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Abstract. In this article we propose a new cryptanalysis method for double-branch
hash functions and we apply it on the standard RIPEMD-128, greatly improving over
previously known results on this algorithm. Namely, we are able to build a very good
differential path by placing one nonlinear differential part in each computation branch of
the RIPEMD-128 compression function, but not necessarily in the early steps. In order
to handle the low differential probability induced by the nonlinear part located in later
steps, we propose a new method for using the available freedom degrees, by attacking
each branch separately and then merging them with free message blocks. Overall, we
present the first collision attack on the full RIPEMD-128 compression function as
well as the first distinguisher on the full RIPEMD-128 hash function. Experiments on
reduced number of rounds were conducted, confirming our reasoning and complexity
analysis. Our results show that 16-year-old RIPEMD-128, one of the last unbroken
primitives belonging to the MD-SHA family, might not be as secure as originally thought.

Keywords. RIPEMD-128, Collision, Distinguisher, Compression function,
Hash function.

1. Introduction

Hash functions are among the most important basic primitives in cryptography, used
in many applications such as digital signatures, message integrity check and message
authentication codes (MAC). Informally, a hash function H is a function that takes
an arbitrarily long message M as input and outputs a fixed-length hash value of size
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n bits. Classical security requirements are collision resistance and (second)-preimage
resistance. Namely, it should be impossible for an adversary to find a collision (two
distinct messages that lead to the same hash value) in less than 2"/ hash computa-
tions or a (second)-preimage (a message hashing to a given challenge) in less than 2"
hash computations. More complex security properties can be considered up to the point
where the hash function should be indistinguishable from a random oracle, thus pre-
senting no weakness whatsoever. Most standardized hash functions are based upon the
Merkle-Damgard paradigm [4, 19] and iterate a compression function # with fixed input
size to handle arbitrarily long messages. The compression function itself should ensure
equivalent security properties in order for the hash function to inherit from them.

Recent impressive progresses in cryptanalysis [26—29] led to the fall of most standard-
ized hash primitives, such as MD4, MD5, SHA-0 and SHA-1. All these algorithms share
the same design rationale for their compression function (i.e., they incorporate addi-
tions, rotations, XORs and boolean functions in an unbalanced Feistel network), and we
usually refer to them as the MD-SHA family. As of today, only SHA-2, RIPEMD-128
and RIPEMD-160 remain unbroken among this family, but the rapid improvements
in the attacks decided the NIST to organize a 4-year SHA-3 competition to design a
new hash function, eventually leading to the selection of Keccak [1]. This choice was
justified partly by the fact that Keccak was built upon a completely different design
rationale than the MD-SHA family. Yet, we cannot expect the industry to quickly move to
SHA-3 unless a real issue is identified in current hash primitives. Therefore, the SHA-3
competition monopolized most of the cryptanalysis power during the last four years and
it is now crucial to continue the study of the unbroken MD-SHA members.

The notation RIPEMD represents several distinct hash functions related to the MD-
SHA family, the first representative being RIPEMD-0 [2] that was recommended in
1992 by the European RACE Integrity Primitives Evaluation (RIPE) consortium. Its
compression function basically consists in two MD4-like [21] functions computed in
parallel (but with different constant additions for the two branches), with 48 steps in total.
Early cryptanalysis by Dobbertin on a reduced version of the compression function [7]
seemed to indicate that RIPEMD-0 was a weak function and this was fully confirmed
much later by Wang et al. [26] who showed that one can find a collision for the full
RIPEMD-0 hash function with as few as 2'® computations.

However, in 1996, due to the cryptanalysis advances on MD4 and on the compression
function of RIPEMD- 0, the original RIPEMD-0 was reinforced by Dobbertin, Bosse-
laers and Preneel [8] to create two stronger primitives RIPEMD-128 and RIPEMD-160,
with 128/160-bit output and 64/80 steps, respectively (two other less known 256 and
320-bit output variants RIPEMD-256 and RIPEMD-320 were also proposed, but with
a claimed security level equivalent to an ideal hash function with a twice smaller output
size). The main novelty compared to RIPEMD-O0 is that the two computation branches
were made much more distinct by using not only different constants, but also differ-
ent rotation values and boolean functions, which greatly hardens the attacker’s task
in finding good differential paths for both branches at a time. The security seems to
have indeed increased since as of today no attack is known on the full RIPEMD-128
or RIPEMD-160 compression/hash functions and the two primitives are worldwide
ISO/IEC standards [10].
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Even though no result is known on the full RIPEMD-128 and RIPEMD-160 com-
pression/hash functions yet, many analysis were conducted in the recent years. In [18],
a preliminary study checked to what extent the known attacks [26] on RIPEMD-0 can
apply to RIPEMD-128 and RIPEMD-160. Then, following the extensive work on
preimage attacks for MD-SHA family, [20,22,25] describe high complexity preimage
attacks on up to 36 steps of RIPEMD-128 and 31 steps of RIPEMD-160. Collision
attacks were considered in [16] for RIPEMD-128 and in [15] for RIPEMD-160, with
48 and 36 steps broken, respectively. Finally, distinguishers based on nonrandom prop-
erties such as second-order collisions are given in [15,16,23], reaching about 50 steps
with a very high complexity.

1.1. Our Contributions

In this article, we introduce a new type of differential path for RIPEMD-128 using one
nonlinear differential trail for both the left and right branches and, in contrary to previ-
ous works, not necessarily located in the early steps (Sect. 3). The important differential
complexity cost of these two parts is mostly avoided by using the freedom degrees in a
novel way: Some message words are used to handle the nonlinear parts in both branches
and the remaining ones are used to merge the internal states of the two branches (Sect. 4).
Overall, we obtain the first cryptanalysis of the full 64-round RIPEMD-128 hash and
compression functions. Namely, we provide a distinguisher based on a differential prop-
erty for both the full 64-round RIPEMD-128 compression function and hash function
(Sect. 5). Previously best-known results for nonrandomness properties only applied to 52
steps of the compression function and 48 steps of the hash function. More importantly, we
also derive a semi-free-start collision attack on the full RIPEMD-12 8 compression func-
tion (Sect. 5), significantly improving the previous free-start collision attack on 48 steps.
Any further improvement in our techniques is likely to provide a practical semi-free-start
collision attack on the RIPEMD-12 8 compression function. In order to increase the con-

Table 1. Summary of known and new results on RIPEMD-128 hash function.

Function Size Key Setting Target #Steps Complexity Ref.
RIPEMD-128 128 Comp. function Preimage 35 2112 [20]
RIPEMD-128 128 Hash function Preimage 35 2121 [20]
RIPEMD-128 128 Hash function Preimage 36 21265 [25]
RIPEMD-128 128 Comp. function Collision 48 240 [16]
RIPEMD-128 128 Comp. function Collision 607 257.57 new
RIPEMD-128 128 Comp. function Collision 637 259.91 new
RIPEMD-128 128 Comp. function Collision Full 261.57 new
RIPEMD-128 128 Hash function Collision 38 214 [16]
RIPEMD-128 128 Comp. function Nonrandomness 52 2107 [23]
RIPEMD-128 128 Comp. function Nonrandomness Full 259.57 new
RIPEMD-128 128 Hash function Nonrandomness 48 270 [16]
RIPEMD-128 128 Hash. function Nonrandomness Full 2105.40 new

For the attacks denoted with the sign T, the first step(s) are removed in order to create the step-reduced version
New results are highlighted in bold
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fidence in our reasoning, we implemented independently the two main parts of the attack
(the merge and the probabilistic part) and the observed complexity matched our predic-
tions. Our results and previous work complexities are given in Table 1 for comparison.

2. Description of RIPEMD-128

RIPEMD-128 [8] is a 128-bit hash function that uses the Merkle-Damgérd construc-
tion as domain extension algorithm: The hash function is built by iterating a 128-bit
compression function % that takes as input a 512-bit message block m; and a 128-bit
chaining variable cv;:

cvi41 = h(cv;, mj)

where the message m to hash is padded beforehand to a multiple of 512 bits' and the
first chaining variable is set to a predetermined initial value cvg = IV (defined by
four 32-bit words 0x67452301, 0xefcdab89, 0x98badcfe and 0x10325476
in hexadecimal notation).

We refer to [8] for a complete description of RIPEMD-12 8. In the rest of this article,
we denote by [Z]; the i-th bit of a word Z, starting the counting from 0. By least
significant bit we refer to bit 0, while by most significant bit we will refer to bit 31.
H and B represent the modular addition and subtraction on 32 bits, and &, V, A, the
bitwise “exclusive or”, the bitwise “or”, and the bitwise “and” function, respectively.

2.1. The RIPEMD-128 Compression Function

The RIPEMD-128 compression function is based on MD4, with the particularity that
it uses two parallel instances of it. We differentiate these two computation branches by
left and right branch and we denote by X; (resp. Y;) the 32-bit word of the left branch
(resp. right branch) that will be updated during step i of the compression function. The
process is composed of 64 steps divided into 4 rounds of 16 steps each in both branches.

2.1.1. Initialization
The 128-bit input chaining variable cv; is divided into 4 words /; of 32 bits each that

will be used to initialize the left and right branches 128-bit internal state:

Xa3=hy Xo=h X_1=hy Xo=h3
Ys3=hy Yo=h Y_1=hy Yy=hs.

2.1.2. The Message Expansion

The 512-bit input message block is divided into 16 words M; of 32 bits each. Every
word M; will be used once in every round in a permuted order (similarly to MD4) and

IThe padding is the same as for MD4: a “1" is first appended to the message, then x “0" bits (with
x =512 —(Jm|+ 1 + 64 (mod 512))) are added, and finally, the message length |m| encoded on 64 bits is
appended as well.
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Table 2. Word permutations for the message expansion in RIPEMD-128..

L T
(k " (k
round § 75 (k) 5 (k)
oJ1J2]3]a]s]6]7[8]9fro]ui]i2[1s14a]1s5][o]1[2]3[4[5]6]7[8]9[r0]11]12]13]14]15
0 of1]2]3]a[s[6]7]8]oro]1n]12]13]1af15][5 ta[7[o[o]2]11]a]13]6]15]8[1 [10]3]12
1 7af3]1]10]6 15[ 3 2] oo s ]2 frafri|8 611370135 [10]1a]15[s[12]alo]1]2
2 3l1of1alalofus|s 127 o6 |3[ui]s|r2][is]s]1|3]7]1al6]o]1i|s8]12]2]10]0]4a]13
3 1o f1ifwofo|s ]2l afus|s]7]isl1als|6]2][8]6|a1]a]ti]is|o]s5]12]2[13]9]|7]10]14
Table 3. Rotation constants in RIPEMD-128.
st ST itk
round j 1654k Itk
oJ1J2]s]a]s]6]7][s]9]roJtt]12]13]14]1s[[o[1[2]3[4a[5]6[7][8]9[1o[11]12]13]14]15
0 111415125 [8 [ 7o 1if13[1ais[6 [7]o 8 [[8[o[o]1n[13[is]1s]s[7]7]8[11]1a]14a]12]6
1 768 3l o]| 7 15| 7 2150 [ur| 7 13[12][ o |13]is] 7 ]12] 8| o fut|7]7]12]7]6 [15]13]11
2 11]13] 6| 7]1alof13]1s]1a] 8 [13] 6|5 [12] 7|5 o]7]is[11]8]6 |6 [1a[12]13]5 [1a]13]13] 7[5
3 11]12]14af15]1af15[ o[ 8o 1a[ 5|6 |8 |6 |5 [12][15]5 |8 ]11]1a][1a] 6 [14] 6] 0 12] 0 [12]5 [15]8

for both branches. We denote by Wil (resp. W) the 32-bit expanded message word that
will be used to update the left branch (resp. right branch) during step i. We have for
0<j<3and0 <k <15:

l —
W‘~16+k - M?T

j iy and Wige = Mara

1
J
where permutations nf. and JT/’. are given in Table 2.
2.1.3. The Step Function
At every step i, the registers X;1| and Y; 4 are updated with functions f]l. and f j’ that
depend on the round j in which i belongs:

Xiv1 = (Xi3 B (X, Xio1, X;_2) B W] B K=,

Yipr = (Vi3 BOG(Y;, Yior, Yi2) BW/ BK)H ™Y,

where K j., K J’ are 32-bit constants defined for every round j and every branch, sf, si’ are

rotation constants defined for every step i and every branch, ®',, &’ are 32-bit boolean
functions defined for every round j and every branch. All these constants and functions
are given in Tables 3 and 4.

2.1.4. The Finalization

A finalization and a feed-forward are applied when all 64 steps have been computed
in both branches. The four 32-bit words /; composing the output chaining variable are
finally obtained by:

h6=X63EE|Y62EE|h1 hll = Xep H Y Hhy
/2=X6153Y6453h3 g=X64EBY63Eﬂh0.
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Table 4. Boolean functions and round constants in RIPEMD-128, with XOR(x,y,z) := x ® y @ z,
IF(x,y,2) :==x Ay@®x Azand ONX(x,y,2) = (x Vy) D z.

Round j ol(x, y,2) @’ (x, v, 2) K! K’

0 XOR(x, y,2) IF(z,x,y) 0x00000000 0x50a28beb
1 IF(x,y,2) ONX(x, y, 2) 0x5a827999 0x5c4ddl24
2 ONX(x, Y, 2) IF(x,y,2) Ox6ed9ebal 0x6d703ef3
3 IF(z, x,y) XOR(x, y,2) 0x8flbbcdc 0x00000000

—==> —----==—---- > mm §mm- mmmmmmmm=m--- >
Non . ! Non .
. Linear 1 R Linear
Linear 0 Linear
CU; CUi41 CU; CUi41
A
Non I Non
. Linear (o] . Linear
Linear ! Linear
1
—==) mmmmm--—===- > Emm===- €==- === =--=-=- >

©) ® ®@ O 06

Fig. 1. Previous (left-hand side) and new (right-hand side) approach for collision search on double-branch
compression functions.

3. A New Family of Differential Paths for RIPEMD-128

3.1. The General Strategy

The first task for an attacker looking for collisions in some compression function is to
set a good differential path. In the case of RIPEMD and more generally double or multi-
branches compression functions, this can be quite a difficult task because the attacker has
to find a good path for all branches at the same time. This is exactly what multi-branches
functions designers are hoping: It is unlikely that good differential paths exist in both
branches at the same time when the branches are made distinct enough (note that the
main weakness of RIPEMD-0 is that both branches are almost identical and the same
differential path can be used for the two branches at the same time).

Differential paths in recent collision attacks on MD-SHA family are composed of two
parts: a low-probability nonlinear part in the first steps and a high probability linear part
in the remaining ones. Only the latter will be handled probabilistically and will impact
the overall complexity of the collision finding algorithm, since during the first steps
the attacker can choose message words independently. This strategy proved to be very
effective because it allows to find much better linear parts than before by relaxing many
constraints on them. The previous approaches for attacking RIPEMD-128 [16,18] are
based on the same strategy: building good linear paths for both branches, but without
including the first round (i.e., the first 16 steps). The first round in each branch will be
covered by a nonlinear differential path, and this is depicted left in Fig. 1. The collision
search is then composed of two subparts, the first handling the low-probability nonlinear
paths with the message blocks (Step (D) and then the remaining steps in both branches
are verified probabilistically (Step @).
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This differential path search strategy is natural when one handles the nonlinear parts
in a classic way (i.e., computing only forward) during the collision search, but in Sect. 4
we will describe a new approach for using the available freedom degrees provided by the
message words in double-branch compression functions (see right in Fig. 1): Instead of
handling the first rounds of both branches at the same time during the collision search,
we will attack them independently (Step (D), then use some remaining free message
words to merge the two branches (Step (@) and finally handle the remaining steps in
both branches probabilistically (Step 3)). This new approach broadens the search space
of good linear differential parts and eventually provides us better candidates in the case
of RIPEMD-128.

3.2. Finding a Good Linear Part

Since any active bitin a linear differential path (i.e., a bit containing a difference) is likely
to cause many conditions in order to control its spread, most successful collision searches
start with a low-weight linear differential path, therefore reducing the complexity as
much as possible. RIPEMD-128 is no exception, and because every message word
is used once in every round of every branch in RIPEMD-128, the best would be to
insert only a single-bit difference in one of them. This was considered in [16], but the
authors concluded that none of all single-word differences lead to a good choice and they
eventually had to utilize one active bit in two message words instead, therefore doubling
the amount of differences inserted during the compression function computation and
reducing the overall number of steps they could attack (this was also considered in [15]
for RIPEMD-160, but only 36 rounds could be reached for semi-free-start collision
attack). By relaxing the constraint that both nonlinear parts must necessarily be located
in the first round, we show that a single-word difference in M4 is actually a very good
choice.

3.2.1. Boolean Functions

Analyzing the various boolean functions in RIPEMD-128 rounds is very important.
Indeed, there are three distinct functions: XOR, ONX and IF, all with very distinct
behavior. The function IF is nonlinear and can absorb differences (one difference on
one of its input can be blocked from spreading to the output by setting some appropriate
bit conditions). In other words, one bit difference in the internal state during an IF
round can be forced to create only a single-bit difference 4 steps later, thus providing
no diffusion at all. On the other hand, XOR is arguably the most problematic function in
our situation because it cannot absorb any difference when only a single-bit difference
is present on its input. Thus, one bit difference in the internal state during an XOR round
will double the number of bit differences every step and quickly lead to an unmanageable
amount of conditions. Moreover, the linearity of the XOR function makes it problematic
to obtain a solution when using the nonlinear part search tool as it strongly leverages
nonlinear behavior. In between, the ONX function is nonlinear for two inputs and can
absorb differences up to some extent. We can easily conclude that the goal for the attacker
will be to locate the biggest proportion of differences in the IF or if needed in the ONX
functions, and try to avoid the XOR parts as much as possible.
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Fig. 2. Shape of our differential path for RIPEMD-128. The numbers are the message words inserted at each
step, and the red curves represent the rough amount differences in the internal state during each step. The
arrows show where the bit differences are injected with M4.

3.2.2. Choosing a Message Word

We would like to find the best choice for the single-message word difference insertion.
The XOR function located in the 4th round of the right branch must be avoided, so we are
looking for a message word that is incorporated either very early (so we can propagate
the difference backward) or very late (so we can propagate the difference forward) in
this round. Similarly, the XOR function located in the 1st round of the left branch must
be avoided, so we are looking for a message word that is incorporated either very early
(for a free-start collision attack) or very late (for a semi-free-start collision attack) in this
round as well. It is easy to check that M4 is a perfect candidate, being inserted last in
the 4th round of the right branch and second-to-last in the 1st round of the left branch.

3.2.3. Building the Linear Part

Once we chose that the only message difference will be a single bit in M4, we need to
build the whole linear part of the differential path inside the internal state. By linear we
mean that all modular additions will be modeled as a bitwise XOR function. Moreover,
if a difference is input of a boolean function, it is absorbed whenever possible in order
to remain as low weight as possible (yet, for a few special bit positions it might be
more interesting not to absorb the difference if it can erase another difference in later
steps). We give the rough skeleton of our differential path in Fig. 2. Both differences
inserted in the 4th round of the left and right branches are simply propagated forward for
a few steps, and we are very lucky that this linear propagation leads to two final internal
states whose difference can be mutually erased after application of the compression
function finalization and feed-forward (which is yet another argument in favor of M14).
All differences inserted in the 3rd and 2nd rounds of the left and right branches are
propagated linearly backward and will be later connected to the bit difference inserted
in the Ist round by the nonlinear part. Note that since a nonlinear part has usually a
low differential probability, we will try to make it as thin as possible. No difference
will be present in the input chaining variable, so the trail is well suited for a semi-
free-start collision attack. Following this method and reusing notations from [3] given in
Table 5, we eventually obtain the differential path depicted in Fig. 3, the “?" representing
unrestricted bits that will be constrained during the nonlinear parts search. We had to
choose the bit position for the message M4 difference insertion and among the 32
possible choices, the most significant bit was selected because it is the one maximizing
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Table 5. Notations used in [3] for a differential path: x represents a bit of the first message and x* stands for
the same bit of the second message.

(z,2*) | (0,0) (1,0) (0,1) (1,1) (z,2*) | (0,0) (1,0) (0,1) (1,1)
? v v oV v 3 v v - -
- v - - v 5 v - v -
b4 - v v - 7 v v v -
0 v - - - A - v - v
u - v - - B v v - v
n - - v - C - - v v
1 - - - v D v - v v
# - - - - E - v v v

the differential probability of the linear part we just built (this finds an explanation in
the fact that many conditions due to carry control in modular additions are avoided on
the most significant bit position).

3.3. The Nonlinear Differential Part Search Tool

Starting from Fig. 3, our goal is now to instantiate the unconstrained bits denoted by
“?” such that only inactive (07, “1” or “-") or active bits (“n”, “u” or “x”) remain
and such that the path does not contain any direct inconsistency. This is generally a very
complex task, but we implemented a tool similar to [3] for SHA-1 in order to perform
this task in an automated way. Since RIPEMD-128 also belongs to the MD-SHA family,
the original technique works well, in particular when used in a round with a nonlinear
boolean function such as IF.

We have to find a nonlinear part for the two branches and we remark that these two
tasks can be handled independently. We have included the special constraint that the
nonlinear parts should be as thin as possible (i.e., restricted to the smallest possible
number of steps), so as to later reduce the overall complexity (linear parts have higher

differential probability than nonlinear ones).

3.4. The Final Differential Path Skeleton

Applying our nonlinear part search tool to the trail given in Fig. 3, we obtain the differ-
ential path in Fig. 4, for which we provide at each step i the differential probability P'[i]
and P"[i] of the left and right branches, respectively. Also, we give for each step i the
accumulated probability P[i] starting from the last step, i.e., P[i] = sz'& P [j1-P'[j]).

One can check that the trail has differential probability 2789 (i.e., Hiﬁio Pl[i] =
2-8509) in the left branch and 274 (i.e., H?io P'[i] = 271%) in the right branch. Its
overall differential probability is thus 272390 and since we have 511 bits of message
with unspecified value (one bit of My is already set to “1”), plus 127 unrestricted bits
of chaining variable (one bit of Xo = Yy = h3 is already set to “0”), we expect many
solutions to exist (about 240791,
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Step X Wy m Yy W .

Fig. 3. Differential path for RIPEMD-128, before the nonlinear parts search. The notations are the same as
in [3] and are described in Table 5. The column nl.l (resp. ni’ ) contains the indices of the message words that

are inserted at each step i in the left branch (resp. right branch), which corresponds to né (k) (resp. JTJr- (k))
withi = 16 - j + k.

In order for the path to provide a collision, the bit difference in X¢; must erase the one
in Y4 during the finalization phase of the compression function: i, = X¢1 B Ye4 B h3.
Since the signs of these two bit differences are not specified, this happens with probability
2~1 and the overall probability to follow our differential path and to obtain a collision
for a randomly chosen input is 2723109,

4. Utilization of the Freedom Degrees

In the differential path from Fig. 4, the difference mask is already entirely set, but
almost all message bits and chaining variable bits have no constraint with regard to
their value. All these freedom degrees can be used to reduce the complexity of the
straightforward collision search (i.e., choosing random 512-bit message values) that
requires about 22310 RTPEMD-128 step computations. We will utilize these freedom
degrees in three phases:
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.09
-213.09
-206.09
-200.09

5.09

Fig. 4. Differential path for RIPEMD-128, after the nonlinear parts search. The notations are the same as
in [3] and are described in Table 5. The column nl.l (resp. ni’ ) contains the indices of the message words that

are inserted at each step i in the left branch (resp. right branch), which corresponds to né (k) (resp. njr. (k))

withi = 16 - j + k. The column Pl[i] (resp. P"[i]) represents the log, () differential probability of step i in
left (resp. right) branch. The column P[i] represents the cumulated probability (in log, ()) until step i for both

branches, i.e., P[i] = sz’&(w[ J1-PLjD).

o Phase 1: We first fix some internal state and message bits in order to prepare the attack.
This will allow us to handle in advance some conditions in the differential path as
well as facilitating the merging phase. This preparation phase is done once for all.

e Phase 2: We will fix iteratively the internal state words X1, X272, X273, X24 from the
left branch, and Yi1, Y12, Y13,Y14 from the right branch, as well as message words
Mir, M3, Mo, M1, Mg, M5, Mg, M13, M4, M11 and M7 (the ordering is important).
This will provide us a starting point for the merging phase. However, due to a lack
of freedom degrees, we will need to perform this phase several times in order to get
enough starting points to eventually find a solution for the entire differential path.

e Phase 3: We use the remaining unrestricted message words My, Mo, Ms, My and
M4 to efficiently merge the internal states of the left and right branches.

4.1. Phase 1: Preparation

Before starting to fix a lot of message and internal state bit values, we need to pre-
pare the differential path from Fig. 4 so that the merge phase can later be done effi-
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ciently and so that the probabilistic part will not be too costly. Understanding these
constraints requires a deep insight into the differences propagation and conditions
fulfillment inside the RIPEMD-128 step function. Therefore, the reader not inter-
ested in the details of the differential path construction is advised to skip this sub-
section.

The first constraint that we set is Y3 = Y4. The effect is that the IF function at step 4
of the right branch, IF (Y2, Y4, ¥Y3) = (Y2 AY3) D (72/\ Y4) = Y3 = Y4, will not depend
on Y, anymore. We will see in Sect. 4.3 that this constraint is crucial in order for the
merge to be performed efficiently.

The second constraint is X24 = X»5 (except the two bit positions of X24 and X»s that
contain differences), and the effect is that the IF function at step 26 of the left branch
(when computing X»7), TF(X26, X25, X24) = (X26 A X25)® (X26A X24) = X4 = X5,
will not depend on X, anymore. Before the final merging phase starts, we will not know
My, and having this X24 = X»s constraint will allow us to directly fix the conditions
located on X7 without knowing M (since X»¢ directly depends on My). Moreover,
we fix the 12 first bits of X»3 and Xo4 to “01000100u001" and “001000011110",
respectively, because we have checked experimentally that this choice is among the few
that minimizes the number of bits of My that needs to be set in order to verify many of
the conditions located on X»7.

The third constraint consists in setting the bits 18 to 30 of Y2 to “0000000000000".
The effect is that for these 13 bit positions, the ONX function at step 21 of the right branch
(when computing Y27), ONX(Y21, Y20, Y19) = (Y21 Vv Y20) @ Y19, will not depend on the
13 corresponding bits of Y1 anymore. Again, because we will not know M before the
merging phase starts, this constraint will allow us to directly fix the conditions on Y2»
without knowing M (since Y7 directly depends on Mj).

Finally, the last constraint that we enforce is that the first two bits of Y>; are set to
“10” and the first three bits of M4 are set to “011”. We have checked experimentally
that this particular choice of bit values reduces the spectrum of possible carries during
the addition of step 24 (when computing Y>5) and we obtain a probability improvement
from 27! to 2702 to reach “u” in Y»s.

We give in Fig. 5 our differential path after having set these constraints (we denote a
bit [X;]; with the constraint [X;]; = [X;—1]; by “"”). We observe that all the constraints
set in this subsection consume in total 32 + 51 + 13 4+ 5 = 101 bits of freedom degrees,
and a huge amount of solutions (about 230691y are gtill expected to exist.

4.2. Phase 2: Generating a Starting Point

Once the differential path is properly prepared in Phase 1, we would like to utilize
the huge amount of freedom degrees available to directly fulfill as many conditions as
possible. Our approach is to fix the value of the internal state in both the left and right
branches (they can be handled independently), exactly in the middle of the nonlinear
parts where the number of conditions is important. Then, we will fix the message words
one by one following a particular scheduling and propagating the bit values forward and
backward from the middle of the nonlinear parts in both branches.
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Step X; W . Y, W e,

Fig. 5. Differential path for RIPEMD-128, after the nonlinear parts search. The notations are the same as
in [3] and are described in Table 5. Moreover, we denote by " the constraint on a bit [X;]; such that

[Xi]lj = [Xi—1];. The column nil (resp. nir ) contains the indices of the message words that are inserted at
each step i in the left branch (resp. right branch), which corresponds to nj. (k) (resp. J’ (k)) withi = 16-j +k.

4.2.1. Fixing the Internal State

We chose to start by setting the values of X»1, X272, X273, X24 in the left branch, and
Y11, Y12, Y13, Y14 in the right branch, because they are located right in the middle of the
nonlinear parts. We take the first word X»; and randomly set all of its unrestricted “-"
bits to “0" or “1" and check if any direct inconsistency is created with this choice. If that
is the case, we simply pick another candidate until no direct inconsistency is deduced.
Otherwise, we can go to the next word X»>. If too many tries are failing for a particular
internal state word, we can backtrack and pick another choice for the previous word.
Finally, if no solution is found after a certain amount of time, we just restart the whole
process, so as to avoid being blocked in a particularly bad subspace with no solution.

4.2.2. Fixing the Message Words

Similarly to the internal state words, we randomly fix the value of message words M1,
M3, Mo, My, Mg, M5, Mg, M3, M4, M1 and M7 (following this particular ordering
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that facilitates the convergence toward a solution). The difference here is that the left
and right branches computations are no more independent since the message words
are used in both of them. However, this does not change anything to our algorithm
and the very same process is applied: For each new message word randomly fixed, we
compute forward and backward from the known internal state values and check for any
inconsistency, using backtracking and reset if needed.

Overall, finding one new solution for this entire Phase 2 takes about 5 minutes of
computation on a recent PC with a naive implementation?. However, when one starting
point is found, we can generate many for a very cheap cost by randomizing message
words My, M1 and M7 since the most difficult part is to fix the 8 first message words
of the schedule. For example, once a solution is found, one can directly generate 2!8
new starting points by randomizing a certain portion of M7 (because M7 has no impact
on the validity of the nonlinear part in the left branch, while in the right branch one has
only to ensure that the last 14 bits of Y are set to “u0000000000000") and this was
verified experimentally.

We give an example of such a starting point in Fig. 6, and we emphasize that by
“solution" or “starting point", we mean a differential path instance with exactly the
same probability profile as this one. The 3 constrained bit values in M4 are coming
from the preparation in Phase 1, and the 3 constrained bit values in Mg are necessary
conditions in order to fulfill step 26 when computing X»57. It is also important to remark
that whatever instance found during this second phase, the position of these 3 constrained
bit values will always be the same thanks to our preparation in Phase 1.

The probabilities displayed in Fig. 6 for early steps (steps 0 to 14) are not meaningful
here since they assume an attacker only computing forward, while in our case we will
compute backward from the nonlinear parts to the early steps. However, we can see that
the uncontrolled accumulated probability (i.e., Step 3 on the right side of Fig. 1) is now
improved to 272932 or 273932 if we add the extra condition for the collision to happen
at the end of the RIPEMD-128 compression function.

4.3. Phase 3: Merging the Left and Right Branches

At the end of the second phase, we have several starting points equivalent to the one
from Fig. 6, with many conditions already verified and an uncontrolled accumulated
probability of 273932, Our goal for this third phase is to use the remaining free message
words My, M>, Ms, Mg, M14 and make sure that both the left and right branches start
with the same chaining variable.

We recall that during the first phase we enforced that Y3 = Y4, and for the merge we
will require an extra constraint X 5>>>5 H My = Oxf£££££££ (this will later make X
to be linearly dependent on X4, X3 and X7). The message words M4 and My will be
utilized to fulfill this constraint, and message words My, M> and M5 will be used to
perform the merge of the two branches with only a few operations and with a success
probability of 2734,

20ur message words fixing approach is certainly not optimal, but this phase is not the bottleneck of our
attack and we preferred to aim for simplicity when possible. In case a very fast implementation is needed, a
more efficient but more complex strategy would be to find a bit per bit scheduling instead of a word-wise one.
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Fig. 6. Differential path for RIPEMD-128, after the second phase of the freedom degree utilization. The
notations are the same as in [3] and are described in Table 5. The column nil (resp. ﬂi’ ) contains the indices
of the message words that are inserted at each step i in the left branch (resp. right branch), which corresponds
to 7'[5 (k) (resp. J'rj’. (k)) with i = 16 - j + k. The column P[] (resp. P"'[i]) represents the log, () differential

probability of step i in left (resp. right) branch. The column P[i] represents the cumulated probability (in
j=i

log, () until step i for both branches, i.e., P[i] = H§:63 Prj1- Pl[j]).

4.3.1. Handling the Extra Constraint with M4 and Mo

First, let us deal with the constraint X 5>>>5 HM,; = Oxf££££ £ £ £, which can be rewritten
as Xs = (OxE£££££ £ EHM,)==>. Thus, we have X5~ ' B(Xs® X7 @ X6)BMBK] =
(OxfEEEEFEF H My)= by replacing Ms using the update formula of step 8 in the
left branch. Finally, isolating X¢ and replacing it using the update formula of step 9 in
the left branch, we obtain:

Mo = Xiz B (X5 B My B K} B (OxEELEEEEE B Ma) =) @ X
EBX7)EK(I)EI(X9@X8 ® X7). 0

All values on the right-hand side of this equation are known if M4 is fixed. Therefore,
so as to fulfill our extra constraint, what we could try is to simply pick a random value
for M14 and then directly deduce the value of My thanks to Eq.(1). However, one can
see in Fig. 6 that 3 bits are already fixed in My (the last one being the 10th bit of Mo)
and thus a valid solution would be found only with probability 273. In order to avoid
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this extra complexity factor, we will first randomly fix the first 24 bits of M4 and this
will allow us to directly deduce the first 10 bits of Mg. We thus check that our extra
constraint up to the 10th bit is fulfilled (because knowing the first 24 bits of M4 will
lead to the first 24 bits of X1, X10, X9, Xg and the first 10 bits of X7, which is exactly
what we need according to Eq.(1)). Once a solution is found after 23 tries on average,
we can randomize the remaining M4 unrestricted bits (the 8 most significant bits) and
eventually deduce the 22 most significant bits of My with Eq.(1). With this method,
we completely remove the extra 23 factor, because the cost is amortized by the final
randomization of the 8 most significant bits of M4.

4.3.2. Merging the Branches with My, M> and Ms

Once My and M4 are fixed, we still have message words My, M> and M5 to determine
for the merging. One can see that with only these three message words undetermined, all
internal state values except X2, X1, Xo, X—1, X—3, X3 and Yo, Y1, Yo, Y_1, Y_2, Y3
are fully known when computing backward from the nonlinear parts in each branch.

This is where our first constraint Y3 = Y4 comes into play. Indeed, when writing Y
from the equation in step 4 in the right branch, we have:

Vi =YZBBWAneA)BMyBK,=Y738Yy;8M 8K}

which means that Y| is already completely determined at this point (the bit condition
present in Y7 in Fig. 6 is actually handled for free when fixing M4 and My, since
it requires to know the 9 first bits of My). In other words, the constraint Y3 = Y4
implies that Y7 does not depend on Y, which is currently undetermined. Another effect
of this constraint can be seen when writing ¥ from the equation in step 5 in the right
branch:

Y=Y B (Y5 A Y@ YanT3)BM B K
=Y BWsAY)BMBK,=CoB M

where Cy = Y6>>>]5 B (Y5 A Y3) B K is a constant.
Our second constraint X5>>>5 B My = Ox££££££££ is useful when writing X and
X5 from the equations from step 4 and 5 in the left branch

X, = X8 B (X5 @ X4 © X3) BMs = € B Ms
X1 = X5>>>5 HXs0 X3P Xo)BMy =0xff£f£££££fH (X4 D X3 B X0)
=X4DX3D X, =X40 X380 (Ci BMs)

where C| = Xg»g H (X5 @ X4 @ X3) is a constant.

Finally, our ultimate goal for the merge is to ensure that X_3 = Y_3, X_» = Y_»,
X_1 = Y_jand Xo = Yy, knowing that all other internal states are determined when
computing backward from the nonlinear parts in each branch, except Y» = Co H M>,
X, =CiEMsand X1 = X4 ® X3 @ (C; B Ms). We therefore write the equations
relating these eight internal state words:
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Xo=X72BX:0X,0X)BM; =X7728X,8 M
=Yo=Y7""BWAi®@hAY)BMBK]
=B A ®©(CoB M) AY)BMyBK,
X=X;7PEXeXi@X)BM =X7PBEXi® X3 ® Xo) B M,
=Y 1 =Y BMAYo® Y AYy) BM;BK}
=Y B(CoBM) AXo® Y A Xo) BM; BK),
Xo=Xx"BX eXi0X_)BM,
=(C1BM)” "B X @ X3® (C1 BMs) ® Xo® X_1) BM,
=Y =Y B AY_ 1 ®YoAY_)BMyBK]
=(CoBM)™ B AX_1®XoAX_)BM4BK}
X3=X7"BXo® X1 & X_2) B M
= X340 X380 (C1BMs)™"B(Xo® X_1 ® X_2) B M
=Y 3=V BWAY ,®Y 1 AY ) BMsBK]
=Y B XoAX 2@ X1 AX_2)BMsBK]

If these four equations are verified, then we have merged the left and right branches
to the same input chaining variable. We first remark that X is already fully determined,
and thus, the second equation X_; = Y_; only depends on M>. Moreover, it is a T-
function in M3 (any bit i of the equation depends only on the i first bits of M>) and can
therefore be solved very efficiently bit per bit. We give in “Appendix 1” more details on
how to solve this T-function and our average cost in order to find one M> solution is one
RIPEMD-128 step computation.

Since X is already fully determined, from the M, solution previously obtained, we
directly deduce the value of M to satisfy the first equation Xy = Yy. From M, we can
compute the value of Y_; and we know that X_» = Y_; and we calculate X_3 from My
and X_,. At this point, the two first equations are fulfilled and we still have the value of
M5 to choose.

The third equation can be rewritten as y=>14 — (V& Cr)HC3, where V = X, =
(C1H M5s) and C3, C3 are two constants. Similarly, the fourth equation can be rewritten
as V11 = (V B C4) @ Cs, where C4 and Cs are two constants. Solving either of
these two equations with regard to V can be costly because of the rotations, so we
combine them to create a simpler one: ((V @ C,) B C3)=<3 = (V B C;) & Cs. This
equation is easier to handle because the rotation coefficient is small: we guess the 3 most
significant bits of ((V @ C3) B C3) and we solve simply the equation 3-bit layer per
3-bit layer, starting from the least significant bit. Once the value of V is deduced, we
straightforwardly obtain Ms = C1 B V and the cost of recovering M5 is equivalent to 8
RIPEMD-128 step computations (the 3-bit guess implies a factor of 8, but the resolution
can be implemented very efficiently with tables).

When all three message words M, M> and Ms have been fixed, the first, second and a
combination of the third and fourth equalities are necessarily verified. However, we have
a probability 2732 that both the third and fourth equations will be fulfilled. Moreover,
one can check in Fig. 6 that there is one bit condition on Xy = Y{ and one bit condition
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on Y,, and this further adds up a factor 272. We evaluate the whole process to cost
about 19 RIPEMD-128 step computations on average: There are 17 steps to compute
backward after having identified a proper couple M14, My, and the 8 RIPEMD-128 step
computations to obtain M5 are only done 1/4 of the time because the two bit conditions
on Y, and Xy = Y are filtered before.

To summarize the merging: We first compute a couple M4, Mo that satisfies a special
constraint, we find a value of M, that verifies X_; = Y_, then we directly deduce My
to fulfill Xg = Yy, and we finally obtain M5 to satisfy a combination of X_, = Y_»
and X_3 = Y_3. Overall, with only 19 RIPEMD-128 step computations on average,
we were able to do the merging of the two branches with probability 2734,

5. Results and Implementation

5.1. Complexity Analysis and Implementation

After the quite technical description of the attack in the previous section, we would
like to wrap everything up to get a clearer view of the attack complexity, the amount of
freedom degrees, etc. Given a starting point from Phase 2, the attacker can perform 226
merge processes (because 3 bits are already fixed in both M9 and M4, and the extra
constraint consumes 32 bits) and since one merge process succeeds only with probability
of 2734, he obtains a solution with probability 278, Since he needs 230-3% solutions from
the merge to have a good chance to verify the probabilistic part of the differential path,
a total of 23832 starting points will have to be generated and handled.

The attack starts at the end of Phase 1, with the path from Fig. 5. From here, he gen-
erates 23832 starting points in Phase 2, that is, 23832 differential paths like the one
from Fig. 6 (with the same step probabilities). In Phase 3, for each starting point,
he tries 22° times to find a solution for the merge with an average complexity of
19 RIPEMD-128 step computations per try. The semi-free-start collision final com-
plexity is thus 19 - 22643832 RTPEMD-128 step computations, which corresponds to
(19/128) - 26432 = 261.57 RTPEMD-128 compression function computations (there are
64 steps computations in each branch).

The merge process has been implemented, and we provide, in hexadecimal notation,
an example of a message and chaining variable pair that verifies the merge (i.e., they
follow the differential path from Fig. 4 until step 25 of the left branch and step 20 of the
right branch). The second member of the pair is simply obtained by adding a difference
on the most significant bit of M14.

ho = 0x133038b09
Mg = 0x4b6adf53
My = 0x34a56d47
Mg = 0x8162d2b0
M)y = 0x914dc223

h1 = 0xelc2cd59
M| = 0x1e69c794
Ms = 0x0634d566
My = 0x6632792a
M3 = 0x3bafc9de

hy = 0xd3160cld
M, = 0x0eafe77c
Mg = 0xb567790c
My = 0x52c7fbda
Mi4 = 0x5402b983

h3 = 0xd9b11816
M3 = 0x35a1b389
M7 = 0xa0324005
My = 0x16b9ce57
M15 = 0xe08£7842

We measured the efficiency of our implementation in order to compare it with our
theoretic complexity estimation. As point of reference, we observed that on the same
computer, an optimized implementation of RIPEMD-160 (OpenSSL v.1.0.1c) performs
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22144 compression function computations per second. With 4 rounds instead of 5 and
about 3/4 less operations per step, we extrapolated that RIPEMD-128 would perform
at 22217 compression function computations per second. Our implementation performs
22461 merge process (both Phase 2 and Phase 3) per second on average, which there-
fore corresponds to a semi-free-start collision final complexity of 2688 RTPEMD-128
compression function computations. While our practical results confirm our theoretical
estimations, we emphasize that there is a room for improvements since our attack imple-
mentation is not really optimized. As a side note, we also verified experimentally that
the probabilistic part in both the left and right branches can be fulfilled.

A last point needs to be checked: the complexity estimation for the generation of the
starting points. Indeed, as much as 23832 starting points are required at the end of Phase
2 and the algorithm being quite heuristic, it is hard to analyze precisely. The amount
of freedom degrees is not an issue since we already saw in Sect. 4.1 that about 2306-91
solutions are expected to exist for the differential path at the end of Phase 1. With our
implementation, a completely new starting point takes about 5 minutes to be outputted
on average, but from one such path we can directly generate 2'8 equivalent ones by
randomizing M. Using the OpenSSL implementation as reference, this amounts to 23972
RIPEMD-128 computations to generate all the starting points that we need in order to
find a semi-free-start collision. This rough estimation is extremely pessimistic since its
does not even take in account the fact that once a starting point is found, one can also
randomize M4 and M to find many other valid candidates with a few operations. Finally,
one may argue that with this method the starting points generated are not independent
enough (in backward direction when merging and/or in forward direction for verifying
probabilistically the linear part of the differential path). However, no such correlation
was detected during our experiments and previous attacks on similar hash functions [12,
14] showed that only a few rounds were enough to observe independence between bit
conditions. In addition, even if some correlations existed, since we are looking for many
solutions, the effect would be averaged among good and bad candidates.

5.2. Collision for the RIPEMD-128 Compression Function

We described in previous sections a semi-free-start collision attack for the full
RIPEMD-128 compression function with 267 computations. It is clear from Fig. 6
that we can remove the 4 last steps of our differential path in order to attack a 60-
step reduced variant of the RIPEMD-128 compression function. No difference will be
present in the internal state at the end of the computation, and we directly get a collision,
saving a factor 2% over the full RIPEMD-128 attack complexity.

We also give in “Appendix 2” a slightly different freedom degrees utilization when
attacking 63 steps of the RIPEMD-12 8 compression function (the first step being taken
out) that saves a factor 2!-%¢ over the collision attack complexity on the full primitive.

5.3. Distinguishers

The setting for the distinguisher is very simple. As nonrandom property, the attacker
will find one input m, such that H(m) & H(m & A;) = Ap. In other words, he will
find an input m such that with a fixed and predetermined difference A; applied on it, he
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observes another fixed and predetermined difference Ao on the output. This problem
is called the limited-birthday [9] because the fixed differences removes the ability of an
attacker to use a birthday-like algorithm when H is a random function. The best-known
algorithm to find such an input for a random function is to simply pick random inputs m
and check if the property is verified. This has a cost of 2!?8 computations for a 128-bit
output function.

Of course, considering the differential path we built in previous sections, in our case
we will use Ap = 0 and Ay is defined to contain no difference on the input chaining
variable, and only a difference on the most significant bit of M4. If we are able to
find a valid input with less than 2!?® computations for RIPEMD-128, we obtain a
distinguisher.

5.3.1. Distinguisher for the RIPEMD-128 Compression Function

A collision attack on the RIPEMD-128 compression function can already be consid-
ered a distinguisher. However, we remark that since the complexity gap between the
attack cost (2°1-37) and the generic case (2128 is very big, we can relax some of the
conditions in the differential path to reduce the distinguisher computational complex-
ity. Indeed, we can straightforwardly relax the collision condition on the compression
function finalization, as well as the condition in the last step of the left branch. Overall,
the distinguisher complexity is 2°°7, while the generic cost will be very slightly less
than 2!28 computations because only a small set of possible differences Ao can now be
reached on the output.

5.3.2. Distinguisher for the RIPEMD-128 Hash Function

There are two main distinctions between attacking the hash function and attacking the
compression function. Firstly, when attacking the hash function, the input chaining
variable is specified to be a fixed public IV. Secondly, a part of the message has to
contain the padding.

Since the chaining variable is fixed, we cannot apply our merging algorithm as in
Sect. 4. Instead, we utilize the available freedom degrees (the message words) to handle
only one of the two nonlinear parts, namely the one in the right branch because it is the
most complex. We use the same method as in Phase 2 in Sect. 4, and we very quickly
obtain a differential path such as the one in Fig. 7. One can remark that the six first
message words inserted in the right branch are free (M5, M4, M7, Mo, Mo and M>) and
we will fix them to merge the right branch to the predefined input chaining variable. The
entirety of the left branch will be verified probabilistically (with probability 2346%)
as well as the steps located after the nonlinear part in the right branch (from step 19
with probability 271%73). The bit condition on the IV can be handled by prepending a
random message, and the few conditions in the early steps when computing backward
are directly fulfilled when choosing M»> and My.

Overall, adding the extra condition to obtain a collision after the finalization of the
compression function, we end up with a complexity of 294 computations to get a
collision after the first message block. Once this collision is found, we add an extra
message block without difference to handle the padding and we obtain a collision for
the whole hash function. In the ideal case, generating a collision for a 128-bit output
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Fig. 7. Differential path for the full RIPEMD-128 hash function distinguisher. The notations are the same
as in [3] and are described in Table 5. The column rril (resp. nl.r ) contains the indices of the message words
that are inserted at each step i in the left branch (resp. right branch), which corresponds to n§ (k) (resp. n7 (k))
with i = 16 - j + k. The column Plli] (resp. P"[i]) represents the log, () differential probability of step i in
left (resp. right) branch. The column P[i] represents the cumulated probability (in log, ()) until step i for both

i

branches, i.e., P[i] = H§:63(P’ L1-PLjD.

hash function with a predetermined difference mask on the message input requires 23

computations, and we obtain a distinguisher for the full RIPEMD-128 hash function
with 21054 computations.

Since the first publication of our attack at the EUROCRYPT 2013 conference [13],
this distinguisher has been improved by Iwamoto et al. [11]. They remarked that one
can convert a semi-free-start collision attack on a compression function into a limited-
birthday distinguisher for the entire hash function. They use our semi-free-start collision
finding algorithm on RIPEMD-12 8 compression function, but they require to find about
2332 valid input pairs. As explained in Sect. 4.1, the amount of freedom degrees is
sufficient for this requirement to be fulfilled.

6. Conclusion

In this article, we proposed a new cryptanalysis technique for RIPEMD-128 that led
to a collision attack on the full compression function as well as a distinguisher for the
full hash function. We believe that our method still has room for improvements, and
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we expect a practical collision attack for the full RIPEMD-128 compression function
to be found during the coming years. While our results do not endanger the collision
resistance of the RIPEMD-128 hash function as a whole, we emphasize that semi-
free-start collision attacks are a strong warning sign which indicates that RIPEMD-128
might not be as secure as the community expected. Considering the history of the attacks
on the MD5 compression function [5,6], MD5 hash function [28] and then MD5-protected
certificates [24], we believe that another function than RIPEMD-128 should be used
for new security applications (we also remark that, considering nowadays computing
power, RIPEMD-128 output size is too small to provide sufficient security with regard
to collision attacks).

Aside from reducing the complexity of the collision attack on the RIPEMD-128
compression function, future works include applying our methods to RIPEMD-160
and other parallel branches-based functions. Since the first publication of our attacks at
the EUROCRYPT 2013 conference [13], our semi-free-start search technique has been
used by Mendel et al. [17] to attack the RIPEMD-160 compression function. So far,
this direction turned out to be less efficient then expected for this scheme, due to a much
stronger step function.

It would also be interesting to scrutinize whether there might be any way to use some
other freedom degrees techniques (neutral bits, message modifications, etc.) on top of
our merging process.
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Appendix 1: Solving the T-function X _; = Y _; During the Merging Phase
The equation X_; = Y_j can be written as
X7 P B (X4@ X3 @ Xo) BMy=Y7"" 8 ((Co B M) A Xo & Y1 A Xo) B M7 8K
which can in turn be transformed into

(CoB M) AXo@® Y1 AX0)=M2 BX77 8 (X4 @ X3 8 Xo) BY;" 8 M; B K]
(CoEBM)ANc®a)=MBb

where a, b and ¢ are known random values. Such an equation is a triangular function, or
T-function, in the sense that any bit i of the equation depends only on the i first bits of
M>, and it can be solved very efficiently. The algorithm to find a solution M> is simply
to fix the first bit of M3 and check if the equation is verified up to its first bit. Then, we go
to the second bit, and the total cost is 32 operations on average. In practice, a table-based
solver is much faster than really going bit per bit. Since the equation is parametrized
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by 3 random values a, b and ¢, we can build 24-bit precomputed tables and directly
solve byte per byte. On average, finding a solution for this equation only requires a few
operations, equivalent to a single RIPEMD-128 step computation.

Appendix 2: Collision Attack for 63-Step RIPEMD — 128 Compression Function

In the case of 63-step RIPEMD- 12 8 compression function (the first step being removed),
the merging process is easier to handle. Indeed, the constraint X 5>>>5 BMy=0xffffffff
is no longer required, and the attacker can directly use Mg for randomization. Therefore,
instead of 19 RIPEMD-12 8 step computations, one requires only 12 (there are 12 steps
to compute backward after having chosen a value for My). Moreover, the message Mg
being now free to use, with two more bit values prespecified one can remove an extra
condition in step 26 of the left branch when computing X57. This is depicted in Fig. 8.
Overall, the gain factor is about (19/12) - 2! = 2!-%6 and the collision attack requires
25991 RTPEMD-128 hash function computations.
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Fig. 8. Differential path for RIPEMD-12 8 reduced to 63 steps (the first step being removed), after the second
phase of the freedom degree utilization. The notations are the same as in [3] and are described in Table 5. The
column 7ril (resp. 7r]) contains the indices of the message words that are inserted at each step i in the left branch
(resp. right branch), which corresponds to 7r§ (k) (resp. JT; (k))withi = 16- j+k. The column P'[i] (resp. P"[i])
represents the log, () differential probability of step i in left (resp. right) branch. The column P[i] represents

26 ®Lj1-PLjD.

the cumulated probability (in log; ()) until step i for both branches, i.e., P[i] =
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The merging phase goal here is to have X_» = Y_», X_1 = Y_1, Xo = Yo and
X1 = Y; and without the constraint X5>>>5 HM, = 0xf£££££££, the value of X, must
now be written as

X, =X B (X5 @ X4 @ X3) BMs = C, B Ms.
without further simplification. The equations for the merging are:

X1 =X BX4®X30X)EMyi =X B (X4 X3 ® (C2 B Ms)) B My
=Y =Y"PBWAne A BMyBK,=Y""Br;8MBK]
Xo=X;7"8(X;® X2 X)) B M;
=X7PBEX: @ (C1BEMs) ® (X377 B (X4 @ X3 @ (C2 8 Ms)) B My)) B M3
=Yo=Y7"BW A o, AY))BMyBK]
=Y7"BWAY @ (CoB M) AY)) BMyB K}
X a=X7PEX e X & X)) BM, =X B X1 0 X3 @ Xo) B M
=Y =Y B0 AYy® Y AYy) BM; 8K
=Y B (CoB M) AXo® Y1 AXo) BM; B K}y
Xo=X""BX eXo®X_1)BM,
=(CBM)”HEX @ X3@ (C1EMs)®Xod X_1) B M
=Y =Y BWAY_ 1Yo AY ) B M BK]
= (CoBM)™ B 1 AX_1®XoAX_1)BM4BK]

The merging is then very simple: Y7 is already fully determined so the attacker directly
deduces M5 from the equation X| = Y;, which in turns allows him to deduce the value
of Xp. Using this information, he solves the T-function to deduce M, from the equation
X_1 = Y_1. He finally directly recovers My from equation Xy = Yy, and the last
equation X _» = Y_» is not controlled and thus only verified with probability 2732
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