
Cryptanalysis of Di�e-Hellman, RSA, DSS, and
Other Systems Using Timing Attacks

Paul C. Kocher?

EXTENDED ABSTRACT (7 December 1995)

Since many existing security systems can be

broken with timing attacks, I am releasing

this preliminary abstract to alert vendors and

users. Research in this area is still in progress.

Abstract. Cryptosystems often take slightly di�erent amounts of time
to process di�erent messages. With network-based cryptosystems, cryp-
tographic tokens, and many other applications, attackers can measure the
amount of time used to complete cryptographic operations. This abstract
shows that timing channels can, and often do, leak key material. The at-
tacks are particularly alarming because they often require only known
ciphertext, work even if timing measurements are somewhat inaccurate,
are computationally easy, and are di�cult to detect. This preliminary
draft outlines attacks that can �nd secret exponents in Di�e-Hellman
key exchange, factor RSA keys, and �nd DSS secret parameters. Other
symmetric and asymmetric cryptographic functions are also at risk. A
complete description of the attack will be presented in a full paper, to be
released later. I conclude by noting that closing timing channels is often
more di�cult than might be expected.

1 Introduction

Cryptosystem implementations often take di�erent amounts of time to process
di�erent inputs. Reasons include performance optimizations to bypass unneces-
sary operations, branching and conditional statements, RAM cache hits, proces-
sor instructions (such as multiplication and division) that run in non-�xed time,
and a wide variety of other causes. Performance characteristics typically depend
on both the encryption key and the input data (e.g. plaintext or ciphertext).
Although intuition might suggest that only a small amount of information, such
as the Hamming weight of the key, would be revealed, timing measurements can
often be analyzed to �nd the entire secret key.

? Independent Cryptography Consultant, P.O. Box 8243, Stanford, CA 94309, USA.
E-mail: pck@cryptography.com, FAX: 1-(415)-321-1483.

2 Timing cryptanalysis of �xed-exponent Di�e-Hellman

If a party uses the same secret exponent (x) for multiple Di�e-Hellman[2] key
exchanges, the exponent can often be found from timing measurements. (The
attack does not work if a new exponent is generated for every exchange.) The
attacker �rst observes k operations, measuring the time (t) taken by the victim
to compute each z = (yx mod n). The attacker is also assumed to know the y

values, the public parameter n, and the general design of the target system.
The attack is explained using the simple modular exponentiation algorithm

below, but can be tailored easily to work with virtually any implementation that
does not run in �xed time.

Algorithm to compute R = yx mod n:

Let R0 = 1.
Let y0 = y.

For i = 0 upto (bits in x� 1):
If (bit i of x) is 1 then

Let Ri+1 = (Ri � yi) mod n.

Else

Let Ri+1 = Ri.

Let yi+1 = y2i mod n.

End.

The attack will allow someone who knows exponent bits 0::(b-1) to �nd bit
b. (To obtain the entire exponent, start with b equal to 0 and repeat the attack
until the entire exponent is known.)

The attack is simplest to understand in an extreme case. Suppose the target
system uses a modular multiplication function that is extremely fast in the vast
majority of cases but occasionally takes much more time than an entire normal
modular exponentiation.

Because the �rst b exponent bits are known, the �rst b iterations of the For
loop can be completed by the attacker. However, the operation of the subsequent
step depends on an unknown exponent bit. If the bit is set, Rb+1 = (Rb�y) mod n

will be computed. If it is zero, the operation will be skipped.
As indicated earlier, for a few Rb and y values the calculation of Rb+1 will be

extremely slow, and the attacker knows which these are. If slow (Rb � y) mod n

operations are always associated with slow overall times, exponent bit b is prob-
ably set. If there is no relationship between time required to compute Rb+1 and
the total processing time, the exponent bit is zero.

In practice, modular exponentiation implementations do not usually have
such extreme timing characteristics, but do have enough variation for the attack
to work. For each y, the attacker can estimate d, a measure of the time it would
take for the (Rb � y) mod n calculation, if done. The attacker also knows the
total time t. Because the �rst b exponent bits are known, the attacker knows Rb

and can measure c, the amount of time required for the �rst b iterations of the
exponentiation loop.

2

Given these values for one timingmeasurement, the probability that exponent
bit b is set can then be found as follows:

P (bit=1 j y; t; c; d) �
�((t�c�d)��(t�c�d)

�(t�c�d))

�((t�c)��(t�c)
�(t�c)) + �((t�c�d)��(t�c�d)

�(t�c�d))

where �(x) = e�x
2=2

p
2�

is the standard normal function, �(X) is the mean of X,

and �(X) is the standard deviation of X.
The overall probability is:

P (bit=1) �

Qk�1
i=0 P (bit=1 j yi; ti; ci; di)Qk�1

i=0 P (bit=1 j yi; ti; ci; di) +
Qk�1

i=0 (1� P (bit=1 j yi; ti; ci; di))
:

For the attack to work, the actual probabilities do not need to be very large,
since incorrect exponent bit guesses will destroy all future correlations. After a
mistake, no new signi�cant correlations will be detected, so one can identify that
there has been an error, back up, and correct it.

Errors can thus be detected and corrected, since after a mistake no new
signi�cant correlations will be detected.

A preliminary implementation of the attack using the RSAREF toolkit[8] has
been written. RSAREF scans across the exponent from MSB to LSB and does
two exponent bits at a time, so corresponding adjustments to the attack were
made. Using a 120-MHz PentiumTM computer running MSDOSTM , a 512-bit
modulus, and a 256-bit secret exponent, processing times ranged from 392411
�s to 393612 �s and closely approximated a normal distribution with a mean of
393017 �s and a standard deviation of 188 �s.

Timing measurements were taken for 2000 operations, each using a di�erent
starting value. (Each of these values would normally be a gx value computed by
the other party.) Measurements of c and d were also made using RSAREF. Even
though only 2000 samples were used, strong bit correlations (often 95 percent
or better), were found. As noted before, the attack is self-correcting, so much
weaker correlations would do. (The full version of this paper will show how the
self-correction property works and will show how the probability equations can
be adjusted for di�erent implementations.)

The attack is computationally quite inexpensive. In particular, the attacker
only has to do a small multiple of the number of modular multiplications done
by server, not counting operations wasted due to incorrect exponent bit guesses.

The experiment above used random inputs, as might be gathered by a pas-
sive eavesdropper. As will be explained in the full paper, the required number
of ciphertexts can often be reduced if attackers choose inputs known to have
extreme timing characteristics under the target implementation.

3 Factoring RSA private keys using a timing attack

A private-key RSA operation consists of computing m = (cd mod pq), where pq
is publicly known but d and the factorization of pq are secret.

3

RSA signatures not performed using the Chinese Remainder Theorem can
be attacked using identical techniques as were described for Di�e-Hellman in
Section 2. If the Chinese Remainder Theorem (CRT) is used, a slightly di�erent
attack is required. With CRT, the �rst operations are to compute (c mod p) and
(c mod q). As a rule, modular reduction operations do not run in constant time.
The conceptually simplest attack is to simply choose values of c that are close
to p (or q), then use timing measurements to determine whether the guessed
value is larger or smaller than the actual value of p (or q). If c is less than p,
computing c mod p has no e�ect, while if c is slightly larger than c, it is necessary
to subtract p from c once.

RSAREF's modular reduction function with a 512-bit modulus on the same
120-MHz PentiumTM computer takes an average of approximately 17 �s less
time if c is slightly smaller than p, as opposed to slightly larger than p. Timing
measurements of many ciphertexts can be combined to detect whether the chosen
ciphertexts are larger or smaller than p.

More sophisticated variants of the attack can be even more e�ective. For
example, if the approximate value of p is �rst shifted several digits to the left,
guesses of p that are slightly too high will develop leading zero digits which will
tend to increase the performance of the �rst modular multiply.

The Chinese Remainder Theorem RSA attack can also be adapted to use only
known ciphertext, and thus can be used to attack RSA digital signatures. Mod-
ular reduction is done by subtracting multiples of the modulus. The number of
subtraction steps is usually not constant. RSAREF's division loop, for example,
integer-divides the uppermost two digits of c by one more than the upper digit of
p, multiplies p by the quotient, shifts left the appropriate number of digits, then
subtracts the result from c. If the result is larger than p (shifted left), another
subtraction is performed. This additional subtraction a�ects the modular expo-
nentiation time. The decision whether to perform an additional subtraction in
the �rst loop of the division algorithm depends on c and, in the vast majority of
cases, only the upper two digits of p. The next division loop's decision depends
on the upper three digits of p, and so forth. One can thus test candidates for
digits of p by measuring whether expected additional subtractions are reected
in the total modular exponentiation time. As with the Di�e-Hellman/non-CRT
attack, once one digit of p has been found, the same timing measurements can
be reused to �nd subsequent digits. (Additional details will be presented in the
full paper.)

4 Timing cryptanalysis of DSS

The Digital Signature Standard[5] computes s = (k�1(H(m) + x � r)) mod q,
where r and q are known to attackers, k�1 is usually precomputed, H(m) is the
hash of the message, and x is the private key. In practice, (H(m) + x � r) mod q

would normally be computed �rst, then be multiplied by k�1 (mod q).
If the modular reduction function runs in non-�xed time, the overall signature

time should be correlated with the time for the (x �r mod q) computation. (Since

4

H(m) is of approximately the same size as q, its addition has little e�ect.) The
most signi�cant bits of x � r are the �rst used in the modular reduction. These
depend on r, which is known, and the most signi�cant bits of the secret value
x. There should thus be a correlation between values of the upper bits of x and
the total time for the modular reduction. A simple attack would be to use this
correlation to test candidate values for upper bits of x. As more upper bits of x
become known, more of x � r becomes known, allowing the attacker to proceed
through more iterations of the modular reduction loop to attack new bits of x.
(The �nal version of this paper will describe DSS attacks in detail.)

Because DSS signatures require just two modular multiplication operations,
variations in the computation time can be detected from relatively few timing
measurements.

5 Other applications of timing attacks

Timing attacks can be e�ective against other cryptosystems as well. For example,
the 28-bit C and D values in the DES[4] key schedule are sometimes rotated using
a conditional to test whether a one-bit must be wrapped around. The additional
time required to move nonzero bits will slightly degrade the cipher's overall
performance, revealing the Hamming weight of the key. This provides an average

of
P56

n=0

�
56

n

�
256 log2

�
256�
56

n

�
�
� 3:95 bits of key information. IDEA[3] uses an f()

function with a modulo (216 + 1) multiplication operation, which will almost
always run in non-constant time. RC5[6] is also at risk on platforms where rotates
run in non-constant time. RAM cache hits can produce timing characteristics
in implementations of Blow�sh[9], SEAL[7], DES, and other ciphers if tables in
memory are not used identically in every encryption.

6 Conclusions

Writing software that runs in �xed time can be hard, especially for platform-
independent implementations, since many factors a�ect performance, including
compiler optimizations, RAM cache hits, and instruction timings. Fixed-time
code must always exhibit worst-case performance. A better alternative would be
to use blinding techniques, such as those used for blind signatures[1], to prevent
attackers from knowing actual inputs to the modular exponentiation function.

Random delays added to the processing time may increase the number of
ciphertexts required, but do not completely solve the problem since attackers can
compensate for the delay by collecting more measurements. (If enough random
noise is added, the attack can become infeasible.) Computing optional Ri+1

calculations regardless of whether the exponent bit is set does not work and can
actually make the attack easier; the computations still diverge but attackers no
longer have to identify the lack of a correlation for adjacent zero exponent bits.
If a timer is used to delay returning results until a pre-speci�ed time, attackers

5

may be able to monitor other aspects of the system performance to determine
when the cryptographic computation completes.

7 Acknowledgements

I am grateful to Matt Blaze, Ron Rivest, and Bruce Schneier for a number of
helpful comments and suggestions for improving the manuscript.

References

1. D. Chaum, \Blind Signatures for Untraceable Payments," Advances in Cryptology:

Proceedings of Crypto 82, Plenum Press, 1983, pp. 199-203.
2. W. Di�e and M.E. Hellman, \New Directions in Cryptography," IEEE Transac-

tions on Information Theory, v. IT-22, n. 6, Nov 1976, pp. 644-654.
3. X. Lai, On the Design and Security of Block Ciphers, ETH Series in Information

Processing, v. 1, Konstanz: Hartung-Gorre Verlag, 1992.
4. National Bureau of Standards, NBS FIPS PUB 46-1, \Data Encryption Standard,"

U.S. Department of Commerce, Apr 1981.
5. National Institute of Standards and Technology, NIST FIPS PUB 186, \Digital

Signature Standard," U.S. Department of Commerce, May 1994.
6. R.L. Rivest, \The RC5 Encryption Algorithm," Fast Software Encryption: Second

International Workshop, Leuven, Belgium, December 1994, proceedings, Springer-
Verlag, 1994, pp. 86-96.

7. P.R. Rogaway and D. Coppersmith, \A Software-Optimized Encryption Algo-
rithm," Fast Software Encryption: Cambridge Security Workshop, Cambridge,

U.K., December 1993, proceedings, Springer-Verlag, 1993, pp. 56-63.
8. RSA Laboratories, \RSAREF: A Cryptographic Toolkit," version 2.0, 1994, avail-

able via FTP from rsa.com.
9. B. Schneier, \Description of a New Variable-Length Key, 64-bit Block Cipher

(Blow�sh)," Fast Software Encryption: Second International Workshop, Leuven,

Belgium, December 1994, proceedings, Springer-Verlag, 1994, pp. 191-204.

All trademarks are the property of their respective holders.

6

