
Cryptanalysis of Dedicated
Cryptographic Hash Functions

Markku-Juhani Olavi Saarinen

Technical Report

RHUL–MA–2009–22

10 November 2009

Department of Mathematics

Royal Holloway, University of London

Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Cryptanalysis of

Dedicated Cryptographic Hash Functions

by

Markku-Juhani Olavi Saarinen

Thesis submitted to The University of London

for the degree of Doctor of Philosophy.

Department of Mathematics

Royal Holloway, University of London

2009

Declaration

These doctoral studies were conducted under the supervision of Professor Keith Mar-

tin. The work presented in this thesis is the result of original research carried out

by myself, in collaboration with others, whilst enrolled in the Department of Math-

ematics as a candidate for the degree of Doctor of Philosophy. This work has not

been submitted for any other degree or award in any other university or educational

establishment.

Markku-Juhani O. Saarinen

Abstract

In this thesis we study the security of a number of dedicated cryptographic hash

functions against cryptanalytic attacks.

We begin with an introduction to what cryptographic hash functions are and

what they are used for. This is followed by strict definitions of the security properties

often required from cryptographic hash functions.

FSB hashes are a class of hash functions derived from a coding theory problem.

We attack FSB by modeling the compression function of the hash by a matrix in

GF(2). We show that collisions and preimages can easily be found in FSB with the

proposed security parameters.

We describe a meet-in-the-middle attack against the FORK-256 hash function.

The attack requires 2112.8 operations to find a collision, which is a 38000-fold im-

provement over the expected 2128 operations.

We then present a method for finding slid pairs for the compression function

of SHA-1; pairs of inputs and messages that produce closely related outputs in the

compression function. We also cryptanalyse two block ciphers based on the com-

pression function of MD5, MDC-MD5 and the Kaliski-Robshaw “Crab” encryption

algorithm.

VSH is a hash function based on problems in number theory that are believed to

be hard. The original proposal only claims collision resistance; we demonstrate that

VSH does not meet the other hash function requirements of preimage resistance,

one-wayness, and collision resistance of truncated variants.

To explore more general cryptanalytic attacks, we discuss the d-Monomial test, a

statistical test that has been found to be effective in distinguishing iterated Boolean

circuits from real random functions. The test is applied to the SHA and MD5 hash

functions.

2

3

We present a new hash function proposal, LASH, and its initial cryptanalysis.

The LASH design is based on a simple underlying primitive, and some of its security

can be shown to be related to lattice problems.

To the Memory of

Erkki Pale (6 September 1906 – 7 December 2003)

Acknowledgements

It goes without saying that I am forever grateful for the support of my family and

friends, and some total strangers, for the fact that I am able to do what I love to do,

cryptanalysis.

I am also grateful for the financial support of Helsingin Sanomat Foundation and

the Academy of Finland. My employers and colleagues in Finland, Spain and in the

Middle East admirably tolerated my academic ambitions and absences. You know

who you are. Thank you.

Much of this thesis wouldn’t exist without the encouragement and help of my

supervisor, Keith Martin. Kaisa Nyberg of Nokia and Helsinki University of Technol-

ogy taught me much of what I know about cryptology. Anne Canteaut and Nicolas

Sendrier kindly hosted me in INRIA in June 2006. Kenny Paterson encouraged me to

publish my results on VSH, which I originally considered rather trivial. LASH orig-

inated from my coauthors Bentahar, Page, Silverman, and Smart. I just did some

security analysis and proposed the final choice of security parameters. Helsinki

University of Technology generously accommodated me during the final writing up

stages of this thesis.

This work in dedicated to the memory of Maj. Erkki Pale (6 September 1906,

Valkeala – 7 December 2003, Helsinki), who very successfully led the Finnish code-

breaking operations during the wars of 1939 – 1944 under Col. Reino Hallamaa. I

never had the privilege to meet him in person, but I feel that I must do my little bit

to honor a man whose astonishing war-time work is virtually unknown in the cryp-

tographic community outside a very small circle of enthusiasts and former signals

intelligence professionals in Finland [82].

5

Table of contents

ABSTRACT 2

ACKNOWLEDGEMENTS 5

NOTATION 10

1 INTRODUCTION 11
1.1 Basic Uses of Cryptographic Hash Functions 11

1.1.1 Password Storage . 12
1.1.2 Hash Functions in Communication 12
1.1.3 Digital Signatures . 13

1.2 Publication History and Birth of this Thesis 14
1.3 Significance: Relation to the SHA-3 Project 15

2 HASH FUNCTION FUNDAMENTALS 16
2.1 Basic Definition of a Hash Function 16
2.2 Efficiency . 17
2.3 Preimage Resistance . 19
2.4 Second Preimage Resistance . 19
2.5 Collision Resistance . 20

2.5.1 Collision Resistance of Iterated Hash Functions 22
2.5.2 An Algorithm for Finding Collisions 23
2.5.3 Reducing the Range . 24
2.5.4 Multicollisions in Iterated Hash Functions 25

2.6 Pseudorandomness . 26
2.7 Relationships between different security properties 27
2.8 Further Security Properties of Hash Functions 28

3 SYNDROME BASED HASHES 30
3.1 Introduction . 30
3.2 The FSB Compression Function . 31
3.3 Linearization Attack . 32

3.3.1 The Selection of Alphabet in a Preimage Attack 34
3.3.2 Invertibility of Random Binary Matrices 34

3.4 Finding Collisions When r = 2w . 35

6

TABLE OF CONTENTS 7

3.5 Larger Alphabets . 36
3.5.1 Preimage Search . 37
3.5.2 Collision Search . 38

3.6 A Collision and Preimage Example 38
3.7 Conclusions . 41

4 COLLISION SEARCH IN FORK-256 42
4.1 Introduction . 42
4.2 Description of New FORK-256 . 43
4.3 Observations . 47
4.4 A Collision Attack . 48

4.4.1 First Phase . 49
4.4.2 Second Phase . 50
4.4.3 Runtime Analysis . 50

4.5 Further Work . 50
4.6 Conclusion . 51

5 HASH-BASED BLOCK CIPHERS 52
5.1 Introduction . 52
5.2 The SHACAL Block Ciphers . 53

5.2.1 Sliding SHA-1 and SHACAL-1 53
5.2.2 Linear Relationships in Messages and Hash Results 56
5.2.3 An Algorithm for Finding Slid Pairs 56
5.2.4 A Slid Pair for SHA-1 . 59

5.3 Block ciphers based on MD5 . 60
5.3.1 Message Digest Cipher . 62
5.3.2 The Kaliski-Robshaw Cipher 62

5.4 Conclusions . 63

6 VSH, THE VERY SMOOTH HASH 64
6.1 Introduction . 64
6.2 The VSH Algorithm . 65
6.3 Preimage resistance . 66
6.4 One-wayness (of the “Cubing” Variant) 68
6.5 Collision Search for Truncated VSH Variants 71

6.5.1 Partial Collision Attacks . 72
6.5.2 Attack on VSH Truncated to Least Significant 128 bits 72
6.5.3 Overall complexity of attack 74

6.6 Other features of VSH . 75
6.7 Conclusions . 75

7 STATISTICAL-ALGEBRAIC TESTING 76
7.1 Preliminaries . 77

7.1.1 Properties of the Algebraic Normal Form 78
7.1.2 Computing the ANF . 79

TABLE OF CONTENTS 8

7.2 The d-Monomial Tests . 80
7.3 Gate Complexity and the d-Monomial Test 81

7.3.1 Distinguishing a random function from a complex function . . 83
7.4 Statistical Tests of MD5 and SHA-1 84

7.4.1 d-Monomial Test Results . 85
7.5 Conclusions . 85

8 LASH – A HASH FUNCTION PROPOSAL 90
8.1 Description of LASH . 90

8.1.1 Pseudorandom Sequence . 91
8.1.2 Compression Function . 91
8.1.3 Hashing the message . 92

8.2 Design Overview . 93
8.2.1 Overall Design Goals . 93
8.2.2 Selection of Function fH . 94
8.2.3 The Compression Function 95
8.2.4 Final Transform . 96

8.3 Security Considerations . 96
8.3.1 Differential Cryptanalysis . 97
8.3.2 Linear Cryptanalysis . 97
8.3.3 Generalized Birthday Attack 97
8.3.4 A Hybrid Attack . 98

8.4 Conclusions and External Analysis 99

9 CONCLUSIONS 101

BIBLIOGRAPHY 103

List of Figures

2.1 Iterated hash function. 19
2.2 A hash cycle. 24

4.1 Overall structure of four branches of FORK-256. 43
4.2 The new FORK-256 step iteration. 47

5.1 SHACAL-1. 57
5.2 The MD5 iteration. 61

7.1 A Boolean function with gate complexity 7. 82
7.2 Results of d-Monomial tests on MD5 in DRBG Hash mode. X-axis

represents the number of rounds and Y-axis the P-value as − log2(1−P). 87
7.3 Results of d-Monomial tests on SHA-1 in DRBG Hash mode. X-axis

represents the number of rounds and Y-axis the P-value as − log2(1−P). 88

9

Notation

a[i] C-like vectors: a indexed by i.

x ← y Assigning y to the variable x.

|S| Number of elements in the set S.

x ⊕ y Bitwise exclusive-or (xor) between x and y.
⊕y

i=1 xi Equal to x0 ⊕ x1 ⊕ · · · ⊕ xy.

x ∧ y Logical bitwise and between x and y.

x ∨ y Logical bitwise or between x and y.

¬ x Logical complement of x, limited to word size.

x | y Concatenation of bit strings x and y.

x ⊞ y Equal to (x + y) mod 232.

x ⊟ y Equal to (x − y) mod 232.

x << y Left shift of x by y positions.

x >> y Right shift of x by y positions, discarding the least significant bits.

x ≪ y Circular left shift of 32-bit word x by y bits.

x ≫ y Circular right shift of 32-bit word x by y bits.
(

a
n

)

Jacobi symbol of a modulo n.

x ≈ y Approximate equivalence of x and y.

x ¿ y Expression x is insignificant when compared to y.

MT Transpose of matrix M.

10

CHAPTER 1

INTRODUCTION

Hash functions play an important role in many areas of computer science, especially

in sorting, searching, and cryptology. All of these roles require different algorithmic

properties; a hash function intended for a search algorithm does not necessarily

have the properties required in cryptology.

This thesis is about dedicated cryptographic hash functions, rather than hash

functions in general. Dedicated hash functions are defined by deterministic algo-

rithms that have been specifically designed for cryptographic purposes.

Security is the most essential feature of a cryptographic hash function. A se-

cure hash function is resistant to the techniques of cryptanalysis, the art of breaking

cryptosystems.

1.1 Basic Uses of Cryptographic Hash Functions

Hash functions have found many uses as building blocks of more complex crypto-

graphic mechanisms and protocols. Most security engineers see a hash function as

a convenient and readily available random “scrambling” function that takes in an

arbitrary block of data and returns a fixed-size bit string.

Hash functions have been standardized for use as a component of digital signa-

ture algorithms, integrity checking, and pseudorandom bit generators (key genera-

tors).

A common use of hash functions is to compute and verify “fingerprints” of data

files. These can be used to uniquely identify messages and to detect transmission

errors, changes and even intentional malicious manipulation. In Linux, command-

line tools for forming secure fingerprints of messages are usually readily available.

Computing a SHA-1 [77] hash of the message "Hello" is easy:

$ echo "Hello" > hello.txt

11

CHAPTER 1. INTRODUCTION 12

$ sha1sum hello.txt

1d229271928d3f9e2bb0375bd6ce5db6c6d348d9 hello.txt

The hexadecimal string 1d229271928d3f9e2bb0375bd6ce5db6c6d348d9 is the

160-bit result of the hash function. If the hash function is secure, it should be

computationally infeasible to find another message that produces the same hash

result.

1.1.1 Password Storage

My personal interest in hash functions was sparked in 1993 when, as a teenager, I

discovered that a hash function is used to store passwords in UNIX-like systems. I

wanted to find faster ways to crack passwords, which got me interested in the inner

workings of the crypt(3) hash function.

In UNIX-like systems, such as Linux and BSD, passwords are stored in files

/etc/passwd or /etc/shadow. These files contain lines such as:

root:w1njb/hWox7tc:0:0:System Administrator:/root:/bin/sh

Here “w1njb/hWox7tc” is the hash of the root password. During login, the

hash of the entered password is computed and compared to the hash stored in the

database to determine whether to grant access or not.

By mid-1970s Robert Morris (Bell Labs) and others had realised that if pass-

words are stored as they are entered, in plaintext form, a compromise of a root

(administrator) - level user account on one system would lead to compromise of

other systems. Encryption of passwords is not really a solution, as an administrator

may obtain the key and decrypt the passwords that way. The current practice of

using a one-way hash function has proved to be a be a highly secure and practical

solution [73].

1.1.2 Hash Functions in Communication

Hash functions can also be used to construct Message Authentication Codes (MACs).

In this role, a hash function is used to combine a secret authentication key with the

message to produce a MAC.

CHAPTER 1. INTRODUCTION 13

Secure communication protocols such as SSH [117, 118, 119, 120], TLS and

SSL [34] use the hash-based HMAC [9] to deter attempts to manipulate traffic in

transit. These protocols also use hashes for key generation.

1.1.3 Digital Signatures

Most digital signature schemes require that a hash function is used to produce a

condensed version of the data, called a message digest. We will briefly describe

the use of the Secure Hash Algorithm (SHA) in the U.S. Digital Signature Standard

(DSS) [77, 78, 79].

Digital signature mechanisms generally consist of three components; key gener-

ation, signature generation, and signature verification. Secure hashes are used by

all of these components in DSS.

1. In key generation, a set of secret and public parameters are generated with a

pseudorandom bit generator and various number-theoretic algorithms (such

as primality testing). The pseudorandom bit generator uses a hash function to

mix the input entropy and to produce random bits. This necessitates the re-

quirements of pseudorandomness and preimage resistance discussed in Chap-

ter 2.

2. When creating a signature, a message digest is first computed. After appropri-

ate padding, the actual Digital Signature Algorithm is applied to the message

digest, resulting in a signature. It is vital that finding two messages that pro-

duce the same digest is hard, as otherwise the same signature would authen-

ticate both. This necessitates the requirement of collision resistance discussed

in Chapter 2.

3. When verifying the validity of a signature, the message digest must also be

computed. A number-theoretic transform using the signer’s public key param-

eters are then used to verify the signature.

The DSS standard text [78] specifies how the Secure Hash Algorithm [77, 79] is

used in all of these roles.

CHAPTER 1. INTRODUCTION 14

1.2 Publication History and Birth of this Thesis

The main body of this thesis consists of a number of contributions to the cryptanal-

ysis of hash functions, and material in each chapter (apart from the introduction)

has been published separately in scientific workshops and conferences. It therefore

makes sense to record the birth history of each chapter separately.

In this thesis we introduce cryptanalytic results on the Fast Syndrome Based

Hash [4, 38], FORK-256 [53], SHACAL [49, 50], VSH [22] and LASH [11] hash

functions.

Material in Chapter 3 originated during my visit to INRIA Rocquencourt in June

2006, but took a further year to reach maturity, and eventually publication as [100].

I am grateful to my INRIA hosts Anne Canteaut and Nicolas Sendrier.

Chapter 4 came about in July 2007 as I was simply looking for hash functions to

break. The same analysis has also been published as [101]. Thanks to Keith Martin

for proofreading it and suggesting improvements.

Chapter 5 is the product of a long process, and some of the material was orig-

inally presented in the rump session of Eurocrypt 2002 and eventually in more

complete form in FSE 2003 [96]. The material has been further adapted to this

text. Thanks to my (then) NOKIA Colleague and Helsinki University of Technology

supervisor, Kaisa Nyberg.

Chapter 6 would not exist without the insistence of Kenny Paterson that publi-

cation of relatively simple results on VSH were important for “real world” security

engineers. My thesis supervisor Keith Martin greatly helped with the quality, as did

Daniel J. Bernstein, who suggested including worked-out examples of the attacks.

The results have been published as [99].

I am grateful for the encouragement of Keith Martin when I decided to work on

the relatively vague ideas that led to the study of d-Monomial tests that resulted in

the material in Chapter 7. Portions of the material, in the context of stream cipher

analysis, have been published as [97, 98].

For material in Chapter 8, which specifies and cryptanalyses LASH, I am grateful

to LASH co-designers K. Bentahar, D. Page, J.H. Silverman and N. Smart. The work

was initiated when Daniel Page visited Royal Holloway to give a presentation about

an initial version of LASH in December 2005. I returned the favour in March 2006

CHAPTER 1. INTRODUCTION 15

by visiting Bristol with a presentation about my cryptanalysis of LASH. Security

parameters were modified, a new analysis section attached to the paper and LASH

finally reached publication in [11]. Compared to that work, I have removed the

material that I did not contribute to, namely the lattice-based security proofs and

the performance analysis.

1.3 Significance: Relation to the SHA-3 Project

Serious security weaknesses were found in 2005 in the U.S. Standard Secure Hash

Algorithm (SHA) by a group of Chinese researchers led by X. Wang [112]. As the

security of most digital signatures and therefore the security of e-commerce and e-

government relies on SHA, the U.S. National Institute of Standards and Technology

(NIST) responded by initiating a project to find a secure replacement to the current

SHA. The new algorithm will be designated SHA-3 [80].

The SHA-3 selection project is organised as an international competition. A

call for candidate algorithms was issued and by the October 31, 2008 deadline,

56 algorithms wassubmitted, of which 51 proceeded to the “first round”. Out of

these 51, fourteen were selected to the “second round” in July 2009. Seventeen of

the original proposals have already been conceded broken or withdrawn by their

designers as of October 2009 [81].

Even though the analysis contained in this thesis mostly predates these signif-

icant events, the results contained in this thesis may have an effect on the final

selection of SHA-3.

CHAPTER 2

HASH FUNCTION FUNDAMENTALS

In this chapter we provide a technical description of hash functions in general –

what they are, and what constitutes a cryptographically sound hash function.

Section 2.1 contains an overview of hash function properties, and explains the

philosophy behind our technical definitions for various hash function properties.

We then discuss these properties and their relationships in detail in the subsequent

sections 2.2 – 2.7.

There are security properties of hash functions which are outside the scope of

this thesis. These are summarised in Section 2.8.

2.1 Basic Definition of a Hash Function

There are several properties that may be required in a hash function, depending on

application. In its most basic form, a hash function can be defined as follows.

Definition 2.1. A hash function h is an algorithm that maps input from an arbitrary

finite number of bits to n bits:

h : {0, 1}∗ → {0, 1}n. (2.1)

We shall shortly describe properties that are often associated with cryptographic

hash functions. These properties are not necessarily required in non-cryptographic

applications of hash functions, such as sorting and searching.

Efficiency. Given any input x, the hash result h(x) can be computed efficiently

and with negligible amount of memory.

Preimage resistance. Given an output y, it is computationally hard to find

any input x that satisfies h(x) = y.

16

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 17

Second preimage resistance. Given x, it is computationally hard to find x′

that satisfies h(x) = h(x′) with x 6= x′.

Collision resistance. It is computationally hard to find x and x′, x 6= x′, that

satisfy h(x) = h(x′).

Pseudorandomness. A hash function should closely resemble a random func-

tion.

Many reference works and textbooks in cryptology contain definitions of these

properties that are based on a somewhat vague notion of computational infeasibility.

Apart from the computational efficiency of a hash function itself, other properties of

a hash function cannot be rigorously proved for any specific hash function without

restrictive assumptions about the computational model used.

The properties of preimage resistance, collision resistance, and pseudorandom-

ness exist “until proven otherwise”. For the purposes of this thesis we therefore give

definitions in the negative; we define what it means for a hash function to not have

these properties. These definitions can also be viewed as definitions of a successful

cryptanalysis of a hash function – what it means for a hash function to be broken.

For a broader discussion about hash function properties we refer to Rogaway and

Shrimpton [91, 92].

2.2 Efficiency

Most practical hash functions are iterated hash functions, which means that input is

sliced into shorter blocks that are processed iteratively using a compression function

that has fixed input and output sizes.

Definition 2.2 (Iterated Hash Function). Let f : {0, 1}m+b → {0, 1}m be a com-

pression function that takes in an m-bit state and a b-bit input block to produce a

new m-bit state. To compute a hash of an n-bit input, it is recoded into b-bit blocks

B1, B2, · · ·B⌈n/b⌉. Starting with initialization vector IV0 we iterate

IVi = f(IVi−1 | Bi) for i = 1, 2, · · · , ⌈n/b⌉. (2.2)

The final IV⌈n/b⌉ is the hash result.

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 18

We note that a compression function is a (fixed input size) hash function. Hence

the construction given by Definition 2.2 can be used recursively, opening up oppor-

tunities to exploit computational parallelism available in modern CPUs. The MD6

hash function is an important recent example of this [90], although parallelism was

already considered by Damgård in his classic work [32].

Figure 2.1 illustrates the operation of an iterated hash function. The following

additional transformations may be used in iterated hash function constructions:

Padding and Recoding. The message input may be modified in some way for

the compression function. Typical recoding transformations include padding

(with the message length) and various key transformations.

Final Transformation. Not all of the internal state information of the hash

function needs to be returned as the hash function result. The final transfor-

mation may use the total message length as a parameter.

It seems that without padding or final transformation an iterated hash function

cannot be secure when b > 1. The following efficiency theorem follows directly

from the observation that the number of iterations is directly proportional to input

size and the amount of information transferred between iterations is limited by the

state size of the hash function, which is equal to m bits in Definition 2.2.

Theorem 2.1 (Linear Complexity of Iterated Hash Functions). The execution time t

of an iterated hash function with n-bit input is bound by t ≤ k(n + 1) for some fixed

value k.

Proof. The claim follows trivially from the observation that the number of blocks

to be processed by the compression function is ⌈n/b⌉ in Equation 2.2. Hence k

approximately represents the execution time required by the compression function

to process a single input bit.

Practical compression functions are deterministic and have a nearly constant

execution time for each input block.

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 19

2.3 Preimage Resistance

Preimage resistance is close to the intuitive notion of non-invertibility. If n > m, it

is obvious that a number of messages will produce the same hash.

Definition 2.3 (Preimage Resistance). Let R ⊆ {0, 1}m be any subset of possible

hash results whose individual members can be identified or generated in unit time t. A

hash function h is not preimage-resistant if an algorithm exists that given y, selected

at random from R, it finds a message x satisfying h(x) = y in significantly less than

|R| × t time.

If we choose R = {0, 1}m as the range, Definition 2.3 implies that search for an

inverse should require O(2m) time. Note that there is no requirement for a hash

function to be surjective; an inverse may simply not exist.

It is clear that preimage resistance is exceedingly difficult (if not impossible) to

prove in a general setting. However, hash functions are regularly broken and hence

proofs of particular hash functions not being preimage resistant are common. The

wording of Definition 2.3 reflects this.

The reason why we use R in Definition 2.3 is to imply that there should not be

any class of messages that is particularly easy to invert. An example is the RSA public

key operation with short exponents, which is easily invertible for short messages and

hence not fully preimage resistant without additional measures [51].

2.4 Second Preimage Resistance

Second-preimage resistance is a slightly stronger notion than preimage resistance.

Intuitively it means that it is difficult to find a message that produces the same hash

as another, known message.

IV 0 f f f f IV ⌈n/b⌉

B1 B2 B3 B⌈n/b⌉· · ·

Message to be hashed

Initial
Value

Hash
Result

Figure 2.1: Iterated hash function.

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 20

Definition 2.4 (Second preimage resistance.). Let D ⊆ {0, 1}n be any set of messages

whose individual members can be identified or generated in unit time t. A hash func-

tion h is not second preimage-resistant if an algorithm exists that given x, selected at

random from D, it finds a message x′, x 6= x′, satisfying h(x) = h(x′) in significantly

less than min(|D|, 2m) × t time.

Recall from Definition 2.2 that m is the size of the hash function result. Intu-

itively, second preimage resistance is very closely related to preimage resistance,

except that there is another message to help the preimage search.

First preimage resistance does not imply second preimage resistance. This can

be be shown as follows: Let h′ be a hash function derived from a hash function h

so that h′(x) = h(x ∨ 1); the least significant bit of the message is always set before

hash computation. The function h′ is not second preimage resistant as the second

message is always easy to find; h′(x) = h′(x ⊕ 1). However, h′ is as (first) preimage

resistant as h is since discarding source bits does not make a preimage search any

easier.

2.5 Collision Resistance

Collision resistance means that it is difficult to find two messages that produce the

same hash.

Definition 2.5. A hash function h is not collision resistant if an algorithm exists that

finds two messages x and x′ satisfying h(x) = h(x′) in less than O(2m/2) time.

The complexity given above, O(2m/2), is essentially the square root of the range

of the hash function. This bound is based on the Birthday Theorem [76]. 1

Theorem 2.2 (Birthday Theorem). Let p(r; l) denote the probability that when l ele-

ments are chosen at random from a set of r elements, all of the elements are distinct.

The probability function satisfies Equation 2.3:

lim
r→∞

p(r;
√

(2 ln 2)r) =
1

2
. (2.3)

1The Birthday Therem is often referred to as the Birthday Paradox, even though it is not actually a
paradox.

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 21

Since this technical formulation of the well-known Birthday Theorem is different

from the simple asymptotic statements contained in most textbooks and reference

works, we will give a proof for completeness.

Proof. Let L1, L2, L3, · · · be a sequence of elements where each Li is randomly cho-

sen from a set of r elements so that the sequence satisfies Li 6= Lj for all 1 ≤ j < i.

Clearly L1 can be chosen r ways, L2 from a set of r − 1 elements and more gener-

ally Li from a set of r − i + 1 elements. The total number of possible collision-free

sequences of length l is therefore given by
∏l−1

i=0 r − i. Since there are a total of

rl sequences of length l with members from a set of size r, the probability of no

collision occurring in a sequence is given by:

p(r; l) =
l−1
∏

i=1

(1 − i

r
). (2.4)

To approximate this equation for large r, we first note that by the binomial

theorem,

(1 − 1

r
)i =

i
∑

k=0

(

i

k

)

1

(−r)k
(2.5)

= 1 − i

r
+

i2 − i

2r2
− i3 − 3i2 + 2i

6r3
+ · · · . (2.6)

When r is large compared to i, say i < r2/3, the terms quickly vanish when k ≥ 2

and we may write (1 − i
r) ≈ (1 − 1

r)i. We arrive at the following approximation for

Equation 2.4, that is accurate when l ¿ r:

p(r; l) = (1 − 1

r
)

l(l−1)
2 . (2.7)

By taking logarithms on both sides and substituting p(r; l) = 1
2 , we obtain

ln
1

2
=

l(l − 1)

2
ln(1 − 1

r
). (2.8)

From the well-known series ln(1 − 1/x) = −∑∞
i=1 i−1x−i it can be seen that ln(1 −

1
r) ≈ −r−1 for large r. With this substitution and by solving the quadratic equation

and removing vanishing terms, we can write a concise solution of l as a function of

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 22

r at the point where the probability of collision is 1
2 :

l =
√

(2 ln 2)r ≈ 1.1774
√

r. (2.9)

Intuitively, the Birthday Theorem means that one chooses
√

(2 ln 2)r random

elements from a large set of size r, the probability that at least one element gets

chosen more than once approaches 1
2 .

We note that limr→∞ p(r,
√

r) = 1 − e−
1
2 ≈ 0.3935. We can therefore asymptoti-

cally state that collisions in a set of O(n) elements occur after O(
√

n) elements have

been chosen and that an n-bit collision resistant hash function has at most O(2
n
2)

security against collision search.

2.5.1 Collision Resistance of Iterated Hash Functions

There is a strong relationship between the collision resistance of a compression

function and the collision resistance of the hash function as a whole.

Theorem 2.3. Let h be an iterated hash function with a fixed IV (Definition 2.2) and

a collision resistant padding or final transformation (Section 2.2). If the compression

function of h is collision resistant, then h is collision resistant. If h is not collision

resistant, then its compression function is not collision resistant.

Proof. If there is a collision h(x) = h(x′) in the full hash function, then there must

be some pair of state variables IVi−1, IV ′
i′−1 and input blocks Bi, B′

i′ so that

f(IVi−1 | Bi) = f(IV ′
i′−1 | B′

i′); a collision in the hash function always implies

a collision in the compression function. Therefore any efficient way of finding col-

lisions in a hash implies an efficient way of finding collisions in the compression

function.

Hash functions may have non-bijective final transformations where the entire

state is not used as the hash function result; in such a case a hash collision can be

caused by the final transformation, not the compression function.

Despite Theorem 2.3, hash function collision resistance and its compression

function collision resistance and are not strictly equivalent. A compression func-

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 23

tion collision with arbitrary input state values does not necessarily imply that there

is a collision in the actual hash function. There must also be a sequence of messages

that derives the state variables IVi1 and IV ′
i′−1 from the common initialization vec-

tor IV 0.

With some hash functions, hash function compression function collisions have

been discovered by cryptanalysts long before “full” collisions were found. Hans

Dobbertin gave collisions in the compression function of MD5 in 1996 [35], but it

took another eight years for X. Wang and H. Yu to break the full MD5 [113].

2.5.2 An Algorithm for Finding Collisions

A naive algorithm for finding hash function collisions would simply create a list of

hashes xi = h(i), i = 1, 2, 3, · · · , until a matching pair xi = xj , j < i is found.

The list search can be sped up by sorting and searching algorithms such as merge-

sort and binary search, requiring about O[(log r)
√

r] memory. This method requires

O(
√

r) memory, and therefore soon becomes infeasible for large r [61].

Fortunately there are methods for collision search that require a negligible amount

of memory, yet have the same asymptotic speed. The first one that was published is

due to Floyd (Section 3.1, Exercise 6 in [60]).

Let r be the range of a hash function h that we assume to behave like a random

function. Consider a sequence xi defined as follows:

x0 = arbitrary initial value,

xi = h(xi−1) for i ≥ 1.

Since each mapping is essentially random, after j ≈ √
r steps we can expect a

matching pair xi = xj , i < j to be found. It follows that:

xi = xj ,

xi+1 = xj+1,

xi+2 = xj+2,

· · ·

xk = xk+(j−i) for all k ≥ i.

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 24

x0 x1 x2 x3 x4 x5 x6

x7

x8

x9

x10

x11
x12

x13

x14

x15

Figure 2.2: A hash cycle.

The sequence enters a cycle of length j − i after j steps. The leading i steps are

sometimes called the tail of the cycle.

This is illustrated in Figure 2.2, where we can see that x16 = x5, and therefore

x17 = x6, x18 = x7, etc. The cycle length is 16 − 5 = 11 and the tail has 5 elements.

The first collision pair is h(x4) = h(x15).

Floyd’s algorithm, which is given as Algorithm 2.1, finds collisions by simultane-

ously keeping track of two sequences xk and x2k for k = 0, 1, 2, · · · . It is easy to see

that there there will be a match xk = x2k when k reaches the cycle length j−i. After

finding a “marker” for the cycle length, a collision can be found by stepping xk a fur-

ther i steps, while also keeping track of x0, x1, · · · , xi. When these sequences match

at xi = xk+i, a collision has been found. The preimages are xi−1 6= xk+i−1. By exam-

ining Algorithm 2.1, it is easy to see that memory usage is negligible (four variables

x, y, tx and ty) and that collision search complexity is equivalent to 3j − i = O(
√

r)

hash function computations.

The algorithm can be parallelized so that the speedup is almost linear in rela-

tionship to the number of processors used. It is also possible to trade memory so

that the constant factor can be reduced to be close to one. Techniques for parallel

collision search are discussed in [108, 86].

2.5.3 Reducing the Range

The collision search complexity O(
√

r) is dependent on the size of the range (num-

ber of possible outcomes), rather than the number of bits produced by the hash

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 25

Algorithm 2.1 Floyd’s Cycle-Finding Algorithm for Collisions

1: x ← 0 Initialization
2: y ← 0
3: repeat

4: x ← h(x) Single step on x.

5: y ← h(h(y)) Two steps on y.

6: until x = y Repeat until a match y = xi−j is found.

7: y ← 0 Reset y to the start value.

8: repeat

9: (tx, ty) ← (x, y) Store preimages.

10: x ← h(x) Single step on x.

11: y ← h(y) Single step on y.

12: until x = y Repeat until a collision is found.

13: return (tx, ty) Return the colliding pair.

function. Sometimes it is possible to use an auxiliary function to modify input to the

hash function so that the output range will be reduced. An example is a recoding

method for the input that forces certain bits of the hash function value to a fixed

value. An example of such recoding is given in an attack of the LASH hash function

given in Chapter 8 of this thesis.

Let f be an input mapping that satisfies the following criteria:

1. Computation of f does not requires significantly greater time than computa-

tion of h.

2. The range is reduced: h(f(x)) ∈ R, where the range r′ = | R | satisfies r ¿ 2m.

3. The input mapping f does not cause collisions; x 6= y ⇒ f(x) 6= f(y).

Collision search algorithms are used with a slightly modified iterated sequence:

x0 = arbitrary initial value

xi = h(f(xi−1)) for i ≥ 1.

Since each element xi ∈ R, complexity of the collision search becomes O(
√

r′).

2.5.4 Multicollisions in Iterated Hash Functions

Finding multiple collisions for an iterated hash function is not much harder than

finding a single collision. It is clear that a single collision in the compression function

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 26

leads to an arbitrary number of collisions; if h(x) = h(x′) is a collision, we may

simply append arbitrary blocks y at the end of the message and that, too, will be a

collision: h(x | y) = h(x′ | y).

In 2004, Joux [56] analyzed the extension of this case; by taking the result

h(x) = h(x′) as the starting point, we may find another pair y, y′, and by doubling

the effort we have four “real” collisions:

h(x | y) = h(x′ | y) = h(x | y′) = h(x′ | y′). (2.10)

Such tuplets are called multicollisions. As the size of the multicollision grows in

powers of 2, the cost of finding a k-multicollision is O(ln k × 2m/2).

The idea of the Joux multicollision attack has been extended by Kelsey and

Kohno into a herding attack [58]. A herding attack allows an attacker to commit

to the hash of a message that she does not yet fully know, at the cost of a large

computation. Similar techniques have been developed to find second preimages in

less than O(2m) work [59].

The fundamental countermeasure against multicollisions and herding attacks is

to make finding collisions in the compression function more difficult than the overall

security expected of the hash function. The only way of achieving this is to increase

the state (number of bits transferred between iterations) to be larger than the final

hash output.

2.6 Pseudorandomness

Hash functions are used as basic building blocks in many applications where the

essential requirement is pseudorandomness; if the hash function input is unknown,

the hash should be algorithmically indistinguishable from a pseudorandom function

(PRF) under the assumption that the distinguisher does not itself implement the

hash or a close derivative of the hash. This notion has been formalized by Bellare,

Rogaway, Maurer, et al. as “indistinguishability from a random oracle” [10, 68].

We note that for any iterated hash function we expect a 2n/2 distinguisher to exist,

based on internal collisions.

This vague restriction can be removed in the case of keyed hashes (MACs), where

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 27

no distinguisher should exist that is faster than an exhaustive search for the key.

There are also directly keyed hashes such as the Skein hash function [36]. See [43]

for a discussion of the relationship between “one-wayness” and pseudorandomness.

One of the main applications of hash functions is in Deterministic Random Bit

Generators (DRBGs), which are used to create secret keying information for cryp-

tographic applications. NIST has specified two DRBGs, Hash_DRBG and HMAC_DRBG,

whose security is directly based on the preimage resistance and pseudorandomness

of the underlying hash function [5]. It has been shown that NMAC and HMAC –

keyed hash functions based on an unkeyed iterated hash are PRFs if the underlying

compression function is a PRF [7, 8].

We give a technical definition of a PRF-Adversary and its advantage, following

the convention adopted by Belare and others [8, 41].

Definition 2.6. A PRF-Adversary A against a family of functions f : K ×D → R takes

as oracle a function g : D → R and returns a bit. The PRF-advantage of A against f

is the difference between the probability that it outputs 1 when its oracle is g = f(k, ·)
for random key k ∈ K, and the probability that it outputs 1 when its oracle g is chosen

at random from the set of functions mapping D to R. This can be written as

Adv
prf
f (A) = Pr[Af(K,·) = 1] − Pr[Arandom = 1]. (2.11)

The function f is not a PRF if a probabilistic polynomial time adversary exists that has

nonnegligble PRF-advantage.

This definition for pseudorandomness of a keyed hash can be applied to a com-

pression function by regarding the input chaining variable as the secret key.

For a pseudorandom function we would expect that the total effort (including

black-box oracle queries) required to gain a non-negligible advantage should be

equivalent to a brute-force attack against the secret key, which would require O(|K|)
effort.

2.7 Relationships between different security properties

Intuitively:

- First preimage resistance does not imply second preimage resistance.

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 28

- Compression function collision resistance implies hash function collision resis-

tance (if the entire state is used as output).

We note that the “standard” hash function properties (preimage resistance, sec-

ond preimage resistance and collision resistance) do not directly imply pseudoran-

domness. For further technical discussion about various security notions and their

relationships we refer the reader to Rogaway and Shrimpton [92].

In some sense, collision resistance appears to be the strongest security notion of

the three. But is it?

Theorem 2.4. Collision resistance does not imply first preimage resistance.

Proof. Consider an m + 1-bit hash function h′ that is built on a secure m-bit hash

function h as follows:

h′(x) =

x | 100 · · · 0 if x has m bits or less

h(x) | 1 if x has more than m bits.
(2.12)

The message x is used “as is” for short messages and the rightmost bit is set to zero

(since the identity transform is collision resistant!). For longer messages, the hash

is used and the last bit is set to one. The function h′ is collision resistant if h is.

However, h′ is not preimage resistant for half of its range. Having a redundant bit in

the output causes only a small constant-factor speedup in collision search [70, Note

9.20].

2.8 Further Security Properties of Hash Functions

The focus of this thesis is hash function cryptanalysis; finding flaws in hash functions

that indicate that they do not fulfill some of the properties outlined in this chapter.

We conjecture that it is impossible to prove that a hash function has a given security

property, say, collision-resistance. One can only find algorithms and methods that

demonstrate the lack of security property x, or construct security reductions (proofs

that security property x leads to security property y).

In addition to these traditional forms of attack, we finally note that there are

implementation attacks that focus on the actual physical or logical embodiment of

a hash function. The most notable are timing attacks [62], and differential power

CHAPTER 2. HASH FUNCTION FUNDAMENTALS 29

analysis [63], which utilize the timing and power consumption side channels to

derive secret information about an implementation. Side channels may also be in-

troduced through implementation faults [14, 18]. Side channel attacks are relevant

in sign-and-encrypt schemes and also when MAC secrets are computed.

Such attacks are not considered in the present work.

CHAPTER 3

SYNDROME BASED HASHES

In MyCrypt 2005, Augot, Finiasz, and Sendrier proposed FSB, a family of crypto-

graphic hash functions [4]. The security claim of the FSB hashes is based on a

coding theory problem with hard average-case complexity.

In the ECRYPT 2007 Hash Function Workshop, new versions with essentially

the same compression function, but radically different security parameters and an

additional final transformation, were presented [38]. We show that hardness of

average-case complexity of the underlying problem is irrelevant in collision search

by presenting a linearization method that can be used to produce collisions in a

matter of seconds on a desktop PC for the variant of FSB with claimed 2128 security.

This work was published in the INDOCRYPT 2007 conference [100].

As a response to attacks described here, the security parameters of FSB were

changed once more. A variant of FSB was submitted as a SHA-3 candidate [3], but

was rejected from the second round. The attacks described in this chapter do not

directly apply to that version.

3.1 Introduction

A number of hash functions have been proposed that are based on “hard problems”

from various branches of computer science. Recent proposals in this genre of hash

function design include VSH (see Chapter 6), LASH (see Chapter 8), and the topic of

this chapter, Fast Syndrome Based Hash (FSB), which is based on decoding problems

in the theory of error-correcting codes [4, 38].

In comparison to dedicated hash functions designed using symmetric cryptanal-

ysis techniques, “provably secure” hash functions tend to be relatively slow and do

not always meet all of the criteria traditionally expected of cryptographic hashes.

An example of this is VSH, where only collision resistance is claimed, leaving the

30

CHAPTER 3. SYNDROME BASED HASHES 31

hash function open to various attacks. The SHA-3 first round candidate ECOH [19]

is an another example of this phenomenon.

Another feature of “provably secure” cryptographic primitives is that the proof is

often a reduction to a problem with asymptotically hard worst-case or average-case

complexity, such as the Knapsack problem [71] or Lattice problem [1]. Worst-case

complexity measures the difficulty of solving pathological cases rather than typical

cases of the underlying problem. Even a reduction to a problem with hard average

complexity, as is the case with FSB, offers only limited security assurance as there

can still be an algorithm that easily solves the problem for a subset of the problem

space. This common pitfall of provably secure cryptographic primitives is clearly

demonstrated in this chapter for FSB, where it is shown that the hash function

offers minimal preimage or collision resistance when the message space is chosen

in a specific way.

The remainder of this chapter is structured as follows. Section 3.2 describes

the FSB compression function. Section 3.3 gives the basic linearization method for

finding preimages and extends it to “alphabets”. This is followed by an improved

collision attack in Section 3.4 and discussion of attacks based on larger alphabets

in Section 3.5. Section 3.6 gives a concrete example of preimage and collision

attacks on a proposed variant of FSB with claimed 128-bit security. The findings are

concluded in Section 3.7

3.2 The FSB Compression Function

In this chapter all vectors are column vectors unless otherwise stated. The FSB

compression function can be described as follows [4, 38].

Definition 3.1 (FSB Compression Function). Let H be an r × n binary matrix. The

FSB compression function is a mapping from a message vector s = [s1, s2, . . . , sw]

containing w characters, each satisfying 0 ≤ si < n
w , to an r bit result as follows:

FSB(s) =

w
⊕

i=1

H(i−1) n
w

+si+1 , (3.1)

where Hi denotes column i of the matrix.

CHAPTER 3. SYNDROME BASED HASHES 32

The exact details of padding and chaining of internal state across compression

function iterations were not specified in [4, 38].

An ambiguous definition of an algorithm makes experimental cryptanalytic work

dependent on some assumptions and guesswork. However, the attacks outlined

in this chapter should work, regardless of the particular details of chaining and

padding.

With most proposed variants of FSB, the character size n
w is chosen to be 28, so

that s can be treated as an array of bytes for practical implementation purposes. See

Section 3.6 for an implementation example.

For the purposes of this chapter, we shall concentrate on finding collisions and

preimages in the compression function. These techniques can easily be applied for

finding full collisions of the hash function. The choice of H is taken to be a random

binary matrix in this chapter, although quasi-cyclic matrices are considered in [38]

to reduce memory usage.

The final transformation proposed in [38] does not affect the complexity of find-

ing collisions or second preimages, although it makes first preimage search difficult

(equivalent to inverting Whirlpool [87]). Second preimages can easily be found

despite a strong final transform.

The authors of FSB claim that the security of this primitive is related to the

Syndrome decoding problem. However, the security parameter selection in the cur-

rent versions of FSB is based primarily on Wagner’s generalized birthday attack

[27, 110]. The security claims are summarized in Table 3.1.

3.3 Linearization Attack

To illustrate our main attack technique, we shall first consider hashes of messages

with binary values in each character: si ∈ {0, 1} for 1 ≤ i ≤ w. This message space

is a small subset of all possible message blocks.

We define a constant vector c,

c =
w

⊕

i=1

H(i−1) n
w

+1, (3.2)

CHAPTER 3. SYNDROME BASED HASHES 33

Table 3.1: Parameterizations of FSB, as given in [38]. Line 6 (in bold) with claimed
2128 security was proposed for practical use. Preimages and collisions can be found
for this variant in a matter of seconds on a desktop PC.

Security r w n n/w

64-bit 512 512 131072 256
512 450 230400 512

1024 217 225 256

80-bit 512 170 43520 256
512 144 73728 512

128-bit 1024 1024 262144 256

1024 904 462848 512
1024 816 835584 1024

and an auxiliary r × w binary matrix A, whose columns Ai, 1 ≤ i ≤ w are given by

Ai = H(i−1) n
w

+1 ⊕H(i−1) n
w

+2. (3.3)

We see that the XOR operations cancel each other out for messages of this par-

ticular type. The FSB compression function is therefore entirely linear:

FSB(s) = A · s ⊕ c. (3.4)

Furthermore, let us consider the case where r = w, and therefore A is a square

matrix. If detA 6= 0, the inverse of A exists and we are able to find a preimage s

from the hash h = FSB(s) simply as:

s = A−1 · (h ⊕ c). (3.5)

If r is greater than w, the technique can still be applied to force a given w-bit

section of the final hash to some predefined value. Since the order of the rows is not

relevant, we can construct a matrix that contains only the given w rows (i.e. bits of

the hash function result) of A that we are are interested in.

CHAPTER 3. SYNDROME BASED HASHES 34

3.3.1 The Selection of Alphabet in a Preimage Attack

We note that the selection of {0, 1} as the set of allowable message characters (“the

alphabet”) is arbitrary. We can simply choose any pair of values for each i so that

si ∈ {xi, yi} and map each xi 7→ 0 and yi 7→ 1, thus creating a binary vector for the

attack. The constant is then given by:

c =
w

⊕

i=1

H(i−1) n
w

+xi
, (3.6)

and columns of the A matrix are given by:

Ai = H(i−1) n
w

+xi+1 ⊕H(i−1) n
w

+yi+1. (3.7)

To invert a hash h we first compute:

b = A−1(h ⊕ c), (3.8)

and then apply the mapping si = xi + bi(yi − xi) on the binary result b to obtain a

message s that satisfies FSB(s) = h.

3.3.2 Invertibility of Random Binary Matrices

The binary matrices created by linearization techniques in the previous section are

essentially random for each arbitrarily chosen alphabet. The success of a preimage

attack depends upon the invertibility of the binary matrix A.

Theorem 3.1 (Invertibility of Binary Square Matrices). The probability that an n×n

random binary matrix has non-zero determinant (and is therefore invertible) in GF(2)

is:

p =
n

∏

i=1

(1 − 2−i). (3.9)

Proof. Consider the Gaussian elimination method for solving linear equations. Gaus-

sian elimination produces an upper triangular matrix in row echelon form by pro-

ceeding from first row (i = 1) to the last (i = n). Elimination at row i is successful if

and only if for some j ≥ i there is a nonzero element Mj,i. For a random matrix, the

probability that these n − i + 1 elements in GF(2) are all zero is 1
2n−i−1 , and hence

CHAPTER 3. SYNDROME BASED HASHES 35

the probability for success at row i, 1 ≤ i ≤ n, is 1− 1
2n−i−1 . The product probability

of these independent events can be simplified to p =
∏n

i=1(1 − 2−i).

For large n, p approaches the constant 0.288788 . . . or 2−1.79191.... Two trials with

two distinct alphabets are on average enough to find an invertible matrix (the total

probability for 2 trials is 1 − (1 − p)2 ≈ 0.49418).

3.4 Finding Collisions When r = 2w

We shall expand our approach for producing collisions in 2w bits of the hash function

result by controlling w message characters. This is twice the number compared to

the preimage attack of Section 3.3. The complexity of the attack remains negligible,

being a few simple matrix operations.

By selection of two distinct alphabets, {xi, yi} and {x′
i, y

′
i}, we have two distinct

linear presentations for FSB, one containing the matrix A and constant c and the

other one A′ and c′. We can now work using the tools of linear algebra in GF(2). To

find a pair of messages s, s′ that produces a collision we must find a solution for b

and b′ in the equation:

A · b ⊕ c = A′ · b′ ⊕ c′. (3.10)

This basic collision equation can be manipulated to the form:

(

A | A′
)

·

b

b′

 =

c

c′

 . (3.11)

The solution of the inverse (A | A′)−1 will allow us to compute the message pair

(b | b′)T that yields the same hash in 2w different message bits (since r = 2w yields

a square matrix in this case):

(A | A′)−1 ·

c

c′

 =

b

b′

 . (3.12)

The binary vector (b | b′)T can then be split into two messages s and s′ that produce

CHAPTER 3. SYNDROME BASED HASHES 36

the collision. For 1 ≤ i ≤ w we apply the alphabet mapping as follows:

si = xi + bi(yi − xi),

s′i = x′
i + b′

i(y
′
i − x′

i).

Here xi, yi and x′
i, y

′
i represent the alphabets for si and s′i, respectively.

3.5 Larger Alphabets

Consider an alphabet of cardinality three, {xi, yi, zi}. We can construct a linear

equation in GF(2) that computes the FSB compression function in this message space

by using two columns for each message character si. The linear matrix therefore has

size r × 2w. The constant c is computed as:

c =
w

⊕

i=1

H(i−1) n
w

+xi
, (3.13)

and the odd and even columns are given by:

A2i−1 = H(i−1) n
w

+xi+1 ⊕H(i−1) n
w

+yi+1,

A2i = H(i−1) n
w

+xi+1 ⊕H(i−1) n
w

+zi+1.

The message s must also be transformed into a binary vector b of length 2w via the

selection function v:

si v(si)

xi (0, 0)

yi (1, 0)

zi (0, 1)

The binary vector b is constructed by concatenating the selection function outputs:

b = (v(s1) | v(s2) | · · · |v(sw))T . (3.14)

CHAPTER 3. SYNDROME BASED HASHES 37

We again arrive at a simple linear equation for the FSB compression function:

FSB(s) = A · b ⊕ c. (3.15)

The main difference is that the message space is much larger, 3w ≈ 21.585w.

This construction is easy to generalize for alphabets of any size: an r × (k −
1)w size linear matrix is required for an alphabet of size k. We have not found

cryptanalytic advantages in mapping hashes back to message spaces with alphabets

larger than three. The probability of missing the alphabet and producing invalid

collisions grows too large. With alphabet of size four, the probability of obtaining

one of the four valid vectors (0, 0, 0), (1, 0, 0), (0, 1, 0) or (0, 0, 1) for each w is only

1
2w , making it slower than a brute force approach.

3.5.1 Preimage Search

It is easy to see that even if A is invertible, not all hash results are, since the solution

of b may contain v(si) = (1, 1) pairs. These do not map back to the message space

in the selection function.

Given a random binary b, the fraction of valid messages in the message space

(alphabet of size three) is given by (3/4)w = 2−0.415w. Despite this disadvantage,

larger alphabets can be useful in attacks. We will illustrate this with an example.

Example 3.1. FSB parameters w = 64, n = 256 × 64 = 16384 and r = 128 are being

used; 64 input bytes are processed into a 128-bit result. What is the complexity of a

preimage attack ?

Solution. We will use an alphabet of size three. Considering both matrix invertibil-

ity (Section 3.3.2) and the alphabet mapping, the probability of successfully map-

ping the hash back to the alphabet is 0.28879×(3/4)64 = 2−28.4. We can precompute

227 inverses A−1 for various message spaces offline, hence speeding up the time re-

quired to find an individual preimage. There are also early-abort strategies that

can be used to speed up the search. For example, one can abort immediately if a

preimage symbol which is not in the alphabet is found.

Using these techniques, the preimage search requires roughly 228 steps in this

case, compared to the theoretical 2128.

CHAPTER 3. SYNDROME BASED HASHES 38

Note that the complexity of a collision attack in this case is negligible, as r = 2w

and the technique from Section 3.4 can be used.

3.5.2 Collision Search

Three-character alphabets can be used in conjunction with the collision attack out-

lined in Section 3.4. It is easy to see that it is possible to mix three-character

alphabets with binary alphabets. Each character position si that is mapped to a

three-character alphabet requires two columns in the linear matrix, whereas those

mapped to a binary alphabet require only one column.

Generally speaking, the probability for finding two valid messages in each trial

is (3/4)2k = 2−0.830k when k characters in s and s′ are mapped to three-character

alphabets.

Example 3.2. FSB parameters w = 170, n = 256 × 170 = 43520 and r = 512 are

being used; 170 input bytes are processed into a 512-bit result. What is the complexity

of collision search ? 1

Solution. We use a mixed alphabet; k = 86 characters are mapped to a three-

character alphabet and the remaining 84 characters are mapped to a binary alpha-

bet. The linear matrix A therefore has 2×86+84 = 256 columns, and the combined

matrix
(

A | A′
)

in the collision attack (similarly to that in Section 3.4) has size

512 × 512. The probability of successful matrix inversion is 2−1.792. The probability

of success in each trial is 2−0.830k−1.792 = 2−73.2, so collision search has complexity

roughly equivalent to 273 matrix inversions.

3.6 A Collision and Preimage Example

In this section we define an instantiation of FSB with security parameters proposed

for practical use by its authors in [38]. We then provide a numerical example of

collisions and preimages for this FSB instantiation.

For parameter selection r = 1024, w = 1024, n = 262144, s = 8192, n/w = 256,

the FSB compression function can be implemented in C as follows.

1These security parameters are proposed for 80-bit security in [38] and reproduced in Table 3.1.

CHAPTER 3. SYNDROME BASED HASHES 39

typedef unsigned char u8; // u8 = single byte

typedef unsigned long long u64; // u64 = 64-bit word

void fsb(u64 h[0x40000][0x10], // "random" matrix

u8 s[0x400], // 1k message block

u64 r[0x10]) // result

{

int i, j, idx;

for (i = 0; i < 0x10; i++) // zeroise result

r[i] = 0;

for (i = 0; i < 0x400; i++) // process a block

{

idx = (i << 8) + s[i]; // index in H

for (j = 0; j < 0x10; j++)

r[j] ^= h[idx][j]; // xor over result

}

}

Since the FSB specification does not offer any standard way of defining the “random”

matrix H (or h[][] above), we will do so here using the Data Encryption Standard.

Each 64-bit word h[i][j] is created by encrypting the 64-bit input value 24i ⊕ j

under an all-zero 56-bit key (00 00 00 00 00 00 00 00). The input and output

values are handled in big-endian fashion (most significant byte first).

We note that this selection of DES and an all-zero key is not cryptographically

secure and was only chosen as a means of example so that the experiment can be

independently verified.

Some of the values are: 2

Input to DES Table Index Value

0x0000000000000000 h[0x00000][0x0] = 0x8CA64DE9C1B123A7

0x0000000000000001 h[0x00000][0x1] = 0x166B40B44ABA4BD6

0x0000000000000002 h[0x00000][0x2] = 0x06E7EA22CE92708F

....

2Note that x86 platforms are little-endian. Bi-endian gcc source code for producing preimages can
be downloaded from: http://www.m-js.com/misc/fsb test.tar.gz

CHAPTER 3. SYNDROME BASED HASHES 40

0x0000000000000010 h[0x00001][0x0] = 0x5B711BC4CEEBF2EE

0x0000000000000011 h[0x00001][0x1] = 0x799A09FB40DF6019

0x0000000000000012 h[0x00001][0x2] = 0xAFFA05C77CBE3C45

....

0x00000000003FFFFD h[0x3FFFF][0xD] = 0x313C4BDBE2F7156A

0x00000000003FFFFE h[0x3FFFF][0xE] = 0x19F32D6B2D9B57F5

0x00000000003FFFFF h[0x3FFFF][0xF] = 0x804DB568319F4F8B .

We define two 1024-byte message blocks that produce the same 1024-bit chosen

output value in the FSB compression function, hence demonstrating the ease of

preimage and collision search on a variant with claimed 2128 security. They were

found in less than one second on an iBook G4 laptop.

The first message block uses the ASCII alphabet {A, C} or {0x41, 0x42}:

CAACACACCACAACACACACCACAACCCCCCACCAACACCAAACAAACACCAACACCACACCAA

ACACACCCCCAACCCAAAAAACCCACCACCCACCAAACACACCCCCCAACCACACCCAACACCA

AACCCACCCCCAACCCAAACAAAAACCCACAAAACACACCACCACCCCCACAACCCCACACAAA

AACCCCACCCCAACAACAAAAACAAAACCACACACACACCCCCAAACCCCCAAAAACCCACAAC

CAAACAACCCAAACACCAACCCCACACCCCAAAACCCAAAAAACACAAACCCCAACAAAACCAA

ACACCCCCCCCCAACAAAAACACCCACCCAACAAAAAAACACACCCCCCCAACCCACCCCAACA

AAAACCAACAACACCACCCCACCCCCACCACAAACACCCACCACCCAACCCCACCCAACAAAAC

ACCACCCCAACCCACAACCACCCAACACCAACACCAAAACACACCAAAACACCCAACACACCCC

CAAACACACACCACCACCACCCAAAAAAACCACACACCCCAAAAAAACCCAAACCACCACCCCA

CACAAACCCCAACCCAACCCAACCAACCACCAAAACCCAACCCCCAAAAAACAACCAAACCCCA

AACACCCACAAACACCACCACAACAAAAACCAAACCCAAAAACCCACCACACCCACACACAAAA

CCACCCCAACCCCCAACAACCCCACACAACACAAACCACCCAACCCCAACCACAAAAACCCACC

ACAACCCAAACACACCCCAACAAACCAAACCCCACACCCAAAACCCCACACCACACACAAACAC

CACCCAAAAAACAACAACCACACACAACAAACCAAACAAAAAAAAAACCAAAAAACCCCCAACC

CACCCACCCACAAACAAAACCAAAAAAAACCCAAAAAAACCCAAAACCACAACCACCCCAACCA

CCCACCAAACAACAACCACACAAAAACACCCCACACCCCCCCACCAACACAAAACCAAAAACCA .

The second message block uses ASCII alphabet {A, H} or {0x41, 0x48}:

AHHHHAAAAAHAAAHAHAAAHAHHAHHAAHAAHHAHHHAAAAAHHAAHHHAHAHAAHAAAHHAA

AAAAHAHHAAAHAHHAHAAAHAAHAHAAAAHHHHHHHAAHAHAAAAAHAHHHHHAAHHHHAHAH

AAHAAAHAHAHHHHHAHHAHAHAAAHAHAAHAHHAAAAHAAHAAAHAAHHHHHAHAAHHAAHAH

HHAHAAHHHAAHAAAHHHHAHHHHAAHAAHAAAAAHAAHHAAAHAAHHHAAHAHAHHHAHAAHA

AHHAAAHHAAAAAHHAHAAAAAHAHAHHAHHAHAAHHAHAHAAHHHHAAHAHHHAAHHAHAAHH

CHAPTER 3. SYNDROME BASED HASHES 41

AAHAHAAAHAHAAAHHAAAHAHHAHAHHAAAAAHHHHAAHAHAHHAHHHHHAAHHAAHHHHAHH

HHHAAAAAAAHHHAHAAAAHAAAHAAAAAAAHAAHHAHHAHHAHHAHHHAAAAAAAHAHAAAHH

HAHHHHHHAHAAAHHAHAAHHHHAAHHAHHAHHAAHHHAHHAHHHAAHHAAAHHAHAAHAHHHA

AAHAHAAAHAAHAAAAHHHHAHHHHHAAHHHAAHHHAHHAAAHHHAHHAHAHHHHAAHAHHAHH

AAHAHAAHHAHHAAAAHHAHAHHHHHAAHHHAAHAAAHAAAHAAHHAHHAHHHAHHHHHAHHHA

AHAHAAAAHHAAAAHHAAHHHHHAAHAAHAAHHAAAHAHHAAAAAHHAAHAHHAHHHAAHHHAA

HHHAHHAAHAAHAAHAAHHHHHAAHAHHAHHAAHAAAAHHAHHHHHAHAHHHHHAHHHHHAAAA

HHHHHAAAAHHHAHHHHAHAAAHHAHAAAHHAAAHAHAHAAAHHHHHHHAHAAHAAHAAAAHAA

HAAAHAHAHHHAHHAHHAHAAHAHHAAAAHAAAAHHAAHHHHAHHAAHHHAHAAAHAAAHHHAA

HAAHAAHAAAHAHHHAAHAHAAHAAAHAHHAHAAHHHAAHAAAAAHHAAAAHHHAHAHAAAAAH

AAAHAHAHHAAAAHHHAAHHAHAAHHHHAHAAHHAHHHAAHAHHAHHHAAAAHHHAAHAAAAHH .

The 1024-bit / 128-byte result of compressing either one of these blocks is:

Index Hex ASCII

00000000 5468697320697320 6120636f6c6c6973 |This is a collis|

00000010 696f6e20616e6420 7072652d696d6167 |ion and pre-imag|

00000020 6520666f72204661 73742053796e6472 |e for Fast Syndr|

00000030 6f6d652042617365 6420486173682e20 |ome Based Hash. |

00000040 4172626974726172 79207072652d696d |Arbitrary pre-im|

00000050 616765732063616e 20626520666f756e |ages can be foun|

00000060 6420696e20612066 72616374696f6e20 |d in a fraction |

00000070 6f66206120736563 6f6e642120202020 |of a second! | .

3.7 Conclusions

We have shown that Fast Syndrome Based Hashes (FSB) as described in [4, 38]

are not secure against preimage or collision attacks under the proposed security

parameters. The attacks have been implemented and collisions for a variant with

claimed 128-bit security can be found in less than one second on a low-end PC.

We feel that the claim of “provable security” is hollow in the case of FSB, where

the security proof is based on a problem with hard average-case complexity, but

which is almost trivially solvable for special classes of messages.

CHAPTER 4

COLLISION SEARCH IN FORK-256

We show that a 2112.8 collision attack exists against the FORK-256 Hash Function

[53, 54]. The attack is surprisingly simple compared to existing published FORK-

256 cryptanalysis work [66, 67, 69], yet is the best known result against the new,

tweaked version of the hash. The attack is based on “splitting” the message schedule

and compression function into two halves in a meet-in-the-middle attack. This in

turn reduces the space of possible hash function results, which leads to significantly

faster collision search. The attack strategy is also applicable to the original version

of FORK-256 published in FSE 2006. This work was published in the INDOCRYPT

2007 conference [101].

4.1 Introduction

FORK-256 is a dedicated hash function that produces a 256-bit hash result from a

message of arbitrary size. The original version of FORK-256 was presented in the

first NIST hash workshop and at FSE 2006 [53]. Several attacks have been outlined

against this original version, namely:

- Matusiewicz, Contini, and Pieprzyk attacked FORK-256 by using the fact that

the functions f and g in the step function were not bijective in the original

version. They used “microcollisions” (partial internal collisions) to find colli-

sions of 2-branch FORK-256 and collisions of full FORK-256 with complexity

of 2126.6 in [66].

- Independently, Mendel, Lano, and Preneel published the collision-finding at-

tack on 2-branch FORK-256 using microcollisions and raised the possibility of

its expansion [69].

42

CHAPTER 4. COLLISION SEARCH IN FORK-256 43

- At FSE 2007 [67] and ICICS 2007 [24], Matusiewicz et al. published the result

of [66] and another attack which finds a collision with complexity of 2108 and

memory of 264.

In response to these attacks the authors of FORK-256 proposed in 2007 a new,

tweaked version of FORK-256 [54], which is supposedly resistant to all before-

mentioned attacks. We will present a simple attack, which is the best currently

known against the new version of FORK-256, and also applicable to the previous

version.

The plan of the rest of this chapter is follows. We first describe the latest vari-

ant of FORK-256 in Section 4.2, which is followed by our key observations in Sec-

tion 4.3. Section 4.4 contains the main attack against FORK-256. We discuss further

work in Section 4.5 and conclude in Section 4.6.

CV i−1

CV i

Branch
1

Branch
2

Branch
3

Branch
4

Figure 4.1: Overall structure of four branches of FORK-256.

CHAPTER 4. COLLISION SEARCH IN FORK-256 44

Table 4.1: Initialization Vector.

CV 0[0] = 0x6a09e667 CV 0[1] = 0xbb67ae85

CV 0[2] = 0x3c6ef372 CV 0[3] = 0xa54ff53a

CV 0[4] = 0x510e527f CV 0[5] = 0x9b05688c

CV 0[6] = 0x1f83d9ab CV 0[7] = 0x5be0cd19

Table 4.2: Round constants.

δ[0] = 0x428a2f98 δ[1] = 0x71374491

δ[2] = 0xb5c0fbcf δ[3] = 0xe9b5dba5

δ[4] = 0x3956c25b δ[5] = 0x59f111f1

δ[6] = 0x923f82a4 δ[7] = 0xab1c5ed5

δ[8] = 0xd807aa98 δ[9] = 0x12835b01

δ[10] = 0x243185be δ[11] = 0x550c7dc3

δ[12] = 0x72be5d74 δ[13] = 0x80deb1fe

δ[14] = 0x9bdc06a7 δ[15] = 0xc19bf174

4.2 Description of New FORK-256

New FORK-256 (hereafter FORK-256) is an iterated hash function with a 256-bit (8-

word) internal state and a 512-bit (16-word) message block. Padding and chaining

details are similar to those of the SHA and the MD families of hash functions [79,

88, 89].

FORK-256 is entirely built on shift, exclusive-or, and addition operations on 32-

bit words. The compression function of FORK-256 consists of four independent

“branches”. Each one of these branches takes in the 256-bit (8-word) chaining

value and a 512-bit (16-word) message block to produce a 256-bit result. These

four branch results are combined with the chaining value to produce the final com-

pression function result.

Figure 4.1 illustrates the branch structure. Note that the lines in the picture

are 256 bits wide; the addition symbols represent eight 32-bit modular additions in

parallel.

The four branches are structurally equivalent, but differ in scheduling of the

message words and round constants. Each branch is computed in eight steps, 0 ≤
s ≤ 7. Each step utilizes two message words and two round constants.

CHAPTER 4. COLLISION SEARCH IN FORK-256 45

Table 4.3: Round constant schedule.

Step Branch 1 Branch 2 Branch 3 Branch 4

s α
(s)
1 β

(s)
1 α

(s)
2 β

(s)
2 α

(s)
3 β

(s)
3 α

(s)
4 β

(s)
4

0 δ[0] δ[1] δ[15] δ[14] δ[1] δ[0] δ[14] δ[15]
1 δ[2] δ[3] δ[13] δ[12] δ[3] δ[2] δ[12] δ[13]
2 δ[4] δ[5] δ[11] δ[10] δ[5] δ[4] δ[10] δ[11]
3 δ[6] δ[7] δ[9] δ[8] δ[7] δ[6] δ[8] δ[9]
4 δ[8] δ[9] δ[7] δ[6] δ[9] δ[8] δ[6] δ[7]
5 δ[10] δ[11] δ[5] δ[4] δ[11] δ[10] δ[4] δ[5]
6 δ[12] δ[13] δ[3] δ[2] δ[13] δ[12] δ[2] δ[3]
7 δ[14] δ[15] δ[1] δ[0] δ[15] δ[14] δ[0] δ[1]

The scheduling of the message block words M [0 . . . 15] in each branch is given in

Table 4.4. The round constants δ[0 . . . 15] are given in Table 4.2 and their schedule

in Table 4.3. The original description uses auxiliary tables σ and ρ; for convenience

we use a (“left word”), b (“right word”), α (“left constant”), and β (“right constant”)

in this description as follows:

a
(s)
j = M [σj(2s)],

b
(s)
j = M [σj(2s + 1)],

α
(s)
j = δ[ρj(2s)],

β
(s)
j = δ[ρj(2s + 1)].

FORK-256 uses two 32-bit Boolean functions f and g, which were redefined for

the New FORK-256 to avoid microcollisions:

f(x) = x ⊕ (x ≪ 15) ⊕ (x ≪ 27),

g(x) = x ⊕ ((x ≪ 7) ⊞ (x ≪ 25)).

Following the convention of the FORK-256 specification, let CV i[0..7] be the

result of the compression function iteration i and CV 0[0..7] the Initialization Vector

given in Table 4.1.

Each branch j processes eight input words R
(0)
j [t] = CV i[t] to eight output words

CHAPTER 4. COLLISION SEARCH IN FORK-256 46

Table 4.4: Message word schedule for FORK-256. It is easy to observe that in
branch 2 and branch 3, M [1] only affects the result in the last step. M [14] is used in
the last and next-to-last steps in branches 1 and 4, respectively. These observations
are used in the attack.

Step Branch 1 Branch 2 Branch 3 Branch 4

s a
(s)
1 b

(s)
1 a

(s)
2 b

(s)
2 a

(s)
3 b

(s)
3 a

(s)
4 b

(s)
4

0 M [0] M [1] M [14] M [15] M [7] M [6] M [5] M [12]
1 M [2] M [3] M [11] M [9] M [10] M [14] M [1] M [8]
2 M [4] M [5] M [8] M [10] M [13] M [2] M [15] M [0]
3 M [6] M [7] M [3] M [4] M [9] M [12] M [13] M [11]
4 M [8] M [9] M [2] M [13] M [11] M [4] M [3] M [10]
5 M [10] M [11] M [0] M [5] M [15] M [8] M [9] M [2]
6 M [12] M [13] M [6] M [7] M [5] M [0] M [7] M [14]
7 M [14] M [15] M [12] M [1] M [1] M [3] M [4] M [6]

R
(8)
j [t], 0 ≤ t ≤ 7. Figure 4.2 illustrates the step function. For 0 ≤ s ≤ 7:

t1 = f(R
(s)
j [0] ⊞ a

(s)
j),

t2 = g(R
(s)
j [0] ⊞ a

(s)
j ⊞ α

(s)
j),

t3 = g(R
(s)
j [4] ⊞ b

(s)
j),

t4 = f(R
(s)
j [4] ⊞ b

(s)
j ⊞ β

(s)
j),

R
(s+1)
j [0] = R

(s)
j [7] ⊕ (t4 ≪ 8),

R
(s+1)
j [1] = R

(s)
j [0] ⊞ a

(s)
j ⊞ α

(s)
j ,

R
(s+1)
j [2] = R

(s)
j [1] ⊞ t1,

R
(s+1)
j [3] = (R

(s)
j [2] ⊞ (t1 ≪ 13)) ⊕ t2,

R
(s+1)
j [4] = R

(s)
j [3] ⊕ (t2 ≪ 17),

R
(s+1)
j [5] = R

(s)
j [4] ⊞ b

(s)
j ⊞ β

(s)
j ,

R
(s+1)
j [6] = R

(s)
j [5] ⊞ t3,

R
(s+1)
j [7] = (R

(s)
j [6] ⊞ (t3 ≪ 3)) ⊕ t4.

CHAPTER 4. COLLISION SEARCH IN FORK-256 47

The final result of the compression function for each word 0 ≤ t ≤ 7 is:

CV i+1[t] = CV i[t] ⊞ ((R
(8)
1 t ⊞ R

(8)
2 [t]) ⊕ (R

(8)
3 [t] ⊞ R

(8)
4 [t])). (4.1)

If i is the final iteration, CV i+1 is the final hash value.

4.3 Observations

Each branch of the compression function uses each message word M [0 . . . 15] exactly

once. Due to the diffusion properties of the step function, message words that are

scheduled for the last steps do not affect all output words.

Consider the sixth output word of each branch, R
(8)
j [5]. The last step is defined

as:

R
(8)
j [5] = R

(7)
j [4] ⊞ b

(7)
j ⊞ β

(7)
j . (4.2)

Furthermore we “open up” R
(7)
j [4] in the previous step:

R
(7)
j [4] = R

(6)
j [3] ⊕ (g(R

(6)
j [0] ⊞ a

(6)
j ⊞ β

(6)
j) ≪ 17). (4.3)

Ignoring the round constants α
(s)
j and β

(s)
j , we can observe that the only message

words in steps 6 and 7 affecting R
(8)
j [5] are a

(6)
j and b

(7)
j , the latter having a linear

R
(s)
j [0]

R
(s+1)
j [1]

R
(s)
j [1]

R
(s+1)
j [2]

R
(s)
j [2]

R
(s+1)
j [3]

R
(s)
j [3]

R
(s+1)
j [4]

R
(s)
j [4]

R
(s+1)
j [5]

R
(s)
j [5]

R
(s+1)
j [6]

R
(s)
j [6]

R
(s+1)
j [7]

R
(s)
j [7]

R
(s+1)
j [0]

a
(s)
j

f

≪13

α
(s)
j

g

≪17

b
(s)
j

g

≪ 3

β
(s)
j

f

≪ 8

Figure 4.2: The new FORK-256 step iteration.

CHAPTER 4. COLLISION SEARCH IN FORK-256 48

effect. Constants b
(6)
j and a

(7)
j have no effect on the computation of this word.

Thus by inspecting the step function and the message word schedule in Table 4.4,

it is easy to verify that Rj [5] satisfies the following properties:

Branch 1: R
(8)
1 [5] is independent of M [14] = a

(7)
1 ;

Branch 2: R
(8)
2 [5] is linearly dependent on M [1] = b

(7)
2 ;

Branch 3: R
(8)
3 [5] is independent of M [1] = a

(7)
3 ;

Branch 4: R
(8)
4 [5] is independent of M [14] = b

(6)
4 .

We shall use these simple observations to construct an attack against FORK-256.

We note that due to the fact that the message word schedule is shared between

the old and new versions of FORK-256, the same four observations (and the same

general attack) apply to both versions, although there are important technical dif-

ferences between the old and the new version. The complexity of the attack is the

same for both.

4.4 A Collision Attack

The main strategy of the attack is to use a fast method for finding messages that hash

into a significantly smaller subset of possible hash values. We do this by forcing the

sixth word of the compression function to remain constant over the hash function

iteration, CV 1[5] = CV 0[5], thereby generating hash values in a subset of size 2224.

Assuming uniform distribution, a full collision can be expected after
√

2 ln 2 ×
2

224
2 ≈ 2112.2 hashes in the small subset have been found. This follows from Theorem

2.2 (The Birthday Theorem).

The value of CV 1[5] is combined from the four branches and the initialization

vector as follows:

CV 1[5] = CV 0[5] ⊞ ((R
(8)
1 [5] ⊞ R

(8)
2 [5]) ⊕ (R

(8)
3 [5] ⊞ R

(8)
4 [5])). (4.4)

By substituting CV 1[5] = CV 0[5] and regrouping branches 2 and 3 on the left

side and branches 1 and 4 on the right side, we obtain the following necessary and

sufficient condition for CV 1[5] = CV 0[5]:

R
(8)
2 [5] ⊟ R

(8)
3 [5] = R

(8)
1 [5] ⊟ R

(8)
4 [5]. (4.5)

CHAPTER 4. COLLISION SEARCH IN FORK-256 49

Our attack is based on choosing two message words M [1] and M [14] in a specific

way to satisfy CV 1[5] = CV 0[5], which is possible due to the observations given in

the previous section. The values of the fourteen other message words are arbitrary

and can be chosen at random (as long as they remain constant through the two

phases of the attack). The two phases can be repeated any number of times to

produce sufficient hashes in the subset.

4.4.1 First Phase

Set M [1] = 0 and loop over M [14] = 0, 1, 2, · · · , 232 − 1. Compute branches 2 and 3

for each M [14] to obtain x = R
(8)
2 [5]⊟R

(8)
3 [5]. Place x and M [14] into a look-up table

so that the value of M [14] can be immediately retrieved based on the corresponding

x value (i.e. M [14] is indexed by x).

Note that since the mapping from M [14] to x is not surjective, about 1/e ≈ 36.8%

of the values of x will never occur (when the mapping is modeled as a random

function). This follows from the following classical theorem:

Theorem 4.1 (Range of a Random Function). The range of a discrete random func-

tion f : S 7→ S approaches (1 − e−1) |S| when |S| approaches infinity.

Proof. The probability that any given element x ∈ S does not map to a given ele-

ment y ∈ S is 1 − 1
|S| . The product probability that no x maps to y is therefore:

p =
∏

x∈S

(

1 − 1

|S|
)

. (4.6)

We obtain the result by applying the classic Bernoulli limit:

1

e
= lim

n→∞

(

1 − 1

n

)n
, (4.7)

and multiplying the inverse probability 1 − p with the cardinality of S.

On the other hand, many x can be obtained with more than one value of M [14].

Using a straightforward lookup cannot handle the latter situation, but simple data

structures with negligible expansion exist that can be used for these cases. The table

does not need to be larger than 16 gigabytes (32 bits ×232 entries).

CHAPTER 4. COLLISION SEARCH IN FORK-256 50

4.4.2 Second Phase

Loop over the 232 values of M [1]. Compute branches 1 and 4 for each M [1] to obtain

y = R
(8)
1 [5]⊟R

(8)
4 [5]⊞M [1]. The M [1] term is included due to the linear dependence

of R
(8)
2 [5] on it (this is also why M [1] is set to zero in the first phase).

In each step, perform a look-up. If any matches x = y are found, the necessary

and sufficient condition is satisfied and we have found a message (or rather, a pair

of M [1] and M [14] values) that produces one or more hashes that satisfy CV 1[5] =

CV 0[5].

4.4.3 Runtime Analysis

Each loop step in the second phase produces one match in the lookup table on

average. This is due to the fact that even though the mapping is not surjective,

there are a total of 232 M [14] entries in the table. Hence, approximately 232 hashes

with the property are produced in the second phase.

Since computation of only two branches out of four are needed, the computa-

tional effort in the first and second phases is roughly equivalent to 231 full hash

computations each, or 232 in total. If the full eight words in phase 1 are not stored,

branches 2 and 3 need to be computed again to reproduce a full hash, bringing the

total number to 3 ∗ 231. The average cost of producing a hash in the 2224 subset is

therefore 3
2 hash function invocations.

Unfortunately we have been unable to come up with a method utilizing “mem-

oryless” random-walk collision search methods such as those discussed in [108].

This is due to the fact that the algorithm outlined above only works in “batches”

of 232 to obtain a favorable average cost for each hash with the desired property

CV 1[5] = CV 0[5]. The memory requirement is therefore equivalent to running time

requirement, namely 3
2

√
2 ln 2 × 2

224
2 = 2112.8.

4.5 Further Work

The same observations about the effects of M [1] and M [14] on the final hash can

easily be adopted into a preimage attack that recovers the values of these two mes-

sage words with 232 effort, rather than 264, as expected in a brute-force search.

CHAPTER 4. COLLISION SEARCH IN FORK-256 51

It may be possible to “fix” more than 32 bits by using additional words of keying

material besides M [1] and M [14] in the attack. This would naturally lead to a more

effective overall collision attack. Terms M [0] and M [5] appear to be good candidates

as they are only used in steps 5 and 6 of branches 2 and 3, respectively, and are

therefore not fully diffused at the end of step 7.

We feel that in order to secure FORK-256, more rounds are needed. The design-

ers of FORK-256 did not go this route, but designed an altogether new hash func-

tion for the SHA-3 competition. The ARIRANG hash function [20] was subsequently

cryptanalysed and did not make it to the second round of the SHA-3 competition

[46, 55].

4.6 Conclusion

We have presented a 2112.8 collision attack against the new, improved version of the

hash function FORK-256. This represents a speed improvement of factor 215.2 over a

straightforward collision search. The attack strategy is surprisingly simple, and can

also be applied against the original version of FORK-256 in slightly modified form.

CHAPTER 5

HASH-BASED BLOCK CIPHERS

In this chapter we cryptanalyse some block cipher proposals that are based on ded-

icated hash functions SHA-1 and MD5. We discuss a related-key attack against

SHACAL-1 and present a method for finding “slid pairs” for it. We also present sim-

ple attacks against MDC-MD5 and the Kaliski-Robshaw Crab block cipher. These

results were partially published in the Fast Software Encryption 2003 conference

[96].

5.1 Introduction

One of the most widely used ways of creating cryptographic hash functions from

block ciphers is the so-called Davies-Meyer mode [85, 116]. Let Y = E(X, M) be a

compression function that takes in a message block M with an input variable X and

produces a result Y of equal size to X. To compute a message digest of message

M1 | M2 | · · · | Mn, we set X0 to some predefined initialization vector and iterate for

i = 1, 2, . . . , n:

Xi = E(Xi−1,Mi) ⊕ Xi−1. (5.1)

The resulting message digest is Xn. In 2002 Black, Rogaway, and Shrimpton

proved that this mode is secure if E is secure in ideal cipher model [17].

It has been observed [49] that the compression functions of most widely-used

dedicated hash functions MD5 [89] and SHA [77, 79] are based on this construc-

tion. In these hash functions the exclusive-or operation is replaced by wordwise

addition modulo 232 of the chaining variables Xi . It has also been observed that

the compression function E of MD5 and SHA can be efficiently computed in both

directions; given Y = E(X, M) and M , the original chaining value X can be recov-

ered using an inverse transform X = E−1(Y, M). However, it is believed to be more

difficult to recover Xi−1, given Xi and M .

52

CHAPTER 5. HASH-BASED BLOCK CIPHERS 53

The rest of this chapter is organized as follows. Section 5.2 describes a method

of finding slid pairs in SHACAL, the compression function of SHA-1. Section 5.3 de-

scribes attacks against MDC-MD5 and the Kaliski-Robshaw cipher, two block ciphers

derived from the MD5 hash function. Section 5.4 contains our analysis regarding

the cryptographic strength required from a block cipher when compared to the com-

pression function of a dedicated hash function.

5.2 The SHACAL Block Ciphers

One of the proposals for the NESSIE 1 project was the block cipher SHACAL, which is

essentially the SHA-1 compression function with the Davies-Meyer chaining (adding

the previous chaining value Xi−1) peeled off [49]. In this proposal the message

block M is viewed as the “key”, the chaining variable X acts as the plaintext block

and Y = E(X, M) is the corresponding ciphertext block.

Later, a “tweak” was submitted where the original SHACAL was renamed SHACAL-

1 and a new block cipher SHACAL-2 (based on SHA-256) was proposed [50]. We

refer the reader to [49, 50] for detailed specifications of the SHACAL block ciphers.

The basic structure of the SHA-1 compression structure is also used as a part of the

HORNET stream cipher [75].

Algorithm 5.1 is a full specification of SHACAL-1. The 512-bit key is contained

in sixteen 32-bit words W0,W1, . . . , W15. The 160-bit plaintext consists of five in-

put words (A,B, C,D, E). The corresponding ciphertext is returned in these same

variables.

A detailed analysis of differential and linear properties of SHACAL-1 can be

found in [48], where it is conjectured that a linear cryptanalytic attack would re-

quire at least 280 known plaintexts and a differential attack would require at least

2116 chosen plaintexts.

5.2.1 Sliding SHA-1 and SHACAL-1

Slide attacks exploit the iterative nature of a block ciphers (or compression func-

tions). Let Ri(X,M) be the state of the block cipher after round i. R0(X,M) = X

1NESSIE (New European Schemes for Signatures, Integrity and Encryption) was a European Union
research project funded from 2000–2003 to identify secure cryptographic primitives.

CHAPTER 5. HASH-BASED BLOCK CIPHERS 54

Algorithm 5.1 SHACAL-1 (The SHA-1 Compression Function)

for i = 16 . . . 79 do

Wi ← (Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16) ≪ 1
end for

0..19: first round (“select”).

for i = 0 . . . 19 do

T ← (A ≪ 5) ⊞ ((B ∧ C) ∨ (¬B ∧ D)) ⊞ E ⊞ Wi⊞ 0x5A827999

E ← D, D ← C, C ← B ≪ 30, B ← A, A ← T
end for

20..39: second round (“parity”).

for i = 20 . . . 39 do

T ← (A ≪ 5) ⊞ (B ⊕ C ⊕ D) ⊞ E ⊞ Wi⊞ 0x6ED9EBA1

E ← D, D ← C, C ← B ≪ 30, B ← A, A ← T
end for

40..59: third round (“majority”).

for i = 40 . . . 59 do

T ← (A ≪ 5) ⊞ ((B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D)) ⊞ E ⊞ Wi⊞ 0x8F1BBCDC

E ← D, D ← C, C ← B ≪ 30, B ← A, A ← T
end for

60..79: fourth round (“parity”).

for i = 60 . . . 79 do

T ← (A ≪ 5) ⊞ (B ⊕ C ⊕ D) ⊞ E ⊞ Wi⊞ 0xCA62C1D6

E ← D, D ← C, C ← B ≪ 30, B ← A, A ← T
end for

is the input value and Rn(X,M) = E(X, M) is the result after all n rounds are

computed.

Definition 5.1 (Slid Pair). A pair of messages M, M ′ that satisfies:

Ri+1(X, M) = Ri(R1(X, M),M ′), (5.2)

for some appropriate input X constitutes a slid pair.

A full slid pair maintains this property through the entire computation (0 ≤ i <

n). In this section we provide an example of such a slid pair for the SHACAL-1 block

cipher and the compression function of SHA-1.

The current terminology for slide attacks against block ciphers was introduced by

Biryukov and Wagner in 1999 [15, 16], although similar techniques had previously

been used by others, including the author of this thesis ([95] discusses “Ladder

attacks”, which are essentially the same as slide attacks). See [45] or [6] (pp. 274–

CHAPTER 5. HASH-BASED BLOCK CIPHERS 55

267) for a description of the 1977 Grossman-Tuckerman slide attack on the NDS

cipher.

To our knowledge, slide attacks against hash functions have not been considered

in the literature before this work was originally published in 2003 [96]. David

Wagner considered a slide attack on 40 iterations of SHA-1 in unpublished work

[109].

Indeed it is difficult to see if, and how, “slid pairs” in the compression function

can be exploited to find collisions for the hash function. This remains an open

question.

However, it is interesting to consider the question of whether or not slid pairs

(which are essentially linear relations between two inputs and outputs) can be easily

found for SHA-1. This is also related to Anderson’s classification of hash functions

[2], where it is argued that correlation freedom is essential for a cryptographic hash

function. Anderson defines a function h to be correlation free if it is not feasible to

find x and y such that the Hamming distance between h(x) and h(y) is less than

one would expect by random chance with the same number of hash function invo-

cations. A computationally efficient algorithm that finds related keys and messages

in a hash function is a violation of correlation freedom if we understand correlation

in a slightly broader sense.

SHA-1 exhibits some properties which are useful when mounting slide attacks.

Firstly, the SHA-1 compression function consists of four different round types. For

20 iterations of each round, the nonlinear function Fi and the constant Ki are un-

changed. There are only three transitions between different iteration types (see

Figure 5.1). These transitions occur after rounds 20, 40 and 60.

Secondly, the key schedule (i.e. message expansion) can be slid. We simply

choose:

W ′
i = Wi+1 for 0 ≤ i ≤ 14; (5.3)

W ′
15 = (W1 ⊕ W7 ⊕ W12 ⊕ W15) ≪ 1. (5.4)

Since this is an LFSR, we observe that after key expansion W ′
i = Wi+1 for 0 ≤ i ≤ 78.

We note that these properties are not exhibited by SHA-256 (or SHA-512), thus

making SHACAL-2 more resistant to slide attacks.

CHAPTER 5. HASH-BASED BLOCK CIPHERS 56

5.2.2 Linear Relationships in Messages and Hash Results

We now consider the difficulty of distinguishing related keys in a chosen plaintext

attack, where we have access to two SHACAL-1 encryption oracles (“black boxes”)

whose keys are related in the way described in the previous section (Equations 5.3

and 5.4). The main question becomes: how many chosen plaintexts are needed?

For the transition iterations between different types of functions we wish to find

inputs that produce the same output word for both types (“round collisions”). Ex-

periments have confirmed that the round functions behave sufficiently randomly for

us to use 2−32 as the probability of a round collision. Since there are three transi-

tions, a simple distinguisher will require approximately 2128 chosen plaintext pairs.

This can be improved to 296 by using “structures”; first perform 232 encryptions

of (A,B, C, D, x) on the first oracle, where x = 0, 1, 2, · · · , 232 − 1 and A, B,C, D

are some constants. Then do another 232 encryptions of (y, A,B ≫ 2, C, D) on

the second “slid” oracle for y = 0, 1, 2, · · · , 232 − 1. Since each entry in the first

set corresponds to some slid entry in the second set, the first collision is effectively

obtained for free, and only 296 pairs are required to distinguish the related keys 2.

A version of SHACAL-1 reduced to three rounds (60 iterations) will require 264

pairs (only two transitions).

5.2.3 An Algorithm for Finding Slid Pairs

A method exists for finding slid pairs with roughly 232 effort. We only give an

overview of the technique.

The general strategy is as follows. The algorithm does not start by choosing the

plaintext or the ciphertext, but from the “middle” iterations 20 and 40. We find

collisions in these positions with O(1) effort and then work towards iterations 25 –

28, where we perform a partial meet-in-the middle match.

Round Collisions

We note that in iteration i, not all input words affect the possibility of a round

collision; only B, C, and D are relevant, since A and E only affect the output word

2The suggestion of using “structures” came from an anonymous program committee member of
FSE 2003, where this work was originally published [96].

CHAPTER 5. HASH-BASED BLOCK CIPHERS 57

A B C D E

Repeat 20 times
t = 0 . . . 19 ≫ 2

≪ 5

Select

5A82799916

Wt

Repeat 20 times
t = 20 . . . 39 ≫ 2

≪ 5

6ED9EBA116

Wt

Repeat 20 times
t = 40 . . . 59 ≫ 2

≪ 5

Majority

8F1BBCDC16

Wt

Repeat 20 times
t = 60 . . . 79 ≫ 2

≪ 5

CA62C1D616

Wt

A’ B’ C’ D’ E’

Figure 5.1: SHACAL-1.

CHAPTER 5. HASH-BASED BLOCK CIPHERS 58

linearly. Furthermore, the key word Wi has no effect on the probability of collision

in iterations i or i + 1.

For iteration pair 19/20 (select-parity transition) we use:

(B,C, D) = (⊟K20,⊟K0, ⊟K0). (5.5)

We observe that:

(B ∧ C) ∨ (¬B ∧ D) = ⊟K0; (5.6)

B ⊕ C ⊕ D = ⊟K20. (5.7)

Thus the constant (K0/K20) is canceled out in both cases and a round collision

occurs.

Similarly, for iteration pair 39/40 (parity-majority transition) we use:

(B, C, D) = (⊟K20, ⊟K40, ⊟K40). (5.8)

Again we see that a collision occurs:

B ⊕ C ⊕ D = ⊟K20; (5.9)

(B ∧ C) ∨ (C ∧ D) ∨ (B ∧ D) = ⊟K40. (5.10)

Keying

The key-expansion LFSR is sparse. This helps us to stretch the 16-word span of the

key schedule window to cover two collisions at iterations 20 and 40.

We note that all 80 key words can easily be computed from any 16 consecutive

words of the expanded key. In our attack we choose keys W21...36. We start by

forcing a collision at iteration 20 and then running the cipher forward to iteration

25.

We then pick (A,B, C, D, E) after iteration 38 so that a collision occurs at itera-

tion 40, and then run the cipher backwards to iteration 28. Key words W21 . . . W24

CHAPTER 5. HASH-BASED BLOCK CIPHERS 59

and W29 . . . W36 are set to zero. Therefore:

W37 = (W33 ⊕ W29 ⊕ W23 ⊕ W21);≪ 1 = 0 (5.11)

W38 = (W34 ⊕ W30 ⊕ W24 ⊕ W22) ≪ 1 = 0. (5.12)

Note that W39 and W40 do not affect the collision at iteration 40.

We can choose four keying words W25...28 without messing up the two round

collisions. Unfortunately we cannot control all five words, so we are forced to use a

large lookup table to find a match for the fifth word of the running state. This works

because SHA-1 requires five iterations before all words are non-linearly changed.

After we have collisions in iterations 20 and 40, and sixteen keying words W21...36,

we run the compression function forward to iteration 59/60 and see if a collision

also occurs there. Since two of the three necessary collisions can be found with es-

sentially O(1) effort, and the third requires O(232) operations, the overall complexity

of finding slid pairs is O(232). The method has been implemented; see Section 5.2.4

for an example of a slid pair for the full SHACAL-1.

This is a surprising property, but we have not discovered a direct way to trans-

form it into a practical attack against SHA-1 and SHACAL.

5.2.4 A Slid Pair for SHA-1

The algorithm described in the previous section for finding slid pairs was imple-

mented in the C programming language (588 lines). A test run required roughly

two hours of CPU time on a 1 GHz Pentium III computer (GCC/Linux). The results

have been verified against a reference implementation of SHACAL. The slid pair is

given here as two triplets containing:

1. An input block (A,B, C, D,E) of 160 bits.

2. A key block W0...15 of 512 bits.

3. An output block (A′, B′, C ′, D′, E′) of 160 bits.

The output block (A′, B′, C ′, D′, E′) also includes the final addition of a chaining

variable. If this final “chaining” is removed, this is also a slid pair for SHACAL-1.

CHAPTER 5. HASH-BASED BLOCK CIPHERS 60

It is easy to see that Triplet B has been slid “right” by one position compared to

Triplet A. The message block has been slid “left” correspondingly.

Triplet A:

(A,B, C, D, E) = 02AAD5C2 DC766713 19C66B2F 7CEAE5B1 CC08CC0B

W0...15 = 8DA3F8F6 BBA5050C 99D3C3DC BBA5050C 99D3C3DC

E42BAFB3 37DF640F 1ABABEEA 8DA3F8F6 E42BAFB3

37DF640F B57DEBB5 5AA5AB1F 44ED8DA0 1B63271F

EAE12A73

(A′, B′, C ′, D′, E′) = FC56BE44 03A42CDA F68056F0 960F5286 32985CD9

Triplet B:

(A,B, C, D, E) = 4258DA7D 02AAD5C2 F71D99C4 19C66B2F 7CEAE5B1

W0...15 = BBA5050C 99D3C3DC BBA5050C 99D3C3DC E42BAFB3

37DF640F 1ABABEEA 8DA3F8F6 E42BAFB3 37DF640F

B57DEBB5 5AA5AB1F 44ED8DA0 1B63271F EAE12A73

BA7C9CF9

(A′, B′, C ′, D′, E′) = 58BB28F0 FC56BE44 C0E90B35 F68056F0 960F5286

5.3 Block ciphers based on MD5

We may also consider block ciphers derived from other dedicated hash functions.

One obvious candidate is MD5 [89]. The MD5 compression function consists of

four “rounds”, each of which has 16 iterations. Because each of the 64 iterations

CHAPTER 5. HASH-BASED BLOCK CIPHERS 61

has a different constant, the MD5 compression function does not seem to be subject

to slide attacks. Figure 5.2 illustrates the structure of a single MD5 iteration.

A B C D

≪ s

B’

X[k]

T[i]
F

C’ D’A’

Figure 5.2: The MD5 iteration.

Both MD5 and its compression function are known to not be collision-resistant

[35, 113]. We are not aware of any cryptanalysis of the MD5 compression function

in a block cipher role.

Using the techniques of differential cryptanalysis [13], we have found at least

one high-probability differential relationship in the MD5 compression function. If a

pair of input blocks P and P ′ satisfy:

P ⊕ P ′ = 80000000 80000000 80000000 80000000, (5.13)

it follows that with significant probability the corresponding outputs satisfy the same

differential relationship:

E(P,K) ⊕ E(P ′,K) = 80000000 80000000 80000000 80000000. (5.14)

With probability 2−16 this relationship (characteristic) will hold for the 16 itera-

tions of rounds 1, 2, and 4. The relationship holds with P = 1 for round 3, yielding

a total probability of 2−16 × 2−16 × 1× 2−16 = 2−48 over all four rounds. Note that if

the chaining variable is added, the output XOR becomes zero. This attack is closely

related to the collision attacks discussed in [33].

CHAPTER 5. HASH-BASED BLOCK CIPHERS 62

5.3.1 Message Digest Cipher

The Message Digest Cipher (MDC) encryption mode for iterated hash functions was

proposed by Gutmann in 1993 and is used in his Secure FileSystem software (in

conjunction with the SHA-1 compression function) [47]. MDC can be defined as:

C0 = IV ; (5.15)

Ci = Pi ⊕ (E(Ci−1,K) ⊞ Ci−1) for i = 1, 2, . . . , n. (5.16)

Here IV is an initialization vector, Pi are the plaintext blocks, and Ci are the corre-

sponding ciphertext blocks. If we ignore the addition operation, MDC is equivalent

to running the compression function in CFB (cipher feedback) mode.

The decryption operation can be written as:

Pi = Ci ⊕ (E(Ci−1,K) ⊞ Ci−1). (5.17)

This allows us to select the input to the compression function. Using the differential

characteristic described in the previous section, we can distinguish MDC-MD5 from

a “perfect” 128-bit block cipher in CFB mode with about 248 blocks (255 bits) in

a chosen ciphertext attack. The distinguisher works by choosing plaintext pairs

(P1, P
′
1) that satisfy:

P1 ⊕ P ′
1 = 80000000 80000000 80000000 80000000, (5.18)

and observing the corresponding ciphertext difference C2⊕C ′
2 after encryption. The

Hamming weight of the difference is strongly biased towards zero, and confidence

levels after 248 trials are very high.

5.3.2 The Kaliski-Robshaw Cipher

Another proposal based on MD5 is the Kaliski-Robshaw cipher [57], also called

CRAB. The main purpose of this proposal was to activate discussion of very large

block ciphers that can encrypt, say, an entire 1024-byte disk block in a single oper-

ation. This cipher has 8192-bit blocksize and its basic iteration is closely related to

that of MD5. However, the overall structure is radically different.

CHAPTER 5. HASH-BASED BLOCK CIPHERS 63

We discovered that flipping bit 26 (0x04000000) of one of the 256 plaintext

words will result in equivalence of at least 64 ciphertext words with experimental

probability 0.096 = 2−3.4. This is due to the fact that this particular bit often only

affects three words in the first round. In each of the consequent rounds the number

of affected words can only quadruple, resulting in 3 ∗ 4 ∗ 4 ∗ 4 = 192 affected words

in the end, and leaving 64 words untouched.

This immediately leads to a distinguisher requiring no more than a dozen chosen

plaintext blocks: flip bit 26 in one of the input words and observe the difference in

ciphertext. If 64 of the ciphertext words match, there is an overwhelming probability

that the “black box”is not a random function.

Analysis of key recovery attacks is made a little bit more difficult by the sketchy

nature of the description of the key schedule. If we assume that the key can be

effectively recovered from permutation P, we believe that a key recovery attack will

not require more than 216 chosen plaintext blocks and negligible computational

effort.

5.4 Conclusions

We have presented attacks against block ciphers that have been directly derived

from dedicated hash functions.

Compression functions are only meant to be run in one direction. The secu-

rity properties of compression functions can be different when run in the opposite

direction (“decryption”). Furthermore, a key-scheduling mechanism suitable for a

dedicated hash function may be insufficient for a block cipher.

Based on the evidence at hand, we assert that since the design criteria for com-

pression functions and block ciphers are radically different, even adaptation of a

secure compression function as a block cipher may not be a wise thing to do.

CHAPTER 6

VSH, THE VERY SMOOTH HASH

Contini, Lenstra, and Steinfeld proposed a new hash function primitive, VSH, very

smooth hash, at the EUROCRYPT 2006 Conference [22]. In this chapter we com-

ment on the resistance of VSH against some standard cryptanalytic attacks, includ-

ing preimage attacks and collision search for a truncated VSH. Although the authors

of VSH claim only collision resistance, we show why one must be very careful when

using VSH in cryptographic engineering, where additional security properties are

often required.

This work was originally published in the INDOCRYPT 2006 conference [99].

6.1 Introduction

Many existing cryptographic hash functions were originally designed to be message

digests for use in digital signature schemes. However, they are also often used as

building blocks for other cryptographic primitives, such as pseudorandom number

generators (PRNGs), message authentication codes, password security schemes, and

for deriving keying material in cryptographic protocols such as SSL, TLS, and IPSec.

These applications may use truncated versions of the hashes with an implicit

assumption that the security of such a variant against attacks is directly proportional

to the amount of entropy (bits) used from the hash result. An example of this is the

HMAC-n construction in IPSec [9]. Some signature schemes also use truncated

hashes.

VSH is based on a novel problem, VSSR (Very Smooth number nontrivial modu-

lar Square Root). A similar problem arises in the first phase of Quadratic Sieve (QS)

and Number Field Sieve (NFS) factoring algorithms. This problem is reasonably

well studied, leading to the VSSR security assumption on which the VSH security

reduction is based. All of the desirable hash function properties are difficult, if not

impossible, to prove without nonstandard assumptions. We note that proofs based

64

CHAPTER 6. VSH, THE VERY SMOOTH HASH 65

on assumptions lead to statements that also depend on these assumptions, whether

their origins are in the traditions of symmetric or asymmetric cryptanalysis.

The only property claimed by the authors of VSH is collision resistance. Hence

the following remark from one of the authors of VSH during his presentation at the

EUROCRYPT 2006 conference in St. Petersburg:

“VSH is not a Hash Function.”

– Arjen K. Lenstra, EUROCRYPT 2006 1

In [22, Section 3], short message inversion (equivalent to preimage resistance) is

considered and one possible “solution” is provided. As it will be shown in Section

6.3 of this chapter, the solution is not adequate.

The authors therefore clearly expected VSH to exhibit some level of preimage

and second preimage resistance. These are standard requirements in the very def-

inition of a “cryptographic hash function”. The authors of VSH are very clear that

“VSH should not be used to model random oracles”. I believe that indifferentiability

from a random oracle is a central requirement for a general purpose hash function

such as SHA-3.

The rest of this chapter is organized as follows. Section 6.2 contains a description

of VSH. Preimage resistance and algebraic properties of VSH are discussed in Section

6.3. One-wayness of the one variant proposed in the specification is discussed in

Section 6.4. We then consider collision search for truncated variants of VSH in

Section 6.5. We note other features of VSH in Section 6.6 and give our conclusions

in Section 6.7.

6.2 The VSH Algorithm

VSH was initially circulated as an IACR ePrint in 2005 [23]. There were many

changes to VSH before its final publication at EUROCRYPT 2006 [22]. In March

2006 the length padding was changed to be performed after the message has been

hashed, rather than at the beginning. Such small changes have significant impli-

cations on the development of practical attacks. Remarkably, the “security proof”

1Quoted with permission.

CHAPTER 6. VSH, THE VERY SMOOTH HASH 66

required no modification. The attacks discussed in this chapter apply only to the

published EUROCRYPT version of VSH; other attacks may be devised on other vari-

ants.

We describe the VSH algorithm in its most basic form, essentially as it appears

in [22]. We note that our attacks can be extended to most of the variants given in

the VSH paper, especially the Fast VSH variant in section 3.1 of [22].

Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of primes. Let n be a large RSA

composite. Let k, the block length, be the largest integer such that
∏k

i=1 pi < n. Let

m be an l-bit message to be hashed, consisting of bits m1,m2, . . . , ml, and assume

that l < 2k. To compute the hash of m:

1. Let x0 = 1.

2. Let L = ⌈l/k⌉ be the number of blocks. Let mi = 0 for l < i ≤ Lk (padding).

3. Let l =
∑k

i=1 li2
i−1, with li ∈ {0, 1}, be the binary representation of the mes-

sage length l, and define mLk+i = li for 1 ≤ i ≤ k.

4. For j = 0, 1, . . . , L in succession compute:

xj+1 = x2
j

k
∏

i=1

p
m(jk+i)

i mod n. (6.1)

5. Return xL+1.

Selecting a 1024-bit modulus n was suggested in the original paper, indicating a

131-bit block size k.

6.3 Preimage resistance

We first show that VSH is multiplicative for non-overlapping bit strings.

Theorem 6.1 (VSH is Multiplicative). Let x, y, and z be three bit strings of equal

length, where z consists only of zero bits and the strings satisfy x ∧ y = z. It follows

that:

H(z)H(x ∨ y) ≡ H(x)H(y) (mod n). (6.2)

CHAPTER 6. VSH, THE VERY SMOOTH HASH 67

Proof. The VSH compression in Equation 6.1 produces the hash as a product of

primes, each selected by individual bits of the message. Because of the condition,

no bit gets selected twice. Initial squaring has no effect on multiplicativity regardless

of the particular selection of x0 = 1.

This multiplicative property is similar, although simpler, than the one used by

Coppersmith to attack (then) Annex D of X.509 [26].

As a result, VSH succumbs to a classical time-memory trade-off attack that ap-

plies to multiplicative and additive hashes. The attack is similar in many aspects to

Shanks’ baby-step giant-step algorithm for discrete logarithms [104].

We set the secret message m as (x ∨ y) and rewrite the equation as:

H(y) = H(x)−1H(z)H(m) (mod n). (6.3)

To solve the l-bit preimage m of H(m):

1. Tabulate H(x | 00 · · · 0)−1H(z)H(m) (mod n) for 0 ≤ x < 2l/2.

2. Do table lookups for H(00 · · · 0 | y) for y = 0, 1, 2, . . ., looking for a match.

The algorithm terminates when m = x | y, in other words before y < 2l/2. A

preimage attack on VSH therefore has approximately 2l/2 complexity, rather than

approximately 2l as expected.

Final squarings proposed in [22, Section 3] under the subtitle “short message

inversion” do not protect against this attack.

This type of attack is extremely serious if VSH is used to secure passwords, a

typical application for hash functions. Note that the complexity of the attack does

not depend on the modulus size n, but on the entropy of the password strings.

Example 6.1. VSH is being used to secure a 4-character lower case alphabetic password

M , stored with ASCII encoding. For demonstration purposes we choose k = 32 and a

169-bit modulus n:

n = (284 + 3)(285 − 19)

= 748288838313422294120286382894166426220969123119047.

CHAPTER 6. VSH, THE VERY SMOOTH HASH 68

The hash of the secret is:

H(m) = 16844120625154617337159062413466716693049866864325. (6.4)

In this case H(z) = 13; the first iteration yields 1, and the second round 13, the sixth

prime, as the length of the message is 25 = 32 bits. We tabulate H(x)−1H(z)H(m) (mod

n) for 262 = 676 values T [0 . . . 675]:

x: aa.. Binary: 01100001 01100001 00000000 00000000

T[0] = 91345572106882035279752100576530653

x: ab.. Binary: 01100001 01100010 00000000 00000000

T[1] = 116156501606261492576199026944080853

. . .

x: zz.. Binary: 01111010 01111010 00000000 00000000

T[675] = 384284712674090018973838770853950813384926485216514 .

In the second phase we run through the values of H(y):

H(..aa) = 3904844677556216209933

H(..ab) = 3396095819174949308197 ...

A match is found after 83 steps at H(..df) = 30205660456999582781162559493,

which matches with T [18] = H(as..)−1H(z)H(m) (mod n). Hence the secret pass-

word M is “asdf”.

Note that it is not necessary to store the entire value to the table T [i]; an appropriate

number of least significant bits usually suffices. When the table is indexed by, say,

T [i] mod 232, the search becomes an O(1) operation.

This example illustrates that password cracking time is effectively “square-rooted”

by this attack; l-character passwords offer a level of security expected from l/2-character

passwords.

6.4 One-wayness (of the “Cubing” Variant)

In [22, Section 3.4], a variant that uses cubing instead of squaring in its compression

function is proposed.

CHAPTER 6. VSH, THE VERY SMOOTH HASH 69

We recall from elementary number theory the Legendre symbol, which is defined

for a prime p as:

(x

p

)

=

0 if x ≡ 0 (mod p)

+1 if x 6= 0 (mod p) and for some integer y, y2 ≡ x

−1 if there is no such y.

(6.5)

The Jacobi symbol is a generalization of the Legendre symbol. If a number n has

the prime factorization n =
∏

i p
αi

i , its Jacobi symbol is:

(x

n

)

=
∏

i

(x

pi

)αi

. (6.6)

See [70, Section 2.4.5] for further properties of the Jacobi symbol and a de-

scription of an algorithm for computing it in polynomial time without knowing the

factorization of n.

VHS uses an RSA modulus of type n = pq, and hence:

(a

n

)

=
(a

p

)(a

q

)

. (6.7)

Using the Jacobi symbol, the compression function:

xj+1 = x3
j

k
∏

i=1

pmi

i mod n, (6.8)

can be transformed into:

(xj+1

n

)

=
(xj

n

)

k
∏

i=1

(pi

n

)mi

. (6.9)

We may ignore the zero case of the Jacobi symbol as it is does not occur in

the multiplicative group where VSH works. Multiplication of Jacobi symbols in the

set {1,−1} is isomorphic to other representations of this group, including addition

modulo 2.

CHAPTER 6. VSH, THE VERY SMOOTH HASH 70

Definition 6.1. A “binary” version of the Jacobi can be represented as:

j(c, n) =
1

2

(

1 −
(c

n

)

)

. (6.10)

Table 6.1 illustrates the isomorphism of these two representations of the group

of integers (mod2).

(

a
n

)

j(a, n)
(

b
n

)

j(b, n)
(

a
n

)(

b
n

)

j(a, n) ⊕ j(b, n)

+1 0 +1 0 +1 0

+1 0 -1 1 -1 1

-1 1 +1 0 -1 1

-1 1 -1 1 +1 0

Table 6.1: Isomorphism of the multiplicative group defined by {−1, 1} and the ad-
ditive group {0, 1}.

We now have a linear equation giving the parity of some message bits:

j(xj+1, n) = j(xj , n) +
k

∑

i=1

j(pi, n)mi (mod 2). (6.11)

Note that the Jacobi symbol can be very efficiently computed and that j(pi, n) is

essentially random for each randomly generated composite n. If the same message

has been hashed with k different moduli n, a system of k linear equations can be ob-

tained, leading to disclosure of bits by solving the system of equations (see Example

6.2).

This attack applies to the standard squaring version, but only leaks information

about the message length, since there is an additional squaring operation at the

end. This was not the case for VSH versions 3.57 and before (ePrint revisions of

VSH published before March 2006), where information about the contents of the

last message block could be obtained.

One-wayness is implied by the standard hash security requirement of preimage

resistance. If information about some of the preimage bits can easily be obtained

then it is possible to find the rest faster in an exhaustive search, as the search space

CHAPTER 6. VSH, THE VERY SMOOTH HASH 71

is smaller.

Example 6.2. Assume that a 64-bit password has been hashed with VSH. For demon-

stration purposes we define the modulus n to be equivalent to the RSA-1024 factoring

challenge number n = 1350..(300 digits)..7563 [93].

The Jacobi symbols for the first small primes modulo n are:

(2

n

)

= −1
(3

n

)

= −1
(5

n

)

= −1
(7

n

)

= 1
(11

n

)

= 1
(13

n

)

= −1 · · · (6.12)

Since the length padding (last round) will simply consist of cubing the product of primes

and multiplying the result by the length indicator p6 = 13, we may write:

(H(m)

n

)

=
(13

n

)

64
∏

i=1

(pi

n

)mi

. (6.13)

Using the binary j(c, n) function and knowledge of n, this can be further simplified into

the following parity equation:

j(H(m), n) ≡ 1 + m1 + m2 + m3 + m6 + m7 + m10 + m13 + m14 + m15 +

m16 + m17 + m22 + m24 + m25 + m26 + m27 + m28 + m29 +

m31 + m33 + m36 + m39 + m40 + m43 + m44 + m46 + m49 +

m51 + m52 + m57 + m59 + m61 + m64 (mod 2).

We can therefore speed up dictionary search against the password by a factor close

to two, as half of the password candidates can be rejected with simple bit shift, AND

and XOR operations, rather than with computationally expensive modular arithmetic

required to compute the full hash.

Note that if the same secret has been hashed with multiple different moduli n,

the speedup grows almost exponentially; two distinct moduli yield a speedup factor

close to four, etc.

6.5 Collision Search for Truncated VSH Variants

VSH produces a very long hash (typically 1024 bits). There are no indications that

a truncated VSH hash offers security that is commensurate to the hash length. This

CHAPTER 6. VSH, THE VERY SMOOTH HASH 72

appears to rule out the applicability of VSH in digital signature schemes which pro-

duce signatures shorter than the VSH hash result, such as Elliptic Curve signature

schemes.

To illustrate this point, we describe an attack on one truncated variant of VSH.

6.5.1 Partial Collision Attacks

We first discuss a generic technique for turning a partial collision attack into a full

collision attack.

Assume that there is a fast O(1) mapping f that causes the hash result of an

l-bit hash H to be in some smaller subset of possible outputs H(f(x)) ∈ S, where

|S| < 2l. Typically f would be chosen in such a way that certain hash result bits are

forced to have the same constant value. In other words, f forces partial collisions.

Note that f itself should not produce too many collisions, i.e. x1 6= x2 usually means

that f(x1) 6= f(x2).

If such an f can be found, and it is fast, the complexity of finding full collisions

becomes approximately
√

|S|. Note that f does not need to be able to force the

hash to S on each iteration, it is sufficient that it works with reasonable probability.

Consider Floyd’s collision search algorithm, as discussed in Section 2.5.2. The

iteration becomes si+1 = H(f(si)). Faster parallel collision search algorithms such

as those described in [108] can also be used.

6.5.2 Attack on VSH Truncated to Least Significant 128 bits

We will instantiate this attack on a VSH variant that only uses the least-significant

128 bits of the hash function result. For basic VSH (1024-bit modulus n, k = 131)

the result of hashing a 128-bit message m1|m2| · · · |m128 can be simplified to:

H(m) =
(

19
(

128
∏

i=1

pmi

i

)2
mod n

)

mod 2128. (6.14)

The constant 19 = p8 is caused by the length padding in the second (and final)

round.

Modular reduction by n occurs in this case only if the product is larger than

n. For random m, half of the 128 first small primes are missing from the product

CHAPTER 6. VSH, THE VERY SMOOTH HASH 73

∏128
i=1 pmi

i , so its geometric mean is roughly
∏128

i=1 p
1
2
i ≈ 2495.0. If we consider Equa-

tion 6.14, the expected size of the product becomes 19×2495.02 ≈ 2994.2. Simulations

show that modular reduction by 21023 < n < 21024 is required only with probability

P = 37%.

We get the following approximation that is valid with significant probability:

H(m) = 19
(

128
∏

i=1

pmi

i

)2
mod 2128. (6.15)

Note that the iteration is independent of the RSA modulus n if there is no reduction.

Precomputation phase: For each of the 241 bit strings r = r1 | r2 | · · · | r41 of

length 41, we compute and store r into a lookup table, indexed by the product:

(

42
∏

i=2

p
ri−1

i

)−1
mod 242. (6.16)

We will choose the f mapping as follows:

1. Select message bits m43,m44, . . . , m128 from corresponding bits of si.

2. Compute the partial product
∏128

j=43 p
mj

j mod 242 and use that to select mes-

sage bits m2,m3, . . . , m42 using the lookup table (m1 is always set to zero).

This will often (P ≈ 0.5) force the least significant 42 bits to a certain constant

value, 19, on each iteration. Note that if the table lookup fails, we may select

m2,m3, . . . ,m42 to be some arbitrary deterministic value; one that satisfies si ≡
19 (mod 2l) for some l < 42 would be a good choice.

Hence we can cause the iteration to run in a significantly smaller output subset

with essentially O(1) effort (constant-factor increase), and collisions can be found

significantly faster.

Example 6.3. We will start with s1 = 242+19, and try to produce a sequence satisfying

si ≡ 19 (mod 242) for a significant portion of i.

The partial product
∏128

i=43 pmi

i mod 242 yields p43 = 191 for s1. We will then

perform a lookup in the precomputed table; it turns out that selecting message bits m1

through m42 as:

01110010 01010101 00000000 11100001 11110111 00,

CHAPTER 6. VSH, THE VERY SMOOTH HASH 74

will force the product into the desired subset. The product of primes corresponding to

those message bits is:

3 ·5 ·7 ·17 ·29 ·37 ·43 ·53 ·97 ·101 ·103 ·131 ·137 ·139 ·149 ·151 ·163 ·167 ·173 (6.17)

= 1164213571911795168635778009100095, (6.18)

and this multiplied by the partial product satisfies:

191 · 1164213571911795168635778009100095 ≡ 1 (mod 242). (6.19)

Clearly squaring a number that is congruent to 1 mod 242 maintains the property. The

final multiplication by 19 results in the second element of the sequence satisfying the

desired property s2 ≡ 19 (mod 242). We have:

s2 = 19 (191 · 1164213571911795168635778009100095)2 mod 2128 (6.20)

= 0x79424F79408D6B27F52A500000000013. (6.21)

With this sequence we only need to rely on a birthday collision in the upper 128− 42 =

86 bits of the sequence. Roughly 243 iterations are required using algorithms of [108]

to achieve this.

Note that with some probability this algorithm will yield false collisions due to

the fact that the inverse of the partial product is not always found in the lookup

table. Modular reduction by n may also cause false collisions. This only results in a

small constant factor increase to the complexity of the algorithm, however; we only

need to restart with different starting points until a proper collision is found. We

estimate that the constant factor

6.5.3 Overall complexity of attack

In essence, the complexity of this attack against VSH truncated to l bits is:

- Pre-computing the table offline: ≈ 2
l
3 time and space;

- Finding collisions: ≈ 2
l
3 iterations;

CHAPTER 6. VSH, THE VERY SMOOTH HASH 75

- Total cost: roughly ≈ 2
l
3 , rather than ≈ 2

l
2 as expected from a hash function

with good pseudorandomness properties.

We acknowledge that this represents just one way of truncating VSH. It is likely

that other truncated variants can be attacked using a different f function, and will

have a different attack complexity. Using, say, the most significant bits of the result

(rather the least significant bits) would result in an even faster attack.

6.6 Other features of VSH

The authors of VSH do not explicitly note this, but the hash function result can

be updated after small changes to the message without computing the entire hash

again; a “bit flip” in a message will always cause a predictable change in the mes-

sage result (it becomes multiplied mod n by certain a power of a small prime or its

inverse). This is due to the highly algebraic nature of the hash.

We note that such a property may be useful in some applications where rapid

update of the hash is required, but it is undesirable in many more, as it can facili-

tate adaptive attacks against some cryptographic protocols. A similar multiplicative

property was sufficient for the X.509 Annex D hash function to be considered broken

[26].

6.7 Conclusions

In our opinion VSH is a simple and elegant design that is based on a plausible

complexity-theoretic assumption. However, we have demonstrated that VSH should

not be considered as a general-purpose hash function as usually understood in secu-

rity engineering. VSH is not preimage resistant (Section 6.3) and truncated versions

are not collision-resistant (Section 6.5).

CHAPTER 7

STATISTICAL-ALGEBRAIC TESTING

Statistical testing has traditionally been a part of evaluation of cryptographic prim-

itives. However, most cryptographers agree that generic tests such as the NIST

800-22 suite are appropriate mainly for catching implementation errors rather than

determining the cryptographic strength of an algorithm [74, 94].

In Chapter 6 we applied a linearization attack on the VSH hash function. This

is an extreme example of an algebraic attack [28]. Most hash functions cannot be

linearized, but algebraic (relinearization) attacks have been successfully applied to

other cryptographic primitives of relatively low algebraic degree, such as the MiFare

Crypt 1 stream ciphers [30]. Algebraic attacks have also been applied to the AES

[31] and DES [29] block ciphers, although the effectiveness of these attacks remains

debatable.

Algebraic attacks work when the underlying Boolean function of a cryptographic

primitive is “simple” [28]. How would one automatically distinguish such a simple

function of n bits from a random one? One solution is to examine its Algebraic

Normal Form (ANF) representation for anomalies such as redundancy or bias. A

test that utilizes this approach was first proposed by Eric Filiol in 2002 [37]. In this

chapter we will give further theoretical and experimental evidence of the applica-

bility of ANF-based tests on hash functions.

The structure of this chapter is as follows. In Section 7.1 we recall the Algebraic

Normal Form and its basic properties. Section 7.2 contains an exposition of a variant

of Filiol’s d-monomial statistical test. Section 7.3 gives new, clear evidence of the

relationship between Boolean gate complexity and the d-monomial test.

The theoretical work described in this chapter was originally published in [97,

98], together with experimental results in the context of black-box Chosen-IV at-

tacks on stream ciphers. The experimental MD5 and SHA-1 results contained in

Section 7.4 have not been previously published.

76

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 77

7.1 Preliminaries

Let F
n
2 be the vector space defined by n-vectors x = (x1, x2, . . . , xn), where xi ∈ F2,

i.e. each of the n entries have values 0 or 1 and computations are defined modulo

2. A Boolean function f of n variables is simply a mapping f : F
n
2 7→ F2. There are

exactly 22n

distinct Boolean functions of n variables, each uniquely defined by its

truth table.

There are many alternative representations for Boolean functions, such as Con-

junctive and Disjunctive Normal Forms (CNF and DNF), which are widely used in

automated theorem proving and other fields of theoretical computer science [12].

We will focus on Algebraic Normal Form.

Definition 7.1 (Algebraic Normal Form). A function f̂ : F
n
2 7→ F2 satisfying:

f(x) =
∑

a∈F
n
2

f̂(a)
n

∏

i=1

xai

i , (7.1)

is an Algebraic Normal Form representation of a Boolean function f : F
n
2 7→ F2.

In our notation the “hat” f̂ on top of function f indicates that it is the ANF form

of the function defined by the truth table form f . There are many competing nota-

tions for ANF. We use the classical 1927 Zhegalkin polynomial notation [107, 121].

Especially in digital electronics, ANF is also known as RSE (Ring Sum Expansion)

[115] and Positive Polarity Reed-Muller Expression (PPRM) [102].

Using the transformed function f̂ , a multivariate polynomial representation of f

can be obtained, as can be seen from the following example.

Example 7.1. Consider the Boolean function f : F
3
2 7→ F2 defined by the following

table:

f(0, 0, 0) = 1, f(1, 0, 0) = 0, f(0, 1, 0) = 1, f(1, 1, 0) = 0,

f(0, 0, 1) = 1, f(1, 0, 1) = 1, f(0, 1, 1) = 0, f(1, 1, 1) = 1.

As indicated by Definition 7.1, we wish to find a function f̂ that for all x satisfies:

f(x1, x2, x3) = f̂(0, 0, 0) + f̂(1, 0, 0)x1 + f̂(0, 1, 0)x2 + f̂(1, 1, 0)x1x2+ (7.2)

f̂(0, 0, 1)x3 + f̂(1, 0, 1)x1x3 + f̂(0, 1, 1)x2x3 + f̂(1, 1, 1)x1x2x3.

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 78

This corresponds to solving the following system of linear equations in F2:

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

f̂(0, 0, 0)

f̂(1, 0, 0)

f̂(0, 1, 0)

f̂(1, 1, 0)

f̂(0, 0, 1)

f̂(1, 0, 1)

f̂(0, 1, 1)

f̂(1, 1, 1)

=

f(0, 0, 0) = 1

f(1, 0, 0) = 0

f(0, 1, 0) = 1

f(1, 1, 0) = 0

f(0, 0, 1) = 1

f(1, 0, 1) = 1

f(0, 1, 1) = 0

f(1, 1, 1) = 1

. (7.3)

The solution to this matrix equation is easily obtained by Gaussian elimination:

f̂(0, 0, 0) = 1, f̂(1, 0, 0) = 1,

f̂(0, 1, 0) = 0, f̂(1, 1, 0) = 0,

f̂(0, 0, 1) = 0, f̂(1, 0, 1) = 1,

f̂(0, 1, 1) = 1, f̂(1, 1, 1) = 1.

From Equation 7.2 we see that the ones in f̂ directly give the five monomials in the

polynomial expression for f :

f(x1, x2, x3) = 1 + x1 + x1x3 + x2x3 + x1x2x3. (7.4)

7.1.1 Properties of the Algebraic Normal Form

We briefly summarize some of the most important properties of ANF that are rel-

evant to the present discussion. An introduction to Boolean Algebra and normal

forms can be found in [40].

F.1 A unique f̂ exists for all Boolean functions f .

F.2 The ANF transform is its own inverse, an involution; g = f̂ if and only if ĝ = f .

F.3 We define a partial order for vectors x as follows: x ≤ y iff xi ≤ yi for all i.

Using the partial order ≤, Definition 7.1 can be written as f̂(x) =
∑

a≤x
f(a).

F.4 The Hamming distance d(x,y) between x and y is the number of positions

where xi 6= yi.

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 79

F.5 A norm, called the Hamming weight, wt(x) = d(0,x), is equivalent to the

number of positions in x where xi = 1.

F.6 The algebraic degree deg(f) is the maximum Hamming weight x that satisfies

f̂(x) = 1; this is equivalent to the length of the longest monomial (most

variables) in the polynomial representation of f .

F.7 Functions of degree one are affine functions. If the constant term f̂(0, 0, . . . , 0) =

0, an affine function is simply a sum of some of its input bits and is called a

linear function.

F.8 A d-Truncated Algebraic Normal Form of Boolean function f , denoted f̂d(x), is

equal to f̂(x) when wt(x) ≤ d, and zero otherwise. In essence, monomials of

degree greater than d have been removed from the corresponding polynomial

of the truncated ANF.

F.9 Since f̂(x) is the sum of f at all positions with smaller or equal partial order

(and hence degree) than x (F.3), it can be seen that if we have tabulated

f(y) at all positions y with wt(y) ≤ d, the d-truncated ANF can be completely

determined.

7.1.2 Computing the ANF

Networks and algorithms for computing the complete ANF do not require more than

n2n−1 additions in F2. These algorithms perform a Fast Walsh Transform (FWT)

[105]. The transformation from truth table form to Algebraic Form is sometimes

confusingly called the Möbius transform. Hence the name, “Möbius test” in Filiol’s

original paper on d-Monomial tests [37]. Other essentially equivalent names used

in the literature include Walsh-Hadamard transform, Hadamard-Rademacher-Walsh

transform, Walsh transform, and Walsh-Fourier transform. The algorithm for FWT

is originally due to Shanks [105], although its direct relationship with ANF was only

discovered later. The transformation is widely used in Digital Signal Processing.

Let z : F
n
2 7→ Z be the standard mapping from binary vectors to integers; z(x) =

∑n
i=1 2i−1xi. Let v be a binary-valued vector of length 2n that contains the truth

table of f ; vz(x)+1 = f(x) for all x. Algorithm 7.1 gives a fast method for computing

f̂ from f .

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 80

Algorithm 7.1 Compute the Algebraic Normal Form in vector v of length 2n using
two auxiliary vectors t and u of length 2n−1.

for j = 1, 2, 3, . . . , n do

for i = 1, 2, . . . , 2n−1 do

ti ← v2i−1 Left half.

ui ← v2i−1 ⊕ v2i Right half.

end for

v ← t | u Concatenate the halves.
end for

The complexity of Algorithm 7.1 is clearly O(n lg n). Variants of this algorithm

can be implemented very efficiently using shifts and bit-manipulation operations.

7.2 The d-Monomial Tests

In [37] Filiol introduced “Möbius tests”, which examine whether or not an ANF

expression of a Boolean function has the expected number of d-degree monomials.

With d = 0 the test is called the Affine test and for d > 0 a d-Monomial test. Filiol’s

test is closely related to the d-Monomial test described in this section.

Note that the following exposition of the test / distinguisher is significantly sim-

pler and less formal than that originally proposed by Filiol. Details have been mod-

ified for the purposes of this thesis. The reader is encouraged to use [37] as a

reference for Filiol’s version of the test.

In practical terms, the d-Monomial test involves counting the number of ones

f̂(x) = 1 of an ANF transformed function f at positions x with Hamming weight d.

A d-truncated ANF is sufficient for this purpose. A χ2 statistical test is then applied

to this count to see if the count is exceptionally high or low.

Theorem 7.1 (ANF of a random function has no bias.). For a randomly chosen n-bit

Boolean function f , Pr[f̂(x) = 1] = 1/2 for all x.

Proof. Trivial. Since the ANF transformation is bijective on the truth table of f , f̂

will be random if f is.

Consider an n-bit Boolean function f . Our null hypothesis is that the expected

bit-count
∑

wt(x)=d f̂(x) is 1
2

(

n
d

)

and that the bit-count is binomially distributed. The

alternative hypothesis is that there is a bias in this sum, up or down.

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 81

We can the use classical χ2 test of Pearson and Friedman in this case [39, 44,

106]. Suppose that we sample f̂ at N distinct points (in this case with wt(x) = d)

and in M of those f̂(x) = 1. Then we set:

χ2 =
1

N
(2M − N)2 . (7.5)

Since “0” and “1” cases in the bit-count are mutually exclusive, there is one de-

gree of freedom in the test. Using the cumulative degree-one distribution function

of χ2, we can determine a confidence level for f being distinguishable from random

in our test. We call this the P value and its intuitive interpretation is the “prob-

ability that the null hypothesis is true”. For example, if P is 0.01, there is still a

1% probability that the null hypothesis is true (and the function is, in this sense,

“random”).

Some critical values for χ2 and the corresponding P significance values are given

in Table 7.1.

Table 7.1: Critical values for the χ2 with one degree of freedom.

χ2 P

6.635 0.01
10.83 0.001
18.70 2−16

40.17 2−32

24.02 2−40

83.82 2−64

105.8 2−80

This type of test is dependent upon the sample size; even a very slightly biased

function will yield a high χ2 value by the test if the sample size is allowed to be ar-

bitrarily large. The sample sizes are bound by computational restrictions, however.

7.3 Gate Complexity and the d-Monomial Test

In this section we will give a formal definition for gate complexity and investigate

its relationship with the d-Monomial test. Our definition of gate complexity follows

from that used by Hiltgen in his investigation of one-wayness of Boolean functions

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 82

in [52].

Definition 7.2 (Gate complexity of a Boolean function). The gate complexity of a

Boolean function f(x1, x2, . . . , xn), is the minimum number of gates required to im-

plement it in an acyclic circuit network. A gate is a Boolean function with two inputs.

The constant functions 0 and 1, together with trivial functions x1, x2, . . . have gate

complexity 0.

Figure 7.1: A Boolean function with gate complexity 7.

Note that all 222
= 16 two-bit functions count as a single gate, not just the

standard ones (∨, ∧, ¬, ⊕). Gate complexity is asymptotically equivalent to circuit

size complexity [21, 115].

We have determined the gate complexity of all 224
= 65536 four-bit Boolean

functions. This was done by performing an exhaustive search over all circuits with

one gate, two gates, etc, until circuits for all functions had been found. The task

was computationally nontrivial, even though we optimized the code to take various

symmetries and isometries into account.

The maximum gate complexity turned out to be 7. Figure 7.1 shows one of the

2720 Boolean functions with maximum complexity, together with its polynomial

modulo 2.

In Figure 7.1, a filled circle indicates that the given input to the gate is inverted.

This function can not be implemented with, say, six gates (regardless of the choice

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 83

of gates).

Table 7.2 gives the distribution of functions by gate complexity, where Gi is the

number of functions of gate complexity i. These values sum to
∑

i Gi = 65536. Here

gi,d is the number of monomials in functions of degree d and gate complexity i. The

maximum possible value for gi,d is Gi

(

4
d

)

. From Theorem 7.1 we know that the

expected number in a d-monomial test is half of this value. Table 7.2 also contains

the fraction qi,d = gi,d/(Gi

(

4
d

)

), which has the expected value 1/2 for a random

function.

Note from Table 7.2 how the d-Monomial “bias” qi,d tends to be strongly increas-

ing as the gate complexity i grows (apart from an isolated anomaly at q6,4). This is

clear evidence of a correlation between the complexity of a Boolean circuit and the

d-monomial test. It is plausible to expect that a similar phenomenon is exhibited

by Boolean functions with more than four inputs. However, the exact degree of this

bias is currently an open problem for n > 4. We can expect simple functions to be

distinguishable in a d-monomial test even when n is large.

7.3.1 Distinguishing a random function from a complex function

It is interesting to note that it is even possible to test the opposite; to distinguish a

complex function from a randomly chosen one.

With the 2720 functions of gate complexity 7, all d-Monomial counts appear to

be biased upwards; q7,d ≥ 0.5. We will use a d-Monomial test to create a distin-

guisher based on this fact, particularly that q7,1 = 0.606.

Consider the following game. There is a list L containing binary vectors of length

five. Entries in L have been generated with one of the following two methods:

1. Choose a completely random Boolean function (one of the 65536 possibilities)

and add the following vector to the list:

(

f(0, 0, 0, 0), f(1, 0, 0, 0), f(0, 1, 0, 0), f(0, 0, 1, 0), f(0, 0, 0, 1)
)

. (7.6)

2. Choose a random 4-bit Boolean function of gate complexity 7, and create a

vector as in Equation 7.6. Add that to the list L.

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 84

We pose the following question: How long does L need to be for us to see which

type of list it is ?

We first note that the vectors contain sufficient information for computation

of 1-Monomial tests of f (e.g. f̂(1, 0, 0, 0) = f(0, 0, 0, 0) + f(1, 0, 0, 0)). Each 1-

Monomial test is simply the sum of four bits in the ANF result. The expected sum

after n list entries is 2n for a random function and based on our exhaustive search,
g7,1×n

G7
= 6592

2720n ≈ 2.424n for a gate complexity 7 function.

We will set the length of the list to n = 34 steps. In the first, fully random,

function the expected value for the total sum is 2× 34 = 68. In the second case, the

sum can be expected to reach 34 × g7,1n/G7 = 346592
2720 = 82.4. The probability that

82 or more bits from 4 × 34 = 136 bits is one is given by:

1

2136

136
∑

i=82

(

136

i

)

≈ 0.01013. (7.7)

Hence the list of (partially computed and randomly chosen) “complex” functions

can be distinguished from a list computed using random functions with P = 99%

significance level of certainty with a list of only 34 entries! Note that this significance

was computed exactly using binomial sums, rather than using the more generic χ2

test.

7.4 Statistical Tests of MD5 and SHA-1

NIST Special Publication 800-90 [5] specifies a set of deterministic random bit gen-

erator mechanisms (DRBG mechanisms) based on hash functions, elliptic curves

and block ciphers.

The hash-based proposal, DRBG_Hash, consists of an instantiation procedure, re-

seeding procedure, and the random bit generation procedure. Let x be a 440-bit

seed value. A sequence of 160-bit pseudorandom blocks is obtained by:

Wi = W (x + i (mod 2440)). (7.8)

The 440-bit modulus was chosen so that an 8-bit padding byte and the 64-bit

message length fits as a single 440 + 8 + 64 = 512-bit input block to the SHA-1

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 85

compression function. The DRBG_Hash construction can be adopted to use MD5,

although each output block Wi will only have 128 bits.

7.4.1 d-Monomial Test Results

We used randomized seeds and generated 16 megabytes of pseudorandom data

using DBRG_Hash with the MD5 hash function and 20 megabytes of pseudorandom

data from DBRG_Hash with the SHA-1 hash function. Intermediate iteration results

were stored. In both cases, the generator ran exactly 220 iterations in both cases.

Due to the nature of the message expansion of MD5 and SHA-1, incrementing

the counter (Equation 7.8) only affects the state of the hash function at the 14th

iteration in both cases.

Figures 7.2 and 7.3 illustrate the results. In these figures the x-axis corresponds

to the iteration (out of 64 for MD5, 80 for SHA-1) and the y-axis gives the confidence

level of the distinguisher. The confidence level is given in binary form. The value c

corresponds to P value 1−2−c. For example, the horizontal line c = 10 corresponds

to confidence level P = 1 − 2−10 ≈ 0.999.

We further note that the measurement was done on the word computed at the

given iteration; this word is shifted in the iteration and remains available for three

(MD5) or four (SHA-1) further iterations.

Our main observation is that 4-Monomial tests seem to be the most effective

against both MD5 and SHA-1. A DRBG_Hash 4-Monomial distinguisher works with

significant probability (P > 0.99) against MD5 reduced to 21 iterations and SHA-1

reduced to 24 iterations. This distinguisher is more effective than any other general-

purpose statistical test that we have investigated, including the tests included in

[94].

We also applied the d-monomial tests to Chosen-IV attacks against stream ci-

phers, where it proved to be highly effective against many targets [97, 98]. It can

be assumed that chosen-IV distinguisher attacks were not carefully considered by

some stream cipher designers.

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 86

7.5 Conclusions

We have discussed the application of Algebraic Normal Form and d-Monomial tests

in cryptography. We have demonstrated that these tests appear to be effective in

distinguishing “simple” Boolean functions, as well as (rather surprisingly) complex

functions, from random ones.

In an experiment with the MD5 and SHA-1 hash functions in the DRBG_Hash

pseudorandom-number generator mode, we were able to distinguish the result from

a random bit string when the number of iterations of these functions was reduced

to one third of the full hash function. The complexity of the distinguisher was

negligible (about 5 seconds to compute on a typical desktop PC).

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 87

 0

 5

 10

 15

 20

 25

 30

 14 15 16 17 18 19 20 21 22 23

d = 2
d = 3
d = 4
d = 5
d = 6
d = 7
d = 8
d = 9

d = 10
d = 11
d = 12
d = 13
d = 14
d = 15
d = 16

Figure 7.2: Results of d-Monomial tests on MD5 in DRBG Hash mode. X-axis repre-
sents the number of rounds and Y-axis the P-value as − log2(1 − P).

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 88

 0

 5

 10

 15

 20

 25

 30

 14 15 16 17 18 19 20 21 22 23

d = 2
d = 3
d = 4
d = 5
d = 6
d = 7
d = 8
d = 9

d = 10
d = 11
d = 12
d = 13
d = 14
d = 15
d = 16

Figure 7.3: Results of d-Monomial tests on SHA-1 in DRBG Hash mode. X-axis
represents the number of rounds and Y-axis the P-value as − log2(1 − P).

CHAPTER 7. STATISTICAL-ALGEBRAIC TESTING 89

T
a
b
le

7
.2

:
D

is
tr

ib
u

ti
o
n

o
f
th

e
6
5
5
3
6

fo
u

r-
b
it

B
o
o
le

a
n

fu
n

ct
io

n
s

b
y

g
a
te

co
m

p
le

x
it

y
a
n

d
th

e
re

su
lt

s
o
f
d
-m

o
n

o
m

ia
l
te

st
s

o
n

B
o
o
le

a
n

fu
n

ct
io

n
s

o
f

g
iv

en
g
a
te

co
m

p
le

x
it

y.

d
=

0
d

=
1

d
=

2
d

=
3

d
=

4
i

G
i

g i
,0

q i
,0

g i
,1

q i
,1

g i
,2

q i
,2

g i
,3

q i
,3

g i
,4

q i
,4

0
6

1
0
.1

6
7

4
0
.1

6
7

0
0
.0

0
0

0
0
.0

0
0

0
0
.0

0
0

1
6
4

3
4

0
.5

3
1

7
6

0
.2

9
7

4
8

0
.1

2
5

0
0
.0

0
0

0
0
.0

0
0

2
4
5
6

2
2
8

0
.5

0
0

6
4
8

0
.3

5
5

6
7
2

0
.2

4
6

2
5
6

0
.1

4
0

0
0
.0

0
0

3
2
4
7
4

1
2
3
7

0
.5

0
0

3
9
1
2

0
.3

9
5

5
1
3
6

0
.3

4
6

3
2
6
4

0
.3

3
0

8
3
2

0
.3

3
6

4
1
0
6
2
4

5
3
1
2

0
.5

0
0

1
8
9
6
0

0
.4

4
6

2
6
9
7
6

0
.4

2
3

1
7
5
3
6

0
.4

1
3

4
6
0
8

0
.4

3
4

5
2
4
1
8
4

1
2
0
9
2

0
.5

0
0

4
7
8
8
8

0
.4

9
5

7
1
3
2
8

0
.4

9
2

4
7
6
1
6

0
.4

9
2

1
3
2
1
6

0
.5

4
6

6
2
5
0
0
8

1
2
5
0
4

0
.5

0
0

5
2
9
9
2

0
.5

3
0

8
3
2
3
2

0
.5

5
5

5
5
7
4
4

0
.5

5
7

1
2
5
7
6

0
.5

0
3

7
2
7
2
0

1
3
6
0

0
.5

0
0

6
5
9
2

0
.6

0
6

9
2
1
6

0
.5

6
5

6
6
5
6

0
.6

1
2

1
5
3
6

0
.5

6
5

CHAPTER 8

LASH – A HASH FUNCTION PROPOSAL

We present LASH, a practical cryptographic hash function based on the Miyaguchi–

Preneel construction [72, 84, 85], which instead of using a block cipher as the

main component uses modular matrix multiplication. Thus, as the core component

it uses a compression function which is closely related to the theoretical lattice-

based hash function considered by Goldreich, Goldwasser and Halevi in [42]. With

suitable parameter choices we can produce a hash function which is comparable in

performance to existing deployed hash functions such as SHA-1 and SHA-2.

We note that a more detailed analysis of LASH is contained in [11], which also

deals with the lattice-based proof of security. This material, and also certain as-

pects of the performance analysis, has been left out of this thesis as they were not

contributed by the author.

Section 8.1 describes the LASH algorithm, and its design criteria is contained in

Section 8.2. The choice of parameter selection was greatly influenced the author,

and this analysis is provided in Section 8.3. Section 8.4 contains conclusions and an

update on the security of LASH.

8.1 Description of LASH

LASH-x computes an x-bit hash value from an input bit sequence of arbitrary length.

There are four concrete proposals, where n is the size of input to the compression

function in bits, and m is the size of the chaining variable in 8-bit bytes. For all

versions, m = n/16 and q = 256. Table 8.1 gives the parameters for proposed

variants of LASH.

90

CHAPTER 8. LASH – A HASH FUNCTION PROPOSAL 91

Table 8.1: Proposed parameter selection for variants of LASH.

Variant n m

LASH-160 640 40
LASH-256 1024 64
LASH-384 1536 96
LASH-512 2048 128

8.1.1 Pseudorandom Sequence

Consider the following pseudorandom sequence. Start with y0 = 54321 and iterate

the following recurrence:

yi+1 = y2
i + 2 (mod 231 − 1). (8.1)

We call the recurrence in Equation 8.1 the “Pollard generator”, as its iteration is

the same as in the Pollard ρ method for factoring integers [83]. The modulus 231−1

is prime, and this nonlinear sequence has tail and cycle lengths 14653 and 19118,

respectively (see Section 2.5.2 for more information).

We define an additional sequence that results in reducing yi to byte length:

ai = yi (mod 28). (8.2)

The first ten members of this sequence are:

a0 = 49, a1 = 100, a2 = 135, a3 = 237, a4 = 95,

a5 = 26, a6 = 139, a7 = 214, a8 = 163, a9 = 194.

8.1.2 Compression Function

We define a compression function f that takes in two byte sequences r0, r1, . . . , rm−1

and s0, s1, . . ., sm−1 and produces a new byte sequence t0, t1, . . . , tm−1. Algorithm 8.1

describes the LASH compression function.

The compression function can be represented as:

f(r, s) = (r ⊕ s) + fH(r | s) (mod q), (8.3)

CHAPTER 8. LASH – A HASH FUNCTION PROPOSAL 92

where fH is the linear function obtained from multiplying a matrix H, defined using

the sequence a0, a1, . . . , of Equation 8.2, by the column vector (r | s)T , considered

as a bit vector. Thus the compression function is based on a combination of addition

modulo 256 and XORing.

In the following description of the LASH compression function ti, ri, and si are

byte vectors and x is a temporary Boolean variable.

Algorithm 8.1 LASH Compression Function t = f(r, s) .

for i = 0, 1, . . . , m − 1 do

ti ← ri ⊕ si

end for

for i = 0, 1, . . . , n do

if i < 8m then

x ← ⌊2−(7−(i mod 8))r⌊i/8⌋⌋ mod 2
else

x ← ⌊2−(7−(i mod 8))s(⌊i/8⌋−m)⌋ mod 2
end if

if x = 1 then

for j = 0, 1, . . . , m − 1 do

tj ← tj + a((n+j−i) mod n) mod 256
end for

end if

end for

return t

8.1.3 Hashing the message

Let l be the length of the original message in bits. The individual message bytes

are v0, v1, v2, The message is padded with a single 1 bit (in case of byte-aligned

data, a single byte with hexadecimal value 0x80). The rest of the vi values are taken

to be zeros.

The message is cut into k = ⌈l/8m⌉ blocks of m bytes and fed to the compres-

sion function, and then a final transform is performed, which involves applying the

compression function to the chaining variable and an encoding of l, to produce a

message digest. Algorithm 8.2 describes the overall hash function.

CHAPTER 8. LASH – A HASH FUNCTION PROPOSAL 93

Algorithm 8.2 LASH

for i = 0, 1, . . . , m − 1 do

ri = 0 Initialize chaining variable.

end for

for i = 0, 1, . . . , ⌈l/8m⌉ − 1 do

for j = 0, 1, . . . , m − 1 do

si = vm×i+j
Get a message block, remember to pad with

a 1 bit and zeroes!
end for

r ← f(r, s) Run the compression function.

end for

for i = 0, 1, . . . , m − 1 do

si ← ⌊l/28i⌋ mod 256 Message length in little-endian format.

end for

r ← f(r, s) Final iteration of the compression function.

for i = 0, 1, . . . , m/2 − 1 do

ti = 16⌊r2i/16⌋ + ⌊r2i+1/16⌋ Take the high 4 bits of the output bytes.

end for

return t Return the m/2-byte hash result.

8.2 Design Overview

In this section we provide more detail concerning the precise design choices that we

have made.

8.2.1 Overall Design Goals

The goals of the design are as follows:

- Avoid multicollision attacks (Section 2.5.4) by using a state chaining variable

that is twice the size of the final output. This solution was originally proposed

by Lucks [64] under the name large-pipe strategy. The final hash value is

produced from the large-pipe by taking the upper bits of each byte, these being

the bits which depend in the most non-linear manner on the input values.

- To combine two forms of mathematical operation in the compression function,

arithmetic modulo 256 and bitwise exclusive-or. Thus the compression func-

tions consists of two parts, a linear function (motivated by the lattice based

hash function of Goldreich et al. [42]) and an XORing of the chaining variable

and the next message block. The mode of operation resembles that originally

CHAPTER 8. LASH – A HASH FUNCTION PROPOSAL 94

proposed and shown to be secure by Miyaguchi [72] and Preneel [84]).

- To be able to reason about the ability of the linear function to resist preimages

and collisions.

- To be as simple and efficient as possible, particularly aiming for application

on as wide a range of platforms as possible. Thus the hash function is byte-

oriented and built out of components which are found on all processors and

which are easy to implement in hardware.

- To enable as much parallelism as possible, thus allowing the hash function to

exploit performance enhancing features in modern instruction sets.

- The hash function should be patent free. None of the designers have applied

for patents on its design, and we are not aware of relevant prior art.

8.2.2 Selection of Function fH

We now turn to how we selected the precise function fH used in our construction.

We therefore need to select m, n, q and the matrix entries of H.

We first look at the values (m,n, q):

- Due to the fact that finding collisions in fH is easier than the naive qm/2, we

take m to be larger than necessary for our final hash function output. This

is also useful to defeat various other generic attacks on hash functions and is

consistent with the advice of Lucks [64].

- It turns out to be convenient in our chaining algorithm to select n = 2m log2 q

for performance reasons.

- We have found via various experiments that since the output size of the hash

function is fixed (and so m is limited), a harder lattice problem is produced if

q is smaller. Hence, we select q = 28.

All that remains is to define the particular linear function fH that we shall use,

i.e., we need to describe the m × n matrix H. We take H to be the m-by-n circulant

CHAPTER 8. LASH – A HASH FUNCTION PROPOSAL 95

matrix associated with the sequence a0, . . . , an generated by Equations 8.1 and 8.2:

H =

a0 an−1 an−2 . . . a2 a1

a1 a0 an−1 . . . a3 a2

...
. . .

...

am−1 am−2 am−3 . . . am+1 am

. (8.4)

The reasons for this choice are as follows:

1. The use of a circulant matrix allows more efficient implementation of our

function fH , and deriving the entries via a pseudorandom number generator

allows us to reduce the memory requirements of our hash function.

2. The choice of p in the Pollard generator is made to enable a sequence with

period greater than the largest value of n and so
√

p should be greater than

the largest value of n chosen. In addition, we selected a p for which modular

reduction can be performed efficiently.

3. The non-linearity of the generator is crucial in creating a matrix for which the

associated lattice problem is hard to solve. For example, we have found that

using a linear-congruential generator [60] instead of the Pollard generator of

Equation 8.1 results in a compression function that is easy to break due to

linear relationships in the ai sequence. We refer to [11] for a more detailed

discussion regarding the lattice problem.

8.2.3 The Compression Function

Recall that the compression function for LASH is defined from the m-byte chaining

variable r and the next m-byte block s, via:

f(r, s) = (r ⊕ s) + fH(r | s) (mod q). (8.5)

The compression function is motivated by the construction of Miyaguchi–Preneel

[72, 84], which is of the form:

f(r, s) = (r ⊕ s) ⊕ Eg(r)(s), (8.6)

CHAPTER 8. LASH – A HASH FUNCTION PROPOSAL 96

for a block cipher Ek(m) and a function g which inputs the size of the chaining

variable and outputs keys for the block cipher.

Thus we are treating the function fH as being equivalent to a block cipher with

key r and message s. We are not claiming that the function fH can be used as a

block cipher. Hence, the “proof of security” of the Miyaguchi–Preneel construction

[17] does not apply in this situation.

8.2.4 Final Transform

In the final transform we need to compress the 8m bit chaining variable down to

the output hash value of 4m bits. Recall that each byte of the chaining variable has

been obtained by performing many additions modulo q = 256, which have been

dependent on the message bits.

To compute the final hash value we select the upper four bits of each byte of

the chaining variable and concatenate them together. This produces an output of

the correct size. The reason for taking the upper four bits is that, due to the nature

of addition modulo q, these are going to be the bits which are affected in the most

non-linear manner due to the effect of carry propagation in the addition operations.

8.3 Security Considerations

The general structure of LASH, having only linear components, easily leads one to

suspect that it is directly vulnerable to differential and linear cryptanalysis. LASH

has gone through several evolutionary stages after the idea of a lattice-based hash

function was first considered. The current version is the result of combining the

traditions of provable complexity-theoretic security with symmetric cryptanalysis.

In determining the security of LASH against these attacks, we note that as a fully

parameterisable hash function (message block size, state size, and hash result size

can all be flexibly chosen), simulation of attacks against LASH are straightforward

and meaningful. If an attack can be successfully mounted and simulated on reduced

variants of LASH, and the asymptotic behavior of the security as a function of various

parameters established, concrete evidence about the security of full-size variants is

obtained. This flexibility also makes it easy to create larger versions of LASH if

CHAPTER 8. LASH – A HASH FUNCTION PROPOSAL 97

weaknesses are found in the current versions. This is a clear advantage of LASH

over many hash function designs with more rigid, “block cipher” - like structures.

8.3.1 Differential Cryptanalysis

A small input difference (in either the chaining variable and/or the message block)

will result in a very large difference in the hash function state. The propagation of

differentials is further amplified in the final iteration (which does not use message

bits), making all output bits differentially dependent on all input bits.

We conjecture that the simple and understandable structure of LASH will make

it difficult to find differential anomalies such as the so-called necessary conditions

exploited by Wang et al in their attacks on MD5, SHA-1, and other hash functions

[111, 112, 113, 114].

8.3.2 Linear Cryptanalysis

All components of the LASH compression function are, in some sense, linear. Fur-

thermore, if we consider a matrix H ′ that contains the least significant bits of H,

then the product function H ′ · b is a linear equation in F2 and, indeed, H ′ is invert-

ible with a significant probability. This can be exploited in some attacks, as is shown

in Section 8.3.4. These attacks are difficult to extend to the full version of LASH,

however.

It is unlikely that classical linear cryptanalysis (involving the parity of subsets of

bits) can be applied to LASH [65].

8.3.3 Generalized Birthday Attack

Wagner’s method for solving the generalized birthday problem [110] can be applied

to the Goldreich-Goldwasser-Halevi (GGH) construction of [42]. We will give a brief

description of the algorithm and its limitations. Using the GGH function fH on its

own implies that we can find collisions in O(qm/3) operations, as opposed to the

O(qm/2) operations we would want in practice from a hash function.

Although improvements to this basic version of the attack can be made, this

attack does not seem to be applicable to the internal fH function used in LASH, due

to the ratio between the message block size and the size of the internal state. This

CHAPTER 8. LASH – A HASH FUNCTION PROPOSAL 98

motivates our choice of a large chaining variable and our output transform. Our use

of the Miyaguchi–Preneel construction, as opposed to using the function fH , also

directly helps to defeat this attack.

8.3.4 A Hybrid Attack

We will outline a hybrid attack that combines cycle-based collision-finding tech-

niques with linear algebra and a time-memory trade-off against the GGH function

applied directly to multi-block messages using the Merkle–Damgård construction

(LASH with a different compression function, for example the function fH as the

compression function, and no output transform).

The general strategy of the attack is to try to select two-block messages in a way

that forces a cycle-based collision-finding algorithm such as [108] into a smaller cy-

cle, thus producing collisions faster. If the outputs belong to a subset S of possible

outputs, collision search will have O(
√

| S |) complexity, assuming that the mes-

sage selection process is O(1). See Section 2.5.3 for a general discussion about this

technique.

The messages are chosen as follows. The first block of the message contains the

output of the previous iteration in the collision-finding algorithm. The message bits

in the second block are chosen in a way that causes a number of bits in the internal

state of the hash function be to zero, hence forcing the final output to a smaller

subset of possible outputs. The algorithm for selecting the second message block

requires O(1) time. The message selection algorithm is as follows:

1. Since carry propagation in addition is from least significant bits towards higher

bits, H ·b (mod 2) is in fact a system of linear equations in GF(2), independent

of the 7 higher bits in each byte of H. Using simple linear algebra operations

in F2, bit 0 in each of the m state bytes can be forced to zero by selecting m

message bits appropriately. This is an O(1) step.

2. A precomputed lookup table is used to force a further c bits to zero. The table

has 2c entries and uses m + c message bits (since the table entries must also

have least significant bits as zeros). The table is generated by brute force by

computing 2c messages using linear algebra as in step 1, and indexing them

by c upper bits in the result (bit selection is arbitrary from the upper bits 1 . . . 7

CHAPTER 8. LASH – A HASH FUNCTION PROPOSAL 99

from each byte). Hence we can force further c bits to zero from step 1 by a

simple lookup. Each lookup requires O(1) time. The precomputation phase

requires O(2c) time.

Thus, by selecting 2m + c message bits in the second block in a certain way,

m + c bits in the 8m-bit internal state are forced to zero. The offline complexity of

the attack is O(2c) and the collision search algorithm is expected to find a collision

in O(2
1
2
(7m−c)) steps.

First consider the hypothetical case where the internal state has the same size as

the final output, i.e. 8m bits. If we choose c = 7
3m ≈ 2.33m, the overall complexity

of the algorithm will be O(22.33m), which is significantly less than O(24m) expected

by direct application of the birthday paradox. However, since the internal state of

LASH is twice as wide as the final output, the security goal of LASH is O(22m). This

is the rationale behind the final transform of LASH.

8.4 Conclusions and External Analysis

In this chapter we have presented a dedicated hash function, LASH. Some aspects

of its security can be reduced to a computationally hard lattice reduction problem.

We have also applied traditional symmetric cryptanalysis techniques, such as linear

and differential cryptanalysis during its design in order to make it more resistant to

such attacks.

After this work was published in [11], it was subjected to external cryptanalysis

by Contini et al [25]. With the parameter and IV selection given in this chapter, they

describe the following attacks on LASH-x:

- A time-memory tradeoff attack with 2
4
11

x complexity.

- A preimeage attack with 2
4
7
x complexity.

- A heuristic lattice-based collision attack attack that requires a small amount of

memory but requires very long messages. Based upon experiments, the lattice

attacks are expected to find collisions much faster than 2
x
2 .

These attacks depend upon all zero IV. However, other attacks can be utilized

for randomized IV values with higher complexity. The attacks in [11] exploit the

CHAPTER 8. LASH – A HASH FUNCTION PROPOSAL 100

inherent linearity of LASH in a number of ways; the paper contains a generalized

birthday attack [110], a lattice-based BZK LLL [103] attack, and an improvement

over the Hybrid attack described in Section 8.3.4.

The findings in [25] indicate that parameter choices given in this chapter do not

necessarily provide the expected level of security. LASH is fully parameterizable, so

we may be able to counter the attacks in [25] without major modifications to the

fundamental design. However, this requires further investigation.

CHAPTER 9

CONCLUSIONS

This thesis contains cryptanalytic results on a number of dedicated hash functions.

What is noteworthy is the diversity of methods used in analysis:

- The FSB hash function (Chapter 3) is based on a presumably hard problem

from coding theory. We observe that a small portion of the message space

can be reduced to a system of linear equations. We then use this observation

to break the hash function. This clearly demonstrates that having hard av-

erage case complexity does not help against cryptanalysis, when the attacker

specifically targets classes of special cases.

- The attack on FORK-256 (Chapter 4) exploits a subtle anomaly in the message

key schedule to build a successful meet-in-the-middle attack against the hash

function. With a slightly different choice of schedule details, this attack would

not work.

- We know that secure hash functions can be built from secure block ciphers.

But is the opposite true? In Chapter 5 we show that it is not, by demonstrating

attacks against block ciphers derived from hash functions. This demonstrates

that hash functions must be designed according to different principles than

block ciphers.

- There is a school of thought that symmetric cryptographic primitives should

be based on “hard problems” from other fields of computer science. Chapter 6

contains a sharp critique of this idea by demonstrating that VSH, a hash func-

tion whose collision resistance can be reduced to a hard problem in number

theory, does not meet all of the other properties (besides collision resistance)

required from a hash function. A hash function itself must be a hard problem

and should not demonstrate algebraic properties.

101

CHAPTER 9. CONCLUSIONS 102

- If one is faced with the task of attacking a “black box” hash function, statis-

tical and adaptive-statistical methods are usually the best way forward. In

Chapter 7, we discuss d-Monomial tests, which are based on the reasonable

assumption that the logical structure of the function is simple or regular.

- How would one then design a hash function? Chapter 8 contains one approach

to this complex engineering task. Our proposal, LASH, uses elements from

provable security (hard problems in lattices), instruction set parallelism and

cryptanalysis to arrive at a simple and fast dedicated hash function. However,

external cryptanalysis has indicated that the LASH security parameters need to

be adjusted to counter types of attack that we did not consider when designing

the hash function.

Our main observation is that a successful hash function cryptanalyst or designer

must have a big theoretical toolbox at their disposal. The methods used can be from

any field of computer science, mathematics and beyond; anything that works. If a

cryptographic primitive can be shown to be secure against one attack, this does not

offer any assurance against attacks using other methods.

This has led us to somewhat unusual definitions of the basic hash function secu-

rity properties such as collision resistance in Chapter 2. We feel that without assum-

ing an unrealistically restrictive model, a positive security proof would essentially be

an answer to the P=NP question. Hence we can only define what a cryptographic

break is; in the context of hash functions it is an anomaly that sets the function apart

from a random function.

It is a consensus among cryptographers that only continued scrutiny of every

detail of a cryptographic primitive can result in some assurance of its security. We

have shown that this certainly applies to the case of cryptographic hash functions.

Bibliography

[1] AJTAI, M. Generating hard instances of lattice problems. In Proc. 28th ACM

Symp. on Theory of Computing (1996), ACM, pp. 99–108.

[2] ANDERSON, R. The classification of hash functions. In Proc. Codes and

Cyphers: Cryptography and Coding IV (1995), pp. 83–93.

[3] AUGOT, D., FINIASZ, M., GABORIT, P., MANUEL, S., AND SENDRIER, N. SHA-

3 proposal: FSB. Submission to NIST. http://www-rocq.inria.fr/secret/

CBCrypto/fsbdoc.pdf., October 2008.

[4] AUGOT, D., FINIASZ, M., AND SENDRIER, N. A new dedicated 256-bit

hash function: FORK-256. In Progress in Cryptology–MyCrypt 2005 (2005),

vol. 3615 of Lecture Notes in Computer Science, Springer-Verlag, pp. 64–83.

[5] BARKER, E., AND KELSEY, J. Recommendation for random number genera-

tion using deterministic random bit generators (revised, 2007. NIST Special

Publication 800-90.

[6] BEKER, H., AND PIPER, F. Cipher systems: the protection of communications.

Northwood, 1982.

[7] BELLARE, M. New proofs for NMAC and HMAC: Security without collision

resistance. In Advances in Cryptology–CRYPTO 2006 (2006), vol. 4117 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 602–619.

[8] BELLARE, M., CANETTI, R., AND KRAWCZYK, H. Keying hash functions for

message authentication. In Advances in Cryptology–CRYPTO 1996 (1996),

vol. 1109 of Lecture Notes in Computer Science, Springer-Verlag, pp. 1–15.

103

BIBLIOGRAPHY 104

[9] BELLARE, M., CANETTI, R., AND KRAWCZYK, H. HMAC: Keyed-hashing for

message authentication. Tech. rep., IETF, 1997. RFC 2104.

[10] BELLARE, M., AND ROGAWAY, P. Random oracles are practical: A paradigm

for designing efficient protocols. In ACM Conference on Computer and Com-

munications Security (1993), pp. 62–73.

[11] BENTAHAR, K., PAGE, D., SAARINEN, M.-J., SILVERMAN, J., AND SMART, N.

LASH, 2006. 2nd NIST Cryptographic Hash Workshop.

[12] BIERE, A., HEULE, M., MAAREN, H. V., AND WALSH, T. Handbook of Satisfi-

ability. IOS Press, 2009.

[13] BIHAM, E., AND SHAMIR, A. Differential Cryptanalysis of the Data Encryption

Standard. Springer-Verlag, 1993.

[14] BIHAM, E., AND SHAMIR, A. Differential fault analysis of secret key cryptosys-

tems. In Advances in Cryptology–CRYPTO ’97 (1997), vol. 1294 of Lecture

Notes in Computer Science, Springer-Verlag, pp. 513–525.

[15] BIRYUKOV, A., AND WAGNER, D. Slide attacks. In Proc. Fast Software Encryp-

tion 1999 (1999), vol. 1636 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 245–259.

[16] BIRYUKOV, A., AND WAGNER, D. Advanced slide attacks. In Advances in

Cryptology–EUROCRYPT 2000 (2000), vol. 1807 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 589–606.

[17] BLACK, J., ROGAWAY, P., AND SHRIMPTON, T. Black-box analysis of the

block-cipher-based hash-function constructions from PGV. In Advances in

Cryptology–CRYPTO 2002 (2002), vol. 2442 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, pp. 320–335.

[18] BONEH, D., DEMILLO, R. A., AND LIPTON, R. J. On the importance of check-

ing protocols for faults. In Advances in Cryptology–EuroCrypt ’97 (1997),

vol. 1233 of Lecture Notes in Computer Science, Springer-Verlag, pp. 37–51.

BIBLIOGRAPHY 105

[19] BROWN, D. R. L., ANTIPA, A., CAMPAGNA, M., AND STRUIK, R. ECOH: the

elliptic curve only hash. Tech. rep., Certicom Corp., Nov. 2008. First Round

NIST SHA-3 Candidate.

[20] CHANG, D., HONG, S., KANG, C., KANG, J., KIM, J., LEE, C., LEE, J., LEE, J.,

LEE, S., LEE, Y., LIM, J., AND SUNG, J. ARIRANG. Submission to NIST. http:

//ehash.iaik.tugraz.at/uploads/2/2c/Arirang.pdf, October 2008.

[21] CLOTE, P., AND KRANAKIS, E. Boolean Functions and Computation Models.

Springer-Verlag, 2002.

[22] CONTINI, S., AND A.K. LENSTRA, R. S. VSH, an efficient and provable colli-

sion resistant hash function. In Advances in Cryptology–EUROCRYPT 2006

(2006), vol. 4004 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 165–185.

[23] CONTINI, S., LENSTRA, A. K., AND STEINFELD, R. VSH, an efficient and prov-

able collision resistant hash function, 2005. IACR ePrint Archive 2005/193.

[24] CONTINI, S., MATUSIEWICZ, AND PIEPRZYK, J. Extending FORK-256 attack

to the full hash function. In Information and Communications Security, 9th

International Conference, ICICS 2007 (2008), vol. 4861 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 296–305.

[25] CONTINI, S., MATUSIEWICZ, K., PIEPRZYK, J., STEINFELD, R., JIAN, G., AN,

L., AND WANG, H. Cryptanalysis of LASH. In Proc. Fast Software Encryption

2008 (2008), vol. 5086 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 207–223.

[26] COPPERSMITH, D. Analysis of ISO/CCITT Document X.509 Annex D. Tech.

rep., IBM Research Division, Yorktown Heights, N.Y., June 1989.

[27] CORON, J.-S., AND JOUX., A. Cryptanalysis of a provably secure crypto-

graphic hash function, 2004. IACR ePrint Archive 2004/013.

[28] COURTOIS, N. T. General principles of algebraic attacks and new design

criteria for components of symmetric ciphers. In AES 4 Conference, Bonn May

BIBLIOGRAPHY 106

10-12 2004 (2005), vol. 3373 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 67–83.

[29] COURTOIS, N. T., AND BARD, G. V. Algebraic cryptanalysis of the data en-

cryption standard. In Cryptography and Coding 2007 (2007), vol. 4887 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 152–169.

[30] COURTOIS, N. T., NOHL, K., AND O’NEIL, S. Algebraic attacks on the crypto-

1 stream cipher in MIFARE Classic and Oyster cards, 2008. IACR ePrint

Archive 2008/166.

[31] COURTOIS, N. T., AND PIEPRZYK, J. Cryptanalysis of block ciphers with

overdefined systems of equations. In ASIACRYPT 2002 (2002), vol. 2501

of Lecture Notes in Computer Science, Springer-Verlag, pp. 152–169.

[32] DAMGÅRD, I. A design principle for hash functions. In Advances in

Cryptology–CRYPTO 1989 (1990), vol. 435 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, pp. 416–427.

[33] DEN BOER, B., AND BOSSELAERS, A. Collisions for the compression function

of MD5. In Advances in Cryptology–EUROCRYPT 1993 (1994), vol. 765 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 293–304.

[34] DIERKS, R., AND RESCORLA, E. The transport layer security (TLS) protocol–

version 1.1, 2006. Internet Engineering Task Force RFC 4346.

[35] DOBBERTIN, H. Cryptanalysis of MD5 compress, 1996. Presented at EURO-

CRYPT ’96 rump session, May 14, 1996.

[36] FERGUSON, N., LUCKS, S., SCHNEIER, B., WHITING, D., BELLARE, M.,

KOHNO, T., CALLAS, J., AND WALKER, J. The Skein hash function family,

2008. Submission to NIST.

[37] FILIOL, E. A new statistical testing for symmetric ciphers and hash functions.

In Proc. ICICS 2002 (2002), vol. 2513 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 342–353.

[38] FINIASZ, M., GABORIT, P., AND SENDRIER, N. Improved fast syndrome based

cryptographic hash functions, 2007. ECRYPT Hash Function Workshop 2007.

BIBLIOGRAPHY 107

[39] FRIEDMAN, W. F. The index of coincidence and its applications in cryptology.

No. 22. Riverbank Laboratories, Department of Ciphers, 1922.

[40] GIVANT, S., AND HALMOS, P. Introduction to Boolean Algebras. Undergradu-

ate Texts in Mathematics. Springer-Verlag, 2009.

[41] GOLDREICH, O. Foundations of Cryptography, Vol. 1, Basic Tools. Cambridge

University Press, 2007.

[42] GOLDREICH, O., GOLDWASSER, S., AND HALEVI, S. Collision-free hashing

from lattice problems. Tech. Rep. TR96-042, Electronic Colloquium on Com-

putational Complexity (ECCC), 1996.

[43] GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to construct random

functions. Journal of the ACM 33, 4 (1986), 792–807.

[44] GREENWOOD, P. G., AND NIKULIN, M. S. A guide to chi-squared testing. Wiley

series in probability and statistics. Wiley, 1996.

[45] GROSSMAN, E. K., AND TUCKERMAN, B. Analysis of a Feistel-like cipher weak-

ened by having no rotating key. Tech. rep., IBM Thomas J. Watson Research

Centre, 1977.

[46] GUO, J., MATUSIEWICZ, K., KNUDSEN, L. R., LING, S., AND

WANG, H. Practical pseudo-collisions for hash functions ARIRANG-

224/384. Available online at http://ehash.iaik.tugraz.at/uploads/9/

9a/Arirang-pseudo-sha3zoo.pdf., 2009.

[47] GUTMANN, P. C. Secure file system (SFS) version 1.0 documentation, 1993.

Available at: http://www.cs.auckland.ac.nz/~pgut001sfs/.

[48] HANDSCHUH, H., KNUDSEN, L. R., AND NACCACHE, D. Analysis of SHA-1 in

encryption mode. In Topics in Cryptology–RSA-CT 2001 (2001), vol. 2020 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 70–83.

[49] HANDSCHUH, H., AND NACCACHE, D. SHACAL, 2000. Available at: http:

//www.cryptonessie.org.

BIBLIOGRAPHY 108

[50] HANDSCHUH, H., AND NACCACHE, D. SHACAL: A family of block ciphers,

2002. Available at: http://www.cryptonessie.org.

[51] HÅSTAD, J. On using RSA with low exponent in a public key network. In

Advances in Cryptology–CRYPTO 1985 (1985), vol. 218 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 403–408.

[52] HILTGEN, A. P. Towards a better understanding of one-wayness: Fac-

ing linear permutations. In Advances in Cryptology–EUROCRYPT’98 (1998),

vol. 1403 of Lecture Notes in Computer Science, Springer-Verlag, pp. 319–33.

[53] HONG, D., CHANG, D., SUNG, J., LEE, S., HONG, S., LEE, J., MOON, D.,

AND CHEE, S. A new dedicated 256-bit hash function: FORK-256. In Proc.

Fast Software Encryption 2006 (2007), vol. 4047 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 195–209.

[54] HONG, D., CHANG, D., SUNG, J., LEE, S., HONG, S., LEE, J., MOON, D., AND

CHEE, S. New FORK-256, 2007. IACR ePrint Archive 2007/185.

[55] HONG, D., KIM, W.-H., AND KOO, B. Preimage attack on ARIRANG. Cryptol-

ogy ePrint Archive, Report 2009/147. http://eprint.iacr.org/2009/147.

pdf., 2009.

[56] JOUX, A. Multicollisions in iterated hash functions. application to cascaded

constructions. In Advances in Cryptology–CRYPTO 2004 (2004), vol. 3152 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 306–316.

[57] KALISKI, B. S., AND ROBSHAW, M. J. B. Fast block cipher proposal. In Proc.

Fast Software Encryption 1993 (1994), vol. 809 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 33–40.

[58] KELSEY, J., AND KOHNO, T. Herding hash functions and the Nostradamus

attack, 2005. IACR ePrint Archive 2005/281.

[59] KELSEY, J., AND SCHNEIER, B. Second preimages on n-bit hash functions for

much less than 2n work. In Advances in Cryptology–EUROCRYPT 2005 (2005),

vol. 3495 of Lecture Notes in Computer Science, Springer-Verlag, pp. 474–490.

BIBLIOGRAPHY 109

[60] KNUTH, D. E. The Art of Computer Programming, vol. 2: Seminumerical Algo-

rithms, 2 ed. Addison-Wesley, 1981.

[61] KNUTH, D. E. The Art of Computer Programming, vol. 3: Sorting and Search-

ing, 2 ed. Addison-Wesley, 1981.

[62] KOCHER, P. C. Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems. In Advances in Cryptology–CRYPTO 1996 (1996),

vol. 1109 of Lecture Notes in Computer Science, Springer-Verlag, pp. 104–113.

[63] KOCHER, P. C., E, J. J., AND JUN, B. Differential power analysis. In Advances

in Cryptology–CRYPTO 1999 (1999), vol. 1666 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 388–397.

[64] LUCKS, S. Design principles for iterated hash functions, 2004. IACR ePrint

Archive 2004/253.

[65] MATSUI, M. Linear cryptoanalysis method for DES cipher. In Advances in

Cryptology – EUROCRYPT 1993 (1994), vol. 765 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 386–397.

[66] MATUSIEWICZ, CONTINI, S., AND PIEPRZYK, J. Weaknesses of the FORK-256

compression function, 2006. IACR ePrint Archive 2006/317.

[67] MATUSIEWICZ, PEYRIN, T., BILLET, O., CONTINI, S., AND PIEPRZYK, J.

Cryptanalysis of FORK-256. In Proc. Fast Software Encryption 2007 (2007),

vol. 4593 of Lecture Notes in Computer Science, Springer-Verlag, pp. 19–38.

[68] MAURER, U. Indistinguishability of random systems. In Advances in Cryp-

tology – EUROCRYPT 2002 (2002), vol. 2332 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 110–133.

[69] MENDEL, F., LANO, J., AND PRENEEL, B. Cryptanalysis of reduced variants of

the FORK-256 hash function. In Topics in Cryptology–CT-RSA 2007 (2007),

vol. 4377 of Lecture Notes in Computer Science, Springer-Verlag, pp. 85–100.

[70] MENEZES, A., VAN OORSCHOT, P., AND VANSTONE, S. Handbook of Applied

Cryptography, first ed. CRC Press, 1996.

BIBLIOGRAPHY 110

[71] MERKLE, R., AND HELLMAN, M. Hiding information and signatures in trap-

door knapsacks. IEEE Trans. Information Theory 24, 5 (September 1978),

525–530.

[72] MIYAGUCHI, S., OHTA, K., AND WATA, M. I. 128-bit hash function (N-hash).

NTT Review 6, 2 (1990), 128–132.

[73] MORRIS, R., AND THOMPSON, K. Password security: A case history. Commu-

nications of the ACM 22 (November 1979), 594–597.

[74] MURPHY, S. The power of NIST’s statistical testing of AES candidates. Tech.

rep., Royal Holloway, University of London, Apr. 2000. AES Comment to

NIST.

[75] NICHOLS, R. K., AND LEKKAS, P. C. Wireless Security–Models, Threats, and

Solutions. McGraw-Hill, 2002.

[76] NISHIMURA, K., AND SIBUYA, M. Probability to meet in the middle. Journal

of Cryptology, 2 (1990), 13–22.

[77] NIST. FIPS PUB 180-1: Secure hash standard, 1995. Federal Information

Processing Standards Publication.

[78] NIST. FIPS PUB 180-2: Digital signature standard (DSS), 2000. Federal

Information Processing Standards Publication.

[79] NIST. FIPS PUB 180-2: Secure hash standard, 2001. Federal Information

Processing Standards Publication.

[80] NIST. Announcing the development of new hash algorithm(s) for the revi-

sion of federal information processing standard (FIPS) 180–2, secure hash

standard. Federal Register 72, 14 (2007), 2861–2863.

[81] NIST. Cryptographic hash function competition, May 2009. Available at:

http://csrc.nist.gov/groups/ST/hash/sha-3/.

[82] PALE, E., AND AHTOKARI, R. Suomen Radiotiedustelu 1927 – 1944. Viestikoe-

laitoksen kilta, 1997. In Finnish. Published by the Guild of the Communica-

tions Research Establishment (Finnish Signals Intelligence).

BIBLIOGRAPHY 111

[83] POLLARD, J. A Monte Carlo method for factorization. BIT Numerical Mathe-

matics 15, 3 (1975), 331–334.

[84] PRENEEL, B. Analysis and design of cryptographic hash functions. PhD thesis,

Katholieke Universiteit Leuven (Belgium), January 1993.

[85] PRENEEL, B., GOVAERTS, R., AND VANDEWALLE, J. Hash functions based

on block ciphers: A synthetic approach. In Advances in Cryptology–CRYPTO

1993 (1993), vol. 773 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 368–378.

[86] QUISQUATER, J.-J., AND DEESCAILLE, J.-P. How easy is collision search?

application to DES. In Advances in Cryptology–EUROCRYPT 1989 (1990),

vol. 434 of Lecture Notes in Computer Science, Springer-Verlag, pp. 429–434.

[87] RIJMEN, V., AND BARRETO, P. Whirlpool, 2004. Seventh hash function of

ISO/IEC 10118-3:2004.

[88] RIVEST, R. The MD4 message-digest algorithm, 1990. Internet Engineering

Task Force RFC 1186.

[89] RIVEST, R. The MD5 message-digest algorithm, 1992. Internet Engineering

Task Force RFC 1321.

[90] RIVEST, R. L. The MD6 hash function – a proposal to NIST

for SHA-3. Submission to NIST, October 2008. Available at:

http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/

Supporting_Documentation/md6_report.pdf.

[91] ROGAWAY, P. Formalizing human ignorance: Collision-resistant hashing

without the keys. In Proc. INDOCRYPT 2006 (2006), vol. 4341 of Lecture

Notes in Computer Science, Springer-Verlag, pp. 211–228.

[92] ROGAWAY, P., AND SHRIMPTON, T. Cryptographic hash-function basics:

Definitions, implications, and separations for preimage resistance, second-

preimage resistance, and collision resistance. In Proc. FSE 2004 (2004),

vol. 3017 of Lecture Notes in Computer Science, Springer-Verlag, pp. 371–388.

BIBLIOGRAPHY 112

[93] RSA. RSA-1024 factoring challenge. Available at: http://www.

rsasecurity.com/rsalabs/node.asp?id=2093.

[94] RUKHIN ET. AL., A. A statistical test suite for random and pseudorandom

number generators for cryptographic applications. Tech. Rep. 800-22, Na-

tional Institute of Standards and Technology, 2001.

[95] SAARINEN, M.-J. O. A chosen key attack against the secret S-boxes of GOST,

1998. Unpublished manuscript. Available from http://citeseer.ist.psu.

edu/saarinen98chosen.html.

[96] SAARINEN, M.-J. O. Cryptanalysis of block ciphers based on SHA-1 and MD5.

In Proc. Fast Software Encryption 2003 (2003), vol. 2887 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 36–44.

[97] SAARINEN, M.-J. O. Chosen-IV statistical attacks against eSTREAM ciphers.

In Proc. SECRYPT 2006, International Conference on Security and Cryptogra-

phy, Setubal, Portugal, August 7-10, 2006. (2006).

[98] SAARINEN, M.-J. O. d-monomial tests are effective against stream ciphers.

In State of the Art in Stream Ciphers (SASC) 2006 Workshop Record. Leuven,

Belgium, February 2-3, 2006. (2006).

[99] SAARINEN, M.-J. O. Security of VSH in the real world. In Progress in

Cryptology–INDOCRYPT 2006 (2006), vol. 4329 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 95–103.

[100] SAARINEN, M.-J. O. Linearization attacks against syndrome based hashes.

In Proc. INDOCRYPT 2007 (2007), vol. 4859 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 1–9.

[101] SAARINEN, M.-J. O. A meet-in-the-middle collision attack against the new

FORK-256. In Proc. INDOCRYPT 2007 (2007), vol. 4859 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 10–17.

[102] SASAO, T., AND DEBNATH, D. Generalized Reed-Muller expressions: Com-

plexity and an exact minimization algorithm. IEICE Trans. Fundamentals E79,

12 (1996), 2123–2130.

BIBLIOGRAPHY 113

[103] SCHNORR, C. P. Block reduced lattice bases and successive minima. Combi-

natorics, Probability and Computing, 3 (1994), 507–533.

[104] SHANKS, D. Class number, a theory of factorization and genera. In Proc.

Symp. Pure Math. (1979), AMS, pp. 415–550.

[105] SHANKS, J. Computation of the Fast Walsh-Fourier Transform. IEEE Transac-

tions on Computers C-18 (May 1969), 459–459.

[106] SNEDECOR, G. W., AND COCHRAN, W. G. Statistical Methods, 8 ed. Iowa

State University Press, 1989.

[107] STONE, M. H. The theory of representation for boolean algebras. Transac-

tions of the American Mathematical Society 40, 1 (July 1936), 37–111.

[108] VAN OORSCHOT, P., AND WIENER, M. Parallel collision search with cryptana-

lytic applications. Journal of Cryptology 12, 1 (1999), 1–28.

[109] WAGNER, D. A slide attack on SHA-1, 2001. Unpublished manuscript and

personal communication. 04/06/01.

[110] WAGNER, D. A generalized birthday problem. In Advances in Cryptology–

CRYPTO 2002 (2002), vol. 2442 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 288–303.

[111] WANG, X., LAI, X., FENG, D., CHEN, H., AND YU, X. Cryptanalysis of the

hash functions MD4 and RIPEMD. In Advances in Cryptology–EUROCRYPT

2005 (2005), vol. 3494 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 1–18.

[112] WANG, X., YIN, Y., AND YU, H. Finding collisions in the full SHA-1. In

Advances in Cryptology–CRYPTO 2005 (2005), vol. 3621 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 17–36.

[113] WANG, X., AND YU, H. How to break MD5 and other hash functions. In

Advances in Cryptology–EUROCRYPT 2005 (2005), vol. 3494 of Lecture Notes

in Computer Science, Springer-Verlag, pp. 19–35.

BIBLIOGRAPHY 114

[114] WANG, X., YU, H., AND YIN, Y. L. Efficient collision search attacks on SHA-0.

In Advances in Cryptology–CRYPTO 2005 (2005), vol. 3621 of Lecture Notes

in Computer Science, Springer-Verlag, pp. 1–16.

[115] WEGENER, I. The complexity of Boolean functions. Wiley, Teubner, 1987.

Wiley-Teubner series in Computer Science.

[116] WINTERNITZ, R. A secure one-way hash function built from DES. In Proc.

IEEE Symposium on Information Security and Privacy (1984), IEEE Press,

pp. 88–90.

[117] YLONEN, R., AND LONVICK, C. The secure shell (SSH) authentication proto-

col, 2006. Internet Engineering Task Force RFC 4252.

[118] YLONEN, R., AND LONVICK, C. The secure shell (SSH) connection protocol,

2006. Internet Engineering Task Force RFC 4254.

[119] YLONEN, R., AND LONVICK, C. The secure shell (SSH) protocol architecture,

2006. Internet Engineering Task Force RFC 4251.

[120] YLONEN, R., AND LONVICK, C. The secure shell (SSH) transport layer proto-

col, 2006. Internet Engineering Task Force RFC 4253.

[121] ZHEGALKIN, I. I. On the technique of calculating propositions in symbolic

logic”. Matematicheskii Sbornik, 43 (1927), 9–28. In Russian.

