output of Ri after it is clocked li times from its

initial state F j
i . Ekdahl and Johansson [35] observed that due to the linearity of

the key setup, the initial internal value of Ri at frame j is given by Si ⊕ F j
i , i.e.,

keysetup(Kc, j) = keysetup(Kc, 0) ⊕ keysetup(0, j) = (S1 ⊕ F j
1 , S2 ⊕ F j

2 , S3 ⊕ F j
3 ).

Furthermore, due to the linear feedback of the shift register, the output of LFSR i
at frame j after being clocked li times from its initial state is given by S̃i[li]⊕ F̃ j

i [li].
Maximov, Johansson, and Babbage [58] made the following assumptions:

1. clocking assumption (j, l1, l2, t): Given the keystream of frame j, registers R1
and R2 were clocked exactly l1 and l2 times, respectively, until the end of cycle t.
The probability that this assumption holds is denoted by Pr((l1, l2) at time t)
(this probability can be easily computed, see [58]).

2. step assumption (j, t): Given the keystream of frame j, both R1 and R2 are
clocked in cycle t + 1, but R3 stands still. Assuming the values in the clocking
taps are uniformly distributed, this assumption holds with probability 1/4 (the
clocking mechanism ensures that if the values of the clocking taps are uniformly
distributed, each register stands still with probability 1/4).

They observed that under these two assumptions, R3 contributes the same bit to
output bits t and t + 1. Thus, R3’s contribution is eliminated from the difference of
these two output bits, and the following equation holds:

(S̃1[l1]⊕ S̃2[l2])⊕ (S̃1[l1 + 1]⊕ S̃2[l2 + 1]) =

Z̃j[t]⊕ Z̃j[t + 1]⊕ (F̃ j
1 [l1]⊕ F̃ j

2 [l2])⊕ (F̃ j
1 [l1 + 1]⊕ F̃ j

2 [l2 + 1]), (4.1)

where Z̃j[t] is the output bit of the cipher at time t of frame j (and under the two
assumptions above). Thus, the value of (S̃1[l1]⊕ S̃2[l2])⊕ (S̃1[l1 + 1]⊕ S̃2[l2 + 1]) can
be estimated from the known keystream and the publicly available frame numbers.

Equation (4.1) holds with probability 1 if both the clocking assumption and
the step assumption hold. If either or both assumptions do not hold, then Equa-
tion (4.1) is assumed to hold with probability 1/2 (i.e., it holds by pure chance).
Therefore, Equation (4.1) holds with probability (1 − Pr((l1, l2) at time t))/2 +
Pr((l1, l2) at time t)((3/4)/2 + 1/4) = 1/2 + Pr((l1, l2) at time t)/8. The value of
the bias Pr((l1, l2) at time t)/8 is typically two to three times higher compared to
the bias shown in [35]. Such a difference in the bias is expected to result in an im-
provement of the number of frames needed by a factor between four and ten, which
is indeed the case in [58].
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We simplify Equation (4.1) by introducing the notation S̃ ′
i[li] defined as S̃i[li] ⊕

S̃i[li + 1]. Similarly denote F̃ j
i [li]⊕ F̃ j

i [li + 1] by F̃ ′j
i [li], and denote Z̃j[t]⊕ Z̃j[t + 1]

by Z̃ ′j[t]. Thus, Equation (4.1) can be written as:

(S̃ ′
1[l1]⊕ S̃ ′

2[l2]) = Z̃ ′j[t]⊕ (F̃ ′j
1 [l1]⊕ F̃ ′j

2 [l2]) (4.2)

Observe that due to the linearity of the LFSR, S̃ ′
i[li] can be viewed as the output of Ri

after it has been clocked li times from the initial state S ′
i , Si⊕S+

i , where S+
i denotes

the internal state of Ri after it has been clocked once from the internal state Si. Note
that due to the irreducible polynomial there is a one-to-one correspondence between
Si and S ′

i (S ′
i can be seen as a multiplication of Si in its polynomial representation

by (x + 1) modulo the irreducible polynomial, and x + 1 is always invertible modulo
an irreducible polynomial of degree 2 or more). Therefore, once we recover S ′

i, we
can easily find Si.

In [58] it was observed that better results are obtained by working simultaneously
with d consecutive bits of the output of S ′

i, where d is a small integer. A symbol is
defined to be the binary string of d consecutive bits S ′

i[li] , S̃ ′
i[li]||S̃ ′

i[li+1]|| · · · ||S̃ ′
i[li+

d − 1], where “||” denotes concatenation. For example, S ′
2[81] = S̃ ′

2[81] is a 1-bit
symbol, and S ′

1[90] = S̃ ′
1[90]||S̃ ′

1[91] is a 2-bit symbol.
In the first step of [58], estimators are calculated based on the above correlation

and on the available keystream. For every pair of indices l1 and l2 for which esti-
mators are computed, and for every possible symbol difference δ = S ′

1[l1] ⊕ S ′
2[l2],

the estimator El1,l2 [δ] is defined as the logarithm of the a-posteriori probability that
S ′

1[l1] ⊕ S ′
2[l2] = δ. For example, the symbol is a single bit for d = 1, thus, the

symbol difference can be either zero or one. Then, for l1 = 80 and l2 = 83, the
estimator E80,83[0] is the logarithm of the probability that S ′

1[80] ⊕ S ′
2[83] = 0, and

E80,83[1] is the logarithm of the probability that S ′
1[80]⊕S ′

2[83] = 1. For d = 2, there
are four estimator for every pair of indices, e.g., E80,83[002], E80,83[012], E80,83[102],
and E80,83[112] (where “2” denotes the fact that the number is written in its binary
representation, e.g., 112 is the binary representation of the number 3). The value of
E80,83[102] is the logarithm of the probability that S ′

1[80]⊕ S ′
2[83] = 102, and so on.

Note that the higher d is — the better the estimators are expected to be (but the
marginal benefit drops exponentially as d grows).

We do not describe here how to calculate the estimators given d and the known
keystream, as this calculation is a special case of the calculation of our conditional
estimators (see Appendix 4.11). We note that the time complexity of this step is
roughly proportional to 2d. With 2000 frames, the simulation in [58] takes about
eleven seconds to complete this step with d = 1, and about 40 seconds with d = 4.

The rest of the details of the previous attacks deal with how to decode the esti-
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mators and recover candidate values for S1, S2, and S3 (and thus recovering the key).
Further details are given in Appendix 4.9, but for the complete details, we refer the
reader to [58].

4.4 The New Observations

In this section, we describe tools and observations that we later combine to form the
new attack.

4.4.1 The New Correlation — Conditional Estimators

In Section 4.3, we reviewed the correlation equation used by Maximov, Johansson,
and Babbage. This correlation equation is based on two assumptions, the clocking
assumption and the step assumption. Recall that the step assumption (i.e., that the
third register stands still) holds in a quarter of the cases (assuming that the values
in the clocking taps are independent and uniformly distributed).

Consider registers R1 and R2, and assume that for a given frame j and for
the t’th output bit, the clocking assumption holds, i.e., at the t’th output bit of
frame j, R1 and R2 were clocked a total of l1 and l2 times, respectively, from their
initial state. Also assume that we know the value of S̃1[l1 + 10] and S̃2[l2 + 11].
We use the publicly known frame number j to find the value of the clocking taps
C1 = S̃1[l1 + 10] ⊕ F̃ j

1 [l1 + 10] of R1 and C2 = S̃2[l2 + 11] ⊕ F̃ j
2 [l2 + 11] of R2 at

output bit t.
We observe that the bias of the correlation can be improved by dividing the step

assumption into two distinct cases. The first of the two cases is when C1 6= C2. Due
to the clocking mechanism, R3 is always clocked in this case along with either R1
or R2. The step assumption does not hold, and therefore, Equation (4.2) is assumed
to hold in half of the cases. In other words, the case where C1 6= C2 provides us no
information.

However, in the second case, when C1 = C2, we gain a factor two increase in the
bias. In this case, both R1 and R2 are clocked (as c = C1 = C2 is the majority),
and R3 is clocked with probability 1/2 under the assumption that the values of
the clocking taps are uniformly distributed (R3 is clocked when its clocking tap
agrees with the majority, i.e., when C3 = c). Therefore, when C1 = C2, the step
assumption holds with probability 1/2 compared to probability 1/4 in [58].

We analyze the probability that Equation (4.2) holds when C1 = C2. If either
the step assumption or the clocking assumption do not hold, then we expect that
Equation (4.2) holds with probability 1/2 (i.e., by pure chance). Together with
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the probability that the assumptions hold, Equation (4.2) is expected to hold with
probability Pr((l1, l2) at time t)(1/2 + 1/2 · 1/2) + 1/2(1 − Pr((l1, l2) at time t)) =
1/2+Pr((l1, l2) at time t)/4 compared to 1/2+Pr((l1, l2) at time t)/8 in [58]. There-
fore, when C1 = C2, we gain a factor two increase in the bias compared to [58].2

We use the above observation to construct conditional estimators (which are sim-
ilar to conditional probabilities). We define a d-bit clock symbol Si[li] in index li as
the d-bit string: Si[li] = S̃i[li]||S̃i[li + 1]|| · · · ||S̃i[li + d − 1], where “||” denotes con-
catenation. The conditional estimator El1,l2 [x|Sc] for indices l1, l2 is computed for
every possible combination of a clock symbol difference Sc = S1[l1 +10]⊕S2[l2 +11]
and a symbol difference x = S ′

1[l1]⊕S ′
2[l2]. The estimator El1,l2 [x|Sc] is the logarithm

of the a-posteriori probability that the value of the symbol difference is x, given that
the value of the clock symbol difference is Sc. The computation of conditional esti-
mators is similar to the computation of the estimators as described in [58], taking the
dependence on the clock symbol difference into account. The complete description
of the calculation of conditional estimators is given in Appendix 4.11.

One way of using conditional estimators is to remove the conditional part of
the estimators, and use them as regular estimators, i.e., we can compute El1,l2 [x] =

log
(

1
2d

∑

y eEl1,l2
[x|y]
)

. Nevertheless, the benefit would not be large. A better use

of the conditional estimators is to use them directly in the attack as is shown in
Section 4.5.1, but before we present this attack, we need to present a few additional
observations.

4.4.2 First Weakness of R2 — the Alignment Property

The first weakness of R2 uses the fact that the feedback taps of R2 coincide with
the bits that are estimated by the correlation equation. Assume that the value of
S1 is known. Then, for every index i, the correlation equation estimates the value of
S2[i]⊕S2[i+1]. On the other hand the linear feedback of R2 forces S2[i]⊕S2[i+1] =
S2[i + 22]. Thus, the correlation equation actually estimates bits which are 22 bits
away. Using our notations, this property can be written as

S ′
2[i] = S2[i + 22].

2As a refinement of these observations, note that it suffices to know the value of S̃1[l1 + 10] ⊕
S̃2[l2 + 11], since we only consider C1⊕ C2 rather than the individual value of C1 and C2.
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4.4.3 Second Weakness of R2 — the Folding Property

The second weakness of R2 is that it has only two feedback taps, and these taps are
adjacent. Let X[∗] be a bit-string which is an output of R2, and let cost(i, x) be a
cost function that sets a cost for every possible d-bit string x in index i of the string
X[∗] (the cost function is independent of the specific stream X[∗]). We calculate the
total cost of a given string X[∗] (i.e., calculate its “score”) by

length(X)−d+1
∑

i=is

cost(i, X[i]||X[i + 1]|| · · · ||X[i + d− 1]) (4.3)

, where is is the first bit that is scored, and length(X) is the last bit being scored.
Given the cost function, we can also ask what is the string Xmax that maximizes the
above sum, i.e., the string with the highest score.

The folding property allows to create a new cost function cost′(i, x), where i is
one of the first 22 indices. The special property of cost′ is that the score calculated on
the first 22 indices using cost′ is equal to the score using Equation (4.3) over all the
indices (using cost). cost′ is very helpful in finding the highest scored string Xmax

for a given cost function cost. However, the transition from cost to cost′ has the
penalty that cost′(i, x) operates on d′-bit strings x that are slightly longer than d. In
general, every 22 additional indices (beyond the first 22 indices) in X[∗] add one bit
of length to x, so d′ = d + ⌈(length(X)− is − d + 1 + 1− 22)/22⌉ (in our simulation
we work with strings of 66 indices and d = 1, therefore, our cost′ operates on strings
of length d′ = d + 2 = 3).

How should cost′ be calculated? For every index i of the first 22 indices, the
equality X[i]⊕X[i + 1] = X[i + 22] holds due to the linear feedback taps of R2. In
other words, the d′-bit string at index i determines a (d′−1)-bit string at index i+22
(which is the XOR difference between every two adjacent bits of the d′-bit string at
index i). This string also determines a (d′−2)-bit string at index i+2 ·22, a (d′−3)-
bit string at index i + 3 · 22, etc. The score is calculated as the sum of the cost of
all the indices by Equation (4.3). We can reach the same value of the score if for all
i ∈ {is, . . . , is + 21}, we sum up all the cost of indices equal to i modulo 22, store
the result in cost′ of index i, and then sum up only the cost′ of the first 22 indices
(is, . . . , is + 21). Thus we “fold” the cost function over all the indices to the cost′

function defined for the first 22 indices.
We formally describe an algorithm that calculates cost′ from cost. For the sake of

simplicity, assume that the number of indices is 22k (divisible by 22), i.e., 22k+d−1
bits of X[∗] are included in the score computation (though the attack also work when
the number of indices is not divisible by 22). The calculation of cost′ from cost is given
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For each i ∈ {is, . . . , is + 21}
For each e ∈ {0, 1}d+k−1

cost′(i, e) ,
∑k−1

j=0 cost(i + 22k, lsbd(D(D(D · · ·D(
︸ ︷︷ ︸

j times

e) · · · ))

Figure 4.3: The Folding Property: Calculating cost′ From cost
cost✲♥ cost′ ❛❡②✐❣ ✿③❡❧t✇③❞❞ ③♣❡❦③

in Figure 4.3, where the first index of X[∗] is denoted by is, D(α1, α2, α3, . . . , αd′) =
(α1⊕α2, α2⊕α3, . . . , αd′−1⊕αd′) is the operator that calculates the XOR-difference
between each pair of adjacent bits (note that the linear feedback of R2 actually
calculates D(·), as discussed in Section 4.4.2), lsbd(x) returns the first d bits of x,
and lsbd(D(D(D · · ·D(

︸ ︷︷ ︸

j times

e) · · · )) is the d-bit string in index i+22k that is determined

by the (d + k − 1)-bit string e in index i. We call the d′-bit strings representative
symbols.

Note that not every choice of the 22 representative symbols is a consistent output
of R2, as the 22 representative symbols span 22+d′−1 bits (and thus there are 222+d′−1

possibilities for these bits), while R2’s internal state has 22 bits. In particular, the
last d′ − 1 bits of the last (22nd) representative symbol (i.e., the bits in indices
is + 22, . . . , is + 20 + d′) are determined by the first d′ bits of the first representative
symbol (i.e., bits is, . . . , is + d′ − 1) through the linear feedback. Denote these last
d′ − 1 bits by w. For the first bits to be consistent with the last bits w, we require
that the first bits are equal to D−1

0 (w) or D−1
1 (w), where D−1

0 (w) is the value such
that D(D−1

0 (w)) = w, with the first bit of D−1
0 (w) being zero (i.e., D−1

0 is one of two
inverses of D), and where D−1

1 (w) is the 1-complement of D−1
0 (w) (it also satisfies

D(D−1
1 (w)) = w, i.e., D−1

1 is the other inverse of D with the first bit being one).

4.4.4 Third Weakness of R2 — the Symmetry Property

The third weakness of R2 is that its clock tap is exactly in its center. Combined
with the folding property, a symmetry between the clocking tap and the output
tap of R2 is formed. The symmetry property allows for an efficient attack using
conditional estimators. Assume that S1 is known. S2[i] is at the output tap of R2
when S2[i + 11] is at the clock tap of R2. When S2[i + 11] reaches the output tap,
S2[i + 11 + 11] = S2[i + 22] is at the clock tap. However, the representative symbol
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at i determines both the bits of S2[i] and S2[i + 22]. Therefore, the representative
symbols can be divided into pairs, where each pair contains a representative symbol
of some index i and a representative symbol of index i+11. When the representative
symbol of index i serves for clocking, the other representative symbol is used for the
output, and vice versa. As a result, the representative symbols in the pair control
the clocking of each other. If the clocking taps were not in the middle, we could not
divide the representative symbols into groups of two.

4.5 The New Attack

The attack is composed of three steps:

1. Compute the conditional estimators.

2. Decode the estimators to find a list of the best candidate pairs for (S1, S2) by
translating the problem of finding the best candidates to a problem in graph-
theory.

3. For each candidate in the list for (S1, S2), recover candidates for S3. For each
such candidate, the key is recovered and then verified through trial encryptions.

The computation of conditional estimators in Step 1 is based on Section 4.4.1, and
similar to the computation of estimators in [58]. A detailed description of this com-
putation is given in Appendix 4.11. Step 2 is described in Section 4.5.1.

In Step 3, given a candidate pair for (S1, S2), we find candidates for S3 based on
(S1, S2) and the keystream of a particular frame. The method is similar to the one
briefly described by Ross Anderson in [2]. However, some adjustments are needed as
the method of [2] requires the internal state right at the beginning of the keystream
(after discarding 100 bits of output), whereas Step 2 provides candidates for the
internal state after the key setup but before discarding 100 bits of output (the can-
didates for (S1, S2) ⊕ (F j

1 , F j
2 ) are the internal state right after the key-setup and

before discarding 100 bits of output).

An alternative Step 3 exhaustively tries all 223 candidate values for S3. Taking
into account that many operators set ten bits of the key to zero (as reported in [24]),
we need to try only the 213 candidate values for S3 which are consistent with the
ten zero bits of the key. A more detailed description of Step 3 can be found in
Appendix 4.12
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4.5.1 Step 2 — Decoding of Estimators

The aim of Step 2 is to find the list of best scored candidates for (S1, S2), based on
the conditional estimators. The score of (s1, s2) (denoting candidate values for S1

and S2) is simply the sum of the simultaneous estimators of s1 and s2 (which is the
logarithm of the product of the a-posteriori probabilities), i.e.,

score(s1, s2) =
∑

l1,l2

El1,l2 [s
′
1[l1]⊕ s′2[l2] | s1[l1 + 10]⊕ s2[l2 + 11]].

The list of best candidates is the list of candidates {(s1, s2)} that receive the highest
values in this score. For the case of non-conditional estimators, the score is defined
in a similar manner but using non-conditional estimators (instead of conditional
estimators).

Surprisingly, the list of best candidate pairs can be efficiently computed using
the three weaknesses of R2. We translate the problem of calculating the list of best
scored candidates into a problem in graph theory. The problem is modeled as a huge
graph with a source node s and target node t, where each path in the graph from s
to t corresponds to a candidate value for (S1, S2), with the score of the pair being the
sum of the costs of the edges along the path (there is a one-to-one correspondence
between candidate pairs (s1, s2) and path from s to t in the graph). Thus, the
path with the heaviest score (“longest” path) corresponds to the highest scored pair.
A Dijkstra-like algorithm for finding shortest path [34] can find the longest path
in our graph, since the weights on the edges in our graph are negative (logarithm
of probability). The list of best candidates corresponds to the list of paths whose
scores are closest to the heaviest path. The literature for graph algorithms deals with
finding N -shortest paths in a graph (e.g., [49]). These algorithms can be adapted to
our graph, and allow to find the heaviest paths.

Our graph contains 219 subgraphs, one for each candidate value for S1. All the
subgraphs have the same structure, but the weights on the edges are different. Each
such subgraph has one incoming edge entering the subgraph from the source node s,
and one outgoing edge from the subgraph to the target node t. Both edges have a
cost of zero.

The Structure of the Sub-Graph Using non-Conditional Estimators

Our method for decoding the estimators can be used with non-conditional estimators,
and in fact the structure of the subgraph is best understood by first describing the
structure of the subgraph for the case of non-conditional estimators. In this case, the
subgraph for the jth candidate of S1 has a source node sj and a target node tj. The
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subgraph is composed of 2d′−1 mini-subgraphs. Each mini-subgraph corresponds to
one combination w of the last d′−1 bits of the representative symbol in index is +21
(last representative symbol). Figure 4.4 shows an example of a subgraph for d′ = 3,
in which only the mini-subgraph for w = 01 is shown. The full subgraph contains a
total of four mini-subgraphs, which differ only in the locations of the two incoming
edges (and their weight) and the outgoing edge. For each index i ∈ {is, . . . , is + 21},
the mini-subgraph includes 2d′−1 nodes: one node for each combination of last d′− 1
bits of the representative symbols in index i. A single outgoing edge connects the
mini-subgraph relevant node 0

101 in index is+21 to tj (the other nodes in index is+21
can be erased from the mini-subgraph). Two incoming edges (which correspond to
D−1

0 (w) and D−1
1 (w)) connect sj to relevant nodes in index is, which in our example

are D−1
0 (01) = 001 and D−1

1 (01) = 110 (the nodes 0
100 and 0

111 in index is can thus
be erased from the mini-subgraph). Thus, any path that goes through the mini-
subgraph must include one of these incoming edges as well as the outgoing edge.
This fact ensures that each path corresponds to a consistent choice of representative
symbols (as discussed at the end of Section 4.4.3).

Consistent transitions between representative symbols in adjacent indices are
modeled by edges that connect nodes of adjacent indices (in a way that reminds a
de-Bruijn graph). There is an edge from a node to another node if and only if the
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last d′ − 1 bits of the former node are the same as the first d′ − 1 bits of the latter
node, which is the requirement for consistent choice of representative symbols. For
example, a transition between a representative symbol a0a1 . . . ad′−1 in index i and
a representative symbol a1a2 . . . ad′ in index i + 1 is modeled by an edge from node
0
1a1 . . . ad′−1 to node 0

1a2 . . . ad′ . The cost of the edge is sr(i+1, a1a2 . . . ad′) , cost′(i+
1, a1a2 . . . ad′), where cost′ is folded using the folding property from cost(i, x) ,

funci,s1 [x] ,
∑

l1
El1,i[s

′
1[l1]⊕x], as described in Section 4.4.3, and s′1 is fixed for the

given subgraph.

The total cost of edges along a path is
∑

i funci,s1 [s
′
2[i]] =

∑

l1,i El1,i[s
′
1[l1] ⊕

s′2[i]] = score(s1, s2), where s′2 is the candidate for S ′
2 that is implied by the path, and

s′1 is the appropriate value for the jth candidate for S1. After a quick precomputation,
the value of funci,s1 [x] can be calculated using a few table lookups regardless of the
value of s1, as described in Appendix 4.10.

The Structure of the Sub-Graph Using Conditional Estimators

Similarly to the case of non-conditional estimators, in case conditional estimators are
used, the subgraph for candidate j has a source node sj, a target node tj, and the
subgraph is composed of several mini-subgraphs, which differ only in the location of
the incoming edges (and their cost) and the location of the outgoing edge. However,
with conditional estimators, the structure of the mini-subgraphs is different: each
pair of indices i, i + 11 are unified to a single index, denoted by i|i + 11.

We would like to combine the nodes in index i with nodes in index i + 11 by
computing their cartesian product: for each node a in index i and for each node b
in index i + 11, we form the unified node a|b in unified index i|i + 11. However,
there is a technical difficulty: while (given S1) a non-conditional estimator depends
on a symbol candidate s′2[i], a conditional estimator depends on both a symbol
candidate s′2[i] and a clock symbol candidate s2[i + 11]. As a result, we must apply
the D−1 operator on nodes in index i + 11 (to transform them from symbols to
clock symbols). This operation divides node b =0

1 b1b2 . . . bd′−1 in index i + 11 into
two nodes 0

1D
−1
0 (b1b2 . . . bd′−1) and 0

1D
−1
1 (b1b2 . . . bd′−1). Only then, we can perform

the cartesian product between the nodes in index i and the nodes that results from
applying D−1. Thus, from a pair of a and b of the above form, we have two nodes in
the product (in index i|i + 11): a|01D−1

0 (b1b2 . . . bd′−1) and a|01D−1
1 (b1b2 . . . bd′−1). We

refer to the bits on the left of the “|” in the node as symbol bits, and the bits on
the right of the “|” as clock bits. In total, there are 2d′−1(2 · 2d′−1) = 22d′−1 nodes in
each index i|i + 11.

There is an edge from node x1|y1 in index i|i+11 to node x2|y2 in index i+1|i+12
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Figure 4.5: Four Nodes of the Mini-Subgraph Using Conditional Estimators for d′ = 3
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if and only if the last d′ − 1 bits of x1 are equal to the first d′ − 1 bits of x2 and the
last d′ bits of y1 are equal to the first d′ bits of y2. Figure 4.5 depicts four nodes of
a mini-subgraph using conditional estimators.

What should be the cost of an edge? The basic cost function is cost(i, x|y) ,

funci,s1 [x|y] ,
∑

l1
El1,i[s

′
1[l1]⊕x|s1[l1 +10]⊕ y], which is folded to the cost function

cost′(i, x|y). Since each index i|i+11 unifies two indices, the edge that enters i|i+11
should contain the sum of contribution of indices i and i+11, i.e., the cost of the edge
is nsr(i, s′2[i]|s2[i+11]) , cost′(i, s′2[i]|lsbd′(s2[i+11]))+cost′(i+11, s′2[i+11]|s2[i+22]),
where lsbd′(x) returns the d′ first bits of x. Note that s′2[i + 11] = D(s2[i + 11]), and
(due to the alignment property) s2[i+22] = s′2[i]. Therefore, nsr(i, s′2[i]|s2[i+11]) =
cost′(i, s′2[i]|lsbd′(s2[i + 11])) + cost′(i + 11, D(s2[i + 11])|s′2[i]).

Like the case of non-conditional estimators, we create several mini-subgraphs
to ensure that the paths in the subgraph represent consistent choices for S1 and
S2. We include in the subgraph a mini-subgraph for each combination v of the last
d′ − 1 symbol bits and each combination w of the last d′ clock bits of the last node
(the node near tj). A single edge (with cost zero) connects the mini-subgraph to
tj from node 0

1v|01w. For consistency with the linear feedback, the bits w must be
identical to the symbol bits of the first node (both w and the first symbol bits are
d′-bit long). The bits v must be identical to the difference of the first d′ bits of
the first clock symbol. As v is (d′ − 1)-bit long, and as the clock bits of the first
symbol are (d′ + 1)-bit long, there are four possibilities for the clock bits: D−1

0 (v)||0,
D−1

1 (v)||0, D−1
0 (v)||1, and D−1

1 (v)||1. Therefore, four edges w|D−1
0 (v)0, w|D−1

1 (v)0,
w|D−1

0 (v)1, and w|D−1
1 (v)1 connect sj to the mini-subgraph (the concatenation mark
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“||” was removed for clarity). Their costs are nsr(is, w|D−1
0 (v)0), nsr(is, w|D−1

1 (v)0),
nsr(is, w|D−1

0 (v)1), and nsr(is, w|D−1
1 (v)1), respectively.

To reconstruct s′2 from a path in the mini-subgraph, we first concatenate the
symbol bits to form the first half of the path, and separately concatenate the clock
bits to form the second half of the path. Then, we compute the difference between the
clock bits, and combine the result with the symbol bits to obtain a path of s′2 (similar
to the path in the case of the mini-subgraph using un-conditional estimators).

Note that in an efficient implementation there is no need to keep the entire graph
in memory, since the needed parts of the graph can be reconstructed on-the-fly.

4.6 Simulations of our Attacks

We have implemented our attack, and simulated it under various parameters. Our
simulations focus on 2000 frames of data, which is the lowest amount of data that
gives a non-negligible success rate in the simulations of Maximov, Johansson, and
Babbage [58]. We also simulated the attack with 1500 frames. A comparison of sim-
ulations of previous attacks and simulations of our new attacks is given in Table 4.1.

In the simulations we use d = 1, l1 ∈ {61, . . . , 144}, l2 ∈ {70, . . . , 135}, and
calculate estimators for | l1 − l2 |< 10. We use the first version of Step 3 with 64-bit
keys.

We ran the simulations on a 1.8GHz Pentium-4 Mobile CPU with 512MB of
RAM. The operating system was Cygwin under Windows XP. In comparison, the
simulations of [58] were performed on a 2.4GHz Pentium-4 CPU with 256MB of RAM
under Windows XP, and the simulations of [35] were performed on a 1.8GHz Pentium-
4 CPU with 512MB of RAM under Linux.

In one simulation, we limited the size of the list of top (s1, s2) pairs to 5200. The
key was found in about 64 percent of the cases, compared to about 5 percent in
previous attacks with 2000 frames. Our attack takes about 7 seconds to complete
Step 1. Step 2 takes about 340 seconds for the first pair, after which it can generate
about 1500 pairs of candidates per second. Step 3 scans about 20.4 candidate pairs
per second. Therefore, the total time complexity varies depending on the location
of the correct pair in the list. It takes about 350 seconds (six minutes) in the best
case, and up to ten minutes in the worst case.

For better results, we employ two methods: early filtering and improved estima-
tors.
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Table 4.1: Comparison Between Our Attacks and Passive Attacks of Previous Works
③❡♥❝❡✇ ③❡✐❛✐q❵t ③❡t✇③❞❧ ❡♣❧② ③❡t✇③❞❞ ♦✐❛ ❞❵❡❡②❞

Attack: Required Frames Average Time Success
(Configuration Known Ciphertext Only on a single Rate

explained in Section 4.6) Keystream (Section 4.7) PC (range)
Ekdahl & Johansson [35] 70000 (322 s) 140 min 5 min 76%

[35] 50000 (230 s) 99 min 4 min 33%
[35] 30000 (138 s) 60 min 3 min 3%

Biham & Dunkelman [15] 20500 (95 s) 40.8 min ≈ 1.5 days 63%

Maximov et al. [58] 10000 (46 s) 20 min 10 min 99.99%
[58] 10000 (46 s) 20 min 76 s 93%
[58] 5000 (23 s) 10 min 10 min 85%
[58] 5000 (23 s) 10 min 44 s 15%
[58] 2000 (9.2 s) 4 min 10 min 5%
[58] 2000 (9.2 s) 4 min 29 s 1%

Biryukov et al. [21] 2000 (9.2 s) 4 min ♯ > 5 years
Ciphertext only of [10] — 4 min∗ ♯ > 2300 years

This Chapter 2000 (9.2 s) 4 min (6–10 min) 64%
early filtering 2000 (9.2 s) 4 min (55–300 s) 64%

(220000, 40000, 2000, 5200)
early filtering 2000 (9.2 s) 4 min (32–45 s) 48%

(100000, 15000, 200, 300)
improved estimators, 2000 (9.2 s) 4 min 74 s 86%

(200000, 17000, 900, 2000) (50–145 s)
improved estimators, 2000 (9.2 s) 4 min 133 s 91%

(200000,36000,1400,11000) (55–626s)
early filtering 1500 (6.9 s) 3 min (39–78 s) 23%

(120000, 35000, 1000, 800)
improved estimators, 1500 (6.9 s) 3 min 82 s 48%

(88000, 52000, 700, 1200) (44–105 s)
improved estimators, 1500 (6.9 s) 3 min 7.2 min 54%

(88000,52000,3200,15000) (44–780 s)

Only passive attacks are included, i.e., the active attack of [10] is not shown. The attack
time for [10, 15, 21] is our estimate. As [10, 21] are time/memory/data tradeoff attacks, we
give the tradeoff point that uses data that is equivalent to four minutes of ciphertext.
∗ based on error-correction codes as described in [10] (not on Section 4.7).
♯ preprocessing time.
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4.6.1 Early Filtering

In early filtering, we perform Step 2 several times, using less accurate (and faster)
methods. Thus, we discard many candidate values of S1 that are highly unlikely, and
we do not need to build a subgraph for these values. For example, we score all the
candidates of S1 (a score of a candidate s1 of S1 is maxs2 score(s1, s2)) using non-
conditional estimators and a less accurate but faster method, in which we construct
a subgraph containing only one mini-subgraph for each candidate of s1, and do
not use the folding property. Then, we recalculate the score for the 220000 top
candidates, using a similar method, but with conditional estimators. The 40000 top
scored candidates are re-scored using conditional estimators with a variation using
only one mini-subgraph. Finally, we perform Step 2 of Section 4.5.1 with subgraphs
only for the 2000 scored candidates of S1. The list of the 5200 top candidates of
(S1, S2) is generated and passed to Step 3. We denote this kind of configuration in
a tuple (220000, 40000, 2000, 5200). Simulation results using other configurations for
both 2000 and 1500 frames are given in Table 4.1.

4.6.2 Improved Estimators

A disadvantage of the described attack is that only information from the estimators
El1,l2 [·|·] is taken into consideration, while estimators involving R3, i.e., El1,l3 [·|·] and
El2,l3 [·|·], are disregarded. In improved estimators, we improve our results by adding
to each estimator El1,l2 [x|y] the contributions of the estimators of the other registers,
i.e., we add to it

∑

l3

log




∑

α,β∈{0,1}d

eEl1,l3
[α|β]+El2,l3

[x⊕α|y⊕β]



 .

The resulting estimators include more information, and thus, are more accurate.
They significantly improve the success rate with a modest increase in the time com-
plexity of Step 1 (mostly, since we need to calculate three times the number of
estimators). This increase in time complexity is compensated by a large decrease in
the time complexity of Step 3 (as the correct (S1, S2) is found earlier). The results
are summarized in Table 4.1.

4.7 A New Source for Known-Keystream

Every traffic channel between the handset and the network is accompanied by a
slower control channel, which is referred to as the Slow Associated Control CHan-
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nel (SACCH). The mobile uses the SACCH channel (on the uplink) to report its
reception of adjacent cells. The network uses this channel (on the downlink) to send
(general) system messages to the mobile, as well as to control the power and timing
of the current conversation.

The contents of the downlink SACCH can be inferred by passive eavesdropping:
The network sends power-control commands to the mobile. These commands can be
inferred from the transmission power of the mobile. The timing information that the
network commands the mobile can be inferred from the transmission timing of the
mobile. The other contents of the SACCH is a cyclical transmission of 2–4 “system
messages”(see [37, Section 3.4.1]). These messages can be obtained from several
sources, for example by passively eavesdropping the downlink at the beginning of a
call (as the messages are not encrypted at the beginning of a call), or by actively
initiating a conversation with the network using another mobile and recover these
messages (these messages are identical for all mobiles). There is no retransmission
of messages on the SACCH, which makes the task of the attacker easier, however,
it should be noted that an SMS received during an on-going conversation could
disrupt the eavesdropper, as the SMS can be transferred on the SACCH, when system
messages are expected.

An attacker would still need to cope with the Frequency Hoping (FH) used by
GSM. Using a frequency analyzer the attacker can find the list of n frequencies that
the conversation hops on. Given n, GSM defines only 64n hopping sequences (n
cannot be large since the total number of frequencies in GSM is only about 1000, of
which only 124 belong to GSM 900). Thus, the hopping sequence can be determined
through a quick exhaustive search.

As the name of SACCH implies, it is a slow channel. Only about eight frames are
transmitted every second in each direction of the channel. Therefore, to collect 1500–
2000 SACCH frames transmitted from the network to mobile, about 3–4 minutes of
conversation are needed.

4.8 Summary

Our contribution in this chapter is multi-faced. We begin by introducing conditional
estimators that increase the bias of the correlation equation. Then, we present three
weaknesses in R2, which were not reported previously. The first weakness — the
alignment property — utilizes the fact that the correlation equation coincides with
the feedback taps of R2. The second weakness — the folding property — uses the
fact that R2 has only two feedback taps, and they are adjacent. We use the folding
property to decode the estimators in an optimal way. In contrast, previous attacks
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were forced to use heuristics to decode the estimators. Using this weakness, we
present a novel method to efficiently calculate the list of best candidate pairs for S1

and S2. Given S1 and S2, the value S3 can be worked back from the keystream.

The last weakness that we report — the symmetry property — is based on the
fact that R2’s clocking tap is exactly in its middle, which together with the folding
property causes a symmetry between the clocking tap and the output of R2. This
property enables us to efficiently decode the conditional estimators.

Finally, we describe a new source for known-plaintext in GSM. This source of
known-plaintext transforms our attack to a practical ciphertext-only attack. With 3–
4 minutes of raw ciphertext, we can extract the required amount of about 1500–2000
frames of known-plaintext from the SACCH.

We compare some of the previous results and our current simulation results in
Table 4.1. Compared to previous attacks on 1500–2000 frames, it can be seen that
our new attack has a significantly higher success rate (91% compared to 5%), it is
faster, and it does not require any precomputation.
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4.9 Appendix: Overview of Step 2 and Step 3 of

Maximov, Johansson, and Babbage’s Attack

In Step 2 of [58], the set of estimators are decoded within short intervals, i.e., each
possible value for the interval contents is scored using the estimators, and the list
of the r highest-scored candidates is stored in tables. We describe Step 2 using our
notations (which results in a factor four decrease in the time complexity compared
to the original work).

In [58] the estimators are decoded in intervals of eleven symbols in length, e.g.,
S ′

1[69, . . . , 79], and S ′
2[69, . . . , 79]. For each such interval and for each possible value

of the content s′1[69, . . . , 79], s′2[69, . . . , 79] of the interval, a score is calculated. Let
I = [69, . . . , 79]. Then, s′1[I], s′2[I] can take 22(11+d−1) values. A candidate value is
scored by calculating

score(s′1[I], s′2[I]) =
∑

l1,l2∈I

El1,l2 [s
′
1[l1]⊕ s′2[l2]]. (4.4)
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The highest-scored r possibilities for interval values are stored in a table. This process
is performed for all the intervals.

We analyze the time complexity of Step 2 as follows. The score calculation
for a particular pair of interval values involves summing |I|2 elements, where |I| is
the number of symbols covered by the interval (in the above example |I| = 11).
Therefore, the time complexity of Step 2 for a given interval is |I|2 · 22(|I|+d−1).
This figure should be multiplied by the number of intervals to obtain the total time
complexity of Step 2.

The time complexity of Step 2 presented here is lower by a factor of four compared
to Step 2 of the attack described in [58] (there the time complexity for a given
interval is |I|2 · 22(|I|+d)). The factor four savings in our description is the result of
the observation that there is a one-to-one correspondence between S ′ and S (the
observation is incorporated into the S ′ notation).

In Step 3 of [58], the candidate tables are intersected according to various heuris-
tics to recover candidates for the values of S ′

1, S ′
2, and S ′

3. These values are combined
to create candidate keys, which are checked against the known-keystream. See [58]
for the complete description.

4.10 Appendix: Fast Calculation of funcl2,s1[x]

We show a precomputation that speeds up the calculation of funci,s1 [·]. Recall that
given s1, funci,s1 [x] =

∑

l1
El1,i[s

′
1[l1] ⊕ x]. The idea behind this precomputation is

as follows. Since the contribution El1,i[s
′
1[l1] ⊕ x] of all the location l1 is summed

to form the value funci,s1 [x], we can precompute the contribution of intervals of l1,
with all the different values for the content of the interval. In this way, given s′1[∗]
we can calculate the value of funci,s1 [x] using a few table accesses.

We divide the range of possible l1 values into intervals I1, . . . , Ik of fixed length.
Therefore, we can separate the summation of funci,s1 [x] according to the intervals,
i.e., funci,s1 [x] =

∑

Ij∈{I1,...,Ik}
∑

l1∈Ij
El1,i[s

′
1[l1]⊕x]. Each interval covers a sequence

of symbol locations, for example, ten locations. Note that every two adjacent in-
tervals intersect on d − 1 bits. We define funcIj ,v[Ij ],l2 [x] =

∑

l1∈Ij
El1,l2 [v[l1] ⊕ x],

where v[Ij] is some interval value (210+d−1 possible interval values for |Ij| = 10,
where |I| denotes the number of symbols in the interval) and v[l1] is the d-bit sym-
bol in location l1 in v[Ij]. For each such interval Ij, for each each possible interval
value v[Ij], for each l2 value, and for each possible symbol value x, we precompute
funcIj ,v[Ij ],l2 [x] according to its formula. Assuming the interval size is ten symbols,
this precomputation takes n2210+2d−1 table accesses (to the estimators), where l1
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runs over n locations. The memory complexity for storing the funcIi,v[Ii],l2 [x]’s is

(n/10)210+d−1n2d = n2

10
29+2d memory cells. This memory complexity is not negligi-

ble, but is not too large either: assuming n = 70 and d = 1, the required memory is
about a few megabytes of memory.

Using the precomputation, we compute a very close approximation to funcl2,s1 [x]
in a time complexity of only about three table accesses. Given s′1[∗], we calculate
funcl2,s1 [x] =

∑

Ii
funcIi,s′1[Ii],l2 [x], where Ii ∈ {I1, . . . , Ik}, and s′1[Ii] is the string of

symbols of s′1[∗] beginning in the interval Ii. Thus, the time complexity of calculating
funcl2s1 [x] is reduced to k table accesses. Note that when |l1− l2| increases the bias
of the estimator decreases. Therefore, when calculating funcl2,s1 [x] we can ignore
the contribution of the locations l1 which are far from l2. If we limit the contribution
to |l1 − l2| < 10 (for example), we can calculate funcl2,s1 [e] using a fixed number
of table accesses. For example if l2 ∈ Ij than only Ij−1, Ij, and Ij+1 are considered
when calculating funcl2,s1 [x].

4.11 Appendix: Calculating Conditional Estima-

tors

In this appendix, we show how to calculate conditional estimators. The method
is similar to the calculation of estimators as described in [58] combined with the
conditional step assumption as described in Section 4.4.1 and some corrections.

Denote by R̃j
i [li] the output of register Ri at frame j after being clocked li times

from its initial state, i.e., R̃j
i [li] = S̃i[li] ⊕ F̃ j

i [li]. Denote by Cj
l1,l2

the difference
between the d-bit clock symbols S1[l1] and S2[l2] together with the affect of a specific
frame number j on it, i.e.,

Cj
l1,l2

= R̃j
1[l1]⊕ R̃j

2[l2]|| . . . ||R̃j
1[l1 + d− 1]⊕ R̃j

2[l2 + d− 1].

We call Cj
l1,l2

the frame clock symbol. Clearly, given d, there are 2d possible values

for Cj
l1,l2

.

For every possible value of Cj
l1,l2

, we perform a one-time precomputation. The
precomputation results in two tables: a pattern table and a distribution table, where
the pattern table is only used for the computation of the distribution table, and it
is discarded right after. Denote Z ′j[t] = Z̃j[t]||Z̃j[t + 1]|| . . . ||Z̃j[t + d − 1]. Then,
the distribution table states for every possible difference ε ∈ {0, 1}d the a priori
probability that

Z ′j[t]⊕ ( (S ′
1[l1]⊕ F ′j

1 [l1])⊕ (S ′
2[l2]⊕ F ′j

2 [l2]) ) = ε
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Table 4.2: A Comparison of Distribution Tables for d = 4
d = 4 ♠r ③❡❜❧t③❞❞ ③❧❛❤ ❧② ❞❵❡❡②❞

ε Pr{ε| Pr{ε| Pr{ε| Pr{ε| Pr{ε| Pr{ε} Pr{ε}
00002} 00012} 00112} 01112} 11112}

00002 81/28 54/28 36/28 24/28 16/28 26.9/28 431/212

10002 27/28 18/28 12/28 8/28 16/28 14.3/28 229/212

01002 27/28 18/28 12/28 24/28 16/28 18.3/28 293/212

11002 9/28 6/28 4/28 8/28 16/28 11.4/28 183/212

00102 27/28 18/28 36/28 24/28 16/28 21.3/28 341/212

10102 9/28 6/28 12/28 8/28 16/28 12.4/28 199/212

01102 9/28 6/28 12/28 24/28 16/28 16.4/28 263/212

11102 3/28 2/28 4/28 8/28 16/28 10.8/28 173/212

00012 27/28 54/28 36/28 24/28 16/28 23.5/28 377/212

10012 9/28 18/28 12/28 8/28 16/28 13.1/28 211/212

01012 9/28 18/28 12/28 24/28 16/28 17.1/28 275/212

11012 3/28 6/28 4/28 8/28 16/28 11.0/28 177/212

00112 9/28 18/28 36/28 24/28 16/28 20.1/28 323/212

10112 3/28 6/28 12/28 8/28 16/28 12.0/28 193/212

01112 3/28 6/28 12/28 24/28 16/28 16.0/28 257/212

11112 1/28 2/28 4/28 8/28 16/28 10.6/28 171/212

The rightmost column gives the distribution table from [58]. The column on its left
contains the same values after dividing the numerator and the denominator by 24.
Further on the left are the distribution tables using the conditional estimators given
all the possible frame clock symbols. An example of reading the table: the correlation
equation holds for all the bits except the last (i.e., ε = 00012) with probability 36/28

given that the frame clock symbol is 00112, with probability 27/28 given that the
frame clock symbol is 00002, and with probability 23.5/28 when not given the frame
clock symbol (as is calculated in [58]).

given that R1 and R2 have been clocked l1 and l2, respectively, at time t, and given
the value of Cj

l1+10,l2+11. As it turns out, this probability depend only on the symbol

size d, the value of Cj
l1+10,l2+11, and the value of ε. Furthermore, the values in the

distribution tables do not depend on the exact value of Cj
l1,l2

, rather, they depend

on the first occurrence of “1” in Cj
l1,l2

. Therefore, it is enough to calculate the tables
for the (d + 1) possibilities of a first occurrences of “1”.

In Table 4.2, we give a comparison of the distribution tables that are computed
using conditional estimators with the one of [58]. Note that the most probable
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event is that the correlation equation holds for all the bits of the symbol (e.g.,
ε = 00002 with probability of 81/28 given a frame clock symbol of 00002). The least
probable event is that the correlation equation fails for all the bits of the symbol
(e.g., ε = 11112 with probability 1/28 given a frame clock symbol of 00002). Note
that the differences between the values is typical higher in distribution tables based
on conditional estimators compared to the more uniform distribution table of [58]
(which uses non-conditional estimators). Note that the bias between the values in
the distribution table is at is peak when the frame clock symbol is all zeros (but this
value of the frame clock symbol occurs only in 1/16 of the cases); the most uniform
distribution table occurs when the frame clock symbol begins with a “1”, due to
the reasons explained later. The distribution tables using conditional estimators
are always better than the distribution table that are unaware of the frame clock
symbol. In fact, the table of [58] can be seen as weighted average over the tables
using conditional estimators (as the clock had to be guessed), for example, Pr{ε} =
(Pr{ε|00002}+Pr{ε|00012}+2Pr{ε|00112}+4Pr{ε|01112}+8Pr{ε|11112})/16 (as
we elaborate later). Thus, when using only the non-conditional distribution table
Pr{ε}, “noise” is induced into the analysis.

We first explain how to calculate the conditional estimators based on the dis-
tribution tables, and only then explain how to calculate the pattern tables and the
distribution tables. The conditional estimators are first computed for each frame j.
For each possible value of l1, l2 and each value S ′, C ∈ {0, 1}d, the conditional esti-
mators state the a posteriori probability that S ′

1[l1]⊕S ′
2[l2] = S ′ given that the frame

clock symbol is C and given the keystream in frame j. The estimators for the frame
are calculated by

Ej
l1,l2

[S ′|C] =
1

2d

(

1−
∑

t

Pr((l1, l2) at time t)

)

+

∑

t

Pr((l1, l2) at time t) · Pr{ε = R′ ⊕ Z ′j[t]|Cj
l1+10,l2+11},

where R′ = S ′ ⊕ F ′j
1 [l1]⊕ F ′j

2 [l2], Cj
l1+10,l2+11 = C ⊕ F j

1 [l1 + 10]⊕ F j
2 [l2 + 11], Z ′j[t] is

calculated from the keystream, Pr((l1, l2) at time t) is the probability that register
R1 at clock t has been clocked (using the irregular clocking) l1 times from its initial
state (respectively, R2 has been clocked l2 times from its initial state), and the sums
are taken over the values of t that have a non-negligible Pr((l1, l2) at time t) value.
If we ignore for a moment the “|Cj

l1+10,l2+11” in the above formula, the formula is
nothing more than Pr(A) =

∑

i Pr(A|Bi)Pr(Bi), where Pr(A|Bi) is taken from
the distribution table, and Pr(Bi) is Pr((l1, l2) at time t). For t’s with negligible
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probability, we assume the distribution table is uniform, i.e., all the probabilities
are 1/2d.

The conditional estimators of the frames are then combined over all the frames:

E ′
l1,l2

[S ′|C] =
∏

j

Ej
l1,l2

[S ′|C].

Finally, the estimators are normalized, and their logarithm is taken:

El1,l2 [S
′|C] = log

E ′
l1,l2

[S ′|C]
∑

i E
′
l1,l2

[i|C]
.

This completes the calculation of the conditional estimators.
In [58] a closed formula is given to Pr((l1, l2) at time t):

Pr((l1, l2) at time t) =

(
t

t− l1

)(
t− (t− l1)

t− l2

)

23t−(l1+l2)
.

The formula can be easy derived as follows: There are four equiprobable clocking
possibilities for each output bit (either a single register (of R1, R2, or R3) is not
clocked and the rest are clocked, or that all three registers are clocked). Therefore, we
need to determine how many of the 4t clocking possibilities result in R1 being clocked
l1 times and R2 being clocked l2 times. Out of the t output bits, we choose the t− l1
output bits for which R1 is not clocked, and therefore, the rest of the registers are
clocked for these output bits. In the remaining t − (t − l1) output bits, we choose
the t− l2 output bits for which R2 is not clocked, and thus the rest of the registers
are clocked for these t − l2 output bits. For the remaining (t − (t − l1)) − (t − l2)
output bits, either R3 is not clocked or all the registers are clocked. Using simple
combinatorics, there are

(
t

t− l1

)(
t− (t− l1)

t− l2

)

2(t−(t−l1))−(t−l2)

such possibilities out of the 4t possible clockings.
It now remains to describe how the pattern tables are calculated. Assume that

at time t and frame j, R1 and R2 have been clocked l1 and l2 times, respectively,
from their initial states. Given the parity of the clock-control bits of R1 and R2,
there are only two ways to clock the registers. Therefore, given a frame clock symbol,
there are 2d possible clock symbols for R3, and together with the frame clock symbol,
the clockings is completely defined. A row in the pattern table states for each bit
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in the output symbol Z ′j[t] which assumptions hold for that bit (i.e., the clocking
assumption and/or the step assumption), and the number of cases out of the 2d

possible clockings for which it happens (i.e., the probability is taken over the choices
of the clock symbol in R3, which is assumed to be random). The clocking assumption
for bit i ∈ {0, . . . , d− 1} in the output symbol holds if and only if R1 and R2 have
been clocked l1 + i + 1 and l2 + i + 1 times, respectively. In other words, recall that
Z ′j[t] = (Z̃j[t] ⊕ Z̃j[t + 1], Z̃j[t + 1] ⊕ Z̃j[t + 2], . . . , Z̃j[t + d − 1] ⊕ Z̃j[t + d]); then
the clocking assumption holds for bit i of Z ′j[t] if and only if R1 and R2 have been
clocked l1 + i + 1 and l2 + i + 1, respectively, at time t + i + 1. Since we assume
that the clocking assumption holds at Zj[t], it continues to hold as long as R1 and
R2 are clocked at every output bit. Once one of the two registers is not clocked, the
clocking assumption cannot hold at least until the end of the symbol, since a register
cannot be clocked more than once for each output bit. The frame clock symbol tells
us exactly when the clocking assumption holds: If the first bit of the frame clock
symbol is “0”, then the clocking assumption holds for the first bit. If the clocking
assumption holds for the first bit, then it holds for the second bit provided that the
second bit of the frame clock symbol is “0”, and it continues to hold for the other
bits as long as the corresponding bit in the frame clock symbol is “0”. Once the
frame clock symbol contains a “1”, either R1 or R2 is not clocked. Therefore, the
clocking assumption stops holding until the end of the output symbol. As a result,
there are (d + 1) different distribution tables when using conditional estimators, as
the first “1” can appear in any of the d locations, or it might not appear at all.
In other words, once a “1” occurs in the frame clock symbol, we lose our ability to
gain any information out of the remaining bits of the keystream symbol (and this
is the reason that the distribution table for a clock symbol that begins with “1” is
uniform).

The step assumption for bit i is meaningful only when the clocking assumption
holds for the bit. When the clocking assumption holds, the step assumption holds
with probability 1/2 (and then, the clocking assumption holds for bit i + 1), or it
holds with probability 0 (and then, the clocking assumption fails for bit i + 1). The
pattern table for d = 4 and the frame clock symbol 00112 is given in Table 4.3 (rows
with probability zero are not shown). Note the correspondence between the 1’s in
frame clock symbol 00112 and the cfail values in the pattern table.

For the purpose of computing the distribution table, all we care is if the assump-
tions hold or not, regardless of their type (cfail or sfail). Therefore, we unite sfail
and cfail under Random, and hold is now denoted by Correct. In Table 4.4 we rewrite
Table 4.4 under the new notations, and call the resulting table the united pattern
table.
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Table 4.3: The Pattern Table for d = 4 and the Frame Clock Symbol 00112

00112 ③①❜q♥ ❧② ♦❡r② ❧❡❛♥✐q❡ d = 4 ①❡❛r ③✐♣❛③❞ ③❧❛❤

1st output bit 2nd output bit 3rd output bit 4th output bit Probability

holds holds cfail cfail 22/24

sfail holds cfail cfail 22/24

holds sfail cfail cfail 22/24

sfail sfail cfail cfail 22/24

holds means both the clocking and the step assumption hold; sfail means the clocking
assumption holds, but the step assumption fails; cfail means the clocking assumption
fails (and therefore, the step assumption is meaningless).

We now construct a distribution table given a united pattern table. Every row
in the distribution table with bits ε ∈ {0, 1}d lists the conditional probability that

S ′
1[l1]⊕ F ′j

1 [l1]⊕ S ′
2[l2]⊕ F ′j

2 [l2]⊕ Z ′j[t] = ε

given that the frame clock symbol is FCS , Cj
l1+10,l2+11. The distribution table is

built in a similar way to [58]. The probability for bits combination ε is computed
as follows: Pr(ε|FCS) =

∑

i Pr(ε|Evi, FCS) · Pr(Evi|FCS); the probability is
calculated given the value of FCS and given that the clocking assumption holds
before the first bit of Zj[t]. The value of Pr(Evi|FCS) is taken from the ith row of the
united pattern table for FCS. Let ε = (ǫ1, . . . , ǫd), then Pr(ε|Evi) =

∏

j Pr(ε|Evi)j,
where

Pr(ε|Evi)j =







0 ǫj = 1 and pattern bit j at row i is correct
1 ǫj = 0 and pattern bit j at row i is correct

0.5 ǫj = 1 and pattern bit j at row i is random
0.5 ǫj = 0 and pattern bit j at row i is random

For example, to compute the probability that ε = (1, 0, 1, 0), we combine all the
events that could cause it (i.e., Pr(ǫ|Evi) > 0). The events that could cause it are
Ev5 (where the two random choices are both 1), Ev7, Ev13, and Ev15. Therefore,
Pr(ε = 10102|00112) = Pr(Ev5)/2

2 + Pr(Ev7)/2
3 + Pr(Ev13)/2

3 + Pr(Ev15)/2
4 =

(0 · 22 + 0 · 2 + 4 · 2 + 4)/28 = 12/28. The full distribution table which corresponds
to Table 4.4 is given in Table 4.2. We can convert the conditional distribution
tables to non-conditional by Pr(ε) =

∑d
i=1 2−i·Pr(ε|first “1′′ appears in location i)+

2−dPr(ε|0 . . . 0), as 2−i is the probability that a binary string begins with i− 1 zeros

112

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



Table 4.4: The United Pattern Table for d = 4 and the Frame Clock Symbol 00112

00112 ③①❜q♥ ❧② ♦❡r② ❧❡❛♥✐q❡ d = 4 ①❡❛r ③❝❣❡❵♥❞ ③✐♣❛③❞ ③❧❛❤

1st 2nd 3rd 4th Pr(Event| Event
output bit output bit output bit output bit 00112)

Correct Correct Correct Correct 0/24 Ev0

Random Correct Correct Correct 0/24 Ev1

Correct Random Correct Correct 0/24 Ev2

Random Random Correct Correct 0/24 Ev3

Correct Correct Random Correct 0/24 Ev4

Random Correct Random Correct 0/24 Ev5

Correct Random Random Correct 0/24 Ev6

Random Random Random Correct 0/24 Ev7

Correct Correct Correct Random 0/24 Ev8

Random Correct Correct Random 0/24 Ev9

Correct Random Correct Random 0/24 Ev10

Random Random Correct Random 0/24 Ev11

Correct Correct Random Random 22/24 Ev12

Random Correct Random Random 22/24 Ev13

Correct Random Random Random 22/24 Ev14

Random Random Random Random 22/24 Ev15

Correct means both the clocking and the step assumption hold, Random means that
at least one of the assumptions do not hold.

and then a one and 2−d is the probability that a d-bit binary string is all zeros. See
the example given in Table 4.2.

It is interesting to note again what happens if the frame clock symbol Cj
l1,l2

begins
with a “1” (which happens in about half the cases). In such a case, the resulting
united pattern table contains only the last row, which is full of Random. There-
fore, the resulting distribution table has a uniform distribution, and the estimator
Ej

l1,l2
[S ′|C] has a uniform value for the different values of S ′, i.e., we gain no infor-

mation from this frame regarding the value of S ′
1[l1]⊕ S ′

2[l2].
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4.12 Appendix: Step 3 — Recovering the Third

Register

In this step we receive a list of candidate pair values (s1, s2) for the value of (S1, S2).
For each candidate pair (s1, s2), we recover candidate values for S3 that are consistent
with the keystream of one of the frame, as explained later in this section. For each
triplet of candidate values for (S1, S2, S3), we construct a candidate key. We discard
wrong keys by performing trial encryptions and comparing the results to the known
keystream.

We recover a value for S3 through a method similar to the one briefly described
by Ross Anderson at [2]. The idea is as follows. Given the state of R1 and the
state of R2 at the beginning of the keystream (i.e., after 101 irregular clockings have
occurred), and given the known-keystream of a particular frame, it is easy to recover
the state of R3 at the beginning of the keystream: The rightmost bit of R3 is simply
the XOR of the first bit of the keystream and the rightmost bits of R1 and R2.
We then need to guess the clocking tap of R3 and accordingly clock the register.
If R3 stands still (which happens in a quarter of the cases) then in half of these
cases the keystream is inconsistent with the rightmost values of the registers, and
we backtrack. If R3 stands still and the keystream is consistent, we do not need to
re-guess the clock tap of R3 for the next clock. Thus, an inconsistency is expected to
occur after an average of eight clocks, after guessing an average of about 8 · 3/4 = 6
bits. Using the linear feedback function of R3, we reconstruct the values on the left
of the clocking tap from the bits that were already processed. After R3 is clocked
eleven times, the feedback of the first processed output bits reaches the clocking tap,
thus, no more bits needs to be guessed, and we can continue to check for consistency
without further guesses. After R3 is clocked twelve times, the guesses made for the
clocking tap reach the rightmost bit of R3, and the entire state of R3 is determined.
As a result, for half the clocks, the output is inconsistent.

The total time complexity of this algorithm is quite low. Our non-optimized
straightforward implementation on a 1.8GHz Intel mobile CPU has a throughput of
about 12000 applications of this R3 recovery algorithm in a second (on a keystream
inconsistent with the internal state of R1, R2 — which is the case in the majority of
the cases in our attack).

We cannot directly use the above R3 recovery algorithm, as (S1, S2) is not the
state of (R1, R2) at the beginning of a keystream of a particular frame. We must
first choose the frame whose known keystream is used, say frame j. We then add
the contribution of the frame number j to the initial state of the registers, i.e.,
we compute s1 + F j

1 and s2 + F j
2 . We now have the initial state of the registers
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R1 and R2, but for the above R3 recovery algorithm, we require the internal state
after 101 irregular clocks have occurred. Therefore, we guess the number of clocks
that R1 is clocked during the 101 irregular clocks, and the number of clocks that R2
is clocked during this time. For each such guess, we apply the above R3 recovery
algorithm to find the internal state of R3 at the beginning of the keystream. In case a
consistent state for R3 is found, we need to rewind the state through the 101 irregular
clockings to the initial state. We guess the number of clocks that R3 performs in
the 101 irregular clockings, rewind its state accordingly, and run A5/1 forward to
verify our guess. Once a consistent initial internal state is found for R3, we eliminate
the effect of the frame number on the state of R3 by XORing it with F j

3 and obtain
a candidate s3 for S3. From (s1, s2, s3), we construct the candidate key by reversing
the linear key-setup, and we verify the candidate key using a known-keystream of
another frame. Our non-optimized implementation uses this method to test about 30
pairs of (s1, s2) per second.

4.12.1 Alternative Step 3 Using the Ten Zero Bits of Kc

An alternative Step 3 tries all the 223 possible s3 values for each pair of (s1, s2) and
filters for the right key using trial encryptions. In [24] it was observed that in all
the implementations they checked, ten bits of the key are fixed to zero, effectively
reducing the keyspace of A5/1 from 64 bit to 54 bits. We do not know if operators
world-wide continue this practice. However, assuming this practice continues, we
can benefit from it: Since the key-setup is linear in the bits of the key, given s1 and
s2, we can efficiently enumerate all the 213 keys with the fixed zero bits. Thus, the
time-complexity drops to 213 trial encryptions for each (s1, s2) combination. We are
not aware of any other attack on A5/1 (except for a brute-force exhaustive search)
that can use the existence of the ten zero bits in the key.

There are two advantages to this alternative method: One advantage is the suc-
cess rate. Without using this alternative, the number of clocks that R3 performs
has to be guessed. The attack fails if the number of times that R3 is clocked is not
covered by the guess. However, in the alternative Step 3, the correct S3 is always
found given the correct (S1, S2). The second advantage is significant in a situation of
a high bit error rate. In such a case, it is difficult to find even a single frame without
errors. Therefore, the method in the previous section fails (as we cannot reverse the
keystream to find S3), while in the alternative Step 3, the correct S3 can be found
(as the keystream based on it would be in almost a complete match to the known
keystream of the particular frame).
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Chapter 5

Rigorous Bounds on Cryptanalytic
Time/Memory Tradeoffs

In this chapter we formalize a general model of cryptanalytic time/memory tradeoffs
for the inversion of a random function f : {0, 1, . . . , N − 1} 7→ {0, 1, . . . , N − 1}.
The model contains all the known tradeoff techniques as special cases. It is based
on a new notion of stateful random graphs. The evolution of a path in the stateful
random graph depends on a hidden state such as the color in the Rainbow scheme or
the table number in the classical Hellman scheme. We prove an upper bound on the
number of images y = f(x) for which f can be inverted using a tradeoff scheme, and
derive from it a lower bound on the number of hidden states. These bounds hold
with an overwhelming probability over the random choice of the function f , and
their proofs are based on a rigorous combinatorial analysis. With some additional
natural assumptions on the behavior of the online phase of the algorithm, we prove
a lower bound on its worst-case time complexity T = Ω( N2

M2 ln N
), where M is the

memory complexity. We describe several new variants of existing schemes, including
a method that can improve the time complexity of the online phase (by a small
factor) by performing a deeper analysis during the preprocessing phase.

The work described in this chapter is a joint work with Prof. Adi Shamir of
the Weizmann Institute of Science, and Prof. Eli Biham. It was submitted to
Crypto 2006.

5.1 Introduction

In this chapter we are interested in generic (“black-box”) schemes for the inversion
of one-way functions such as f(x) = Ex(0), where E is any encryption algorithm, x
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is the key, and 0 is the fixed plaintext zero. For the sake of simplicity, we assume
that both x and f(x) are chosen from the set {0, 1, . . . , N − 1} of N possible values.

The simplest example of a generic scheme is exhaustive search, in which a pre-
image of f(x) is found by trying all the possible pre-images x′, and checking whether
f(x′) = f(x). The worst-case time complexity T of exhaustive search is N , and
the space complexity M is negligible. Another extreme scheme is holding a huge
table with all the images, and for each image storing one of its pre-images. This
method requires a preprocessing phase whose time and space complexities T and M
are about N , followed by an online inversion phase whose running time T is negligible
and space complexity M is about N (we always measure the running time by the
number of applications of f). Cryptanalytic time/memory tradeoffs deal with finding
a compromise between these extreme schemes, in the form of a tradeoff between the
time and memory complexities of the online phase (assuming that the preprocessing
phase comes for free). Cryptanalytic time/memory/data tradeoffs are a variant which
accepts D inversion problems and has to be successful in at least one of them. This
scenario typically arises in stream ciphers, when it suffices to invert the function that
maps an internal state to the output at one point to break the cipher. However, the
scenario also arises in block ciphers when the attacker needs to recover one key out
of D different encryptions with different keys of the same message [13, 18]. Note that
for D = 1 the problem degenerates to a the time/memory tradeoff discussed above.

5.1.1 Previous Work

The first and most famous cryptanalytic time/memory tradeoff was suggested by
Hellman in 1980 [48]. His tradeoff requires a preprocessing phase with a time com-
plexity of about N and allows a tradeoff curve of M

√
T = N . An interesting point

on this curve is M = T = N2/3. Since only values of T ≤ N are interesting, this
curve is restricted to M ≥

√
N . Hellman’s scheme consists of several tables, where

each table covers only a small fraction of the possible values of f(x) using chains
of repeated applications of f . Hellman rigorously calculated a lower bound on the
expected coverage of images by a single table in his scheme. However, Hellman’s
analysis of the coverage of images by the full scheme was highly heuristic, and in
particular it made the unjustifiable assumption that many simple variants of f are
independent of each other. Under this analysis, the success rate of Hellman’s tradeoff
for a random f is about 55%, which was verified using computer simulations. Shamir
and Spencer proved in a rigorous way (in an unpublished manuscript from 1981) that
with overwhelming probability over the choice of the random function f , even the
best Hellman table (with unbounded chains created from the best collection of start
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points, which are chosen using an unlimited preprocessing phase) has essentially the
same coverage of images as a random Hellman table (up to a multiplicative loga-
rithmic factor). However, they could not rigorously deal with the full (multi-table)
Hellman scheme.

In 1982, Rivest noted that in practice, the time complexity is dominated by
the number of disk access operations (random access to disk can be many orders of
magnitude slower than the evaluation of f). He suggested to use distinguished points
to reduce the number of disk accesses to about

√
T . The idea of distinguished points

was described in detail and analyzed in 1998 by Borst, Preneel, and Vandewalle [22],
and later by Standaert, Rouvroy, Quisquater, and Legat in 2002 [68].

In 1996, Kusuda and Matsumoto [55] described how to find an optimal choice of
the tradeoff parameters in order to find the optimal cost of an inversion machine.
Kim and Matsumoto [51] showed in 1999 how to increase the precomputation time
to allow a higher success probability. In 2000, Biryukov and Shamir [20] general-
ized time/memory tradeoffs to time/memory/data tradeoffs, and discussed specific
applications of these tradeoffs to stream ciphers.

A new time/memory tradeoff scheme was suggested by Oechslin [67] in 2003. It
saves a factor 2 in the worst-case time complexity compared to Hellman’s original
scheme. Another interesting work on time/memory tradeoffs was performed by Fiat
and Naor [43, 44] in 1991. They introduce a rigorous time/memory tradeoff for
inverting any function. Their tradeoff curve is less favorable compared to Hellman’s
tradeoff, but it can be used to invert any function rather than a random function.

A question which naturally arises is what is the best tradeoff curve possible for
cryptanalytic time/memory tradeoffs? Yao [79] showed that T = Ω(N log N

M
) is a lower

bound on the time complexity, regardless of the structure of the algorithm, and where
M is measured in bits. This bound is tight up to a logarithmic factor, in case f is a
single-cycle permutation, for which a tradeoff of TM = N is possible [48] (here M is
measured in start points which take about log N bits to represent), but the question
remains open for functions which are not single-cycle permutations. Can there be a
better cryptanalytic time/memory tradeoff than what is known today?

5.1.2 The Contribution of This Chapter

In this chapter we formalize a general model of cryptanalytic time/memory tradeoffs,
which includes all the known schemes (and many new schemes). In this model, the
preprocessing phase is used to create a matrix whose rows are long chains (where
each link of a chain includes one oracle access to f), but only the start points and
end points of the chains are stored in a table, which is passed to the online phase
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(the chains in the matrix need not be of the same length).
The main new concept in our model is that of a hidden state, which can affect

the evolution of a chain. Typical examples of hidden states are the table number
in Hellman’s scheme, and the color in a Rainbow scheme (we give more details on
these schemes in Appendix A.3). The hidden state is an important ingredient of
time/memory tradeoffs. Without the hidden state, the chains are paths in a single
random graph, and the number of images that these chains can cover is extremely
small (as shown heuristically in [48] and rigorously by Shamir and Spencer). We
observe that in existing schemes, almost all of the online running time is spent on
discovering the value of the hidden state (and hence the name hidden state). Once
the correct hidden state is found, the online phase needs to spend only about a square
root of the running time to complete the inversion.

The main effect of the hidden state is that it increases the number of possible
states during the evolution of the chains in the preprocessing phase from N to NS,
where S is the number of values that the hidden state can assume. The chains can
be viewed as paths in a new directed graph, which we call the stateful random graph.
Two nodes in the stateful random graph are connected by an edge:

yi si −→ yi+1 si+1 ,

if (yi+1, si+1) is the (unique) successor of (yi, si) defined by a deterministic transition
function, where yi and yi+1 are the output of the f function, and si, si+1 are the
respective values of the hidden state during the creation of yi and yi+1. The evolution
of the y values along a path in the stateful random graph is “somewhat random”
since it is controlled by the random function f . However, the evolution of the hidden
state (si and si+1) can be totally controlled by the designer of the scheme.

The larger number of states is what allows chains to cover a larger number of
images y. We rigorously prove that with an overwhelming probability over the choice
of f , the number of images that can be covered by any collection of M chains is
bounded from above by 2

√

SNM ln (SN), where M = Nα for any 0 < α < 1.
Intuitively it might seem that making S larger at the expense of N should cause the
coverage to be larger (as S can behave more like a permutation). Surprisingly, S
and N play the same role in the bound. The product SN remains unchanged if we
enlarge S at the expense of N or vice versa. Note that

√
SNM is about the coverage

that is expected with the Hellman or Rainbow schemes, and thus even for the best
choice of start points and path lengths (found with unlimited preprocessing time),
there is only a small factor of at most 2

√
ln SN that can be gained in the coverage.

We use the above upper bound to derive a lower bound on the number S of hidden
states.
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Under some additional natural assumptions on the behavior of the online phase,
we give a lower bound on the worst-case time complexity:

T ≥ 1

1024 ln N

N2

M2
,

where the success probability is at least 1/2 (the constant 1024 can be greatly im-
proved by using a tighter analysis). Therefore, either there are no fundamentally
better schemes, or their structure will have to violate our assumptions. Finally we
show a similar lower bound of the form:

T ≥ 1

1024 ln N

N2

D2M2

on time/memory/data tradeoffs.

5.1.3 Structure of the Chapter

The model is formally defined in Section 5.2, and in Section 5.3 we prove the rigorous
upper bound on the best achievable coverage of M chains in a stateful random graph.
Section 5.4 uses the upper bound to derive a lower bound on the number of hidden
states. The lower bound on the time complexity (under additional assumptions) is
given in Section 5.5. Additional observations and notes appear in Section 5.6, and
the chapter is summarized in Section 5.7.

A description of the main details of the time/memory tradeoffs of [48, 67] is
given in Appendix A.3. A new time/memory tradeoff is described in Appendix 5.8.
In Appendix 5.9, we describe a time/memory tradeoff scheme that violates our as-
sumptions on the behavior of the online phase, and in Appendix 5.10 we compare
the time complexity of the Hellman and Rainbow scheme. Finally, Appendix 5.11
contains the analysis of some new time/memory/data tradeoffs.

5.2 The Stateful Random Graph Model

The class of time/memory tradeoffs that we consider in this chapter can be seen as
the following game: An adversary commits to a generic scheme with oracle accesses
to a function f , which is supposed to invert f on a given image y. Then, the actual
choice of f is revealed to the adversary, who is allowed to perform an unbounded
precomputation phase to construct the best collection of M chains. Then, during
the online phase, a value y is given to the adversary, who should find x such that
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Figure 5.1: A Typical Chain — A Path in a Stateful Random Graph
❛✈♥ ❧r❛ ✐❵①✇❵ s①❜❛ ❧❡❧q♥ — ③✐q❡t✐❤ ③①②①②

f(x) = y using the scheme it committed to. The chains are not necessarily of the
same length, and the collection of the M chains is called the matrix. We are interested
in the time/memory complexities of schemes for which the algorithm succeeds with
probability of at least 1/2 for an overwhelming majority of random functions f .

In the model that we consider, we are generous to the adversary by not counting
the size of the memory that is needed to represent the scheme that it has committed
to. Having been generous, we cannot allow the adversary to choose the scheme after
f is revealed, as the adversary can use his knowledge to avoid collisions during the
chain creation processes, and thus cover almost all the images using a single Hellman
table.1

We do not impose any restrictions on the behavior of the preprocessing algorithm,
but we require that it performs all oracle accesses to f through a sub-algorithm. When
the preprocessing algorithm performs a series of oracle accesses to f , in which each
oracle access can depend on the result of previous oracle accesses in the series, it is
required to use the sub-algorithm. We call such a series of oracle accesses a chain.
The hidden state is the internal state of the sub-algorithm (without the input/output
of f).

A typical chain of the sub-algorithm is depicted in Figure 5.1, where by U we
denote the function that updates the internal state of the sub-algorithm and prepares
the next input for f , and by h we denote the entire complex of U together with the
oracle access to f . We denote by si the hidden state which accompanies the output

1A variant of the model is the auxiliary-memory model, in which we allow the scheme to depend
on an additional collection of M lnN bits, which the adversary chooses during the preprocessing.
Thus, we allow the adversary some customization of his scheme to the specific function f (within
the limits of M memory rows). Analysis shows that the auxiliary-memory model is only marginally
stronger (by small constant factor) than this model. Therefore, without loss of generality, we can
discuss the model without auxiliary memory.

121

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



D. A Rainbow stateful random graph

...
(1, 1)

(N − 1, 1)

B. N paths are needed to cover all f(x)’s

(f(0), 1) (f(1), 2)

...

...

...
(N − 1, 0)

(1, 0)
(0, 0)

(f(N − 1), 0)

A. One path covers all f(x)’s

(N − 1, 1)

(2, 1)

(1, 1)

... (f(0), 0)

(0, 1)
· · ·

(f(1), 0)

(f(2), 0)

(f(N − 1), 0)

· · ·

s = 1
s = 0 s = 2

· · ·

s = S − 2
s = S − 1

Each
component
contains nodes
with the same
hidden state.

C. Hellman’s stateful random graph

(0, 1)

Figure 5.2: Four Examples of Stateful Random Graphs
❛✈♥ ❧r❛ ✐❵①✇❵ s①❜❧ ③❡❵♥❜❡❝ r❛①❵

yi of f in the sub-algorithm. The choice of U by the adversary together with f
defines the stateful random graph, and h can be seen as the function that takes us
from one node in the stateful random graph to the next node. U is assumed to be
deterministic (if a non-deterministic U is desired, then the randomness can be given
as part of the first hidden state s0), and thus each node in the stateful random graph
has an out-degree of 1.

Choosing U such that si = si−1 + 1 (mod N) and xi = si−1 creates a stateful
random graph that goes over all the possible images of f in a single-cycle (depicted
in Figure 5.2.A), and thus represents exhaustive search (note that the yi−1 is ignored
by U and thus all its N values with the same hidden state si−1 converge to the
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same node (f(si−1), si−1 + 1)). Such a cycle is very easy to cover even with a single
path, but at the heavy price of using N hidden states. At the other extreme, we
can construct a stateful random graph (see Figure 5.2.B) that requires a full lookup
table to cover all images of f by choosing U as: if si−1 = 1 then xi = yi−1 and si = 0,
else xi = si = 0. In this function, each (yi−1, 1) is mapped by h to (f(yi−1), 0), and
all these values are mapped to the same node (f(0), 0).

As another example consider the mapping xi = yi−1 and si = g(si−1), where
g is some function. This mapping creates a stateful random graph which is the
direct product of the random graph induced by f , and the graph induced by g (this
graph is not shown in the figure). We can implement Hellman’s scheme by setting
xi = yi−1 + si (mod N) and si = si−1, where si represents the table number to
which the chain belongs. This stateful random graph (see Figure 5.2.C) consists of S
disconnected components, where each component is defined by h and a single hidden
state. Finally, we can implement a Rainbow scheme by setting xi = yi−1 + si−1

(mod N) and si = si−1 + 1 (mod S), where S is the number of colors in the scheme.
This stateful random graph (see Figure 5.2.D) looks like a layered graph with S
columns and random connections between adjacent columns (including wrap-around
links).

The preprocessing algorithm can perform any preprocessing on a start point of
the chain before executing the sub-algorithm on that point, and any postprocessing
on the end point of the chain (for example, before storing it in long-term memory).
The preprocessing algorithm can stop the sub-algorithm at any point, using any
strategy that may or may not depend on the value of the hidden states and the
results of the oracle accesses, and it can use unbounded amount of additional space
during its execution. For example, in Hellman’s original method, the chain is stopped
after t applications of f . Therefore, the internal state of the preprocessing algorithm
must contain a counter that counts the length of the chain. However, the length
of the chain does not affect the way the next link is computed, and therefore this
counter can be part of the internal state of the preprocessing algorithm rather than
the hidden state of the sub-algorithm. As a result, only the table number has to be
included in the hidden state of Hellman’s scheme. In the Rainbow scheme, however,
the current location in the chain determines the way the next link is computed, and
thus the index of the link in the chain must be part of the hidden state.

The preprocessing algorithm can store in a table only the start points and end
points of up to M chains, which are used by the online algorithm. Note that the
requirement of passing information from the preprocessing phase to the online phase
only in the form of chains does not restrict our model in any way, as the sub-algorithm
that creates the chains can be designed to perform any computation. Moreover, the
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preprocessing algorithm can encode any information as a collection of start points,
which the online algorithm can decode to receive the information. Also note that
this model of a single table can accommodate multiple tables (for example, Hellman’s
multiple tables) by including with each start point and end point the respective value
of the hidden-state.

The input of the online algorithm is y that is to be inverted, and the table gener-
ated by the preprocessing algorithm. We require that the online algorithm performs
all oracle accesses to f (including chain creation) through the same sub-algorithm
used during the preprocessing. In the variant of time/memory/data tradeoffs, the
input of the online algorithm consists of D values y1, y2, . . . , yD and the table, and
it suffices that the algorithm succeeds in inverting one image. This concludes the
definition of our model.

In existing time/memory tradeoffs, the online algorithm assumes that the given
y = f(x) is covered by the chains in the table. Therefore, y appears with some hidden
state si, which is unfortunately unknown. The algorithm sequentially tries all the
values that si can assume, and for each one of them it initializes the sub-algorithm
on (y, si). The sub-algorithm executed a certain number of steps (for example, until
an end point condition has been reached). Once an end point that is stored in the
table has been found, the start point is fetched, and the chain is reconstructed to
reveal the xi such that y = f(xi).

2 Existing time/memory/data tradeoffs work in a
similar way, and the process is repeated for each one of the D given images.

5.2.1 Coverage Types and Collisions of Paths in the Stateful
Random Graph

A Table with M rows induces a certain coverage of the stateful random graph. Each
row in the table contains a start point and an end point. For each such pair, the
matrix associated with the table contains the chain of points spanned between the
start point and the end point in the stateful random graph. The set of all the points
(yi, si) on all these chains is called the gross coverage of the stateful random graph
that is induced by the table.

The gross coverage of the M paths is strongly affected by collisions of paths. Two
paths in a graph collide once they reach a common node in the graph, i.e., two links
in two different chains have the same yi value and the same hidden state si. From

2Note that the fact that an end point is found does not guarantee a successful inversion of y.
Such a case is called a false alarm, and it can be caused, for example, when the chain that is
recreated from y merges with a chain (whose end point is stored in the table) that does not contain
y.

124

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



this point on, the evolution of the paths is identical (but, the end points can be
different). As a result, the joint coverage of the two paths might be greatly reduced
(compared to paths that do not collide). It is important to note that during the
evolution of the paths, it is possible that the same value yi repeats under different
hidden states. However, such a repetition does not cause a collision of the paths.

To analyze the behavior of the online algorithm, we are interested in the net
coverage (denoted by C), which is the number of different yi values that appear
during the evolution of the M paths, regardless of the hidden state they appear
with, as this number represents the total number of images that can be inverted.
Clearly, the gross coverage of the M paths is larger than or equal to the net coverage
of the paths.

When we ask what is the maximum gross or net coverage that can be gained
from a given start point, we can ignore the end point and allow the path to be of
unbounded length, since eventually the path loops (as the graph is finite). Once the
path loops, the coverage cannot grow further. An equivalent way of achieving the
maximum coverage of M paths is by choosing the end point of each path to be the
point (yi, si) along the path whose successor is the first point seen for the second
time along this path.

5.3 A Rigorous Upper Bound on the Maximum

Possible Net Coverage of M Chains in a State-

ful Random Graph

In this section we formally prove the following upper bound on the net coverage:

Theorem 4 Let A =
√

SNM ln (SN), where M = Nα, for any 0 < α < 1. For
any U with S hidden states, with overwhelming probability over the choice of f :
{0, 1, . . . , N − 1} 7→ {0, 1, . . . , N − 1}, the maximum net coverage C of images (y =
f(x)) values) on any collection of M paths of any length in the stateful random graph
of U is bounded from above by 2A.

This theorem shows that even though stateful random graphs can have many
possible shapes, the images of f they contain can only be significantly covered by
using many paths or many hidden states (or both), as defined by the implied tradeoff
formula above. Without loss of generality, we can assume that S < N , since otherwise
the claimed bound is larger than N , and clearly, the net coverage can never exceed
N .
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M1 M2 · · · M(NS
M )

f1 0 0
f2 1 0
...

. . .

fNN

Figure 5.3: A Table W denoting for each function fi whether the net coverage
obtained from the set of start points Mj is larger (1) or smaller (0) than 2A

Mj ❧② ❞✈❡❛✇ ✐❝✐ ❧r ❧❛✇③♥❞ ❡❤♣ ✐❡q✐❦❞ ♠❵❞ fi ❞✐✈✇♣❡t ❧❦❧ ③♣✐✐✈♥❞ W ❞❧❛❤
2A ①②❵♥ (1) ♦❤✇ ❡❵ (0) ❧❡❝❜ ❞❧❣③❞ ③❡❝❡✇♣

5.3.1 Reducing the Best Choice of Start Points to the Av-
erage Case

In the first phase of the proof, we reduce the problem of bounding the best coverage
(gained by the best collection of M start points) to the problem of bounding the
coverage defined by a random set of start points and a random f . We do it by
constructing a huge table W (as shown in Figure 5.3) which contains a row for each
possible function f , and a column for each possible set of M start points. In entry
Wi,j of the table we write 1 if the net coverage obtained by the set Mj of start
points for the embedded function fi (extended into paths of unbounded length) is
larger than our bound (2A), and we write 0 otherwise. Therefore, a row with all
zeros means that there is no set of start points for this embedded function that can
achieve a net coverage larger than 2A.

To prove the theorem, it suffices to show that the number of 1’s in the table, which
we denote by #1, is much smaller than the number of rows, which we denote by #r
(i.e., #1 ≪ #r). From counting considerations, it follows that the vast majority of
rows contain only zeros, and the correctness of the theorem follows.

We can express the number of 1’s in the table by the number of entries multiplied
by the probability that a random entry in the table contains 1, and require that the
product is much smaller than #r, i.e., #1 = Prob(Wi,j = 1) ·#c ·#r ≪ #r, where
#c is the number of columns in the table. Therefore, it suffices to show that for a
random embedded function and random set of start points, Prob(Wi,j = 1) · #c is
very close to zero. We have thus reduced the problem of proving that the coverage
in the best case is smaller than 2A, to bounding the number of columns multiplied
by the probability that the average case is larger than 2A. This is proven in the next
few subsections.
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5.3.2 Bounding Prob(Wi,j = 1)

We bound Prob(Wi,j = 1) by constructing an algorithm that counts the net coverage
of a given function f and a given set of M start points, and analyzing the probability
that the coverage is larger than 2A. During this analysis, we would like to consider
each output of f as a new and independent coin flip, as Prob(Wi,j = 1) is taken over
a uniform choice of the function f . However, this assumption is justified only when
xi does not appear as an input to f on any previously considered point. In this case
we say that xi is fresh, and this freshness is a sufficient condition for f ’s output to
be random and independent of any previous event.

Denote by
xi−→(yi, si) the event of reaching the point (yi, si), where xi is the input

of f during the application of h, i.e., yi = f(xi). When we view the points (yi =
f(xi), si) as nodes in the stateful random graph, the value xi is a property of the
edge that enters (yi, si), rather than a property of the node itself, since the same
(yi, si) might be reached from several preimages. The freshness of xi (at a certain
point in time) depends on the order in which we evolve the paths (the xi is fresh the
first time it is seen, and later occurrences of xi are not fresh), but it should be clear
that the net coverage of a set of paths is independent of the order in which the paths
are considered.

The algorithm is described in Figure 5.4. It refers to the ratio A/S, which for
the sake of simplicity we treat in the rest of the analysis as an integer. Note that
A/S ≥ 2

√

M ln(NS) (as S < N), and A/S ≫ 1 (as N grows to infinity) since
M = Nα. Thus, the rounding of A/S to the nearest integer causes only a negligible
effect.

Lemma 1 At the end of the algorithm |NetCoverage| is the size of the net coverage.

Proof We observe that the algorithm processes all the points (yi, si) that are in the
coverage of the chains originating from the M start points, since it only stops a path
when it encounters a collision.

A necessary condition for a yi = f(xi) to be counted in the net coverage is that
yi appears in an event

xi−→(yi, si) that is not a collision and in which xi is fresh. If this
condition holds, the algorithm reaches Step 6a, and adds yi to NetCoverage.

At the end of the algorithm

NetCoverage = ∪S
i=1(LowerFreshBucketi ∪ UpperFreshBucketi),

and thus

|NetCoverage| ≤
S∑

i=1

(|LowerFreshBucketi|+ |UpperFreshBucketi|),
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1. For i ∈ {1, . . . , S} Bucketi = LowerFreshBucketi = UpperFreshBucketi = φ.

2. NetCoverage = SeenX = φ.

3. Apply h to the first start point to generate the first event
xi
−→(yi, si).

4. if yi appears in Bucketsi
Jump to Step 7 (Collision is detected). Otherwise:

5. Add yi to Bucketsi
.

6. If xi does not appear in SeenX (i.e., xi is fresh):

(a) If yi does not appear in NetCoverage, add it to NetCoverage.

(b) If |LowerFreshBucketsi
| < A/S, add yi to LowerFreshBucketsi

,
otherwise, add yi to UpperFreshBucketsi

.

7. Move to the next event:

• Add xi to SeenX (i.e., mark that xi is no longer fresh)

• If a collision was detected in Step 4, apply h to the next start point
(stop if there are no unprocessed start points). Otherwise:
generate the next event by applying h to (yi, si).

8. Jump to Step 4.

Legend:

• SeenX is used to determine freshness by storing all the values of x that have been seen by now.
This is the only set that stores input values of f . All the other sets store output values of f .

• Bucketi stores the all the y’s that have been seen along with hidden state i (used for collision detection).

• NetCoverage stores all the y’s that have been seen from all chains considered so far, but without
repetitions caused by different hidden states.

• For fresh values of x, LowerFreshBucketi stores the first A/S values of y = f(x) seen with hidden state
i (note that the x is fresh, but the y could have already appeared in other Buckets).

• For fresh values of x, UpperFreshBucketi stores the values of y after the first A/S values were seen
with hidden state i (again, such a y could have already appeared in other Buckets).

Figure 5.4: A Particular Algorithm for Counting the Net Coverage
❡❤♣ ✐❡q✐❦❞ ③①✐tq❧ ♠✐✐❡q♥ ♠③✐①❡❜❧❵

since each time a yi value is added to NetCoverage (in Step 6a) it is also added to
either LowerFreshBucket or UpperFreshBucket in Step 6b. We use this inequality
to upper bound |NetCoverage|.

Bounding
∑S

i=1 |LowerFreshBucketi| is easy, as the condition in Step 6b assures
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that for each i, |LowerFreshBucketi| ≤ A/S, and thus their sum is at most A.
Bounding

∑S
i=1 |UpperFreshBucketi| requires more effort, and we do it with a series

of observations and lemmas.
Our main observation on the algorithm is that during the processing of an event

xi−→(yi, si), the value yi is added to UpperFreshBucketsi
if and only if:

1. xi is fresh (Step 6); and

2. LowerFreshBucketsi
contains exactly A/S values (Step 6b); and

3. (yi, si) does not collide with a previous point placed in the same bucket (Step 4).

Definition 4 An event
xi−→(yi, si) is called a coin toss if the first two conditions hold

for the event.

Therefore, a yi is added to UpperFreshBucketsi
only if

xi−→(yi, si) is a coin toss (but
not vice versa), and thus the number of coin tosses serves as an upper bound on
∑S

i=1 |UpperFreshBucketi|.
Our aim is to upper bound the net coverage (number of images in the coverage)

by the number of different x values in the coverage (which is equal to the number of
fresh x’s), and to bound the number of fresh x’s by A (for lower fresh buckets) plus
the number of coin tosses (upper fresh buckets).

Definition 5 A coin toss
xi−→(yi, si) is called successful if before the coin toss yi ∈

LowerFreshBucketsi
.

Observe that each successful coin toss causes a collision, as LowerFreshBucketsi
⊆

Bucketsi
at any point in time, i.e., a successful coin toss means that the node

(yi, si) in the graph was already visited at some previous time (the collision is de-
tected at Step 4). Note that a collision can also be caused by events other than
a successful coin toss (and these events are not interesting in the context of the
proof): For example, a coin toss might cause a collision in case yi ∈ Bucketsi

(but
yi 6∈ UpperFreshBucketsi

⋃
LowerFreshBucketsi

) before the coin toss. Another
example is when xi is not fresh, and therefore,

xi−→(yi, si) is not a coin toss, but
yi ∈ Bucketsi

before the event (xi was marked as seen in an event of a hidden state
different than si).

Since each chain ends with the first collision that is seen, the algorithm stops after
encountering exactly M collisions, one per path. As a successful coin toss causes a
collision, there can be at most M successful coin tosses in the coverage.
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Note that the choice of some of the probabilistic events as coin tosses can depend
on the outcome of previous events (for example, LowerFreshBuckets must contain
A/S points before a coin toss can occur for hidden state s), but not on the current
outcome. Therefore, once an event is designated as a coin toss we have:

Lemma 2 A coin toss is successful with probability of exactly A/(SN), and the
success (or failure) is independent of any earlier probabilistic event.

Proof As xi is fresh, yi = f(xi) is truly random (i.e., chosen with uniform distri-
bution and independently of previous probabilistic events). LowerFreshBucketsi

contains exactly A/S different values, and thus the probability that yi collides with

one of them is exactly A/S
N

= A
SN

. As all the other coin tosses have an xi value
different from this one, the value of f(xi) is independent of their values.

It is important to note that the independence of the outcomes of the coin tosses is
crucial to the correctness of the proof.

What is the probability that the number of coin tosses in the M paths is larger
than A? It is smaller than or equal to the probability that among the first A coin
tosses there were fewer than M successful tosses, i.e., it is bounded by

Prob (B (A, q) < M) ,

where q = A/(SN) and B(A, q) is a random variable distributed according to the
binomial distribution, namely, the number of successful coin tosses out of A inde-
pendent coin tosses with success probability q for each coin toss.

Note that choosing A too large would result in a looser bound. On the other
hand, choosing A too small might increase our bound for Prob (Wi,j = 1) too much.
We choose A such that the expected number of successes Aq in A coin tosses with
probability of success q satisfies Aq = M ln(SN). This explains our choice of A =
√

SNM ln (SN).
It follows that:

Prob (Wi,j = 1) = Prob (|NetCoverage| > 2A)

≤ Prob

(
S∑

i=1

(|LowerFreshBucketi|+ |UpperFreshBucketi|) > 2A

)

≤ Prob

(

A +
S∑

i=1

(|UpperFreshBucketi|) > 2A

)

= Prob

(
S∑

i=1

(|UpperFreshBucketi|) > A

)

≤ Prob (B (A, q) < M) .
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The first inequality holds as
∑S

i=1(|LowerFreshBucketi|+ |UpperFreshBucketi|) >
|NetCoverage|. The last inequality holds as the number of coin tosses upper bounds
∑S

i=1(|UpperFreshBucketi|.
We bound Prob (B (A, q) < M) by M ·Prob (B (A, q) = M) because the binomial

distribution satisfies Prob(B(A, q) = b) ≥ Prob(B(A, q) = b − 1) as long as b <
(A + 1)q, and in our case b = M while (A + 1)q = Aq + q = M ln(NS) + q > M (as
Aq = M ln(NS)). Therefore, we conclude that

Prob (Wi,j = 1) ≤ Prob (B (A, q) < M) ≤M · Prob (B (A, q) = M) .

5.3.3 Concluding the Proof

To complete the proof we show that Prob(Wi,j = 1) · #c is very close to zero by
bounding #c ·M · Prob (B (A, q) = M) .

In the following equations, we use the bound
(

x
y

)
≤ xy/y! ≤ (xe/y)y, since from

Stirling’s approximation y! ≥ (y/e)y. We bound (1 − q)−M by estimating that q =
A

SN
=
√

M ln(SN)
SN

=
√

ln(SN)
SN1−α is very close to 0, certainly lower than 0.5 (recall that

M = Nα, and α < 1). Thus, 1− q is larger than 0.5, and (1− q)−M must be smaller
than (2)M . Moreover, as q > 0 is very close to 0, we approximate (1− q)A as e−Aq.

Since each column in W is defined by a subset of M out of the NS start points,
#c =

(
NS
M

)
, and thus

#c·M · Prob (B (A, q) = M)

=

(
NS

M

)

M

(
A

M

)

(q)M · (1− q)A−M ≤Me−Aq

(
2e2AqNS

M2

)M

and substitute Aq = M ln (SN)

=Me−M ln(NS)

(
2e2NSM ln(NS)

M2

)M

=M(NS)−M

(
2e2NS ln(NS)

M

)M

= M

(
2e2 ln(NS)

M

)M

= Nα

(
2e2 ln(NS)

Nα

)Nα

.

When N grows to infinity the expression converges to zero, which concludes the
proof.
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5.4 A Lower Bound for S

We now analyze the minimum S required by the scheme. By Section 5.3, the net
coverage of even the best set of M chains contains at most 2

√

SNM ln (SN) distinct
yi values. To make the success probability at least one half, we need a net coverage
of at least N/2. Therefore (recalling that S ≤ N),

N/2 ≤ 2
√

SNM ln (SN) ≤ 2
√

SNM ln(N2).

From this, we can derive the following rigorous lower bound on the number of hidden
states in any time/memory tradeoff which covers at least half the space with high
probability:

S ≥ N

32M ln N
.

5.5 A Lower Bound on the Time Complexity

We lower bound the worst-case time complexity of the online phase under the fol-
lowing natural assumption on its behavior:

• Given y, the online algorithm works by sequentially trying the hidden states
(in any order). For each hidden state s, it applies h on (y, s) at least ts times
in case (y, s) does not appear in a chain in the matrix, where ts is the largest
distance from any point with hidden state s in the matrix to its corresponding
end point. Note that the ts values can depend on the specific matrix that
results from the precomputation (and thus depend on the function f).

A simplistic “proof” for the lower bound is to say that with overwhelming prob-
ability S ≥ N

32M ln N
, and for each hidden state we should run on average half the

width of the matrix (i.e., N
4M

). Multiply the two figures to receive the “bound”:

T ≥ N2

128M2 ln N
.

However, it should be clear that this proof is incorrect, as for example, there can be a
correlation between the hidden state and the length of the path we have to explore.
One example of such a correlation is the Rainbow scheme, in which some hidden
states appear only near the end points. Moreover, there can be more hidden states
close to the end points than hidden states far from the end points, which shifts the
average run per hidden state towards the end points. In the rest of the section we
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rigorously lower bound the running time in the worst case, based only on the above
assumption.

Preparation: align the chains in the matrix such that their end points are aligned
in a column. Consider the l = N

4M
columns which are adjacent to the end points.

The sub-matrix which constitutes these l columns contains at most N/4 different
images f(x). We call this sub-matrix the right sub-matrix, and the rest of the matrix
the left sub-matrix. As M = Nα, l is large enough so we can round it to the nearest
integer (with negligible effect).

The worst case (with regards to the time complexity) is when the input y to the
algorithm is not an image under f , or y is an image under f but is not covered by
the matrix. Then, the time complexity is at least the sum of all the lengths ts. We
divide the hidden states into two categories: short hidden states for which ts ≤ l,
and long hidden states for which ts > l.3 We would like to show that the number
of long hidden states SL is large, and use the time complexity spent on long hidden
states as a lower bound on the total time complexity.

The net coverage of f(x) images in the left sub-matrix must be at least N/4
images which do not appear in the right sub-matrix (since the total net coverage is
at least N/2). Note that all the N/4 images in the left sub-matrix must be covered
only by the SL long hidden states, as all the appearances of short hidden states are
concentrated in the right sub-matrix. In other words, the left sub-matrix can be
viewed as a particular coverage of at least N/4 images by M continuous paths that
contain only the SL long hidden states.

It is not difficult to adapt the coverage theorem to bound the coverage of the
left sub-matrix (using only long hidden states). The combinatorial heart of the
proof remains the same, but the definitions of the events are slightly changed. For
more details see Appendix 5.12. The adapted coverage theorem implies that with an
overwhelming probability, the number of long hidden states satisfies

SL ≥
N

64M ln((SN)2)
≥ N

256 ln N
.

Since for each long hidden state ts ≥ l, the total time complexity in the worst case
is at least

T ≥ l · SL ≥
N

4M

N

256M ln N
≥ 1

1024 ln N

N2

M2
.

Note that we had to restrict the length of ts such that it includes all occurrences
of the hidden state s in the matrix, as otherwise (and using the unlimited prepro-
cessing), each chain could start with a prefix consisting of all the values of f(x), and

3Note that the distinction between short and long hidden states is unrelated to the number of
images that appear with these hidden states.

133

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



thus any image in the rest of the chain (the suffix) cannot be a fresh occurrence. The
algorithm can potentially encode in the hidden state information about the xi and
f(xi) values seen in the prefix, in such a way that it can change the probability of
collision (and in particular, avoid collisions). Note that the preprocessed chains are
very long, but the online phase can be very fast if it covers only the suffixes of each
path. As a result, we cannot use the methods of our proof in such a case.

In Appendix 5.9, we present an algorithm that violates the assumption by spend-
ing less time on wrong guesses of the hidden state compared to the correct guesses of
the hidden states. The resulting matrices are called stretched matrices, and allow the
algorithm to achieves a time complexity which is better by a small factor compared
to the known time/memory tradeoffs (but still far from the lower bound above), at
the price of a lengthier preprocessing.

5.5.1 A Lower Bound on the Time Complexity of Cryptan-
alytic Time/Memory/Data Tradeoffs

The common approach to construct a time/memory/data tradeoff is to use an ex-
isting time/memory tradeoff, but reduce the coverage (as well as the preprocessing)
of the tables by a factor of D. Thus, out of the D images, one is likely to be cov-
ered by the table. The decrease in coverage reduces the number of hidden states,
and thus the time complexity per image is reduced by a factor of D3. However, the
tradeoff might need to be applied D times in the worst case (for the D images),
which results in an overall decrease in the time complexity by a factor of D2 (note
that the D time/memory tradeoffs can be executed in parallel, which can reduce the
average time complexity in some cases). Using similar arguments and assumptions
to the ones in the case of time/memory tradeoff, it follows that the worst-case time
complexity can be lower bounded by

T ′ ≥ D
1

1024D3 ln N

N2

M2
=

1

1024D2 ln N

N2

M2
.

5.6 Notes on Rainbow-Like Schemes

5.6.1 A Note on the Rainbow Scheme

The worst-case time complexity of the original Rainbow scheme was claimed to be
half that of Hellman’s scheme. However, the reasoning behind the claim considers
only the number of start points and end points, and completely disregards the actual
number of bits that are needed to represent these points. What [67] ignores is that
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the start points and end points in Hellman’s scheme can be compressed twice as
much as in the Rainbow scheme. If we double M in Hellman’s scheme to get a
fair comparison, we can reduce T by a factor of four via the time/memory tradeoff,
which actually outweights the claimed improvement by a factor of two in the Rainbow
scheme (ignoring possible complications such as false alarms). For more details, see
Appendix 5.10.

5.6.2 Notes on Rainbow Time/Memory/Data Tradeoffs

The original Rainbow scheme does not provide a time/memory/data tradeoff, but
only a time/memory tradeoff. The natural way to generalize the Rainbow scheme
to a time/memory/data tradeoff is to reduce the number of colors, which can be
reduced in several ways. The first method is to reduce the number of colors to S by
repeating the series of colors t times:

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1,

we call the resulting matrix a thin-Rainbow matrix. The stateful random graph can
be described by xi = yi−1 + si−1 (mod N) and si = si−1 + 1 (mod S). The resulting
tradeoff4 is TM2D2 = N2, which is similar to the tradeoff in [20], i.e., we lose
the claimed improvement (by a factor of 2) of the original Rainbow time/memory
tradeoff. However, like the Rainbow scheme, this method still requires twice as many
bits to represent its start points and end points, and thus it is far inferior to [20].
Additional details can be found in Appendix 5.11.

The second method is to group the colors together in groups of t, and a typical
row looks like:

f0f0f0...f0
︸ ︷︷ ︸

t times

f1f1f1...f1
︸ ︷︷ ︸

t times

f2f2f2...f2
︸ ︷︷ ︸

t times

... fS−1fS−1fS−1...fS−1
︸ ︷︷ ︸

t times

,

we call the resulting matrix a thick-Rainbow matrix. Note, however, that during the
online phase the algorithm needs to guess not only the “flavor” i of fi, but also the
phase of fi among the other fi’s (except for the last fi). In fact, the hidden state
is larger than S and includes the phase, as the phase affects the development of the
chain. Therefore, the number of hidden states is t(S−1)+1 (which is almost identical
to the number of hidden states in the original Rainbow scheme), and we get an inferior
tradeoff of TM2D = N2. On the other hand, we retain the claimed savings of 2 in

4When we write a time/memory/data tradeoff curve, the relations between the parameters relate
to the expected worst-case behavior when the algorithm fails to invert y, and neglecting false-alarms.
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the time complexity. This example demonstrates the difference between “flavors” of
f and the concept of a hidden state.

The new strategy we propose to implement a Rainbow-like time/memory/data
tradeoff is to use the notion of distinguished points not only to determine the end
of the chain, but also to determine the points in which we switch from one flavor of
f to the next. In this case, the number of hidden states is equal to the number of
flavors, and does not have to include any additional information. We can specify U
as: xi = yi−1 + si−1 (mod N), and if yi−1 is special, then si = si−1 + 1 (mod S) else
si = si−1, where yi−1 is special if its log2 t bits are zeros. We call the resulting matrix
a fuzzy-Rainbow matrix, as each hidden state appears in slightly different locations
in different rows of the matrix. The tradeoff curve is 2TM2D2 = N2 + ND2M ,
with T ≥ D2. The factor two savings is gained when N2 ≫ ND2M ⇒ D2M ≪ N
(which happens when T ≫ D2). The number of disk accesses is about

√
2T , when

D2M ≪ N , but is never more than in thin-Rainbow scheme for the same memory
complexity. Additional details are given in Appendix 5.11.

5.7 Summary

In this chapter we proved that in our very general model, and under the natu-
ral assumption on the structure of the online phase, there are no cryptanalytic
time/memory tradeoffs which are better than existing time/memory tradeoffs, up
to a logarithmic factor.
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5.8 Appendix: A Time/Memory Tradeoff with

Hidden State that Depends Only on the Pre-

vious Values in the Chain

Consider the following time/memory tradeoff scheme, in which we choose xi = yi−1+
si−1 (mod N). We choose si = si−1+yi−1 (mod S), where S is the number of hidden
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states. The hidden state S is chosen to be equal to the chain length. The rest of the
details are similar to Hellman’s scheme.

Analysis similar to the other tradeoffs results in a TM2 = N2 tradeoff curve. We
have simulated this tradeoff and verified that it gives similar performance compared
to Hellman’s original time/memory tradeoff.

We can convert the time/memory tradeoff to a time/memory/data tradeoff by
reducing the hidden state from the chain length to the chain length divided by D, as
well as reducing the number of memory rows by a factor of D. The resulting tradeoff
is TM2D2 = N2.

5.9 Appendix: Stretching Distinguished Points —

A Time/Memory Tradeoff Scheme with

a Deeper Preprocessing

The main observation behind this algorithm is that most of the time complexity of
the algorithm is spent on wrong guesses of the hidden state. Therefore, there are two
effective ways to reduce the time complexity: reduce the number of hidden states,
and reduce the time that is spent on wrong guesses of the hidden state.

When distinguished points are used, there is variance in the length of the chains.
Assuming the chain length is distributed according to the geometric distribution with
success probability p (i.e., a point is distinguished with probability p), the expected
chain length is (1 − p)/p ≈ p−1. The standard deviation is

√

(1− p)/p2 ≈ p−1.
Therefore, there is a large variation in the length of chains, and it is not surprising
to find chains which are several times longer than their expected length.

Storing the longer chains in the matrices seems to accomplish both of the effective
ways of reducing the time complexity: as the chains are longer, each matrix covers
more, and less matrices are needed (i.e., the hidden state is reduced). Moreover,
the time spent on wrong guesses is the average chain length, which is smaller than
the average chain length in the table (as the table stores chains longer than the
average). The suggested scheme is essentially Hellman’s scheme with distinguished
points, but we prefer to store longer chains in the matrices. The scheme performs
a longer precomputation, in which many chains are created. Only the longer chains
are stored in the matrices, and the shorter chains are discarded. We call the resulting
matrices stretched matrices, as they contain longer (stretched) chains.

Another possible source of savings in the time complexity is having an idea
choice of parameters for the scheme. Consider Hellman’s time/memory tradeoff
with distinguished points. Hellman suggests to fill a matrix until mt2 = N , where

137

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



f : {0, 1, . . . , N − 1} 7→ {0, 1, . . . , N − 1} is a random function, m is the number of
rows in the matrix, and t is the chain length. Adding rows beyond the mt2 = N
matrix stop rule becomes increasingly difficult. However, from the point of view of
tradeoff efficiency, it is worthwhile adding rows to the matrix only until the moment
that where we gain more by adding a row in a new matrix (rather than adding the
row to the existing matrix), i.e., the time savings using the time/memory tradeoff
curve is better than adding a row. We the optimal point in the next few paragraphs.

Let S be the number of the hidden states, i.e., S the number of tables, let C be
the number of distinct points that are covered by a single matrix, and let T be the
time complexity as anticipated by the “regular” tradeoff. For a single matrix, let m
be the number of rows, and let

γ = m/(Np2) (5.1)

i.e., γ is the fraction of the number of rows compared to a single Hellman table (for
Hellman γ = 1). The total number memory rows is M = Sm. Therefore,

γ = M/(SNp2). (5.2)

Let

β(γ) = C(γ)/(Np), (5.3)

i.e., β(γ) is the fraction of the coverage gained by a single table with γ(Np2) rows
compared to the maximum coverage that is gained from a single Hellman table.

In this paragraph we show that the worst-case time complexity T = γ2N2

β3M2 . The

number of required tables is S = N/C(γ) = N/(β(γ)Np) = 1/(β(γ)p) (to reach
a constant success probability). Substitute p = 1/(β(γ)S) in γ = M/(SNp2) and
express S as:

S =
γN

β2(γ)M
. (5.4)

Substitute S back to

p =
1

β(γ)S
=

β(γ)M

γN
. (5.5)

The worst-case time complexity (ignoring false alarms) is

T = S/p, (5.6)
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as evaluating each matrix takes on average p−1 applications of f . In the equation for
T , we substitute p and S with their respective expressions from above:

T =
S

p
(5.7)

=
γ2N2

β3M2
(5.8)

For Hellman method with distinguished points, the time complexity falls back to
T = N2

M2 . However, we are interested in the optimal value of γ that minimize the time
complexity. We calculate the minimum (through the derivative of T ), and reach the
condition that:

dβ

dγ
=

2β

3γ
. (5.9)

Suggested is the following stretching algorithm to construct a single stretched
Hellman matrix with distinguished points:

1. Choose a work factor k.

2. Create kNp2 rows, if two or more rows have the same end point, keep the
longest row.

3. Sort the rows by their length.

4. Add rows to the final matrix, longest-row first.

5. Let L be the total length of the rows added until now, m be the number of
the rows that have been added until now, and l be the length of the added
row. Do not add the row and stop when lp < 2Lp/(3m), i.e., l < 2L/(3m)
(alternatively, add new rows until β3/γ2 reaches a maximum).

The stop condition is equivalent to dβ
dγ

= 2β
3γ

.

As the matrix covers L distinct points using m rows, β = L/(Np) and γ =
m/(Np2). The time savings using this method is the ratio β3/γ2 = L3p/(Nm2),
which we call the gain factor. The actual work factor, is the ratio between the time
spent during preprocessing compared to the time that is spent during the construc-
tion of a regular Hellman matrix to achieve this coverage: kNp/(L).

It is interesting to observe that the above method gains from the fact that the
average time spent on wrong guesses of the hidden state is the average chain length
p−1. This figure is a several times smaller than the average chain length in the matrix.
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Table 5.1: Experiments Results of the Stretching Algorithm
❞❣✐③♥❞ ♠③✐①❡❜❧❵ ❧② ③❡✐♣❡✐q✐♣ ③❡❵✈❡③

k Gain Factor Actual
Work Factor

20 ≈ 2.1 ≈ 4.3
21 ≈ 2.9 ≈ 5.9
22 ≈ 4 ≈ 9
23 ≈ 4.8 ≈ 14.5
24 ≈ 5.6 ≈ 24.4
25 ≈ 6.1 ≈ 43
26 ≈ 6.6 ≈ 80.3

As most of the time complexity is spent on wrong guesses of the hidden state, the
method gains the difference.

Experimental results of the stretching algorithm are shown in Table 5.1. It should
be noted that this method can be adapted to other schemes that are based on dis-
tinguished points, such as in Appendix 5.11.

5.10 Appendix: Time Complexity of Hellman Ver-

sus Rainbow

It is surprising that the preprocessing and postprocessing that the algorithm can
perform on start and end points is substantially different in the different schemes. For
example, the start points in Hellman’s scheme (using M = N2/3) can be compressed
to half of the size of what the start points in a Rainbow scheme can be compressed
to (for M = N2/3). This factor two increase in the memory complexity translates to
a factor four degredation in the time complexity, which consumes the savings that
are introduced by a Rainbow scheme (compared to Hellman’s scheme). However,
the real advantage of Rainbow over Hellman’s scheme is more complicated as it
involves other factors such as the false alarm rate. In Hellman’s scheme, (log2 N)/3
bits are enough to store the start points: the y value can be constructed by setting
the first (log2 N)/3 bits to zeros, the next (log2 N)/3 bits to the hidden state (table
number, which can be globally stored), and the last (log2 N)/3 bits to be an index
(only the index bits need to be stored). In a Rainbow scheme, however, the hidden
state is identical to all the start points, and therefore, only 2(log2 N)/3 bits per
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start points are needed (these bits are used to store the index of the start point).
We can overcome this disadvantage of the Rainbow scheme by dividing the single
matrix to many smaller matrices each starting with another hidden state (and having
yi = yi−1 +1 (mod S)), but this modification will also eliminate the factor 2 savings
in the worst-case time complexity of the Rainbow scheme (and increase the number
of disk accesses).

5.11 Appendix: Analysis of the New Cryptana-

lytic Time/Memory/Data Tradeoffs

5.11.1 Trivial Rainbow Time/Memory/Data Tradeoff:
TM 2D = N 2

The memory is left the same — M , but each row is shortened to t/D elements. The
new Rainbow matrix covers Mt/D points, which represent constant fraction of N/D
of the space. This implies Mt = N , which when raised to the power of 2 is:

M2t2 = N2.

The total running time is about

T = Dt2/D2 = t2/D,

substitute t2 in the equation M2t2 = N2 and get:

TM2D = N2.

As t/D ≥ 1 it follows that t ≥ D ⇒ t2 ≥ D2 ⇒ TD ≥ D2, and therefore,

T ≥ D.

5.11.2 Thin-Rainbow Time/Memory/Data Tradeoff:
TM 2D2 = N 2

The matrix contain M rows of memory. Each row contains t sequences of S colors,
i.e., it looks like:

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1.
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Therefore, the length of each row is St. The matrix stop rule in this case is Mt2S = N
(as analyzed in Appendix 5.11.4). When raised to the power of two:

M2t4S2 = N2.

We require that the matrix covers N/D elements, i.e.,

MSt = N/D.

Therefore, S = N/(DMt). Substituting S in M2t4S2 = N2 gives t2 = D2, i.e.,

t = D.

The total time is T = DStS = DtS2 = DtN2/(DMt)2 = N2/(DtM2), as for
each data point we go over all the S colors, and continue the chain for a length of
about St (the length is actually St− s, where s is the current hidden state, but we
neglect s compared to St, which is accurate for D ≫ 1.). Substitute t with D to
achieve the tradeoff curve:

T = N2/(D2M2).

As S = N/(DMt) is at least 1, it follows that N ≥ DMt ⇒ N ≥ D2M ⇒
N2/M2 ≥ D4. Substitute N2/M2 with TD2 and get that:

T ≥ D2.

The number of disk accesses is DtS = DtN/(DMt) = N/(M) = D
√

T , as for
each hidden state we need to have t disk accesses (whenever the chain reaches hidden
state S), and we repeat the search D times. The number of disk accesses can be
reduced to

√
T by using distinguished points to mark the points of hidden state

S that can end a chain (a point with hidden state S should be distinguished with
probability t−1).

5.11.3 Fuzzy-Rainbow Time/Memory/Data Tradeoff:
2TM 2D2 = N 2 + ND2M

The matrix contain M rows of memory. Each row contains about t repetitions of S
colors, i.e., it looks like:

f0f0f0...f0
︸ ︷︷ ︸

about t

f1f1f1...f1
︸ ︷︷ ︸

about t

f2f2f2...f2
︸ ︷︷ ︸

about t

... fS−1fS−1fS−1...fS−1
︸ ︷︷ ︸

about t

,
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where the U function changes the value of the hidden state when a distinguished
point occurs (with probability t−1). The chain is terminated when a distinguished
point is reached for hidden state S. Therefore, the expected length of each row is St.
The matrix stop rule in this case is Mt2S = N (as analyzed in Appendix 5.11.4).
When raised to the power of two:

M2t4S2 = N2.

We require that the matrix covers N/D elements, i.e.,

MSt = N/D.

Therefore, S = N/(DMt). Substituting S in M2t4S2 = N2 gives t2 = D2, i.e.,

t = D.

The total time is T = D(S +1)St/2 = D2S(S +1)/2 = N2/(2D2M2)+N/(2M).
It follows that:

2TD2M2 = N2 + ND2M.

As S = N/(DMt) is at least 1, it follows that N ≥ DMt ⇒ N ≥ D2M ⇒
N2/M2 ≥ D4. It follows that T = N2/(2D2M2) + N/(2M) ≥ D4/(2D2) + D2/2 =
D2, i.e.,

T ≥ D2.

Note that when T ≫ D2, ND2M ≪ N2, and the factor two in time savings is
gained.

There is one disk access per hidden state (once we reach the end of the chain),
and the search is repeated D times. Therefore, the number of disk accesses is SD =
N/(D2M)D = N/(DM) ≈

√
2T (this figure is not higher than in the thin-Rainbow

scheme).

5.11.4 Analysis of the Matrix Stop Rule in the Modified
Rainbow Scheme

The thin-matrix contains M rows and looks like:

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1
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f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1

...

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1,

where S is the number of hidden states, and each hidden state appears t times in
each row (the same analysis follows for the fuzzy-Rainbow scheme). Suppose that
the matrix contains M rows and we are in the process of adding the M + 1 row.
Assuming that all the points in the first M rows are distinct, the new row which
looks like:

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1

collides with the matrix if at least one of its points with hidden state k collides with
another point in the matrix with the same hidden state k. The probability that it
happens is:

1− (prob. no collision) = 1− ((N −Mt)/N)St ≈ 1− e−(Mt2S)/N .

In birthday paradox, and in the matrix stop rule, we stop when the probability is
about 0.5 (1− e−1 to be exact), which implies a matrix stop rule of Mt2S = N .

5.11.5 Notes

Note that the trivial Rainbow time/memory/data tradeoff scheme is not better than
the other tradeoffs at any point. Consider the most extreme point that the tradeoff
allows, i.e., when T = D. When using the other tradeoffs, what should be the data
D′, such that the memory complexity and the time complexity is identical?

Substitute T = D in the original tradeoff to obtain M = N/D. Substitute the
expression for T and M in the other tradeoff curves (TM2D′2 = N2):

D(N/D)2D′2 = N2.

It follows that

D′ =
√

D,

which is within the limits of the other tradeoff curves. Moreover, fewer data points
are needed to achieve the same memory and time complexity.

We have verified the above tradeoffs through computer simulations.
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5.12 Appendix: Extended Coverage Theorem

We can extend the coverage theorem to bound the net coverage that can be obtained
by M paths, where the paths contain only S ′ hidden states out of the S ≥ S ′ hidden
states of U . We call the hidden states in the set of S ′ hidden states insider hidden
states and call the rest of the hidden states outsider hidden states.5 Therefore, we
are interested in the coverage of the sub-chains that begin in the start points and end
before the first occurrence of an outsider hidden state. We call this set of sub-chains
the insider matrix.

The tricky point is that the specific choice of the insider hidden states (including
the number S ′ of insider hidden states) can depend on the choice of f , which is not
a priori known to the algorithm that counts the coverage in the main proof. The
crucial observation that solves the tricky point is that the only affect of the specific
choice of the insider hidden states is the location in which the chains are terminated.
In particular, the choice of the insider hidden states cannot affect the development
of the chains, as the development of the chains is part of the definitions of U .

We can model the specific choice of insider hidden states by letting the adver-
sary choose not only a set of M starting points, but also a corresponding set of
M termination points. Each path starts in its starting points, and continues un-
til the termination point for the path is encountered. If no termination point is
encountered, the path can continue indefinitely (but eventually it loops). The net
coverage is uniquely defined by U , fi and the set of M starting points and their
termination points. Therefore, it suffices to prove that given any U , it holds that
for the overwhelming majority of functions f , there is no set of M start points and
M termination points such that the resulting coverage in the insider matrix using S ′

hidden states is larger than 2A′, where A′ =
√

S ′NM ln(SN)2.
We have the following upper bound on the coverage of the insider matrix:

Theorem 5 Let A′ =
√

S ′NM ln (SN)2, where M = Nα, for any 0 < α < 1.
Let U be any update function with S ≤ N hidden states. For any choice of f ,
and for any set of M start points, let the adversary choose S ′ ≤ S and a set of
S ′ insider hidden states. Then, with overwhelming probability over the choice of
f : {0, 1, . . . , N − 1} 7→ {0, 1, . . . , N − 1}, there is no choice of start points, S ′, and
S ′ insider hidden states such that the net coverage in the resulting insider matrix is
larger than 2A′.

The proof begins with a reduction using a huge table W , similar to the one in the

5Insider hidden states correspond to long hidden states, and outsider hidden states correspond
to short hidden states. We make the distinction in the names to avoid confusion.
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main proof. The number of functions (rows) remains NN , but the number of columns

jumps to #c′ = S
(
(NS)2

M

)
, as there are S possibilities to choose S ′, and we choose M

starting points termination points pairs, out of the (NS)2 such pairs. Denote the jth

specific choice of M start points and termination points, and the choice of S ′ by Mj

(i.e., the columns of W are marked M1, M2, . . . ,MS((NS)2

M )
. In each entry of the table

we write one if and only if: the coverage of fi using the choice Mj of M start points
and corresponding termination points contains at most S ′ hidden states, and the net
coverage is larger than 2A′, where A′ =

√

S ′NM ln((SN)2). Otherwise (if the there
are more than S ′ hidden states in the coverage, or the net coverage is smaller than
2A), we write zero.

It suffices to prove that the number of ones in the table is considerably smaller
than the number of rows, as from counting arguments it would follow that most
of the rows are zeros (and a row of zeros for a function fi means that there is no
choice of S ′ and M start points and their termination points, such that the resulting
coverage indeed contains only S ′ hidden states, and the net coverage is larger than
2A′). Therefore, like in the main proof, it suffices to prove that the product of the
number of columns and the probability that Wi,j is 1 is very close to zero.

We now wish to upper bound the probability that Wi,j is one. We use a similar
method to the one in the main proof, i.e., an algorithm that counts the net coverage.
However, this time, the algorithm receives not only the set of M start points as
input, but also the set of M termination points and the specific choice of S ′, in
order for the algorithm to count the resulting coverage. The exploration of each
chain is stopped once either a collision occurs or the termination point is reached.6

The only remaining differences in the algorithm compared to the original one is that
the threshold of the lower fresh bucket is changed from A/S to A′/S′, and once the
algorithm encounters more than S ′ different hidden states, it sets the net coverage
to zero and halts.

The analysis of the algorithm is similar. Wi,j is one only if the coverage net
coverage counted by the algorithm is larger than 2A′. The algorithm can count a net
coverage larger than 2A′ only if it encounters more than 2A′ fresh x’s. The fresh x’s
are stored in the lower and upper fresh buckets. Wi,j can be one only if the coverage
contains at most S ′ hidden states, and in this case, only the buckets for the S ′ hidden
states contain any elements. Therefore, the number of elements in the lower fresh
buckets is at most S ′(A′/S′) = A′.

The net coverage is larger than 2A′ only if the upper fresh buckets contain at

6Like in the main proof, we do not lose any coverage by stopping a chain once it collides with a
previously explored chain.
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least A′ elements. That means that there are at least A′ coin tosses. The probability
of a coin toss of being successful is q′ = A′/(S ′N) (the independence argument still
holds, as a coin toss is performed only for a fresh value of x). We choose A′ such
that A′q′ = M ln((SN)2), i.e. A′ =

√

S ′NM ln((SN)2). As each successful coin toss
causes a collision that ends a chain, there can be no more than M successful coin
tosses. Therefore, the probability that the net coverage is larger than 2A′ is smaller
than

Prob (B (A′, q′) < M) .

In the conclusion of the proof, the number of columns is #c′ = S
(
(NS)2

M

)
. The

increase in the number of columns compared to the original proof is eliminated by
the increase of ln(NS) (in Aq) from the original proof to ln((NS)2) in A′q′. This
concludes the modified proof.

Note that there is no real reason to insist that S ≤ N in our model, but the
model would not be fair if we allow S to be huge, as too much information on f can
be encoded by every choice of the hidden state (and we do not count the memory
complexity of representing U). For example, if S = NN , than with S ′ = 1 we can
encode all the information on f by the specific choice of single insider hidden state
(note that a huge amount of N log2 N bits are required to just represent that single
insider hidden state). In other words, for each function f , the stateful random graph
contains a path that goes through all the images of that f , and using only a single
hidden state. It is possible to adapt the model (to a fair one), where S ≤ Nk, for
some constant k. We can adapt our lower bound to this model, and it would be k
times lower.
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Appendix A

Introduction to some of the
Contemporary Methods of
Cryptanalysis

We give an introduction to some of the modern methods of cryptanalysis on which
most modern cryptanalysis methods are based. In Section A.1 we discuss the main
idea behind differential cryptanalysis and in Section A.2 the main idea behind linear
cryptanalysis. Section A.3 discusses time/memory tradeoff for block ciphers. Alge-
braic attacks are discussed in Section A.4. In Section A.5 we give an overview of
stream ciphers and basic methods for their cryptanalysis.

A.1 Introduction to Differential Cryptanalysis

Differential cryptanalysis [16] was introduced by Biham and Shamir in 1990. The
basic idea of differential cryptanalysis is to study the evolution of differences during
encryption of two plaintexts (under the same encryption key). In particular, the
XOR-difference during the different rounds of encryption is analyzed: starting with
the difference of the two plaintexts, continuing through differences of intermediate
values, and ending with the difference of the ciphertexts.

A.1.1 Simple Examples

We explain the idea behind differential cryptanalysis through some simple examples.
Consider an affine section of a cipher (or a cipher which is affine). The affine section
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can be modeled by

Y = A ·X ⊕G ·K ⊕D,

where A and G are constant binary matrices, D is a constant binary vector, K is
the key, and X,Y are the input and output, respectively. For a given key the affine
section can be modeled by

Y = A ·X ⊕B,

where the vector B is defined as B , G ·K ⊕D. Consider two inputs X1, X2 of the
affine section, whose XOR difference is

X ′ , X1 ⊕X2.

The output difference is then

Y ′ , Y1 ⊕ Y2 = (A ·X1 ⊕B)⊕ (A ·X2 ⊕B) = A ·X ′.

Thus, for any affine section of a cipher, the output difference Y ′ is fixed given the
input difference X ′, while the constant B has no affect on the difference.

The fact that XOR with fixed values (e.g., subkey mixing) vanish from the differ-
ence is useful for the cryptanalyst. While key mixing vanishes from the difference, it
still affects the encryption process value. In differential cryptanalysis the evolution
of differences is studied without taking specific key values into account (it is actu-
ally assumed that the specific key values XOR the encrypted data appear random).
Then, the attacker looks for a pairs of plaintexts (and their corresponding cipher-
texts), whose XOR differences satisfy the desired conditions, and thus gain insight to
the differences during the encryption process of specific plaintexts, i.e., the attacker
is able to distinguish the cipher from a random one.

In the previous paragraphs we discussed an affine section of a cipher. We now
take into account the non-linear sections of a cipher, i.e., we consider the effect of
an S box in the encryption process. Consider a simple cipher T = S(P ⊕K1)⊕K2,
where S is a known invertible non-linear function (an S box), e.g., with n-bit input
and n-bit output, and K = (K1, K2) is the secret key. Denote the input value of
S by Ij, and denote the output value of S by Oj, i.e., Oj = S(Ij). Unlike the case
of the affine section of the cipher, since S is non-linear, it is well possible that its
output difference is not a function of only its input difference, but that the output
difference of S also depends on the actual value of the inputs. For a given S box a
table, called the Difference Distribution Table, lists the output difference distribution
as a function of the input difference as follows: for every input difference I ′ , I1⊕ I2

and for every output difference O′ , O1 ⊕O2 of S, the number of pairs (I1, I2) that
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have an input difference of I ′ and an output difference of O′ is counted. Assume that
for this specific S box the following discovery is made (after consulting the difference
distribution table): for a certain input difference I ′ = ∆ of S a quarter of the pairs
have an output difference O′ = δ. This discovery can be used to break the cipher: the
attacker requests the encryption of many plaintext pairs P1, P2, whose difference is
P ′ = P1⊕P2 = ∆, and check if their corresponding ciphertexts T1, T2 have a difference
T ′ = T1⊕T2 = S(P1⊕K1)⊕S(P2⊕K1) = S(P1⊕K1)⊕S(P1⊕K1⊕∆) equal to δ,
i.e., check that T ′ = δ (note that in this example I ′ = P ′ and O′ = T ′). Due to the
discovery on average one in every four pairs satisfies this output difference. Once a
pair with the desired ciphertext difference is found, the input and output differences
of S during the encryption of this pair is known to the attacker, but the actual input
and output values of S are still unknown (these values depend on the value of K1

and K2). From the discovery, 2n/4 input pairs (I1, I2) of the S function (out of the
2n possible input pairs) yield the desired output difference. Each such pair suggests
two possibilities for K1: I1 ⊕ P1 = I2 ⊕ P2 and I1 ⊕ P2 = I2 ⊕ P1 = I1 ⊕ P1 ⊕ ∆.
However, for each pair (I1, I2), the dual pair (I2, I1) also has the same differences,
and suggests the same suggestions for K1. Therefore, there are 2n/4 suggestions for
K1 in total (of which one is the correct K1). Note that the set of suggestions for K1

is a shift (i.e., XOR) by P1 of the set of values L∆ 7→δ , {Ij | S(Ij)⊕S(Ij ⊕∆) = δ}.
Different Pi’s result in different sets of suggestions for K1, but the correct value of K1

must be in all these sets (i.e., the correct value K1 is in the intersection). Therefore,
with additional plaintexts and their ciphertexts (about n/2 pairs if the set L∆ 7→δ

is randomly distributed), the attacker can narrow the range of possibilities to two
(every plaintext pair with the plaintext difference ∆ that suggests K1, also suggests
K1 ⊕∆).

A.2 Introduction to Linear Cryptanalysis

Linear Cryptanalysis [57] was introduced by Matsui in 1993. Linear cryptanalysis
studies the evolution of parities of data bits during the encryption process. The
goal is to approximate sections of the cipher by an affine function. Assume that the
approximation of the cipher as affine correctly predicts the first bit of the cipher-
text with probability p. We expect a “good” cipher to be indistinguishable from a
random permutation, and we therefore expect that p ≈ 1

2
. Attacks based on linear

cryptanalysis usually succeed when |p− 1
2
| is large enough, thus allowing an attacker

to distinguish the cipher from a random one.
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A.2.1 Simple Examples

In this section we discuss many of the basic ideas of linear cryptanalysis through
simple examples.

We start by analyzing the case of an affine cipher (similar analysis holds for a
linear section of a cipher):

T = A · P ⊕B ·K ⊕D, (A.1)

where A and B are constant matrices, D is a constant vector, K is the key, and P, T
are the plaintext and ciphertext of the cipher. Given a parity of a subset of the bits
of the plaintext, we can predict a parity of a subset of the bits of the ciphertext. In
other words, given an equation ΩP · P , where ΩP is a row-vector that defines the
subset of bits of P , we can predict a parity after encryption as:

ΩT (T ⊕D) = ΩP P ⊕ ΩKK, (A.2)

where ΩT is a row-vector that defines the subset of the bits of the ciphertext, and
ΩK is a row-vector that defines a subset of the bits of the key K. Given a single
plaintext/ciphertext pair we recover one parity bit of the key, which is ΩK ·K. We
now calculate the subset of bits ΩT of the ciphertext T , and the subset ΩK of the
bits of the key K given the subset ΩP of the bits of the plaintext. The first step is
to find ΩT such that

ΩP = ΩT A, (A.3)

if any such ΩT exists (in the majority of the cases A is invertible, and thus, there is
a single ΩT = ΩP A−1). If a few such ΩT exist, we gain several bits of information
on the key by repeating the analysis with the different Ωi

T values each contributing
one parity bit Ωi

KK of the key. We compute ΩK as follows: multiply Equation A.1
on the left by ΩT as follows:

ΩT T = ΩT (AP ⊕BK ⊕D)⇒ ΩT (T ⊕D) = ΩT AP ⊕ ΩT BK = ΩP P ⊕ ΩT BK.

By substituting
ΩT (T ⊕D)

in Equation A.2 we get that
ΩK = ΩT ·B.

For an affine section of a cipher (such as Equation A.1), it is nice to note the
relation between linear and differential cryptanalysis. The XOR difference after the
affine section is an application of the linear section of Equation A.1 (i.e., A) on
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the XOR difference before the linear section, i.e., Y ′ = AX ′, where X ′ is the input
difference of A, and Y ′ is the output difference. Linear subsets are somewhat more
complex. It is well known that the subset of the input (when written as a binary
vector) is the application of Q on the subset of the output (i.e., (ΩP )T = Q(ΩT )T ,
note that the transpose is needed since ΩP and ΩT are defined as row-vectors), where
Q is the matrix A with XOR and duplication replaced, and applied from the end to
the beginning (e.g., if the last operation in A is c = a ⊕ b, then the first operation
in Q is a = c, b = c). Note that when A is written as a matrix, then Q = AT . The
reason is that “1” in entry i, j of the A matrix implies that the input j is XORed
into the ith output; Replacing XOR with duplication means that now the output i is
XORed into the input j, which is the value in entry j, i of Q — which is equivalent
to transposing the matrix A. The property can be proven as follows: simply apply
the matrix transpose operation to Equation A.3:

(ΩP )T = AT · (ΩT ).T

To see ΩT as a function of ΩT multiply the equation on the left by (AT )−1 and get:

(ΩT )T = (AT )−1 · (ΩP )T .

When analyzing a non-linear cipher, we approximate the S boxes with a linear
approximation of the S box, which is in the form X ′X = Y ′Y , where Y = S(X),
and X ′, Y ′ define a subset of bits of X, and a subset of bits of Y , respectively. This
equation is correct with probability 1/2 + q, q ∈ [−0.5, 0.5]. For every choice of X ′

and Y ′ we get a different equation with a (possibly) different probability. We then
try and concatenate the equations with the affine sections of the cipher in order to
get a linear approximation of the cipher:

ΩT T = ΩP P ⊕ ΩKK, (A.4)

A linear approximation of the cipher has a probability 1/2+p associated with it. p is
often referred to as the bias from 1/2. Out of all the possible linear approximations
of the cipher, we are most interested in the one with the maximal bias from 1/2.

In an affine cipher from a single plaintext/ciphertext pair we recover one bit of
information on the key (derived from Equation A.2). However, in the case of the
non-affine cipher, given only a single plaintext P and its corresponding ciphertext T ,
we cannot determine if Equation A.4 holds. Subsequently, we cannot determine if

ΩK ·K = ΩT T ⊕ ΩP P. (A.5)
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holds. Therefore, a statistical approach should be employed. Clearly, the left hand
side of the Equation A.5 is fixed for a fixed key K and a given subset ΩK . There-
fore, we try to deduce its value by considering many plaintext/ciphertext pairs, and
substituting them in the right hand side of the equation. Taking a set of N plain-
text/ciphertext pairs, we count the number of times that the right hand side of the
equation is zero — we denote the counter by M . Assuming p > 0, If M > N

2
, then

the right hand side of Equation A.5 is zero for most pairs, and we therefore deduce
that ΩKK = 0. Otherwise, the right hand side is one for most pairs, and we that
ΩKK = 1. If p < 0 we deduce the complement value. The number of analyzed
plaintext/ciphertext pairs affects the success rate: in general, N has to be chosen to
be in the order of p−2.

A.3 Time Memory Tradeoffs

In 1980, Hellman [48] found a generic scheme for cryptanalysis using a time/memory
tradeoff. The basic idea is to choose a fixed plaintext P , and then to treat the
function that computes the ciphertext as a function of the key and the fixed plaintext
as a random function, e.g., f(x) = DESx(P ). If an attacker inverts f , then with a
high probability he recovers the secret key. Note, however, that Hellman’s method
is not restricted to block ciphers, and actually it applies to any random function f .
However, it is probably best understood by considering a specific cipher such as DES.
In Section A.7 we give an overview of the application of time/memory tradeoffs to
stream ciphers.

The time/memory tradeoff attack is composed of two phases: a preprocessing
phase and an inversion phase. In the preprocessing phase the attacker explores the
structure of f , and summarizes his findings in a huge table. In the inversion phase
given f(x) the attacker uses the precomputed table to invert f(x).

A degenerate case of the tradeoff is as follows: During the preprocessing phase the
whole keyspace is explored, and for every key ki the value f(ki) is computed. The pair
(ki, f(ki)) is stored in memory, indexed by f(ki). In the inversion phase, the attacker
receives f(ki), and retrieves all ki’s indexed by f(ki). The inversion phase requires
one fetch operation, but the memory requirement is huge and unrealistic. The other
extreme degenerate case of the tradeoff does not perform any preprocessing, but the
inversion phase performs exhaustive search.

Hellman’s tradeoff allows any tradeoff point on the curve
√

TM = N , where M
is the number of table rows (each row consumes about 2 log2(N) bits of memory), T
is the time complexity of the inversion phase, and N is the size of the key space.

We now give an overview of Hellman’s method. During preprocessing the attacker
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chooses m random starting points k1, . . . , km, where m is a parameter of the attack.
For each starting point ki the attacker computes f t(ki), i.e., applies f iteratively t
times

f t(ki) = f(f(f(. . . f(ki) . . .)))
︸ ︷︷ ︸

t times

,

where t is another parameter of the attack, and stores the pair (ki, f
t(ki)) in the table

indexed by the f t(ki) values (depicted in Figure A.1). To save space the attacker
discards the intermediate values f 1(ki), . . . , f

t−1(ki). Note that this description is
somewhat imprecise, as the input and output of f might not be of the same length.
For example, in the case of DES, f has an input of 56 bits (key), and an output of
64 bits (ciphertext). Therefore, a simple reduction function R is used to reduce the
output of f to the size of its input, e.g., by discarding the last eight bits.

In the inversion phase, the attacker receives f(K). He searches in the table for the
value f(K). If it is found in the table (i.e., a pair (ki, f

t(ki)) for which f t(ki) = f(K)
is found), then either K is in the next to the last column in that row, or f(K)
has more than one preimage (the latter case is called a false alarm). Assume that
f(K) is an endpoint (and is therefore found in the search). In order to find K the
attacker fetches ki from the row of f(K), and applies f(·) iteratively t− 1 times to
receive K ′ = f t−1(ki). The attacker can test whether it is a false alarm with K ′ 6= K
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by a trial encryption (of another plaintext). If f(K) is not found in the table (or
there is a false alarm), then the key K is not in the next column. In this case the
attacker computes f(f(K)) = f 2(K), and consults the table to see if f 2(K) is an
endpoint (if the predecessor of f(K) is in the second next to the last column then
f 2(K) must be an endpoint). If f 2(K) is not an endpoint, the attacker continues and
iteratively applies f in a similar process to check if the predecessor of f(K) appears
in any column of the table. In the jth application of f , he computes f j(f(K)), and
checks whether it is an endpoint. If it is, he computes the (j + 1)th next to the last
column by K ′ = f t−j−1(ki). False alarms are then discarded by first checking that
f(K ′) = f(K), and by trial encryptions (of another plaintext).

The attack succeeds whenever the predecessor of f(K) is covered by the precom-
puted table. The table covers at most mt points, thus if all points covered by the
table are distinct, the probability of success is mt/N . However, Hellman noticed that
due to the birthday paradox a single table cannot efficiently cover the whole space
of N points. He calculated that a table for which mt2 > N is likely to have many
collisions, and that if two points in two different rows collide, then all the points on
their right side collide as well, and therefore that the table’s coverage of the space
becomes very poor.

Hellman’s solution to this problem is to use t independent tables, each covers
approximately N/t of the points. If the predecessor of f(K) is not found in one
table, then the next table is searched. He numerically calculated that if mt2 ≈ N
then the probability of success of a single table is about 0.80mt/N . Hellman suggests
to generate the different tables by using a slightly different reduction function, for
example, by changing the reduction function R in a simple way (e.g., exchanging
locations of bits). Note that although the change in the reduction function is mild,
the cycle structure of the resulting functions is expected to be unrelated.1 However,
it should be noted that the structures of fi and fj are not independent, and actually
they are dependent as both functions are based on the same underlying function f .
This dependency could be problematic, and it was not taken into account in the
analysis. A similar problem exists with the analysis of the Rainbow scheme.

The complexity of Hellman’s tradeoff is as follows: In the preprocessing phase the
function f is computed O(N) times. Searching a single table takes t computations of
f . In the worst case t tables are searched, resulting in a time complexity of T = t2.
Since mt2 = N , and M = mt is the size of the memory (t tables with m values each),
it follows that M

√
T = N .

Hellman calculated the expected number of false alarms to be bounded by mt(t+1)
2N

1Also note, that if all the values of f reside in long cycles then one table can efficiently cover
the whole space of N points.
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per table. Since each false alarm causes at most t additional applications of f , and
there are at most t tables to search in, the expected time complexity incurred by
the false alarms is bounded by ≈ mt4/(2N) = (NT )/(2N) = T/2, therefore, false
alarms add at most 50 percent to the attack’s time complexity.

The inversion phase requires T table lookups, which in the case of DES is 238

lookups in a huge memory of 238 entries (by choosing t = m = 219). Assuming that a
hard drive is used to store the tables, and the current technology’s random seek time
is about 5 milliseconds, there can be only about 200 table accesses in each second.
The access time dominates the time it takes to evaluate f , e.g., on a 90MHz Pentium
more than 200,000 f applications (based on DES encryptions with key setups) can
be made every second.

An idea due to Rivest is to use distinguished points: A distinguished point is a
point in the search space of N points whose first log2 t bits have a fixed pattern, e.g.,
the first log2 t bits are zero. In the preprocessing phase, for each a starting point ki

the function f is iterated until a distinguished point is reached. Thus, the endpoints
are always distinguished points, and the resulting rows have an average length of
about t. The benefit is that during the inversion phase, the attacker iteratively
applies f over f(K) until a distinguished point is reached and only then searches the
table. Therefore, there is one database search for an average of t applications of f ,
reducing the number of database searches to

√
T . Note that some care is needed to

break out of loops that contain no distinguished points.

Oechslin [67] recently suggested an improved time/memory tradeoff attack. Oech-
slin’s idea is to use Hellman’s original suggestion, but to use a different reduction
function Rj with every iteration of f , i.e., every column in the matrix has a different
reduction function associated with it (depicted in Figure A.2). Oechslin calls the
resulting table a rainbow table. Rainbow tables induces a more efficient coverage of
the search space by reducing the effect of collisions in the rows of the table. While
in Hellman’s suggestion if the same value appears in two different rows the rest of
these rows is identical, in Oechslin’s suggestions the same value must appear in two
rows in the same column for a similar effect. A similar analysis to Hellman’s sug-
gestion shows that a collision in the same column in the matrix is likely to occur
when mt ≈ N , therefore, a single larger matrix can be used instead of t matrixes in
Hellman’s suggestion.

In the inversion phase of Oechslin’s variant, the attacker is given f(K), and needs
to find the specific column in the matrix where the predecessor of f(K) is located.
Like in Hellman’s suggestion, the attacker first assumes that the predecessor of f(K)
is in the column next to the last(thus f(K) an endpoint), and searches the table for
f(K). If it is not found then the attacker assumes that the predecessor of f(K) is in
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the second column on the left of the last, like the case with Hellman’s suggestion, the
attacker applies f on f(K) using the reduction function associated with this column.
However, unlike the case of Hellman’s suggestion the attacker cannot continue and
apply f iteratively on the result of the previous trial, since the reduction functions
are different. Therefore, for the jth column on the left of the last the attacker must
apply f using the relevant reduction functions j−1 times, and search the table once.
The time complexity is therefore

∑t
j=1 j − 1 ≈ t2/2 with t disk accesses. This result

is faster by a factor of two compared to Hellman’s tradeoff, and it requires only about√
T disk accesses.

A.4 Algebraic Attacks

Any block cipher can be described as a system of (complex) algebraic equation. For
example, a bit of the ciphertext can be written in algebraic terms of the bits of the
plaintexts and the bits of the key.

Every such system of equations can be written as a quadratic system of equations
by introducing new variables, and using the new variables to break large terms to
quadratic ones. For example, the equation system containing the single equation
x = yztw can be replaced by the three equations x = yn1, n1 = zn2, and n2 = tw.

157

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



Notice that the two systems of equations are equivalent, i.e., they have equivalent
solutions, and the number of degrees of freedom is unchanged.

In algebraic attacks, the attacker writes the cipher (or sections of it) as alge-
braic equations, and then, given enough plaintext/ciphertext pairs, solves the set of
equations to recover the secret key. In public-key cryptosystems the attacker might
recover the plaintext given the ciphertext and the public key.

A basic tool in algebraic attacks is an algorithm that solves the system of the
quadratic equations. The problem of solving a random system of quadratic equations
is NP-complete. However, the systems of equations that arise in cryptology are not
random. They are overdefined (or can be made overdefined given sufficiently many
known plaintexts), usually very sparse, and they always have a solution. In contrast,
a random overdefined quadratic system is not expected to have any solution.

In recent years there has been an increasing interest in algebraic attacks, both in
developing algorithms to efficiently solve the kind of systems of equations that arise
in cryptology, and also in attacks against specific ciphers. In 1999 Kipnis and Shamir
developed the relinearization [52] method to solve overdefined systems of quadratic
equations, and used it in an attempt to attack the HFE public key cryptosystem.
Later, Courtois, Klimov, Patarin, and Shamir developed the XL [30] method that
can be seen as an improvement of relinearization. XSL [31], which is focused at
solving sparse systems, was developed by Courtois and Pieprzyk in an attempt to
attack block ciphers in general, and Rijndael in particular. In 2003 Courtois and
Meier presented an algebraic attack against the stream cipher Toyocrypt [28, 29]. In
the following subsections we give a brief description of linearization, relinearization,
and XL.

A.4.1 Linearization

A system of n2/2 quadratic equations in n variables can be simplified by linearization
to a linear system with about n2/2 equations and about n2/2 variables as follows. We
rename every quadratic term to a name of a new variable (i.e., every instance of the
term xixj is replaced by the new variable yij). Gauss elimination is then used to find
the solution. Given the solution, checking for consistency (i.e., whether yij = xixj)
can be performed. The time complexity of this method is the time complexity of
performing Gauss elimination on a n2

2
× n2

2
matrix. It succeeds whenever the system

is sufficiently overdefined.
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A.4.2 Relinearization

In [52] Shamir and Kipnis describe the relinearization technique, which is focused as
solving overdefined systems of quadratic equations. The idea is to use linearization,
but also to include additional higher-degree equations that describe the fact that
multiplication is commutative, i.e., yijykl = yikyjl. The resulting system is linearized
again, and the process repeats itself until there is an equation that contains only one
variable. Other methods are then used to solve this equation. In all the equations
this variable is substituted with its value, and the process is repeated to find the
value of the other variables. The entire relinearization algorithm can be described
as follows:

1. Linearize the system of quadratic equations, name new variables as yij = xixj.

2. Perform Gauss elimination. If a variable is found, stop and simplify the equa-
tions. If the system is not solved, it has l < n·(n+1)

2
degrees of freedom. After the

gauss elimination, it is easy to describe every variable as a linear combination
of the l variables which are not eliminated. Therefore, express every variable
yij as a linear combination of the l variables t1, . . . , tl, where the t1, . . . , tl, are
the yij’s that are not eliminated.

3. Create a new system of quadratic equations that express the commutativity,
e.g., yijykl = yikyjl = yilyjk.

4. Express the new equations using the ti’s, i.e., substitute every appearance of
yij in the quadratic equations with yij’s representation as a linear combination
of t1, . . . , tl. The resulting system is now quadratic in the ti variables.

5. Solve the new system (by linearization, or perhaps recursively with relineariza-
tion).

6. Using t1, . . . , tl, find the solution of the original system.

Assume that the original system has m = ǫn2 equations. What is the minimum
required ǫ for the system to be solvable by linearization in step 5? Assuming linear
independence of the derived equations in step 3 (the equations that express the
commutativity of multiplication) their number is as follows: there are about n4/4!
ways to choose unsorted indices i, j, k, l, each one adds two new quadratic equations.
These equations are translated in step 4 to the same number of equations (2n4/4! =
n4/12) above the t1, . . . , tl variables. The number of degrees of freedom in step 2 is

the number of variables minus the number of equations: l = n·(n+1)
2
−ǫn2 ≈ (1

2
−ǫ)n2.
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The new system can be linearized and solved successfully (in step 5) when the number

of equations is larger or equal to the number of variables, i.e., n4

12
≥ (( 1

2
−ǫ)n2)2

2
⇒ ǫ ≥

1
2
− 1√

6
≈ 0.1.

There are higher degree variants of relinearization. The above method is referred
to as degree 4 relinearization, since the equations that we add are of degree 4 in
the original variables. In higher degree variants, we include equations with higher
degrees, i.e., 6 (in which we include equations of the form yijyklymn = yikyjmyln), 8,
10, etc.

A.4.3 The XL Method

Here we describe the XL method, which can be seen as an improvement of relin-
earization. It is aimed at solving overdefined multivariate equation systems.

The input of the algorithm is a system of m multivariate quadratic equations
with n variables. We denote the kth equation by lk = 0, where lk is the multivariate
quadratic polynomial fk(x1, x2, . . . , xn)−bk, where bk is a constant. The equations are
over the finite field K, therefore, from now on, we assume that the exponent is always
reduced modulo |K| − 1 (as a|K| = a). XL tries to find a solution x = (x1, . . . , xn)
for which lk(x) = 0 holds for any k.

An important component of the XL algorithm multiplies a certain lt with all
possible terms of degree k, i.e., to generate the set of equations of the form (

∏k
j=1 xij)·

lt. For each equation lt the XL algorithm with degree D ∈ N creates a set of equations
with degree D by multiplying lt by all possible terms in {∏k

j=1 xij} (for quadratic
equations k = D − 2). The XL algorithm is as follows (assuming that all the input
equations are quadratic):

1. Multiply: Generate all the products (
∏k

j=1 xij) · lt with k ≤ D − 2.

2. Linearize: Consider each monomial
∏k

j=1 xij as a new variable yi1,i2,...,ik and
perform Gauss elimination on the equations obtained in step 1. The ordering
of the monomials must be such that terms containing one original variable (xt)
are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation (in the
powers of the original variable xt, e.g., ytt + ytttt + yttttttt = α which represents
the equation x2

t + x4
t + x7

t = α). Solve this equation over the finite field (e.g.,
by using Berlekamp’s algorithm).
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4. Repeat: Simplify the equations by substituting xt with the found value, (e.g.,
assume that xt = β, then we substitute y tt...t

︸︷︷︸
i times

by βi), and repeat the algorithm

from step 3 to find the values of the other variables.

Note that the XL algorithm does not guarantee that a solution is found. It is
well possible that step 3 does not result with any univariate equation. In such a case
we can try XL with a larger degree D.

In [30] it is proved that XL of degree D can solve all the equation systems that re-
linearization of degree D can solve. Moreover, XL uses less variables than relineariza-
tion and its complexity is lower. Also, XL might solve cases where relinearization
fails.

A.5 Introduction to Stream Ciphers and Their

Analysis

In this section we discuss basic stream ciphers, and review the main attacks against
them.

Stream ciphers usually encrypt the plaintext, using a transformation that changes
with time. The data is encrypted in small blocks, whose size is usually one bit, or one
byte. By contrast, block ciphers usually encrypt the plaintext in large blocks (usually
of size 64 or 128 bits) using a permutation that does not change with time. Stream
ciphers usually have a simpler design than block ciphers, and are usually designed to
be very fast, and to be efficiently implemented in hardware (or software). In many
applications it is very natural to use stream ciphers, especially when the plaintext
is given one bit (or one byte) at a time, or when encryption should be performed
in a huge speed (e.g., fast telecommunications). While there are numerous block
ciphers in the contemporary open literature that withstand public scrutiny (e.g.,
Triple-DES, AES, IDEA, etc.), there are almost no recently published stream ciphers
with a similar status. A common solution is to use a block cipher under a mode of
operation [64]. This solution enables the general functionality of stream ciphers, but
only partially does it result in a fast implementation.

A well-known and a well-studied strategy for constructing stream ciphers is using
Linear Feedback Shift Registers (LFSR). An LFSR is a shift register in which the
feedback function is a linear combination of fixed locations of the register. Figure A.3
describes a typical LFSR. The fixed locations whose linear combination constitutes
the feedback are called taps, e.g., in Figure A.3 the taps are in locations 19, 18,
17, and 14. The motivation for using LFSRs as components of stream ciphers are
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their simple structure, which can be efficiently implemented in hardware, together
with a long period and “nice” statistical properties (of LFSRs with well selected
parameters). With a careful choice of the taps an n-bit LFSR has a period of 2n− 1
(given a non-zero initial state), in which case it is called a maximum-length LFSR.

Let c1, . . . , cn be binary values, where ci is 1 if there is a tap in location i of
the LFSR and 0 otherwise. The connection polynomial of an LFSR is defined as
the following polynomial above GF (2): C(X) = 1 ⊕∏n

i=1 ciX
i. A necessary and

sufficient condition for a LFSR to be a maximal-length LFSR is that its connection
polynomial is primitive. Given a non-zero initial state, the output of a maximum-
length LFSR has appealing statistical properties. In particular, in every window of
length 2n − 1 + k of the output, where 1 ≤ k ≤ n, (or in every cycle) any non-zero
string of length k appears exactly 2n−k times, and the zero string of length k appears
exactly 2n−k − 1 times. However, note that an LFSR cannot be used directly as a
stream cipher, since every output bit is a linear combination of the initial internal
state, and therefore after n output bits we can reconstruct the initial internal state.
Note that not all stream ciphers use LFSRs as building blocks, although most fast
hardware oriented stream ciphers do.

A.6 Correlation Attacks

A Correlation attack may be considered a “generic” attack on stream ciphers based
on LFSRs. It takes advantage of a correlation between the output of a particular
component of the stream cipher (e.g., LFSR) and the output of the stream cipher
itself.

We give an example (taken from [60]) of a stream cipher with a strong correlation
of the cipher’s output and an output of an LFSR in the cipher: Geffe’s generator
contains three LFSRs: R1, R2, and R3 (see Figure A.4). In this generator, the
output bit of R2 chooses the output either from the output of R1 or from the output
of R3. Let x1(t), x2(t), x3(t), z(t) denote the tth output bits of R1, R2, R3, and the
generated keystream, respectively. The correlation probability of the output of R1
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x1(t) and the generated keystream z(t) is:

Pr(x1(t) = z(t)) = Pr(x2(t) = 1) + Pr(x2(t) = 0) · Pr(x3(t) = x1(t)) =

=
1

2
+

1

2
· 1
2

=
3

4
.

Similarly, Pr(x3(t) = z(t)) = 3
4
.

Given an output of a stream cipher, we would like to find the initial inter-
nal state of LFSR Ri. Assume we know that the correct internal state satisfies
xi(t) = z(t) with correlation probability p 6= 1/2, then we can try all the possible in-
ternal states, and count the number of coincidences between z(1), z(1), . . . , z(t) and
xi(1), xi(2), . . . , xi(t). For the correct internal state the number of coincidences is ex-
pected to be pt. When there are several LFSRs, R1, . . . , Rk with lengths n1, . . . , nk,
respectively, whose correlation probabilities are different than 1/2, we can repeat
the attack for each such register independently. The number of possible keys of
these registers (i.e., internal states of the registers) is about

∏k
i=1 2ni , while the time

complexity of this correlation attack is far smaller, i.e., about
∑k

i=1 2ni .

A.7 Time/Memory/Data Tradeoff for Stream Ci-

phers

In section A.3 we discuss time/memory tradeoff for block ciphers. In his original pa-
per about time/memory tradeoff [48] Hellman noted that his time/memory tradeoff
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can be also applied to stream ciphers, by taking the first |K| bits of the keystream
as f(K), where K is the key. Babbage [5] and Golic [46] independently discovered
that a more efficient time/memory tradeoff exists for stream ciphers with a rela-
tively small internal state. Later, Shamir and Biryukov [20] presented an improved
time/memory/data tradeoff for stream ciphers.

We use the following notations for parameters of a time/memory/data tradeoff
attack:

• N represents the size of the search space (usually the size of the internal state).

• P represents the time complexity of the preprocessing phase of the attack.

• M represents the amount of random access memory that is available to the
attacker, usually the units are about 2 log2(N) bits, depending on the specific
details of the attack.

• T represents the time complexity of the inversion phase of the attacks.

• D represents the amount of data available to the attacker during the inversion
phase.

• A represents the number of random memory accesses required by the inversion
phase of the attack.

Babbage and Golic discovered that the following time/memory tradeoff curve
applies to stream ciphers: TM = N and P = M , for any 1 ≤ T ≤ D. The attack
associates with each internal state x out of the total N internal states of the cipher,
the first log(N) bits y of the output stream from that state. The function f(x) = y
is considered a random mapping of N points into N points. f can be efficiently
computed (by invocation of the stream cipher), but is expected to be hard to invert
(i.e., it is difficult to find the internal state from an output prefix). The attacker
wishes to invert f for a given an output, and thus, find the internal state. Assume
the attacker has log(N) + D − 1 bits of the output stream. This output stream can
be seen as D different prefixes (of size log(N)) of an output of D different internal
states. It suffices for the attacker to invert f for one of the D prefixes in order to
recover an internal state. With the internal state the keystream can be predicted,
and in many cases the initial key can be extracted.

In the preprocessing phase of Babbage and Golic’s attack, the attacker chooses
M random internal states xi, and for each xi calculates the corresponding yi = f(xi).
The pairs (xi, yi) are stored in memory, indexed by yi. In the inversion phase, the
attacker treats the data as D output prefixes y1, . . . , yD, and for each yi the attacker
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searches the memory for a pair (xi, yi). If such a pair is found, then the internal
state is xi with a high probability. The attack is successful when there is a collision
between the M precomputed prefixes and the D given prefixes. A collision is likely
when MD ≈ N . The attacker can overlook some of the given data, and therefore,
TM = N for any 1 ≤ T ≤ D. The number of random disk accesses is therefore
A = T .

Shamir and Biryukov discovered another tradeoff that applies to stream ciphers:
TM2D2 = N2 and P = N/D, for D2 ≤ T ≤ N . They define a sampling resistance of
a stream cipher to be R = 2−k, where k is the maximum value for which it is possible
to efficiently enumerate all internal states of the cipher that produce an output prefix
of k zeros. They show that for a stream cipher with a sampling resistance R, a wider
selection of T values (RD)2 ≤ T ≤ N is possible, and in addition the number of
memory accesses is reduced to A = R

√
T .
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✸✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ Q ❞✈✐①❤♥❞ ✿❣tq♣ ✷✳✶✵
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✸✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ T ❞✐✈♥①❡tq♣①❤❞ ❧② ③❡♣❡❦③ ✿❣tq♣ ✷✳✶✷
✸✹ ✳ ✳ ✳ ✳ ✳ ✳ ♠♥✈r❧ ♠✐❧❵❡❝ ♠❞② ♠✐♣t✈❛ ③❡❣③t♥❞ ③❵ ③❡♣♥❧ ❥✐❵ ✿❣tq♣ ✷✳✶✸
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✹✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ A5/2 ❧r r❡❝✐ ✐❡❧❜ ❛③❦ ③❡t✇③❞ ✸✳✸

❵

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006



✹✻ ✳ ✳ ✳ ✳ ✳ A5/2 ❧r ♦✐①❜❡ ①♣❜❡ ✱❜①❛❝❧❡❜ ❧② r❡❝✐ ✐❡❧❜ ❛③❦❞ ③t✇③❞ ✸✳✸✳✶
✹✾ ✳ ✳ ✳ ✳ ✳ ✳ ✳ A5/2 ❧r ❡♣❧② ③✐❛❤✐♥ ❵❧❞ r❡❝✐ ✐❡❧❜ ❛③❦❞ ③t✇③❞ ✸✳✸✳✷
✺✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ A5/2 ❧r ③①t❡②♥ r❡❝✐ ✐❡❧❜ ❛③❦ ③t✇③❞ ✸✳✸✳✸
✺✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ A5/2 ❧r ③✐❝✐✐♥ ❝❛❧❛ ①③q ❛③❦ ③t✇③❞ ✸✳✹
✺✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❞❤✐❧✇❛ ③❡❵✐❜②❧ ③❡❝✐♥r ✸✳✺
✻✵ ✳ ✳ ✳ ✳ A5/1✲❛ ③♣t✈❡♥❞ ③①❡②✇③ ❧r ③✐❛✐q❵t ❝❛❧❛ ①③q ❛③❦ ③t✇③❞ ✸✳✻
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✾✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③❡②❝❣❞ ③❡♣❣❛❵❞ ✹✳✹
✾✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♠✐♣③❡♥ ♠✐❦①r②♥ — ②❝❣❞ ✭❞✐✈❧①❡✇✮ ♠❵③♥❞ ✹✳✹✳✶
✾✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③❡❝❦❧③❞❞ ③♣❡❦③ — R2✲❛ ❞♣❡②❵① ❞②❧❡❣ ✹✳✹✳✷
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✾✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❞②❝❣❞ ❞t✇③❞❞ ✹✳✺
✾✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♠✐❦①r②♥❞ ❣❡♣rt ✹✳✺✳✶
✶✵✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❡♣❧② ③❡t✇③❞❞ ❧② ③❡✐✈❧❡♥✐q ✹✳✻
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✶✵✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♠❝✇❡♥ ♦❡♣✐q ✹✳✻✳✶
✶✵✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♠✐①t❡②♥ ♠✐❦①r②♥ ✹✳✻✳✷
✶✵✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ r❡❝✐ (Keystream) ❣③t♥ s❤②❧ ②❝❣ ①❡✇♥ ✹✳✼
✶✵✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♠❡❦✐q ✹✳✽
✶✵✺ ✳ ✬❜❛❛✲❡ ♦❡q♣❞❡✐ ✱❛❡♥✐q✇♥ ❧② ❞t✇③❞❛ ✸ ❛❧②❡ ✷ ❛❧② ❧② ❞①✐✇q ✿❣tq♣ ✹✳✾
✶✵✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ funcl2,s1 [x] ❧② ①✐❞♥ ❛❡②✐❣ ✿❣tq♣ ✹✳✶✵
✶✵✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♠✐♣③❡♥❞ ♠✐❦①r②♥❞ ❛❡②✐❣ ✿❣tq♣ ✹✳✶✶
✶✶✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐②✐❧②❞ ①❤q✐❜①❞ ①❡❢❣❵ — ✸ ❛❧② ✿❣tq♣ ✹✳✶✷

♠✐qt❡❵♥ ♠✐❤✐❛ ❞①②r ②✐ Kc✲❛② ❥❦❛ ②♥③②♥❞ ✐❛✐❤♣①❤❧❵ ✸ ❛❧② ✹✳✶✷✳✶
✶✶✺

✶✶✻ ③✐❤✐❧♣❵❤t✐①✇ ♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞ ❧r ♠✐♥q❣ ✺
✶✶✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❵❡❛♥ ✺✳✶
✶✶✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③❡♥❝❡✇ ③❡❝❡❛r ✺✳✶✳✶
✶✶✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❞❢ ✇①t ❧② ❞♥❡①③❞ ✺✳✶✳✷
✶✷✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✇①t❞ ❞♣❛♥ ✺✳✶✳✸
✶✷✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❛✈♥❞ ❧r❛ ✐❵①✇❵❞ s①❜❞ ❧❝❡♥ ✺✳✷
✶✷✹ ✳ ✳ ✳ ❛✈♥❞ ❧r❛ ✐❵①✇❵❞ s①❜❛ ♠✐❧❡❧q♥ ③❡✐❡②❜♣③❞❡ ✐❡q✐❦ ✐❜❡q ✺✳✷✳✶

s①❜❛ ❜✐②❞❧ ♦③✐♣② ✐❧♥✐q✇♥❞ ❡❤♣ ✐❡q✐❦❧ ③❡♣❝t✇❛ ❣❦❡♥❞ ♦❡✐❧r ♠q❣ ✺✳✸
✶✷✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③❡❵①②①② M ✐❝✐ ❧r ❛✈♥ ❧r❛ ✐❵①✇❵

❞①✇♥❧ ❞❧❣③❞ ③❡❝❡✇♣ ❧② ①③❡✐❛ ❞❛❡❤❞ ❞①✐❣❛❞ ❧② ❞✐✈✇❡❝① ✺✳✸✳✶
✶✷✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ r✈❡♥♥❞
✶✷✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ Prob(Wi,j = 1) ③♥✐q❣ ✺✳✸✳✷
✶✸✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❞❣❦❡❞❞ ③♥❧②❞ ✺✳✸✳✸
✶✸✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ S✲❧ ♦❡③❣③ ♠q❣ ✺✳✹
✶✸✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♦♥❢❞ ③❡✐❦❡❛✐q ❧r ♦❡③❣③ ♠q❣ ✺✳✺
✶✸✹ r❝✐♥✴♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞ ❧② ♦♥❢❞ ③❡✐❦❡❛✐q❧ ♦❡③❣③ ♠q❣ ✺✳✺✳✶
✶✸✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③②✇❞ ✐r❛✈ ③♥❦q ③❡✐❡♥❝ ③❡♥❦q ❧r ③❡①r❞ ✺✳✻
✶✸✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③②✇❞ ✐r❛✈ ③♥❦q ❧r ❞①r❞ ✺✳✻✳✶
✶✸✺ ✳ ✳ ③②✇❞ ✐r❛✈ ❜❡q♥ r❝✐♥✴♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞ ❧r ③❡①r❞ ✺✳✻✳✷
✶✸✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♠❡❦✐q ✺✳✼

r❝✐♥❛ ✇① ✐❡❧③❞ ✐❡❛❣ ❛✈♥ ♠r ♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞ ③♥❦q ✿❣tq♣ ✺✳✽
✶✸✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③①②①②❛ ♠❝❡✇

♠r ♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞ ③♥❦q — ③❡q❣❡✐♥ ③❡❝❡✇♣ ③❣✐③♥ ✿❣tq♣ ✺✳✾
✶✸✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ①③❡✐ ✇❡♥r ♠✐❝✇♥ ❛❡②✐❣
✶✹✵ ✳ ✳ ✳ ✳ ③②✇❞ ✐r❛✈ ③♥❦q ③♥❡r❧ ♦♥❧❞ ③♥❦q ❧② ♦♥❢❞ ③❡✐❦❡❛✐q ✿❣tq♣ ✺✳✶✵
✶✹✶ ✳ ✳ ✳ ✳ ✳ ♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞❧ ③❡②❝❣❞ ③❡♥❦q❞ ❧② ❞❢✐❧♣❵ ✿❣tq♣ ✺✳✶✶
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✿r❝✐♥✴♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞❧ ③✐❧❵✐❛✐①❤ ③②✇ ✐r❛✈ ③♥❦q ✺✳✶✶✳✶
✶✹✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ TM2D = N2

TM2D2 = r❝✐♥✴♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞❧ ♠✐✇❝ ③②✇ ✐r❛✈ ③♥❦q ✺✳✶✶✳✷
✶✹✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ N2

r❝✐♥✴♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞❧ ♠✐②❤②❡❤♥ ③②✇ ✐r❛✈ ③♥❦q ✺✳✶✶✳✸
✶✹✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 2TM2D2 = N2 + ND2M
✶✹✸ ③❡②❝❣❞ ③②✇❞ ✐r❛✈ ③❡♥❦q❛ ❞✈✐①❤♥❞ ③①✐✈r ❧❧❦ ❧② ❞❢✐❧♣❵ ✺✳✶✶✳✹
✶✹✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③❡①r❞ ✺✳✶✶✳✺
✶✹✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❛❣①❡♥❞ ✐❡q✐❦❞ ❤t②♥ ✿❣tq♣ ✺✳✶✷

✶✹✽ ❞❢✐❧♣❵❤t✐①✇❧ ③❡✐♣①❝❡♥❞ ③❡❤✐②❞♥ ❞♥❦❧ ❵❡❛♥ ✬❵
✶✹✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③✐❧❵✐✈♣①t✐❝ ❞❢✐❧♣❵❤t✐①✇❧ ❵❡❛♥ ✬❵✳✶
✶✹✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③❡❤❡②t ③❡❵♥❜❡❝ ✬❵✳✶✳✶
✶✺✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③✐①❵♣✐❧ ❞❢✐❧♣❵❤t✐①✇❧ ❵❡❛♥ ✬❵✳✷
✶✺✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③❡❤❡②t ③❡❵♥❜❡❝ ✬❵✳✷✳✶
✶✺✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♦❡①❦❢✴♦♥❢ ✭Tradeoff✮ ③❡①❡♥③ ③t❧❣❞ ✬❵✳✸
✶✺✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③❡✐❵①❛❜❧❵ ③❡t✇③❞ ✬❵✳✹
✶✺✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❞✐✈❢✐①❵♣✐❧ ✬❵✳✹✳✶
✶✺✾ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❞✐✈❢✐①❵♣✐❧✲❞① ✬❵✳✹✳✷
✶✻✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ XL ③❤✐② ✬❵✳✹✳✸
✶✻✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ s❤② ✐♣t✈ ❧② ❞❢✐❧♣❵❧❡ s❤② ✐♣t✈❧ ❵❡❛♥ ✬❵✳✺
✶✻✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✭❞✐✈❧①❡✇✮ ♠❵③♥ ③❡t✇③❞ ✬❵✳✻
✶✻✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ s❤② ✐♣t✈❧ r❝✐♥✴♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞ ✬❵✳✼

✶✻✻ ❞✐t①❜❡✐❧❛✐❛

❢ ③✐①❛r❛ ①✐✈✇③
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③❡❵❧❛❤ ③♥✐②①

✸✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✭❧❝♣✐✐①✮ 11Bx ✇✐①t ❵❧ ♠❡♣✐❧❡t❡ 03x ①❡❤①♣❜ ♠r T (x) ③❧❛❤ ✷✳✶
✸✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ r❡❛✐①❞ ③❧❡rt ③❣③ ♠✐①❛✐❵❞ ①❡❢❣♥ ✷✳✷
✸✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ r❡❛✐①❞ ③❧❡rt ③❣③ ③❡❣③t♥❞ ①❡❢❣♥ ✷✳✸

✻✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ r❝✐♥✴♦❡①❦❢✴♦♥❢ ③❡①❡♥③❞ ③t❧❣❞ ③♥❡✇r ❧r ③❡❝❡✇♣ r❛①❵ ✸✳✶

✶✵✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ③❡♥❝❡✇ ③❡✐❛✐q❵t ③❡t✇③❞❧ ❡♣❧② ③❡t✇③❞❞ ♦✐❛ ❞❵❡❡②❞ ✹✳✶
✶✵✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ d = 4 ♠r ③❡❜❧t③❞❞ ③❧❛❤ ❧② ❞❵❡❡②❞ ✹✳✷
✶✶✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 00112 ③①❜q♥ ❧② ♦❡r② ❧❡❛♥✐q❡ d = 4 ①❡❛r ③✐♣❛③❞ ③❧❛❤ ✹✳✸
✶✶✸ ✳ ✳ 00112 ③①❜q♥ ❧② ♦❡r② ❧❡❛♥✐q❡ d = 4 ①❡❛r ③❝❣❡❵♥❞ ③✐♣❛③❞ ③❧❛❤ ✹✳✹

✶✹✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❞❣✐③♥❞ ♠③✐①❡❜❧❵ ❧② ③❡✐♣❡✐q✐♣ ③❡❵✈❡③ ✺✳✶
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♠✐①❡✐❵ ③♥✐②①

✹✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ A5/2 ❧② ✐♥✐♣t❞ ❞♣❛♥❞ ✸✳✶
✹✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ A5/2 ❧② ❣③t♥❞ ❧❡❣③❵ ♠③✐①❡❜❧❵ ✸✳✷
✻✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ r✈♥❵❛② ②✐❵❞ ③t✇③❞ ✸✳✸
✼✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ TDMA ③①❜q♥ ✸✳✹
✼✾ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ COUNT ❝❡❝✐✇ ✸✳✺
✽✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ SDCCH/8 — ❝①❡✐ ✉❡①r ✸✳✻
✽✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ SDCCH/8 — ❞❧❡r ✉❡①r ✸✳✼
✽✵ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ TCH/FS✲❞ ✉❡①r ✸✳✽

✽✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ A5/1 ❧② ✐♥✐♣t❞ ❞♣❛♥❞ ✹✳✶
✽✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ A5/1 ❧② ❣③t♥❞ ❧❡❣③❵ ♠③✐①❡❜❧❵ ✹✳✷
✾✺ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ cost✲♥ cost′ ❛❡②✐❣ ✿③❡❧t✇③❞❞ ③♣❡❦③ ✹✳✸
✾✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ S1 ❧② ❥①r❧ ✐✲j✲❞ ❝♥r❡♥❞ ①❡❛r s①❜❞✲③③ ✹✳✹
✶✵✵ ✳ d′ = 3 ♠r ♠✐♣③❡♥ ♠✐❦①r②♥❛ ②♥③②♥❞ s①❜❞✲③③ ✐♣✐♥❛ ♠✐③♥✈ ❞r❛①❵ ✹✳✺

✶✷✶ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❛✈♥ ❧r❛ ✐❵①✇❵ s①❜❛ ❧❡❧q♥ — ③✐q❡t✐❤ ③①②①② ✺✳✶
✶✷✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❛✈♥ ❧r❛ ✐❵①✇❵ s①❜❧ ③❡❵♥❜❡❝ r❛①❵ ✺✳✷

✐❝✐ ❧r ❧❛✇③♥❞ ❡❤♣ ✐❡q✐❦❞ ♠❵❞ fi ❞✐✈✇♣❡t ❧❦❧ ③♣✐✐✈♥❞ W ❞❧❛❤ ✺✳✸
✶✷✻ ✳ ✳ ✳ ✳ ✳ ✳ ✳ 2A ①②❵♥ (1) ♦❤✇ ❡❵ (0) ❧❡❝❜ ❞❧❣③❞ ③❡❝❡✇♣ Mj ❧② ❞✈❡❛✇
✶✷✽ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❡❤♣ ✐❡q✐❦❞ ③①✐tq❧ ♠✐✐❡q♥ ♠③✐①❡❜❧❵ ✺✳✹

✶✺✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♦♥❧❞ ❧② ❞✈✐①❤♥❞ ✬❵✳✶
✶✺✼ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ♦✐❧②❵❡❵ ❧② ③②✇❞ ✐r❛✈ ③✈✐①❤♥ ✬❵✳✷
✶✻✷ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✐①❵♣✐❧ ❛❡②♥ ♠r ❞❢❢❞ ①❤q✐❜① ✬❵✳✸
✶✻✸ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❞t❜ ❧② ①❡❤①♣❜❞ ✬❵✳✹
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①✐✈✇③

✲①✇ ✳③✐♣①❝❡♥❞ ♠✐✐❣❞ ❥①❝ ③❵ ♠✐①②t❵♥❞ ♠✐❧❦ ❧② ❛❡②❣ ❤q ③✇tq♥ ❞✐t①❜❡❤t✐①✇

✱♠✐❣❡❤❛ ♠✐❧❡✇❡❤❡①t ✱③❡✐❧❤✐❜✐❝ ③❡♥✐③❣ ✱❣❡❤❛ ♦❡❡✇♥ ①❣q♥❧ ♠✐❧❦ ③✇tq♥ ❞✐t①❜❡❤t✐

✲①✇ ✳❝❡r❡ ✱③❡✐♣❡①❤✇❧❵ ③❡①✐❣❛ ✱♦❡t❧❤ ③❡❣✐②❧ ③❣❤❛❵ ✱♠✐❣❡❤❛ ③✐♣✐❡❡❧ ❞✐❢✐❛❧❤ ✐①✐♥♥

✲✐♣❡r♥ ❡♣❵ ✱❞♥❜❡❝❧ ✳❞✐t①❜❡❤t✐①✇❞ ❧② ③❡❣✐❤❛❞ ③❡❣❤❛❞ ③❡♣❡❦♣ ③❵ ③❵❝❡❡♥ ❞❢✐❧♣❵❤t✐

✳③❡❣✐❤❛ ♠✐✇tq♥ ♦❦❵ ♠❞❛ ♠✐②♥③②♥② ♠✐❧❡✇❡❤❡①t❞❡ ❞♣t✈❞ ✐♥③✐①❡❜❧❵② ❵❝❡❡❧ ♠✐♣✐

♦❡♣❦③ ♠r ③❦①r♥❛ ②❧❣ ♦t❡✈ ✐♣t ❧r ③❡❣✐❤❛ ③❡❣❤❛❞ ❵❧❧ ③❦①r♥ ❞t✐❝r ✱♠✐①✇♥ ❞❛①❞❛

♠❧❡❵ ✱❞❣❡❤❛ ❞♣♣✐❵② ❥❦❧ ♠✐r❝❡♥ ❞♣❡②❵①❞ ③❦①r♥❛ ♠✐②♥③②♥❞② ♦❡❡✐❦ ✱✐❡✇❧ ③❡❣✐❤❛

✳♠✐q❡♥❦❞ ♠❞✐③❡❝❡q ✐❛❜❧ ③❦①r♥❞ ❧r ❥❡♥q❧ ♠✐❧❡❧r ❞✐♣②❞ ③❦①r♥❛ ♠✐②♥③②♥❞

✳♠✐❧❡✇❡❤❡①t ❧②❡ ♠✐♣t✈ ❧② ❞❢✐❧♣❵❤t✐①✇❞ ♠❡❣③❛ ③❡❝①t♣ ③❡♥❡①③ r❛①❵ ❡❢ ❞❝❡❛r❛

AES -✮ ❞♣❡①❣❵❧ ①❣❛♣② ❞♣t✈❞❞ ♦✇③❛ ❤①t❡ ✱❧❧❦❛ ♠✐♣t✈❛ ③✇q❡r ❞♣❡②❵①❞ ❞♥❡①③❞

s✐❧❣♣ ♠❵ ❞①✇✐ ❞♥ ❡♣❧❵② ✳✭❧❝♣✐✐① ♦t❡✈❞ ❧r qq❡❛♥❞ ✱Advanced Encryption Standard

③❡❧❡rt❛ ♠✐✐❧t❦❞ ♠✐♥❝✇♥❞ ③❵ ✱✇✐①t✲✐❵❞ ♠❡♣✐❧❡t❞ ③❵ ❧❧❡❦ ✱♦t❡✈❛ ♠✐r❡❛✇❞ ❧❦ ③❵

③✐①❵♣✐❧ ❵❧❞ ❞✐✈♥①❡tq♣①❤❞♥ ✇❧❣ ❞❡❡❞♥❞ ③✐♣✐t❵❞ ❞✐✈♥①❡tq♣①❤❞ ③❵ ♦❦❡ ✱♦t❡✈❞

✲✐t①❡♥❡❢✐❵ ①②❵ ✱♠✐②❝❣ ♠✐❧❵❡❝ ♠✐♣t✈ ①❡✈✐❧ ③❡❧❡❦✐ ❡❧❵ ③❡t❧❣❞② ♠✐❵①♥ ❡♣❵ ✳✭S box✲❞✮

♠✐❧❵❡❝ ♠✐♣t✈❡ r❡❛✐①❛ ❧❝♣✐✐① ❧❧❡❦ ✱♠✐❧❵❡❝ ♠✐♣t✈ ①tq♥ ♠✐❜✐✈♥ ❡♣❵ ✳✐①❡✇♥❞ ♦t❡✈❧ ♠✐

✲❡♣ ❞❣t②♥ ♠✐①❵③♥ ❡♣❵ sq❡♣❛ ✳✐❡❡✐❤✐♥✐①t ♠❡♣✐❧❡t❛ s❧❣❡♥ ✇✐①t✲✐❵❞ ♠❡♣✐❧❡t❞ ♠❞❛②

♠❞② ♠✐♣t✈❛ ♠✐♣❝ ❡♣❵ ✱❥❦ ①❣❵ ✳❧❝♣✐✐① ❧② ♠③✐①❜❡❧❞♥ ③❛❦①❡♥❞ ♠✐✐❧❵❡❝ ♠✐♣t✈ ❧② ③tq

✳❞✈♥♥ ②❡t✐❣♥ ①③❡✐ ①✐❞♥ ♦♥❢❛ ❞t✇③❞❧ ♠✐♣③✐♣ ❡❧❵ ♠✐♣t✈② ♠✐❵①♥❡ ✱♠♥✈r❧ ♠✐❧❵❡❝

❝❣❵ ❝✈♥ ✿♠✐❛① ♠✐②❡♥✐② ♠✐❧❵❡❝ ♠✐♣t✈❧ ✳♠✐❧❵❡❝ ♠✐♣t✈❧ ♠✐②❡♥✐②❛ ♠✐♣❝ ❡♣❵ ✱s❡q❛❧
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✐♣t❛ ❞♣❜❞❧ ②♥②❧ ♠✐❧❡❦✐ ♠❞ ✐♣② ❝✈♥❡ ✱③❡t✇③❞ ❣❡③✐t❧ ③❡♣❛❡③ ✇✐♣r❞❧ ♠✐✐❡②r ♠❞

②♥②❧ ♠✐❧❡❦✐ ♠✐❧❵❡❝ ♠✐♣t✈ ✱✐②❡♥✐②❞ ♦t❛ ✳(Side-channel attacks) ✐❝❝✈ ✉❡①r ③❡t✇③❞

✱❡♣❧② ③✐♣❡②❵①❞ ❞❝❡❛r❞ ♠❡q①t ①❣❵❧ ✳♠✐♥✐✐✇ ♠✐♣t✈ ❧② ①③❡✐ ♠✐❧✐r✐ ♠✐②❡♥✐♥ ③❵✐✈♥❧

✳❡♣✐❧✐❜② ♠✐✐❧❵❡❝❞ ♠✐♣t✈❞ q✐q❛ ❧r ❧❝♣✐✐①❧ ①③❡✐ ❧✐r✐ ②❡♥✐♥ ♠✐①❣❵ ♠✐①✇❡❣ ❡❵✈♥

✳GSM ✲ ③✐♥❧❡r❞ ③✐①❧❡❧q❞ ③①❡②✇③❞ ③❦①r♥ ③❡❣✐❤❛❛ ③✇q❡r ❞✐♣②❞ ❞♥❡①③❞

❞②✇ ①③❡✐❞ ❧❝❡♥❞ ❵❡❞② ✱❝❛❧❛ ①③q ❛③❦ ❧❝❡♥❛✮ ③❡✐②r♥ ❝❡❵♥ ③❡t✇③❞ ♠✐❜✐✈♥ ❡♣❵

✲❵❧” ♠✐♣t✈❛ ③❡②♥③②♥② GSM ③❡③②①❧ ✉❡①t❧ ❡❧✐t❵ ③❡❧❡❦✐ ③❡t✇③❞❞ ✳✭❞t✐✇③❧

♦t❡✈✮ GSM ❧② ②❧❣❞ ♦t❡✈❞ ❧r r❡❝✐ ✐❡❧❜ ❛③❦ ③t✇③❞ ♠✐①❵③♥ ❡♣❵ ③✐②❵① ✳“♠✐①✐❛②

①tq♥ ③②①❡❝❞ ✱❝❛❧❛ ①③q ❛③❦ ③t✇③❞❧ ❡❢❞ ❞t✇③❞❞ ③❵ ♠✐①t②♥ ❡♣❵ ✳✭A5/2 ♠②❛

❧r ❞✐♣②♥ ③❡❣t ❥❡③❛ ❞♣t✈❞❞ ❣③t♥ ③❵ ③①❢❣❵♥❡ ③♣t✈❡♥ ❞❣✐② ❧② ③❡✐♣②✐❧✐♥ ③❡①②r

①③❡✐ ✇❢❣❞ ♦t❡✈❞ ❧r ①③❡✐ ③❛❦①❡♥ ❞t✇③❞❧ ❞t✇③❞❞ ③❵ ♠✐❛✐❣①♥ ❡♣❵ ✱❢❵ ✳✐②✐❵ ❛②❣♥

GSM ③❡③②① ❧② ♠✐❧❡✇❡❤❡①t❞ ❧r ③❡②❝❣ ③❡✐❛✐❤✇❵ ③❡t✇③❞ ♠✐①❵③♥ ❡♣❵ ✳A5/1 —

③❡t✇③❞❞ ✳A5/3 — ❞②❝❣❡ ❞✇❢❣ ①③❡✐❞ ❞♣t✈❞❛ ❡❵ A5/1 ❞✇❢❣❞ ❞♣t✈❞❛ ③❡②♥③②♥❞

③❡t✇③❞❞ ✳GPRS — ✭✐✈❣❡ ♠✐③② ①❡❝✮ ♠✐♣❡③♣❞ ③②① ❝❜♣❦ ♠❜ ③❡❣✐❧✈♥ ♠✐❧❡✇❡❤❡①t❞ ❧r

♠③✐①❡❜❧❵❛ ❥♥❡③ ♦❡t❧❤❞ ①②❵❦ ③❡❣✐❧✈♥ ♦❞❡ ✱GSM ❧② ♠✐❧❡✇❡❤❡①t❛ ♠✐♥❜t ③❡❧✈♣♥

♦❞ ③❡✐❛✐❤✇❵❞ ③❡t✇③❞❞② ②✐❜❝❞❧ ②✐ ✳③②①❛ ②❡♥✐②❛ ❡♣♣✐❵ ♠③✐①❡❜❧❵❞ ♠❵ ♠❜ ✱A5/2

③♣♥ ❧r ②❧❣ ♠③✐①❡❜❧❵❛ ❥♥❡③ ♦❡t❧❤❞ ①②❵❦ ♠③❡❵ ❧✐rt❞❧ ♦③✐♣ ♦❦❧❡ ✱♠✐❧❡✇❡❤❡①t❞ ❧r

③t✐✇③❧ ③❡♥✐❵③♥ ③❡t✇③❞❞ ✱❧②♥❧ ✳①③❡✐ ✇❢❣ ♠③✐①❡❜❧❵❛ ③❡②♥③②♥❞ ③❡③②① s❡✇③❧

GSM ❧r ③❡♥❝❡✇ ③❡t✇③❞❧ ❝❡❜✐♣❛ ✳A5/1 ❧r ❞t✇③❞ ③①❢r❛ A5/3✲❛ ③❡②♥③②♥❞ ③❡③②①

❧② ♠✐❦❡①❵ ♠✐t✈① ❧②♥❧ ❡♥❦✮ ❧r❡t❛ ❞❜②❞❧ ❝❡❵♥ ③❡②✇❞ ③❡❧❡❝❜ r❝✐♥ ③❡✐❡♥❦ ❡②①❝②

✳❞❣✐②❞ ♦❦❡③ ③r✐❝✐ ③❵ ③❡②①❡❝ ❵❧❡ ③❡✐❤✇①t ❝❡❵♥ ❡♣❧② ③❡t✇③❞❞ ✱✭r❡❝✐ ✐❡❧❜ ❛③❦

③❡❵✐❜②❧ ③❡❝✐♥r ❡✐❞✐② ❥❦ ③❡t✇③❞❞♥ ✇❧❣ ✇❢❣❧ ♦③✐♣ ❝✈✐❦ ♠✐①❵③♥ ❡♣❵ ✱❥❦❧ ①❛r♥

✱③❡❣✐②❧ ③❡③✐✈ ♦❡❜❦ ✱❞t✇③❞❞ ③❵ r✈❛❧ ♦③✐♣ ♠❞❛② ♠✐②✐❣①③ ①tq♥ ♠✐❵①♥ ❡♣❵ ✳❞❤✐❧✇

✳(SMS) r❝✐♥ ③❡r❝❡❞ ❧② ♦❦❡③ ✐❡♣✐②❡ ③❡❣✐② ③❛✐♣❜ ✱③❡❣✐② ③t✐❤❣

✐①❵♣✐❧ ❛❡②♥ ♠r ❞❢❢❞ ✐①❤q✐❜① ❧r ♠✐qq❡❛♥❞ s❤② ✐♣t✈❛ ③✇q❡r ③✐②✐❧②❞ ❞♥❡①③❞

③❵ ①✐③q❞❧ ③♣♥ ❧r ①✐❝q✲✐③❧❛ ♦t❡❵❛ ♠✐❢❢❡♥ ①②❵ ✱(Linear-Feedback Shift Registers)
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③❡t✇③❞ ③①✐✈✐ ❥①❡✈❧ ♠✐♣③❡♥ ♠✐❦①r②♥ ❧② ♠❣❡❦ ③❵ ♠✐♥③❡① ❡♣❵ ✳♠✐❵✈♥♣ ♠❞ ❡❛ ❛✈♥❞

♠✐♣③❡♥ ♠✐❦①r②♥ ❧② ♠❣❡❦❛ ✳❡❧❵❦ ♠✐①❤q✐❜① ❧r ♠✐qq❡❛♥❞ ♠✐♣t✈ ❧r ✭❞✐✈❧①❡✇✮ ♠❵③♥

❞❵✈❡③❦ ✳♠✐①❤q✐❜①❞ ❧② ❞①✐❝q ❵❧❞ ❞❢❢❞❞ ❧② ❞①③q❞❞ ❤✇t❵♥ ✇❧❣ ❧r ③❡✈t❧

❧② ♠✐✐♥✐♣t❞ ♠✐❦①r❞ ♦✐❛❧ ♦t❡✈❞ ❧② ❤❧t❞ ✐❤✐❛ ♦✐❛ ①③❡✐ ✇❢❣ ♠❵③♥ ❧❛✇❧ ♦③✐♣ ❥❦♥

①③❡✐❞ ♦t❡✈❞ ❧r ♠✐♣③❡♥ ♠✐❦①r②♥❛ ③②♥③②♥❞ ❞t✇③❞❞ ③❵ ♠✐♥✐❜❝♥ ❡♣❵ ✳♠✐①❤q✐❜①❞

❡♣❵ ✱sq❡♣❛ ✳♠❵③♥❛ ♠✐✐③② ✐t ❧② ✐③❡r♥②♥ ①❡t✐② ♠✐❜✐②♥❡ ✱A5/1 — GSM ❧② ✇❢❣

✲❡❣❞ ✳R2✲❦ r❡❝✐❞ A5/1 ❧② ❞❢❢❞❞ ①❤q✐❜①❛ ♦❦ ✐♣t❧ ❡❣❡❡❝ ❵❧② ③❡②❧❡❣ ②❡❧②❛ ♠✐♣✐❣❛♥

✳♦❡❛②❣❛ ③❣✇❧ ♠✐❦✐①✈ ♠✐♣t✈ ✐♣♣❦③♥② ②❝❣ ♦❡✐①❤✐①✇ ❧r ③❡❢♥❡① ❡♣t②❣② ③❡②❝❣❞ ③❡②❧

✿❞❦ ❝r ❞❜②❞❧ ♠✐♣③✐♣ ❡✐❞ ❵❧② ♠✐r❡✈✐❛ ❞❜✐②♥ A5/1 ❧r ♠✐❜✐✈♥ ❡♣❵② ❞②❝❣❞ ❞t✇③❞❞

✱✭❞❣✐② ❧② r❡❝✐ ✐❡❧❜ ❛③❦ ❧② ③❡✐♣② 9.2 ❝r 6.9✲❦✮ r❝✐♥ ③❡①❜q♥ 2000 ❝r 1500✲❦ ♦③♣❞❛

❧② ❞❣❧✈❞ ①❡r✐② ♠r ✱✐②✐❵ ❛②❣♥ ❧r ③❡✇❝ ①tq♥ ❝r ③❡✐♣② ③❡①②r ③❣✇❡❧ ❞t✇③❞❞

③❡♥❦❞ ③❵ ✇tq❧ ❧❡❦✐② GSM✲❛ r❡❝✐ ✐❡❧❜ ❛③❦❧ ①❡✇♥ ♠✐t②❡❣ ❡♣❵ ✱s❡q❛❧ ✳91✪ ❥①r❛

❞t✇③❞❞ ❥❦❡ ✱❞❣✐② ③❡✇❝ 4 ❝r 3✲❦ ❧② ①③q❞ ❛③❦ ❥❡③♥ r❡❝✐ ✐❡❧❜ ❛③❦ ❧② ③②①❝♣❞

✳❝❛❧❛ ①③q ❛③❦ ③t✇③❞❧ ③❦t❡❞ ❡♣❧②

♠✐♥q❣ ♠✐❣✐❦❡♥ ❡♣❵ ✱❤①t❛ ✳♠✐♣t✈ ❧r ③❡✐①♣❜ ③❡t✇③❞❧ ③q❣✐✐③♥ ③✐r✐❛①❞ ❞♥❡①③❞

❧❵❦ ♦t❡✈❧ ♠✐q❣✐✐③♥ ✱③❡✐①♣❜ ③❡t✇③❞❛ ✳③✐❤✐❧♣❵❤t✐①✇ ♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞ ❧r

③①❤♥ ✳③❡✐✈✇♣❡t❞ ❛❣①♥♥ ✐❵①✇❵ ♦t❡❵❛ ③①❣❛♣❞ “❞①❡❣② ❞❵qt❡✇” ❵✐❞② ❞✐✈✇♣❡t

❞t✇③❞❧ ✭③✐♣❡✈✐✇❡✮ ①③❡✐❛ ❞❤❡②t ❞♥❜❡❝ ✳♦❡③♣ ❥①r ❧r ❡❢ ❞✐✈✇♣❡t ❥❡t❞❧ ❵✐❞ s✇❡③❞

✲♣❡t❧ ♠✐✐①②t❵❞ ①❡✇♥❞ ✐❦①r❞ ❧❦ ❧r s✇❡③❞ ①❛❡r ❡❢ ❞t✇③❞❛ ✳❞✈♥♥ ②❡t✐❣ ❵✐❞ ③✐①♣❜

❥①r❧ ❧✐❛❡♥ ❵❡❞ ♠❞ ✇❡❝❛❧ ③♣♥ ❧r ❡❧❵ ♠✐❦①r♥ ❝❣❵ ❧❦ ❧r ❞✐✈✇♣❡t❞ ③❵ ❧✐rt♥❡ ✱❞✐✈✇

✲❵❞ ③❡❵✈❡③❞ ❧❦ ③❵ ❞❧❛❤❛ ①❡♥②❧ ❵✐❞ ③✐①♣❜ ❞t✇③❞❧ ③tq❡♣ ③✐♣❡✈✐✇ ❞♥❜❡❝ ✳♦❡③♣❞

③❵ ③❡♣❛❧ ♦③✐♣✮ ❞❵✈❡③❧ ❧✐❛❡♥❞ ①❡✇♥ ❥①r ①❡♥②❧ ❞❵✈❡③ ❧❦ ❝✐❧❡ ✱❞✐✈✇♣❡t❞ ❧② ③❡✐①②t

✳❞❧❛❤❛ ❡③❵✐✈♥ ✐❝✐ ❧r ♦❡③♣❞ ❥①r❧ ①❡✇♥ ❵❡✈♥❧ ♦③✐♣ ③r❦ ✳✭❞✈♥♥ ②❡t✐❣ ③①❢r❛ ❞❧❛❤❞

③❵✐✈♥ ①♥❡❧❦ ✱❡❧❵ ③❡✐♣❡✈✐✇ ③❡♥❦q ♦✐❛ ❞①②t ③❵✐✈♥❛ ③✇q❡r ♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞

♠❜ ❧❛❵ ✱❞❧❛❤❛ ❞✐✈✇♣❡t❞ ③❡❵✈❡③ ❧❦ ③①✐♥②♥ ③✐③❡r♥②♥ ♦❤✇ ♦❡①❦❢ ②①❝♣ ♦❞❛ ③❡♥❦q

②❡t✐❣ ①②❵♥ ①③❡✐ ❥❡①❵ ♦❛❡♥❦❡✮ ❞✈♥♥ ②❡t✐❣♥ ③✐③❡r♥②♥ ❥❡♥♣ ②①❝♣❞ ❛❡②✐❣❞ ♦♥❢
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♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞❧ ①③❡✐❛ ❞r❡❝✐❞ ❞❤✐②❞ ③❵ ❜✐✈❞ ♦♥❧❞ ✱1980 ③♣②❛ ✳✭❞❧❛❤❛

✇❧❣ ❞q❦♥ ❞❵❧❛❤ ❧❦② ❥❦ ✱③❡♣❤✇ ③❡❵❧❛❤ ❞❛①❞ ❧r ③qq❡❛♥ ❡③❤✐② ✳③✐❤✐❧♣❵❤t✐①✇

✲✐r❛✈ ③❤✐② ❞r✈❡❞ 2003 ③♣②❛ ♠❞❛❡ ✱♠✐❛① ♠✐①❡t✐② ❡❜✈❡❞ ✱❢❵♥ ✳❞✐✈✇♣❡t❞ ✐❦①r♥ ♦❤✇

♦♥❢❡ ✱♦♥❧❞ ❧② ③❡❵❧❛❤❞ ✐♣❡♥❞ ♠❡✇♥❛ ❞❧❡❝❜ ③❣❵ ❞❧❛❤❛ ②♥③②❞❧ ③❧❜❡q♥❞ ✱③②✇❞

✳✭♦❡①❦❢ ③❡♥❦ ❞③❡❵ ①❡❛r✮ ♦♥❧❞ ❧② ❡③❤✐② ③♥❡r❧ ♠✐③② ✐t ♦❤✇ ③❡✐❞❧ ♦r❤♣ ❞③✈✐①

❧❧❡❦❞ ✱③✐❤✐❧♣❵❤t✐①✇ ♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞❧ ✐❧❧❦ ❧❝❡♥ ♠✐①✐❝❜♥ ❡♣❵ ✱❡♣③❝❡❛r❛

✐❵①✇❵ s①❜ ✿②❝❣ ❜②❡♥ ❧r qq❡❛♥ ❧❝❡♥❞ ✳♠✐✐❤①t ♠✐①✇♥❦ ③❡♥✐✐✇❞ ③❡♥❦q❞ ❧❦ ③❵

✐①❡❤♣✐❛♥❡✇ ❣❡③✐♣ ③①❢r❛ ✳✐❡❛❣ ❛✈♥❛ ❞✐❡❧③ s①❜❛ ♠✐❧❡❧q♥ ❧② ③❡❣③t③❞ ❡❛② ✱❛✈♥ ❧r❛

③①❢r❛ ❞✐✈✇♣❡t ❥❡t❞❧ ♦③✐♣ ♠①❡❛r ♠✐❦①r❞ ①tq♥ ❧r ♦❡✐❧r ♠q❣ ♠✐❣✐❦❡♥ ❡♣❵ ✱✇✐✐❡❝♥

①tq♥ ❧r ♦❡③❣③ ♠q❣ ♠✐❣✐❦❡♥ ❡♣❵ ❞❢ ♦❡✐❧r ♠q❣♥ ✳♦❡①❦❢✴♦♥❢ ③❡①❡♥③ ③t❧❣❞ ③♥❦q

③❡❜❞♣③❞ ❧r ③❡✐r❛❤ ③❡❣♣❞ ①tq♥ ❧② ③tq❡③ ③❣③ ✳s①❜❛ ♠✐②❡①❝❞ ♠✐✐❡❛❣❞ ♠✐❛✈♥❞

❡❧❵ ♠✐♥q❣② ②✐❜❝❞❧ ②✐ ✳❡❧② ❞✈✐①❞ ♦♥❢ ❧r ♦❡③❣③ ♠q❣ ♠✐❣✐❦❡♥ ❡♣❵ ✱♠③✐①❡❜❧❵❞

❧② ③❡②❝❣ ③❡❵q①❜ ♠✐①❵③♥ ❡♣❵ ✱sq❡♣❛ ✳③❡✐❵①✇❵❞ ③❡✐✈✇♣❡t❞ ❧② r✐①❦♥❞ ❛❡①❧ ♠✐♣❡❦♣

♦♥❢ ③①❡♥③ ✭♦❤✇ ①❡❤✇t❛✮ ❞✈✐①❞ ♦♥❢ ①❡t✐②❧ ❞❤✐② ✱①③✐❞ ♦✐❛ ✱③❡❧❧❡❦❞ ✱③❡♥✐✐✇ ③❡♥❦q

③t❧❣❞❧ ③②✇❞ ✐r❛✈ ③♥❦q ❧② ③❡♥❵③❞ ♠✐①❵③♥ ❡♣❵ ♦❦ ❡♥❦ ✳①③❡✐ ❥❡①❵ ♠✐❝✇♥✲❝❡❛✐r

✳r❝✐♥✴♦❡①❦❢✴♦♥❢ ③❡①❡♥③

✐

Technion - Computer Science Department - Ph.D. Thesis  PHD-2006-04 - 2006


