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Abstract

We cryptanalyze Fridrich’s chaotic image encryption algorithm. We

show that the algebraic weaknesses of the algorithm makes it vulnerable

against chosen-ciphertext attacks. We propose an attack that reveals the

secret permutation that is used to shuffle the pixels of a round input. We

demonstrate the effectiveness of our attack with examples and simulation

results. We also show that our proposed attack can be generalized to other

well-known chaotic image encryption algorithms.
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1 Introduction

In the last three decades, there has been a growing research effort to apply chaos to
cryptography, [Amigo et al., 2007]. The noise-like statistical properties of chaotic
signals and the sensitivity of chaotic systems naturally relate them to confusion
and diffusion properties of encryption algorithms, [Menezes et al., 1996; Dachselt
and Schwarz, 2001].

Despite the apparent affinity between the concepts of chaos and cryptography,
using chaos within an encryption algorithm is far from trivial. In fact, many
chaotic ciphers fall short of satisfying even the most basic security requirements,
[Alvarez and Li, 2006; Kelber and Schwarz, 2007; Masuda et al., 2006].

Early attempts at using chaos in cryptography included the synchronization
based methods where synchronized chaotic signals are used to modulate and de-
modulate message signals, [Yang et al., 1997]. While such an approach provides
a spread spectrum communication setup, the analog nature of the systems makes
approximation based attacks possible, [Parker and Short, 2001; Yang et al., 1998].
Identification methods can also be used to reveal secret system parameters, [Liu
et al., 2004].

Another approach is the discretization of chaotic signals at some stage in the
system and using the resulting sequence to modify plaintext, possibly in multiple
rounds [Masuda and Aihara, 2002a; Ozoguz et al., 2006]. Some of these schemes
use chaotic systems to generate a pseudo-random sequence which is then simply
XORed with the plaintext. Other proposals use iterated low-dimensional chaotic
systems to implement complex nonlinear functions that are similar to S-boxes
used in classical block ciphers, [Szczepanski et al., 2005]. Still others use chaos to
implement permutations of plaintext blocks, [Fridrich, 1998; Masuda and Aihara,
2002b; Xiang et al., 2006].

A particular area of interest within the chaos cryptography is the image en-
cryption. Naturally, a fast and strong image encryption has the potential for
application in diverse areas of multimedia applications. By treating the image as
a sequence of bits, classical block ciphers like DES and AES can be used with an
appropriate mode of operation. Still, the desire to obtain faster ciphers motivate
researchers to seek new ways to incorporate chaos in image encryption, [Pisarchik
et al., 2006; Arroyo et al., 2008; Mao et al., 2004; Chen et al., 2004].

The rich variety of chaotic ciphers provides a motivation for cryptanalysts to
find statistical or structural weaknesses in these proposals, [Li et al., 2008]. As a
result of this dual effort to design and break chaotic ciphers, one might expect to
see the emergence of robust applications of chaos in strong cryptography. While
many chaotic ciphers have been shown to have weaknesses, new modifications are
being proposed to implement defenses to resist the discovered attacks.

In this paper, we cryptanalize Fridrich’s cipher which is one of the earliest
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chaotic image encryption algorithms, [Fridrich, 1998]. We show that the algorithm
can be broken using a chosen-ciphertext attack. We show that the attack reveals
secret permutation of the algorithm. Although more than a decade has passed since
its publication in 1998, to our knowledge, the present work is the first successful
cryptanalysis of Fridrich’s cipher.

The organization of the paper is as follows. Section 2 gives a mathematical
description of Fridrich’s image encryption algorithm. Section 3 gives a detailed
description of our attack. Section 4 presents an illustrative example and simula-
tion results for realistic image sizes. The paper finishes with concluding remarks.
In conclusion section, we also discuss application of our results to other similar
encryption algorithms and possible defense mechanisms.

2 Desciption of the Encryption Algorithm

The plaintext P is an M × N grayscale image, where each pixel is represented
using a byte. The image is first vectorized using the usual row-scan. Let p ∈ Sn

represent this vectorized image, where S = {0, 1, . . . 255} and n = NM. Thus, the
plaintext is the vector p = [p1 p2 · · · pn].

Each round consists of two steps. In the first step, p is shuffled using a secret
permutation. Let b denote this secret permutation defined on the set {1, 2, . . . , n}.
Let us denote the shuffled vector by f . The relation between the shuffled vector f

and the vectorized plaintext p can be expressed as

fi = pb(i), 1 ≤ i ≤ n. (1)

Namely, the shuffled pixel at position i is obtained from the original pixel at
position b(i).

In the second step of the round, f is passed through a nonlinear function as

ci = fi + g(ci−1) + hi mod 256, 1 ≤ i ≤ n, (2)

where g : S → S is a fixed nonlinear function and h ∈ Sn is a fixed vector. In Eq.
(2), c0 is taken to be a fixed system parameter.

These two steps are repeated for R rounds. In [Fridrich, 1998], R = 10 is
suggested for good diffusion and confusion properties.

Combining Eq. (1) and Eq. (2), we obtain one round encryption as

ci = pb(i) + g(ci−1) + hi mod256, 1 ≤ i ≤ n. (3)

The decryption for a single round is defined as follows. Let u be the inverse of
b, so that

j = b(i) ⇔ i = u(j). (4)
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Substituting Eq. (4) in Eq. (3), we obtain

pj = cu(j) − g(cu(j)−1) − hu(j) mod 256. (5)

For i = 1, we have

c1 = pb(1) + g(c0) + h1 mod 256.

The secret component of the algorithm is the permutation b. A set of secret keys
are used generate this permutation. For example, in one of the schemes proposed
in [Fridrich, 1998], the original image P is partitioned and Baker map applied to
each partition to obtain the permutation. In this case, the set of keys are the
boundaries where the image is partitioned. It is possible to use other schemes to
generate a permutation. Our attack is general and applies to all of these cases.

3 Chosen Ciphertext Attack

A naive attack might try to reveal the keys that were used to generate the permu-
tation b. However, anyone who knows the permutation b can decrypt the images.
In our cryptanalysis, we develop methods to reveal the permutation b. Such an
approach is more general as it easily covers cases where different chaotic maps are
used to generate the permutation.

3.1 Causality in decryption

The function g in Eq. (3) forms a chain that relates consecutive ciphertext pixels.
Hence, in encryption for a single round, a change in a plaintext pixel affects many
ciphertext pixels. Indeed, if we change pb(i), by Eq. (3), ci changes. Since we have

ci+1 = pb(i+1) + g(ci) + hi+1 mod256,

a change in ci, in turn, changes ci+1. Thus, for a single round, a change in pb(i)

affects ci, ci+1, . . . , cn. As a result, a ciphertext pixel depends on many plaintext
pixels. This is a desirable property of an encryption and is also known as the
diffusion property [Menezes et al., 1996].

However, the situation is quite different in decryption. Using Eq. (5), we see
that, for a single round, pj is affected by only two ciphertext pixels, cu(j) and
cu(j)−1. Similarly, for two rounds, pj is affected by at most four ciphertext pixels.

In order to see this more clearly, let us denote the output of the second round
as d1d2 · · · dn. Using Eq. (5) with ck as the plaintext pixel that is input to second
round, we obtain

ck = du(k) − g(du(k)−1) − hu(k) mod256, 1 ≤ k ≤ n. (6)
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Substituting k = u(j) in Eq. (6), we find

cu(j) = du2(j) − g(du2(j)−1) − hu2(j). (7)

Here, we denote by us, the s times composition of u with itself.
Similarly, for k = u(j) − 1, we have

cu(j)−1 = du(u(j)−1) − g(du(u(j)−1)−1) − hu(u(j)−1). (8)

Thus, we see from Eq. (5), Eq. (7) and Eq. (8) that, for two rounds of decryption,
pj is affected only by the ciphertext pixels

du2(j), du2(j)−1, du(u(j)−1), du(u(j)−1)−1.

Obviously, depending on the particular permutation u, some of these four pixels
might coincide.

Note that the plaintext pixel pb(1) is affected by only c1 because c0 is a fixed
system parameter. Hence, for two rounds, pb(1) is affected by the ciphertext pixels

du(1), du(1)−1.

Example 1 We illustrate the causal relations in the decryption for two rounds.

Here, n = 6 and the permutation u is given as

u =

(
1 2 3 4 5 6
2 4 1 5 6 3

)

. (9)

The causality paths are given in Fig. 1. In the figure, the directed arrows indicate

which pixels affect the computation of the destination pixel. For example, two ar-

rows going from c5 and c4 to p4 means that p4 is affected by c5 and c4.

The causality chain from the ciphertext d to the plaintext p is given as follows

p1 ← c1, c2 ← d1, d2, d3, d4,

p2 ← c3, c4 ← d1, d4, d5,

p3 ← c1 ← d1, d2,

p4 ← c4, c5 ← d4, d5, d6,

p5 ← c5, c6 ← d5, d6, d2, d3,

p6 ← c2, c3 ← d3, d4, d1.

Note that p3 is affected by only c1 because u(3) = 1. c1 is, in turn, affected by two

ciphertext pixels d1 and d2. Also note that p4 is affected by three ciphertext pixels

rather than four because u(u(4) − 1) = u2(4) − 1 = 5. This also means that there

are two distinct causality paths going from d5 to p4.
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p1 p2 p3 p4 p5 p6

c1 c2 c3 c4 c5 c6

d1 d2 d3 d4 d5 d6

Figure 1: The causality paths for the permutation given in Eq. (9). A solid arrow
indicates that the causality is through u, while a dashed arrow indicates that the
causality is through u − 1.

3.2 Detecting causality using chosen ciphertext images

In general, for the decryption in an R round algorithm, a particular plaintext pixel
pj is affected by at most 2R ciphertext pixels. For a 256× 256 image encrypted in
10 rounds, we have n = 65536 and 2R = 1024. Hence, only about 1024

65536
≈ 2% of

ciphertext pixels affect any given fixed plaintext pixel.
Let us denote by z, the ciphertext image after R rounds of encryption. The

attacker wants to know if there is a causality path from the ciphertext pixel zi

to the plaintext pixel pj. Assume that the attacker knows a plaintext-ciphertext
image pair (p, z). He changes the value of zi and requests the plaintext for the
changed ciphertext. If pj changed in the new plaintext, then there is a causality
path from zi to pj so that zi affects pj.

Note that, for some changes to zi, pj might remain the same even when
there are causality paths from zi to pj . This is due to the nonlinearity of en-
cryption/decryption that operates in a finite domain. In order to detect all the
causality paths, the attacker needs to try more than one change to zi. It is highly
unlikely that pj remains fixed for all of these changes. Thus, in order to construct
the matrix T for n pixel images, the attacker needs to choose O(n) ciphertext
images.

Detecting changes for all i, 1 ≤ i ≤ n, the attacker constructs a binary matrix
T showing the causality relations between ciphertext and plaintext pixels in de-
cryption. If Tij = 1, then it means that zi affects pj. Since pj is affected by at most
2R pixels of z, each column of T contains at most 2R 1’s. All the other entries are
zero.
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Example 2 The matrix T for the permutation u used in Example 1 is given as

T =











1 1 1 0 0 1
1 0 1 0 1 0
1 0 0 0 1 1
1 1 0 1 0 1
0 1 0 1 1 0
0 0 0 1 1 0











.

3.3 Finding b(1).

Writing Eq. (5) for pb(1), we have

pb(1) = c1 − g(c0) − h1 mod256.

Hence, for one round, pb(1) is affected by only c1, the first pixel of the output of
the first round. The rest of the rounds generate at most 2R−1 distinct causality
paths. Therefore the column b(1) of T contains at most 2R−1 1’s. Thus, the column
of the matrix T with the least number of 1’s gives the attacker a starting point
for the attack. Once an attacker constructs the matrix T, he can reveal b(1) by
choosing the column k with the least column sum. Then he knows that b(1) = k
or u(k) = 1.

For example, by inspecting the matrix T in Example 2, the attacker can see
that the third column has the least sum. Thus, he concludes that u(3) = 1.

3.4 Tree of causality

In order to generalize the attack to the rest of u, we define an operation to denote
the causality relations between the sets.

Given a permutation u on the set {1, 2, . . . n}, define the operation L on a set
A as follows.

L(A) = {y | ∃x ∈ A such that y = u(x) or y = u(x) − 1}.

The set L(A) has natural meaning in terms of decryption. Using Eq. (5), we see
that the set L(A) is the set of ciphertext pixels that affect the set A of plaintext
pixels in one round of decryption. In particular, for an integer k ∈ {1, 2, . . . , n},
L({k}) is given as

L({k}) =

{
{u(k)} if u(k) = 1,

{u(k), u(k)− 1} otherwise
(10)
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When L operates on a set with a single element k, we drop the set notation in
L({k}) and use instead L(k).

We can naturally compose L with itself to define its higher powers. Thus, for
L2(k), we have

L2(k) = L({u(k), u(k) − 1})

= {u2(k), u2(k) − 1, u(u(k) − 1), u(u(k)− 1) − 1}.

Here, we implicitly assumed that 1 /∈ {u(k), u2(k), u(u(k)−1)}. If we have u(k) = 1
and u2(k) *= 1, then, by the definition of L, we have

L2(k) = L(u(k))

= {u2(k), u2(k) − 1}.

Again, the powers of L has a natural interpretation in terms of multi-round
encryption. For an integer k, Li(k) is the set of the indices of ciphertext pixels
that affect the plaintext pk in i round decryption. This set is also the set of row
indices where the kth column of T has nonzero entries.

Example 3 For the permutation given in Example 1, we have

L(1) = {1, 2},

L2(1) = {1, 2, 3, 4},

L2({1, 6}) = {1, 2, 3, 4}.

3.5 Overlapping sets of leaves

Using the chosen-ciphertext attack given in the beginning of this section, the
attacker constructs the matrix T. This is the same as attacker knowing the sets
LR(k), ∀k ∈ {1, 2, . . . , n}. The attacker uses this knowledge to reveal the secret
permutation u. First, we need the following fact.

Lemma 4 Let x, y and z be integers in {1, 2, . . . n} such that they satisfy

u(x) + 1 = u(y),

u(y) + 1 = u(z).

Then, for every positive integer R larger than 1,

LR(y) \ LR(x) ⊂ LR(z).
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Proof. By the definition of L, we have for every integer a in {1, 2, . . . n},

LR(a) =

{
LR−1(u(a)) if u(a) = 1,

LR−1(u(a)) ∪ LR−1(u(a) − 1) otherwise.
(11)

For the case a = y, we have u(y) *= 1, and therefore

LR(y) = LR−1(u(y)) ∪ LR−1(u(y) − 1),

= LR−1(u(y)) ∪ LR−1(u(x)). (12)

Similarly, for a = z,

LR(z) = LR−1(u(z)) ∪ LR−1(u(y)). (13)

Finally, for a = x,

LR(x) =

{
LR−1(u(x)) if u(x) = 1,

LR−1(u(x)) ∪ LR−1(u(x) − 1) otherwise.
(14)

Using Eq. (12) and Eq. (14) together with the identity A \B = A∩B, we obtain

LR(y) \ LR(x) =

{
LR−1(u(y)) ∩ LR−1(u(x)) if u(x) = 1,

LR−1(u(y)) ∩ LR−1(u(x)) ∩ LR−1(u(x) − 1) otherwise.
(15)

Note that, we take the set complements with respect to the universal set {1, 2, . . . n}.
Comparing Eq. (15) with Eq. (13), the result immediately follows. Figure 3.5 il-
lustrates the overlap and the intersection of the sets LR(a) and LR−1(a).

Lemma 5 Let x and y be integers such that u(x) = 1 and u(y) = 2. Then,

LR(x) ⊂ LR(y).

Proof. Using Eq. (11) with a = x, we obtain LR(x) = LR−1(u(x)) = LR−1(1).
Using Eq. (11) once more with a = y, and applying the assumptions of the lemma,
we obtain LR(y) = LR−1(2) ∪ LR−1(1). The result immediately follows.

3.6 The attack

The attack starts with determining the integer x1 that satisfy u(x1) = 1. For this,
the attacker chooses the set LR(x1) that has the least number of elements. This
also corresponds to choosing the column of the matrix T with the least column
sum. It might happen that there are more than one candidate for x1. For such
cases, the attacker repeats the rest of the procedure for each candidate until he
encounters a contradiction that he can use to eliminate the candidate.
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x

u(x)

u2(x) − 1
...

u2(x)
...

y

u(y) = u(x) + 1

u2(y) − 1
...

u2(y)
...

z

u(z) = u(y) + 1

u2(z) − 1
...

u2(z)
...

︸ ︷︷ ︸

Lr−1(u(z))
︸ ︷︷ ︸

Lr−1(u(z)−1)
︸ ︷︷ ︸

Lr(z)

Figure 2: The sets LR(a) and LR−1(a). Note that the sets are the leaves of over-
lapping causality trees.

Once the attacker knows x1, he goes on to determine x2 such that u(x2) = 2.
Define the set X2 as

X2 = {x | LR(x1) ⊂ LR(x)}.

By Lemma 5, x2 ∈ X2. In the likely case that X2 contains a single element, the
attacker uniquely pins down x2. If there are more then one candidate for x2, the
attacker again repeats the rest of the procedure until he can eliminate candidates.

Now, the attacker knows x1 and x2 such that u(x1) = 1 and u(x2) = 2. He then
searches for x3 such that u(x3) = 3. In order to pin down x3, the attacker finds
the set defined by

X3 = {x | LR(x2) \ LR(x1) ⊂ LR(x)}.

By Lemma 4, x3 ∈ X3. If X3 contains a single element, then the attacker has just
found x3 that satisfies u(x3) = 3.

The attacker continues in this fashion and uses his knowledge of xi and xi+1 to
reveal xi+2 such that u(xi) = i, u(xi+1) = i + 1 and u(xi+1) = i + 2. The attack
concludes when all the entries of the secret permutation u are revealed.

In cases when Xi+1 contains z1, z2, . . . zv, the attacker applies the procedure for
each zm, 1 ≤ m ≤ v, each time assuming that u(zm) = i + 1.

For false candidates, we expect the iteration to yield an empty set at some
point. Namely, if the set LR(zm) \ LR(xi+1) is not contained in any LR(w), then
u(zm) *= i + 1 and we eliminate the candidate zm.

The iterations of the attack are expressed as a recursion in Algorithm 1. The
recursive function is FindNext() which takes no arguments. The constant data
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of the algorithm are the sets LR(k), ∀k ∈ {1, 2, . . . , n}. The algorithm manipu-
lates the global variables b and i. The variable i shows the portion of b that is
assumed to have been revealed. Namely, the function FindNext() assumes that
b(1), b(2), . . . , b(i) have already been revealed. Note that we also assume that the
values b(1) and b(2) are initially known.

In Algorithm 1, Line 3, we find the candidates for b(i + 1). In doing this, we
exclude the set {b(1), b(2), . . . , b(i)} which is assumed to have been revealed so far.
For each candidate z, Lines 6-10 recursively apply the algorithm assuming that
u(z) = i + 1. The function FindNext() returns in Line 13 when no candidates
are found. It means that the recursion can not go any deeper because a wrong
assumption about the permutation value has been made. In this case, Line 11
backtracks once and another candidate is tried.

The space complexity of the attack depends on the memory required to store
the matrix T. Assuming that we have a N × M image and R rounds, T is stored
in N2M2 bits. However, T is sparse when the attack is feasible. Therefore the
memory requirement drops down to O(2RNM) bits.

Algorithm 1: FindNext()

Data: LR(k), ∀k ∈ {1, 2, . . . , n}, b(1), b(2).
Result: b
Global Variable: b and i. Initially i ← 2.
FindNext()1

begin2

Z ←
{
x | LR(b(i)) \ LR(b(i − 1)) ⊂ LR(x)

}
\ {b(1), b(2), . . . , b(i)}3

i ← i + 14

if Z *= ∅ then5

foreach z ∈ Z do6

b(i) ← z7

if i = n then8

exit9

FindNext()10

i ← i − 111

else12

return13

end14
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4 Simulations

We first illustrate the attack with an artificially small image size. We choose R = 3
and assume an image size of 4×4. Therefore, the secret permutation u maps within
the set {1, 2, . . . 16}. We generated the permutation randomly and it is given as

u =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 8 6 12 1 11 14 15 7 3 10 2 16 5 4 13

)

.

The other fixed functions g and h are chosen randomly. The attacker calculates
the matrix T as

T =































0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0
0 0 1 1 0 1 0 0 1 0 0 0 1 1 1 0
1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1
1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0
0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1
0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0
1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1
1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1
1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0
0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0































.

For the ith column of the matrix T, the row indices of the 1’s give the set L3(i).
First, the attacker reveals b(1). For this, he finds the minimum sum column

which is the column 5. Thus, the attacker reveals that u(5) = 1, or equivalently
that b(1) = 5. From the 5th column, the attacker sees that L3(5) = {6, 7, 14, 15}.
He then uses Lemma 5 and searches for the column that has 1’s in its 6th, 7th, 14th

and 15th rows. This column turns out to be the 12th one. Hence, he concludes
b(2) = 12. Now that the attacker knows the values of b(1) and b(2). Next, he
applies Algorithm 1. Using the matrix T, he calculates that L3(12)\L3(5) = {13}.
Searching through the columns of T, the attacker finds that columns 1, 7, 10, 11,
16 have 1 in their 13th rows. Thus, Z = {1, 7, 10, 11, 16}. Now, he tries those as
candidates for b(3). First, he assumes b(3) = 1. On this assumption, he calculates
the set L3(1) \ L3(12) = {3, 4, 5, 10, 11}. But, there is no column that has 1’s in
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its rows corresponding to this set. Hence, b(3) *= 1. Next, he tries b(3) = 7. He
calculates L3(7) \L3(12) = {1, 3, 4, 11, 12}. Again, there is no column that has 1’s
in its rows corresponding to this set. The third candidate is 10, which happens to
be the correct one. Assuming b(3) = 10, the attacker quickly reveals the rest of
the secret permutation b.

We now give the results of the attack for an image size of 256× 256.
We used R = 10 as suggested in [Fridrich, 1998]. We generated the permutation

u using the Baker’s Map with the keys as K = [2 4 2 8 4 8 4]. The fixed
functions g and h are again chosen randomly.

Simulations are performed under GNU gcc compiler running on Mac OS X
10.5.4 with Intel Core 2 Duo 2.16 GHz processor and 2 GB RAM. The whole map
u is recovered successfully in less than 20 minutes. Moreover, the total memory
requirement for the whole implementation was approximately 1 GB. In order to
make the Algorithm 1 run more efficiently, we used a sparse matrix data structure
for the matrix T . Thus, we reduced the search time needed for constructing the
set Z in Line 3 of the algorithm.

5 Conclusions

Since its proposal in 1998, Fridrich’s chaotic image encryption has generally been
considered secure. Indeed, many image encryption algorithms have taken it as a
benchmark against which their efficiencies are measured.

In this paper, we gave a cryptanalysis of Fridrich’s chaotic image cipher. We
demonstrated that rather than attacking the underlying secret keys, an attacker
can instead reveal the secret permutation. In attacking the permutation, the
attacker uses the overlaps among the sets of indices of ciphertext pixels that affect
related plaintext pixels. We demonstrated the success of the attacks on an image
of realistic size.

The chosen-ciphertext attack that we proposed can be applied to other en-
cryption algorithms that have a structure similar to the one in [Fridrich, 1998].
Naturally, every encryption algorithm has a particular algebraic structure that has
to be taken into account in its cryptanalysis. Here, for the sake of illustration, we
briefly discuss a particular application of our proposed attack.

One of the well-known chaotic image encryption algorithms in the literature is
the one proposed in [Chen et al., 2004]. Similar to [Fridrich, 1998], the algorithm
consists of multiple rounds of permutation and diffusion. The permutation step
is implemented using a 3D cat map. Similar to [Fridrich, 1998], the diffusion step
mixes consecutive pixels of the permuted image using a chaotically modulated
XOR function. Although a 3D chaotic map provides a better scattering of pixels
compared to 2D maps, our attack is still applicable in this case because we do not
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make any assumptions on how the secret permutation b in Eq. (5) is obtained.
Likewise, our attack does not depend on any assumptions on the nonlinear function
g in Eq. (5). Hence, our attack can be launched without modification against the
algorithm proposed in [Chen et al., 2004].

The success of our attack mainly depends on the small size of the set Z on Line
3 of Algorithm 1. For realistic image sizes and a 10-round encryption, Z contains
only a single element in most cases. If the number of rounds R is increased, the
sets LR(x) contain more and more elements. Assuming that the causality paths
do not have overlaps, the set LR(x) contains 2R elements. When R is increased to
R = log2 n, LR(x) contains n elements, i.e. LR(x) = {1, 2, . . . , n}. Thus, Z in Line
3 of the algorithm contains all the unrevealed elements. Therefore, the number
of trials in Line 6 of the attack algorithm increases to n. This makes the present
attack infeasible.

Although the increase of rounds appear to suggest an obvious defense against
our attack, larger images would still present a problem because in that case the
sets Z would become smaller making the attack feasible again. One solution might
be to break the images into smaller fragments and encrypt each fragment using
a fixed number of rounds. If each partition has n0 pixels, in order to resist our
attack, n0 has to be smaller than 2R.

Modifying the way the pixels are passed through the nonlinear function might
also provide a defense against our attack. In the proposed scheme, for one round,
a plaintext pixel is affected by at most two ciphertext pixels. This dependence
can be increased by several methods. One particularly easy method would be to
nonlinearly mix more than two pixels. Indeed, if m pixels of ciphertext affect one
pixel of plaintext, then having R satisfy R > logm n would provide a dependence
complicated enough to preclude the present attack.

Another possible defense is to modify the permutation function b in each round.
This can be done using a key scheduling mechanism that generates R different
permutations depending the key.

Of course, each of these defenses require a rigorous analysis of the whole new
algorithm for weaknesses and statistical properties.
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