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Abstract. We describe two different attacks against the ISO/IEC 9796-1 signature
standard for RSA and Rabin. Both attacks consist in an existential forgery under a
chosen-message attack: the attacker asks for the signature of some messages of his
choice, and is then able to produce the signature of a message that was never signed by
the legitimate signer. The first attack is a variant of Desmedt and Odlyzko’s attack and
requires a few hundreds of signatures. The second attack is more powerful and requires
only three signatures.
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1. Introduction

A digital signature of a message is a bit string obtained from a secret known only to the
signer, and the message being signed. Additionally, a digital signature must be verifiable
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by a third party without knowing the signer’s secret. To accomplish this, a signature
scheme is generally based on a public-key cryptosystem. A private and public key pair
is generated by the user, who publishes the public-key while the private-key remains
secret. The private key is used to generate a signature of a given message, and the public
key is used to verify the signature of a message.

The first realization of digital signatures was based on the RSA cryptosystem, in-
vented in 1977 by Rivest, Shamir and Adleman [13], which is by now the most widely
used public-key cryptosystem. In this scheme, the public key is a composite inte-
ger N and a public exponent e, and the secret key is a private exponent d such that
ed = 1 mod φ(N). To sign a message m, the signer first applies some encoding func-
tion μ that maps m into a number smaller than N , and then raises μ(m) to the private
exponent d modulo N . The signature is then s = μ(m)d mod N . The signature can be
verified by checking that se = μ(m) mod N , where e is the public exponent.

A signature scheme is said to be secure if it is infeasible to produce a valid signature
of a message without knowing the private key. This task should remain infeasible even
if the attacker can obtain the signature of any message of his choice. This security
notion was formalized by Goldwasser, Micali and Rivest in [5] and is called existential
unforgeability under an adaptive chosen message attack. It is the strongest security
notion for a signature scheme and it is now considered as the standard security notion
for signature schemes.

The ISO/IEC 9796-1 standard [8] was published in 1991 by ISO as the first inter-
national standard for digital signatures. It specifies some encoding function μ (among
other things). For many years, the standard was believed to be secure, as no attack better
than factoring the modulus N was known; see [7] for the rationale behind the design of
ISO/IEC 9796-1, and [12] for a survey on RSA-based digital signatures.

In this paper, we describe two different attacks against the ISO/IEC 9796-1 signature
standard. Each of the two attacks constitutes existential forgery under a chosen-message
attack: the attacker asks for the signature of some messages of his choice, and is then
able to produce the signature of a message that was never signed by the owner of the
private key. The first attack [1], designed by Coppersmith, Halevi and Jutla, appeared
as a research contribution to P1363. It is a variant of an attack, published at Crypto ’99
by Coron, Naccache and Stern [2], against a slightly modified variant of the ISO/IEC
9796-1 standard. These attacks are a variant of Desmedt and Odlyzko’s attack against
RSA and require a few hundred signatures. The second attack was published by Grieu at
Eurocrypt 2000 [6] and uses a different technique; it is more powerful as it requires only
three signatures. We describe both attacks in this paper because the first attack, albeit
less powerful, is more algebraic and easier to understand. Note that after the publication
of these attacks, the ISO/IEC 9796-1 standard was withdrawn.

2. RSA and Rabin Signature Schemes

2.1. The RSA Signature Scheme

In this section, we briefly recall the RSA signature scheme, based on the RSA cryptosys-
tem. The user generates two random primes p and q of approximately the same size, and
computes the modulus N = p ·q . He randomly picks an encryption exponent e ∈ Z

∗
φ(N)
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and computes the corresponding decryption exponent d such that e · d = 1 mod φ(N).
Alternatively, the user can select a small exponent e such as e = 3 or e = 216 + 1. The
public-key is then (N, e) and the private key is (N,d). The RSA signature scheme is
specified by an encoding function μ, which takes as input a message m and returns an
integer modulo N , denoted μ(m). Below we sometime call μ(m) “the redundant mes-
sage” (since μ would typically add some redundancy). The signature of a message m is
then

s = μ(m)d mod N.

The signature is verified by checking that

μ(m)
?= se mod N.

2.2. The Rabin Signature Scheme

The Rabin–Williams signature scheme (see [11]) is similar to RSA, but it uses a public
exponent e = 2; it is a variant of the Rabin signature scheme that enables deterministic
signing. As for RSA, it uses an encoding function μ(m), but with the additional property
that μ(m) = 6 mod 16 for all m.

Key generation: on input 1k , generate two k/2-bit primes p and q such that p =
3 mod 8 and q = 7 mod 8. The public key is N = p · q and the private key is
d = (N − p − q + 5)/8.

Signature generation: compute the Jacobi symbol J = (
μ(m)

N
). The signature of m is

then s = min(σ,N − σ), where

σ =
{

μ(m)d mod N if J = 1,

(μ(m)/2)d mod N otherwise.

Signature verification: compute ω = s2 mod N and check that

μ(m)
?=

⎧⎪⎨
⎪⎩

ω if ω = 6 mod 8,
2 · ω if ω = 3 mod 8,
N − ω if ω = 7 mod 8,
2 · (N − ω) if ω = 2 mod 8.

To prove the signature scheme’s soundness, we first recall some known facts about
Legendre and Jacobi symbols. The Legendre symbol relative to an odd prime p is de-
fined by

(
x

p

)
=

{1 if x �= 0 mod p and x is a square modulo p,
0 if x = 0 mod p,
−1 otherwise.

Lemma 1. Let p �= 2 be a prime. For any integer x,
(

x

p

)
= x

p−1
2 mod p.
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The Jacobi symbol relative to an odd integer n = ∏
p

ei

i is defined from Legendre
symbols as follows: (

x

n

)
=

∏(
x

pi

)ei

.

The Jacobi symbol can be computed without knowing the factorization of n; we refer
to [15] for a detailed study. The following lemma enables to show that signature verifi-
cation of Rabin–Williams signature scheme works. In particular, the fact that ( 2

N
) = −1

ensures that either μ(m) or μ(m)/2 has Jacobi symbol equal to 1.

Lemma 2. Let N be an RSA-modulus with p = 3 mod 8 and q = 7 mod 8. Then
( 2
N

) = −1 and (−1
N

) = 1. Let d = (N − p − q + 5)/8. Then for any integer x such that
( x
N

) = 1, we have that x2d = x mod N if x is a square modulo N , and x2d = −x mod N

otherwise.

3. Desmedt and Odlyzko’s Attack

This attack [3] applies to the RSA and Rabin signature schemes and provides an exis-
tential forgery against a chosen-message attack.

1. Select a bound y and let L = (p1, . . . , p�) be the list of primes smaller than y.
2. Find at least � + 1 messages mi such that each μ(mi) is the product of primes in

L.
3. Express one μ(mj ) as a multiplicative combination of the other μ(mi), by solving

a linear system given by the exponent vectors of the μ(mi) with respect to the
primes in L.

4. Ask for the signature of the mi for i �= j and forge the signature of mj .

The attack complexity depends on the length of L and on the difficulty of finding
at step 2 enough μ(mi) which are the product of primes in L. Generally, the attack
applies only if μ(m) is small; otherwise, the probability that μ(m) is the product of
small primes only is too small.

3.1. The Desmedt and Odlyzko Attack for RSA with Prime e

In the following, we describe the attack in more detail. First, we focus on RSA, that is
we have gcd(e,φ(N)) = 1, and assume that e is a prime integer. We let τ be the number
of messages mi obtained at step 2. We say that an integer is B-smooth if all its prime
factors are smaller than B . The integers μ(mi) obtained at step 2 are therefore y-smooth
and we can write for all messages mi , 1 ≤ i ≤ τ :

μ(mi) =
�∏

j=1

p
vi,j

j . (1)

Step 3 works as follows. To each μ(mi) we associate the �-dimensional vector of the
exponents modulo e:

V i = (vi,1 mod e, . . . , vi,� mod e).
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Since e is assumed to be prime, the set of all �-dimensional vectors modulo e form a
linear space of dimension �. Therefore, if τ ≥ � + 1, one can express one vector, say
V τ , as a linear combination of the others modulo e, using Gaussian elimination, which
gives for all 1 ≤ j ≤ �:

vτ,j = γj · e +
τ−1∑
i=1

βi · vi,j

for some γ1, . . . , γ� ∈ Z. Then using (1), one obtains

μ(mτ ) =
�∏

j=1

p
vτ,j

j =
�∏

j=1

p
γj ·e+∑τ−1

i=1 βi ·vi,j

j =
(

�∏
j=1

p
γj

j

)e

·
�∏

j=1

τ−1∏
i=1

p
vi,j ·βi

j , (2)

μ(mτ ) =
(

�∏
j=1

p
γj

j

)e

·
τ−1∏
i=1

(
�∏

j=1

p
vi,j

j

)βi

= δe ·
τ−1∏
i=1

μ(mi)
βi (3)

where we denote

δ =
�∏

j=1

p
γj

j . (4)

Therefore, we obtain that μ(mτ ) can be written as a multiplicative combination of the
other μ(mi). Then, at step 4, the attacker will ask for the signature of the τ − 1 first
messages mi and forge the signature of mτ using

μ(mτ )
d = δ ·

τ−1∏
i=1

(μ(mi)
d)βi mod N. (5)

The attack’s complexity depends on � and on the probability that the integers μ(mi) are
y-smooth. We define ψ(x, y) = #{v ≤ x, such that v is y-smooth}. It is known [4] that,
for large x, the ratio ψ(x, t

√
x)/x is equivalent to Dickman’s function defined by

ρ(t) =
{1 if 0 ≤ t ≤ 1,

ρ(n) − ∫ t

n
ρ(v−1)

v
dv if n ≤ t ≤ n + 1.

ρ(t) is thus an approximation of the probability that a u-bit number is 2u/t -smooth.
Table 1 gives the numerical value of ρ(t) (on a logarithmic scale) for 1 ≤ t ≤ 10.

In the following, we provide an asymptotic analysis of the algorithm’s complexity,
based on the assumption that the integers μ(m) are uniformly distributed between zero

Table 1. The value of Dickman’s function.

t 1 2 3 4 5 6 7 8 9 10

log2 ρ(t) 0 −1.7 −4.4 −7.7 −11.5 −15.6 −20.1 −24.9 −29.9 −35.1
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and some given bound x. Letting β be a constant and letting

y = Lx[β] = exp(β · √logx log logx)

one obtains [4] that, for large x, the probability that an integer uniformly distributed
between one and x is Lx[β]-smooth is

ψ(x, y)

x
= Lx

[
− 1

2β
+ o(1)

]
.

Therefore, we have to generate on average Lx[1/(2β) + o(1)] integers μ(m) before we
can find one which is y-smooth.

Using the ECM factorization algorithm [10], a prime factor p of an integer n can
be found in time Lp[√2 + o(1)]. A y-smooth integer can thus be factored in time
Ly[

√
2 + o(1)] = Lx[o(1)]. The complexity of finding a random integer in [0, x] which

is y-smooth using the ECM is thus Lx[1/(2β) + o(1)]. Moreover, the number τ of
integers which are necessary to find a vector which is a linear combination of the others
is � + 1 ≤ y. Therefore, one must solve a system with r = Lx[β + o(1)] equations in
r = Lx[β + o(1)] unknowns. Using Lanzos’ iterative algorithm [9], the time required
to solve such system is O(r2) and the space required is roughly O(r).

To summarize, the time required to obtain the Lx[β + o(1)] equations is asymptoti-
cally Lx[β + 1/(2β) + o(1)] and the system is solved in time Lx[2β + o(1)]. The total
complexity is minimal by taking β = 1/

√
2. We obtain time complexity

Lx[
√

2 + o(1)]
and space complexity

Lx

[√
2

2
+ o(1)

]
.

This complexity is sub-exponential in the size of the integers μ(m). Therefore, without
any modification, the attack will be practical only if μ(m) is small. In particular, when
μ(m) is about the same size as the modulus N , the complexity of the attack is no better
than factoring N .

3.2. Extension to any Exponent ≥ 3

When e is prime, the set of �-dimensional vectors modulo e is a �-dimensional linear
space; τ = � + 1 vectors are consequently sufficient to guarantee that (at least) one of
the vectors can be expressed as a linear combination of the others.

If we assume that e is the r-th power of a prime p, then τ = �+ 1 are again sufficient
to ensure that (at least) one vector can be expressed as a linear combination of the others.
Using the p-adic expansion of the vector coefficients and Gaussian elimination on �+1
vectors, one can write one of the vectors as a linear combination of the others.

Finally, in the general case, writing e = ∏ω
i=1 p

ri
i , then τ = 1 + ω · � vectors are

sufficient to guarantee that (at least) one vector is a linear combination of the others.
Namely, for each of the p

ri
i , using the previous argument one can find a set Ti of
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(ω − 1)� + 1 vectors, each of which can be expressed by Gaussian elimination as a
linear combination of � other vectors. Intersecting the Ti and using Chinese remainder-
ing, one gets that (at least) one vector must be a linear combination of the others modulo
e. We obtain the same asymptotic complexity as previously.

3.3. Extension to Rabin–Williams Signatures

Previously, we assumed that e is invertible modulo φ(n). This is no longer the case for
Rabin–Williams signatures, where e = 2. We modify the attack as follows:

For each message mi at step 2, we replace μ(mi) by μ(mi)/2 if (
μ(mi)

N
) = −1. The

attack continues without modification until (3), which gives

μ(mτ )
d = δ2d ·

τ−1∏
i=1

(μ(mi)
d)βi mod N. (6)

We distinguish two cases: if the integer δ given by (4) is such that ( δ
N

) = 1, then using
Lemma 2 we obtain that δ2d = ±δ mod N , which gives

μ(mτ )
d = ±δ ·

τ−1∏
i=1

(μ(mi)
d)βi mod N

instead of (5). This shows that, as previously, one can forge the signature of mτ using
the signatures of m1, . . . ,mτ−1.

Otherwise, if ( δ
N

) = −1, then we see from (6) that we can compute from the signa-
tures of the τ messages m1, . . . ,mτ the integer

u = δ2d mod N.

From Lemma 2 we have that u2 = δ2 mod N , which gives (u − δ)(u + δ) = 0 mod N .
Since u is a square, we have that ( u

N
) = 1; then since (−1

N
) = 1, we cannot have δ =

±u mod N . Therefore, gcd(u ± δ,N) must disclose the factorization of N .

3.4. Practical Experiments

We have implemented the previous attack, using Shoup’s NTL library [14]. Instead of
computing μ(mi) for some particular function μ, we have generated a sequence of ran-
dom integers xi uniformly distributed between zero and x = 2a , for various integers a.
Our goal was to express one xi as a multiplicative combination of the others modulo
some given RSA-modulus N , using the previous attack.

Let � be, as before, the number of primes in the list L, and let p� be the �-th prime.
We have that p� � � log�. Then, the probability that a random xi is p�-smooth can be
approximated by

α = ρ

(
a log 2

log(� log�)

)
. (7)

We have to generate on the average 1/α integers xi in order to find one that is p�-
smooth, and we need �+ 1 such p�-smooth integers. Therefore, we need to generate on
the average �/α integers xi .
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Table 2. Running time, observed (on a 733 MHz PC) and estimated, for various sizes of xi , with the log2
total number of xi to generate in order to find one that is a multiplicative combination of the others.

Size # primes � Running time log2 number of xi Estimated time Estimated log2 number of xi

48 bits 250 8 s 17 14 s 18
64 bits 700 9 min 21 15 min 22
80 bits 2000 5 hours 25 11 hours 25
96 bits 5000 — — 14 days 29

128 bits 20000 — — 22 years 35

Using the NTL library, we observed that the time required to perform brute-force
division by the first � primes on a given integer xi is linear in � · a; we obtained the
following running time tu per integer xi , on a 733 MHz PC, in seconds units:

tu(a, �) = 5 · 10−9 · � · a
so that we can estimate the total running time as a function of a and �, in seconds units:

t (a, �) = 5 · 10−9 · a · �2

ρ
( a log 2

log(� log�)

) . (8)

We chose the number of primes � so as to minimize the total running time. We found
that the matrix solving step took a negligible amount of time. The result of practical
experiments, and theoretical estimates based on (8) are summarized in Table 2. They
show that when the size of the xi is less than approximately 80 bits, the attack is feasible,
but for larger sizes (more than 128 bits) it quickly becomes impractical. Note however
that the attack’s first step (finding smooth integers) is fully parallelizable.

3.5. An Improved Attack

Let M be a message subset and let X be the set of corresponding encodings, that is
X = {μ(m) | m ∈ M}. Assume now that X can be written as

X = {u + v | u ∈ U, v ∈ V }
for two sets U and V ; this is trivially done for ISO/IEC 9796-1. Then one can derive a
much faster attack, as follows:

Improved attack for X = U + V

Input: sets U , V and X; the set L of the � first primes.
Output: a subset X′ of X such that all elements of X′ are p�-smooth.

1. Generate a table T [x] ← logx for all x ∈ X.
2. For each p ∈ L do

(a) Generate the following partition of V , with 0 ≤ i < p:

Vi = {v ∈ V | v mod p = i}.
(b) For each u ∈ U do
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(i) Let i = −u mod p

(ii) For each v ∈ Vi do
(A) Let x = u + v (at this point, x = 0 mod p)
(B) Let T [x] ← T [x] − logp.

3. Let θ be some constant threshold (for example, θ = 2). Then for each x ∈ X do:
(a) If T [x] ≤ θ , check that x is p�-smooth; in this case, let X′ ← X′ ∪ {x}.

4. Output X′.

We provide a heuristic analysis of the algorithm’s complexity. Our analysis is heuris-
tic because we assume that for each prime p ∈ L, the partition of V is balanced, that
is

|Vi | ≤ η · |V |
p

for all 0 ≤ i < p, for some constant η > 0.
As previously, let denote by a the maximum bit-size of the integers in X. When

generating the partition of V , each computation of v mod p takes O(a · log�) time,
so the complexity of step 2(a) for a given p is O(|V | · a · log�). For all p, the total
complexity is therefore O(� · |V | · a · log�).

The complexity of step 2(b)(ii) is O(a). Thanks to our balanced partition assumption,
the complexity of step 2(b)(ii) for a given p is therefore O(a · |V |/p). Using

�∑
i=1

1

p�

≤
�∑

i=1

1

�
= O(log�)

we obtain that for all p ∈ L and all u ∈ U , the total complexity of step 2(b)(ii) is O(|U | ·
a · |V | · log�). Similarly, the total complexity of step 2(b)(i) for all u ∈ V and p ∈ L is
O(|U | · � · a · log�). Therefore, the algorithm’s total complexity is

O
(
a · log� · (|X| + � · (|U | + |V |))).

Taking |U | = |V | = √|X| and assuming that � = O(
√|X|), we obtain a complexity of

O(a · |X| · log�).

As in the first attack, we need to generate on average �/α integers xi , so we must take
|X| = �/α, where α is given by (7). The attack’s complexity is therefore

t ′(a, �) = a · � · log�

ρ
( a log 2

log(� log �)

) ·O(1).

Note that compared to the previous attack, the �2 factor has been replaced by � · log�;
however the attack is memory bound as it requires O(|X|) memory (whereas the previ-
ous attack required only negligible memory).

As in the previous attack, we choose the number of primes � so as to minimize the
running time. In Table 3, we summarize the result of practical experiments; we find that
the new attack provides a significant improvement: for 96 bits, it takes 8 minutes instead
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Table 3. Running time observed (on a 2 GHz PC) for various sizes of xi , with the log2 total number of xi

necessary; |X| is the size of the sieving set.

Size # primes � Running time log2 |X| log2 number of xi

48 bits 400 0.3 s 17 17
64 bits 1500 4 s 21 21
80 bits 5000 45 s 25 25
96 bits 15000 8 min 28 28

128 bits 120000 81 hours 28 34

of an estimated 14 days; for 128 bits, it takes 81 hours instead of an estimated 22 years;
note that for 128 bits the number of required xi is 234; since we could not store an array
of 234 elements in memory, we performed repeated sieving with |X| = 228 only.

4. The ISO/IEC 9796-1 Signature Standard

The ISO/IEC 9796-1 standard [8] was published in 1991 by ISO as the first international
standard for digital signatures. It specifies (among other things) an encoding function
μISO for messages that are shorter than half the modulus size. The encoding function
μISO embeds the message m itself in the integer μ(m) (with some additional redun-
dancy). Thus it enjoys “message recovery”, which means that the message is recovered
when verifying the signature.

In the following, we restrict ourselves to moduli of size k = 16 · z + 1 bits and to
messages of size 8z bits, for some integer z. This allows for a simpler description of the
ISO/IEC 9796-1 standard. We denote by mi the i-th 4-bit nibble of m, for 0 ≤ i ≤ 2z−1.
In this case, the encoding function—denoted μISO—is defined as follows:

μISO(m) = s̄(m2z−1) s̃(m2z−2) m2z−1 m2z−2
s(m2z−3) s(m2z−4) m2z−3 m2z−4

...

s(m3) s(m2) m3 m2
s(m1) s(m0) m0 6

The permutation s(x) in defined as

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

s(x) E 3 5 8 9 4 2 F 0 D B 6 7 A C 1

s̃(x) denotes the nibble s(x) with the least significant bit flipped (i.e., s̃(x) = s(x) ⊕ 1),
and s̄(x) is the result of setting the most significant bit of s(x) to ‘1’, that is, s̄(x) =
1000 OR s(x).

5. Attack against Modified ISO/IEC 9796-1

First, we describe an attack against a slight variant of ISO/IEC 9796-1, in which the
encoding function is modified by one single bit. This attack was published at Crypto
’99 by Coron, Naccache and Stern [2].
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We consider a modified ISO/IEC 9796-1, in which the function s̃(x) which appears in
the definition of μ(m) is replaced by s(x). We obtain the following modified encoding:

μ′(m) = s̄(m2z−1) s(m2z−2) m2z−1 m2z−2
s(m2z−3) s(m2z−4) m2z−3 m2z−4

...

s(m3) s(m2) m3 m2
s(m1) s(m0) m0 6

We assume that the modulus size k is such that k = 1 mod 64 and let k = 64 · u + 1. We
consider a message m of size 32 · u = 8 · z bits, consisting in u times the same 32-bit
pattern:

m = a6 a5 a4 a3 a2 a1 6616
a6 a5 a4 a3 a2 a1 6616
...

a6 a5 a4 a3 a2 a1 6616

where a1, . . . , a6 are 4-bit nibbles. Its modified padding is given by

μ′(m) = s̄(a6) s(a5) a6 a5 s(a4) s(a3) a4 a3
s(a2) s(a1) a2 a1 216 216 616 616
...

s(a6) s(a5) a6 a5 s(a4) s(a3) a4 a3
s(a2) s(a1) a2 a1 216 216 616 616

We restrict the choice of a6 to the eight nibbles for which s = s̄, so that the structure of
μ′(mi) is fully periodic. This enables us to write μ′(m) as

μ′(m) = � · x (9)

where x is a 64-bit integer, a concatenation of the following nibbles:

x = s(a6) s(a5) a6 a5 s(a4) s(a3) a4 a3 s(a2) s(a1) a2 a1 226616

and the constant � is given by

� =
u−1∑
i=0

264·i .

The factorization given by (9) writes μ′(m) as the product of a constant � by some
small integer x. This enables us to apply Desmedt and Odlyzko’s attack described in
Sect. 3. The only modification consists in including the constant � in the list L of small
primes, so as to write

μ(mi) = � ·
�∏

j=1

p
vi,j

j mod N for 1 ≤ i ≤ τ.
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Then, to each μ(mi) we associate a � + 1-dimensional vector V i = (1, vi,1, . . . , vi,�),
instead of (vi,1, . . . , vi,�), and the attack carries out as described in Sect. 3.

We see in Table 2 that for 64-bit integers, the attack demands the generation of
approximately 222 integers, and takes only a few minutes on a single PC (running at
733 MHz). There are 223 possible values for x, so the attack against modified ISO/IEC
9796-1 is likely to work in practice. This is confirmed by experiments performed in [2],
in which an example of forgery is given using only 181 messages.

6. Attack against the Full ISO/IEC 9796-1

The actual encoding function that is used in the ISO/IEC 9796-1 standard is slightly
different than the function μ′ above. Namely, for these parameters, the difference be-
tween μ′(m) and μISO(m) is that the lowest bit in the second-most-significant nibble of
μISO(m) is flipped.

One can see that we cannot simply represent the encoding μISO(m) as a product
� · x with �,x as above. Hence the attack must be modified to apply to this encoding
function. The extension of the previous attack to the full ISO/IEC 9796-1 was done by
Coppersmith, Halevi and Jutla [1].

6.1. Modifying the Attack

The modified attack is similar to the attack described in the previous section, except that
it uses a slightly different structure for � and x. In the previous attack, the constant �

consisted of several ones that were separated by as many zeroes as there are bits in x. In
the modified attack, we again have a constant � which consists of a few ones separated
by many zeroes, but this time there are fewer separating zeroes.

We start with an example. Consider a 64-bit integer x, which is represented as four
16-bit words x = abcd (so a is the most-significant word of x, b is the second-most-
significant, etc.). Also, consider the 112-bit constant � = 1001001, where again each
digit represents a 16-bit word. Now consider what happens when we multiply � · x. We
have

� · x = a b c d

· 1 0 0 1 0 0 1

a b c d

a b c d

a b c d

a b c e b c e b c d

where e = a + d (assuming that no carry is generated in the addition a + d). Notice
that the 16-bit d appears only as the least-significant word of the result, and the 16-bit a

appears only as the most-significant word of the result. It is therefore possible to arrange
things so that the form of the words a, d be different than the form of the words b, c and
e, and this could match the different forms of the least- and most-significant words in
the encoded message μISO(m).

More precisely, we consider three types of 16-bit words. For a 16-bit word x, we say
that:
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– x is a valid low word if it has the form x = s(u) s(v) v 6, for some two nibbles
u,v.

– x is a valid middle word if it has the form x = s(u) s(v) u v, for some two nibbles
u,v.

– x is a valid high word if it has the form x = s̄(u) s̃(v) u v, for some two nibbles
u,v.

We note that there are exactly 256 valid low words, 256 valid middle words, and 256
valid high words (since in each case we can arbitrarily choose the nibbles u,v).

In the example above, we needed a to be a valid high word, d to be a valid low word,
b and c to be valid middle words, and we also needed e = a + d to be a valid middle
word. We note the following:

– There are 64 pairs x, y such that x is a valid high word, y is a valid low word, and
z = x + y is a valid middle word (this is what we needed for the example above).
We call such a pair (x, y) a high–low pair. The 64 high–low pairs are listed in
Appendix A.

– There are 84 pairs x, y such that x is a valid high word, y is a valid middle word,
and z = x + y is a valid middle word. We call such a pair (x, y) a high–mid pair.

– There are 150 pairs x, y such that x is a valid middle word, y is a valid low word,
and z = x + y is a valid middle word. We call such a pair (x, y) a mid–low pair.

– There are 468 pairs x, y such that x is a valid middle word, y is a valid middle
word, and z = x + y is also a valid middle word. We call such a pair (x, y) a
mid–mid pair.

We are now ready to present the attack. For clarity of presentation we start by presenting
the attack for the special cases where the modulus size is 1024 + 1 bits and 2048 + 1
bits. We later describe the general case.

6.2. Moduli of Size 1024 + 1 Bits

When the modulus size is k = 1025 bits, we need to encode the messages as 1024-bit
integers with the high bit set to one. The attack proceeds similarly to the above example:
we consider 64-bit integers x = abcd , where a is a valid high-word, d is a valid low-
word, and b, c and e = a + d are valid middle words. There are 64 choices for the
high–low pair (a, d) and 256 choices for each of b, c, so there are total of 222 integers
x of the right form. We then set

�1024 =
20∑
i=0

248i = 1 001 001 . . . 001 216︸ ︷︷ ︸
1 followed by 20 repetitions of 001 (base 216)

.

This gives us

M = �1024 · x = a bce bce . . . bce︸ ︷︷ ︸
20 repetitions

bcd

which is a valid encoding of some message M = μISO(m), because of the way in which
x was chosen. We can see that the attack applies more generally to moduli of size
48 · t + 65, for any integer t .
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With a 64-bit integer x, the attack’s complexity is the same as before. The only dif-
ference is that there are now 222 possible values for x instead of 223. In Appendix B,
we provide an example of a forgery using 273 messages.

6.3. Moduli of Size 2048 + 1 Bits

When the modulus size is k = 2049 bits, we need to encode messages as 2048-bit in-
tegers with the high bit set to one. Here we need to modify the attack a little bit, by
changing the length of x and the amount of “overlap” that is used in the product � · x.
Specifically, we can work with 128-bit integers x, with x = abcdefgh, where a is
a valid high-word, h is a valid low-word, and b, c, d, e, f, g and also i = a + g and
j = b + h are valid middle-words, as exemplified:

� · x = a b c d e f g h

· 1 0 0 0 0 0 1 0 0 0 0 0 1

a b c d e f g h

a b c d e f g h

a b c d e f g h

a b c d e f i j c d e f i j c d e f g h

This gives us 84 choices for the high–mid pair (a, g), 150 choices for the mid–low pair
(b,h) and 256 choices for each of c, d, e, f , so we have total of more than 245 choices
for x. We set

�2048 =
20∑
i=0

296i = 1 000001 . . . 000001︸ ︷︷ ︸
20 repetitions

216

and so we get

M = �2048 · x = ab cdef ij . . . cdef ij︸ ︷︷ ︸
20 repetitions

cdefgh

which is again a valid encoding.
We see in Table 2 that for a 128-bit integer x, we have to generate 235 integers x

(therefore the 245 possible choices for x are more than enough) and the attack’s esti-
mated running time is 22 years. Using the improved attack in Table 3, the running time
is only 81 hours.

6.4. The General Case

For a modulus whose size is 16z+1 bits (for an even z), we need to encode messages as
16z-bit integers, which means that the encodings should have z 16-bit words. We write
the integer z as z = α · m + β , where α,β,m are all integers with α,β ≥ 1 and m ≥ 2.
For reasons that will soon become clear, we try to get α + β as small as possible, while
making sure that α − β is at least 2 or 3.

The attack then works with integers x of α + β 16-bit words (which is why we want
to minimize α + β), and use the “overlap” of β words in the product � · x. If we denote



Cryptanalysis of ISO/IEC 9796-1 41

γ = α +β , then we have x = aγ . . . a1, where aγ is a valid high-word, a1 is a valid low-
word, and the other ai ’s are valid middle words (and we also need some of the sums to
be valid middle words). We then set

�16z =
m−1∑
i=0

216αi = 1 0 .. 0 1 0 .. 0 1 . . . 0 .. 0 1︸ ︷︷ ︸
m−1 repetitions of 0..01 (α−1 0’s followed by 1)

.

When we multiply �16z · x we get

�16z · x = aγ .. aα+1 aα .. aβ .. a1
. . . 0 1 0 .. 0 1 0 .. 0 1

aγ .. aα+1 aα .. aβ .. a1
aγ .. aα+1 aα .. aβ .. a1

. . . aβ .. a1

hence we also need the sums (aγ +aβ), . . . , (aα+2 +a2), (aα+1 +a1) to be valid middle
words.

If β = 1 (as in the case of 1025-bit moduli above), we have 64 choices for the high–
low pair (aγ , a1) and 256 choices for each of the other ai ’s, so we get total of 64 ·256α−1

choices for x.
If β ≥ 2 (as in the case of 2049-bit moduli above), we have 84 choices for the high–

mid pair (aγ , aβ), 150 choices for the mid–low pair (aα+1, a1), 468 choices for each of
the mid–mid pairs (aγ−1, aβ−1) . . . (aα+2, a2). Thus the total number of choices for x

is 84 · 150 · 468β−2 · 256α−β . (This is the reason for which we want α − β to be at least
2 or 3.) For the attack to be successful, we should set the parameters α,β so that there
are enough smooth x’s to guarantee the “homomorphic dependencies” that we need.

As another example for the general case, consider 768 + 1-bit moduli. We need to
encode the messages as 768-bit integers, or 768/16 = 48 words. We can write 48 =
5 · 9 + 3, so we have α = 5, β = 3. Hence we work with x’s of 5 + 3 = 8 words (128
bits) and use an overlap of 3 words. For this case we have 84 · 150 · 468 · 2562 > 238

choices for x. Using Table 2, we see that the attack has the same complexity as for the
(2048 + 1)-bit moduli.

6.5. Possible Extensions

The attack that we described above was intended to work against moduli of size 16z + 1
bits for an even integer z, but there are a few straightforward ways to extend the attack to
handle other moduli sizes. For example, for a modulus of size 16z-bits (with z even), we
should encode messages as integers with 16z−1 bits, which we can view as z-word inte-
gers with the highest bit set to zero and the second-highest bit set to one. To handle these
integers, we re-define a valid high-word as a 16-bit word of the form x = ŝ(u)s̃(v)uv,
for some two nibbles u,v, where ŝ(u) is the nibble s(u) with the highest bit set to zero
and the second-highest bit set to one. Although we did not check this, we suspect that
the modified definition of a valid high-word will not significantly change the number
of high–low and high–mid pairs, so the complexity of an attack against 16z-bit moduli
should be roughly the same as that of an attack against moduli of 16z + 1 bits.
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Another extension of the attack is to consider also the cases where there are some
carry bits between the nibbles in the computation of � · x. For example, for the case
of β ≥ 2 (see Sect. 6.4) we can have carry bits between the “overlap” words in the
multiplication without affecting the attack. We estimate that considering these carry
bits can increase the number of possible x’s by about a factor of 2β−1 (since we can
have x’s that cause any pattern of carry bits inside a string of length β nibbles).

Yet another plausible extension is to handle the case where not only the first and last
words of the encoding have different formats, but also one other word in the middle.
This is the case, for example, when we encode a message m of length less than half the
size of the modulus. In that case, the form of the highest word would be x = s̄(u)s(v)uv,
the form of the lowest word would be x = s̄(u)s(v)v6, and there would be one other
word somewhere in the middle of the form x = s(u)s̃(v)uv. In this case we may be able
to modify � a little, so that the spacing of the ones is not equal throughout the number.
For example, if we have x = abcd and � = 10010001, we get

� · x = a b c d

· 1 0 0 1 0 0 0 1

a b c d

a b c d

a b c d

a b c e b c d a b c d

Now notice that the word e only appears once in the middle, and so we can arrange it so
that it would have a different form than the other words. This technique can potentially
be used to find more forgeries, or to reduce the complexity of the attack against certain
moduli-lengths.

7. Second Attack against ISO/IEC 9796-1

7.1. Introduction

At Eurocrypt 2000, Grieu [6] presented a more efficient attack against ISO/IEC 9796-1.
The attack comprises of finding pairs of message (m,m′) such that

μ(m)

μ(m′)
= a

b

for some given small integers a, b. One obtains two such pairs of messages, (m1,m
′
1)

and (m2,m
′
2), and then using

μ(m1) · μ(m′
2) = μ(m′

1) · μ(m2)

it is possible to express the signature of m1 as a function of the signatures of the three
other messages.

We restrict the attack and the description of ISO/IEC 9796-1 to moduli of size k

where k mod 16 ∈ {0,±1,±2}, and to messages of size z = (k + 2)/16� bytes, the
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maximum allowed message size. (Note that the attacks described in Sects. 5 and 6 were
restricted to the case k ≡ 1 mod 16.)

With these restrictions, the construction of the redundant message μ(m) amounts to
the local transformation of each byte mi of the message m by an injection Fi , yielding
the redundant message

μ(m) = Fz(mz)‖Fz−1(mz−1)‖ ..‖F2(m2)‖F1(m1)

with the injections Fi transforming an individual byte mi of two 4 bit digits x ‖y as
defined by

F1(x ‖y) = s(x)‖ s(y)‖y ‖ [6]4,

Fi(x ‖y) = s(x)‖ s(y)‖x ‖y for 1 < i < z, (10)

Fz(x ‖y) = [1]1 ‖ [s(x)]k+2 mod 16 ‖ s(y) ⊕ 1‖x ‖y

where [w]i denotes the least significant i bits of w (so [w]i ≡ w mod 2i ), and s(x) is
the permutation defined in Sect. 4. As we said above, the attack consists of selecting
two small positive integers a, b and search for message pairs A, B that yield redundant
messages satisfying

μ(A)

μ(B)
= a

b
. (11)

7.2. Choosing the Ratio a/b

The encoding function μ imposes some restrictions on the ratio a/b that can be used
for this attack. First, we can restrict our choice of a, b to a < b, since the ratios a/b and
b/a correspond to the same message pairs (in reverse order). Similarly, we can restrict
ourselves to relatively prime a, b. Also, since μ(A) and μ(B) are strings of equal length
with the most significant bit set to one, we must have b < 2a. Next, we observe that (11)
can be written as

μ(B) · a = μ(A) · b,

and since the encoding μ dictates that μ(B) mod 16 = μ(A) mod 16 = 6, it follows that
we must have 6a ≡ 6b mod 16, or in other words a ≡ b mod 8. Finally, in the attack
below it will be convenient to assume that a ≥ 9. Thus, in the following we restrict our
choice of the ratio a/b to co-prime integers a, b with 9 ≤ a < b < 2a and a ≡ b mod 8.
Some examples of ratios a/b satisfying these requirements are 9/17, 11/19, and 13/21.

7.3. Making the Search Manageable

Consider a hypothetical message pair A, B satisfying (11). Since the fraction a/b is
chosen to be irreducible, then denoting W = gcd(μ(A),μ(B)) we have

μ(A) = a · W and μ(B) = b · W. (12)

We break up A, B into z bytes. We notice that our choice 9 ≤ a < b, in conjunction
with the restriction we put on k mod 16, implies W < 216z. Thus, we can similarly break
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up W into z 16-bit strings

A = az ‖ az−1 ‖ .. ‖ a2 ‖ a1 (ai < 28),

B = bz ‖ bz−1 ‖ .. ‖ b2 ‖ b1 (bi < 28),

W = wz ‖ wz−1 ‖ .. ‖ w2 ‖ w1 (wi < 216).

We break up each of the two multiplications appearing in (12) into z multiply and
add steps operating on each of the wi , performed from right to left, with z − 1 steps
generating an overflow to the next step, and a last step producing the remaining left
(k + 2 mod 16) + 13 bits. We define the overflows

ā0 = āz = 0, b̄0 = b̄z = 0,

āi = (awi + āi−1)/216�, b̄i = (bwi + b̄i−1)/216� for 1 ≤ i < z.
(13)

The notations above can be pictorially described as follows:

overflows: āz−1 āz−2 .. ā1 0 b̄z−1 b̄z−2 .. b̄1 0

wz wz−1 .. w2 w1 wz wz−1 .. w2 w1
× a × b

= Fz(az) Fz−1(az−1) .. F2(a2) F1(a1) = Fz(bz) Fz−1(bz−1) .. F2(b2) F1(b1)

Using these notations, we can transform (12) into the equivalent

Fi(ai) = awi + āi−1 mod 216, Fi(bi)bwi + b̄i−1 mod 216 for 1 ≤ i < z,

Fi(az) = awz + āz−1, Fz(bz)bwz + b̄z−1.
(14)

The search for message pairs A, B satisfying (11) is equivalent to the search of wi ,
ai , bi , āi , b̄i satisfying (13) and (14). This is z smaller problems, linked together by the
overflows āi , b̄i .

7.4. Reducing Overflows āi , b̄i to One Link li

Definition (13) of the overflows āi , b̄i implies, by induction

āi =
⌊

a[W ]16i

216i

⌋
and b̄i =

⌊
b[W ]16i

216i

⌋
for 1 ≤ i < z. (15)

Since 0 ≤ [W ]16i < 216i we have

0 ≤ āi < a and 0 ≤ b̄i < b. (16)

We also observe that āi/b̄i is roughly equal to the ratio a/b, more precisely (15)
implies successively

a
[W ]16i

216i
− 1 < āi ≤ a

[W ]16i

216i
and b

[W ]16i

216i
− 1 < b̄i ≤ b

[W ]16i

216i
,
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āi

a
≤ [W ]16i

216i
<

āi + 1

a
and

b̄i

b
≤ [W ]16i

216i
<

b̄i + 1

b
,

a
b̄i

b
− 1 < āi < a

b̄i + 1

b
and b

āi

a
− 1 < b̄i < b

āi + 1

a
,

so, as consequence of their definition, the āi , b̄i must satisfy

−a < ab̄i − bāi < b. (17)

For a given b̄i with 0 ≤ b̄i < b, one or two āi are solutions of (17): ab̄i/b�, and
ab̄i/b� + 1 if and only if ab̄i mod b > b − a.

It is handy to group āi , b̄i into a single link defined as

li = āi + b̄i + 1 with 1 ≤ li < a + b (18)

so we can rearrange (17) into

āi =
⌊

ali

a + b

⌋
and b̄i =

⌊
bli

a + b

⌋
. (19)

7.5. Turning the Problem into a Graph Traversal

For 1 ≤ i ≤ z, we define a set of triples Ti as

Ti = {(li ,wi, li−1) | ∃(ai, bi, āi , b̄i , āi−1, b̄i−1) satisfying (13), (14), (16), (18), (19)}.

We consider a layered graph, where the vertices in the i-th layer are all the elements of
Ti , and there is an edge between the two vertices (li ,w, li−1) ∈ Ti and (l′i−1,w

′, l′i−2) ∈
Ti−1 if and only if li−1 = l′i−1. Solving (11) is equivalent to finding a connected path
from an element of T1 to an element of Tz. If this can be achieved, a suitable W is
obtained by concatenating the wi in the path, and μ(A), μ(B) follow from (12).

7.6. Building and Traversing the Graph

The graph can be explored in either direction with about equal ease, we describe the
right to left procedure. Initially we start with the only link l0 = 1. At step i = 1 and
growing, for each of the link at the previous step, we vary bi in range [0, . . . ,28 − 1]
and directly compute

wi =
(

Fi(bi) −
⌊

bli−1

a + b

⌋)
b−1 mod 216. (20)

Using an inverted table of Fi we can determine in one lookup if there exist an ai such
that

Fi(ai) = awi +
⌊

ali−1

a + b

⌋
mod 216 (21)
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Fig. 1. Graph of solutions of (11) for k = 256 and a/b = 11/19.

and in that case we record the new triple (li ,wi, li−1) with the new link

li =
⌊

awi + ⌊ ali−1
a+b

⌋
216

⌋
+

⌊
bwi + ⌊ bli−1

a+b

⌋
216

⌋
+ 1. (22)

We repeat this process until a step has failed to produce any link, or we reach i = z

where we need to modify (20)–(22) by replacing the term 216 by 2(k+2 mod 16)+13, and
reject nodes where lz �= 1.

If we produce a link in the last step i = z, we can obtain a solution to (11) by back-
tracking any path followed, and the resulting graph covers all the solutions.

Exploration for the simplest ratio 9/17 stops on the first step, but 11/19 is more
fruitful. For example, for modulus size k = 256, and restricting to nodes belonging to a
solution, we can draw the graph in Fig. 1.

Using this graph to produce solutions to (11) is simple: message pairs are obtained
by choosing a path between terminal nodes, and collecting the message bytes ai (resp.
bi ) shown above (resp. below) the nodes1. For example, if we follow the bottom link,
the graph gives the messages:

A = 85f27d64ef64ef64ef64ef64ef152c07,

B = 14ba7bf39df39df39df39df39d6ad958

and the redundant messages:

μ(A) = 458515f2fa7d2964c1ef2964c1ef2964c1ef2964c1ef2964c1

ef3415572cef76,

μ(B) = 78146bbaf67b18f3da9d18f3da9d18f3da9d18f3da9d18f3da9

d2b6aadd94086

1 For the sake of convenience we have shown the bytes ai , bi of messages A, B instead of the triples
(li ,wi , li−1).
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with indeed μ(A)/μ(B) = 11/19.
By following the upper link, we can compute another message pair C,D with the

same ratio μ(C)/μ(D), as:

C = 85f27d64acf27d64acf27d64acf23c6d,

D = 14ba7bf3e3ba7bf3e3ba7bf3e3ba670e

which gives:

μ(C) = 458515f2fA7d2964b7ac15f2fA7d2964b7ac15f2fA7d2964b7ac

15f2873c2ad6,

μ(D) = 78146bbaf67b18f3c8e36bbaf67b18f3c8e36bbaf67b18f3c8e

36bba2f67ece6.

7.7. Existential Forgery from the Signature of Three Chosen Messages

By selecting a ratio a/b and finding two messages pairs A, B and C, D solutions of (11),
we can now construct four messages A, B , C, D as exemplified in the previous section
such that

μ(A) · μ(D) = μ(B) · μ(C). (23)

In the RSA case, this enables us to express the signature of A as a function of the other
signatures:

μ(A)d = μ(B)d · μ(C)d

μ(D)d
mod N.

In Rabin’s case, we must distinguish two cases. The first case is when we have:
(

μ(A)

N

)
=

(
μ(D)

N

)
= −

(
μ(B)

N

)
= −

(
μ(C)

N

)
.

We can assume without loss of generality that
(

μ(A)

N

)
=

(
μ(D)

N

)
= 1.

Then we can write

μ(A) · μ(D) = 22 · μ(B)

2
· μ(C)

2
mod N

and denoting by σA,σB,σC,σD the signatures of messages A,B,C,D, we obtain

σA · σD = 22d · σB · σC mod N.

Therefore, from the four signatures we obtain the value of 22d mod N . As explained in
Sect. 3.3, since ( 2

N
) = −1, this allows to recover the factorization of N . Note that this

can only happen if the ratio a/b is such that ( a
N

) = −( b
N

).
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Otherwise, one obtains the following relation between the four signatures:

σA · σD = σB · σC mod N

which enables to forge one signature knowing the three others.

7.8. Reducing the Number of Required Signatures for Small e

Assume that we can find two messages A, B , solution of

μ(A)

μ(B)
= ae

be
with a �= b (24)

for some known integers a, b. For the RSA case, we can then forge the signature of A

given the signature of B:

μ(A)d = a

b
· μ(B)d mod N.

For the Rabin case, we can either forge the signature of A given the signature of B if
( a
N

) = ( b
N

), or factor N given the two signatures if ( a
N

) = −( b
N

).
An example with e = 2 and k = 512 with the ratio 192/252 is the following message

pair:

A = ECE8F706C09CA276A3FC8F00803C821D90A3C03222C37DE26F5C3

FD37A886FE4,

B = CA969C94FA0B801DDEEA0C22932D80570F95A9C767D27FA8F06A56

E7371B16DF.

An example for e = 3 with k = 510 and ratio 493/573 is:

A = C6C058A3239EE6D5ED2C4D17588B02B884A30D92B5D414DDB4B5A6

DA58B6901B,

B = 20768B854644F693DB1508DE0124B4457CD7261DF699F422D9634

D5E4D5781A4.

8. Conclusion

We have shown two different attacks against the ISO/IEC 9796-1 signature standard.
The first attack is based on Desmedt and Odlyzko’s attack and produces a forgery with
a few hundred messages. The second attack is based on a graph traversal and constructs
two messages pairs whose expansion are in a common ratio; this allows to produce a
forgery from only three messages. After the publication of those attacks, the ISO/IEC
9796-1 standard has been withdrawn.
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Fig. A.1. High–low pairs (x, y) and their sum z = x + y.

Fig. B.1. A table of v[i] = ui,1ui,2ui,3ui,4ui,5ui,6ui,7ui,8.
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Fig. B.2. The exponents b[i] and g[i] from (B.1).

Appendix A. Useful Pairs for the Attack from Sect. 6

We provide in Fig. A.1 the list of high–low pairs (x, y) of 16-bit words, together with
their sum z = x + y. Recall that a high–low pair (x, y) is such that x is a valid high
word, y is a valid low word, and z = x + y is a valid middle word. All the constants in
the table are given in hexadecimal (base-16) representation.

Appendix B. A Concrete ISO/IEC 9796-1 Forgery Using the Attack from Sect. 6

The forgery is given for a 1025-bit modulus with e = 3. Let us denote the 112-bit con-
stant � = 1001001, where each digit represents a 16-bit word.

Step 1: For 1 ≤ i ≤ 273, we let xi = (aibicidi) be an integer such that

ai = s̄(ui,1)s̃(ui,2)ui,1ui,2,

bi = s(ui,3)s(ui,4)ui,3ui,4,
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ci = s(ui,5)s(ui,6)ui,5ui,6,

di = s(ui,7)s(ui,8)ui,8 6

where v[i] = ui,1ui,2ui,3ui,4ui,5ui,6ui,7ui,8 is given in Fig. B.1. We obtain Mi =
� · xi , which is a valid encoding for a message mi , such that Mi = μ(mi).

Step 2: Obtain the 272 signatures si = μISO(mi)
d mod N for 1 ≤ i ≤ 272.

Step 3: The signature of m273 is given by

μ(m273)
d = �−139

587∏
i=1

p
−g[i]
i

272∏
i=1

s
b[i]
i mod N, (B.1)

where pi is the i-th prime, and the b[i]’s and g[i]’s are given in Fig. B.2.
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