# Cryptanalysis of ISO/IEC 9796-1 

D. Coppersmith<br>IBM T.J. Watson Research Center, Yorktown Heights, NY, USA<br>J.S. Coron<br>University of Luxembourg, Luxembourg, Luxembourg<br>jean-sebastien.coron@uni.lu<br>F. Grieu<br>Spirtech, 1 rue Danton, 75006 Paris, France<br>francois.grieu@spirtech.com<br>S. Halevi and C. Jutla<br>IBM T.J. Watson Research Center, Hawthorne, NY, USA<br>shaih@us.ibm.com; csjutla@us.ibm.com<br>D. Naccache<br>Ecole normale supérieure, Paris, France<br>david.naccache@ens.fr<br>\section*{J.P. Stern}<br>Cryptolog International SAS, 16-18 rue Vulpian, 75013 Paris, France<br>julien@cryptolog.com<br>Communicated by Stefan Wolf<br>Received 2 February 2004 and revised 23 March 2007<br>Online publication 5 September 2007


#### Abstract

We describe two different attacks against the ISO/IEC 9796-1 signature standard for RSA and Rabin. Both attacks consist in an existential forgery under a chosen-message attack: the attacker asks for the signature of some messages of his choice, and is then able to produce the signature of a message that was never signed by the legitimate signer. The first attack is a variant of Desmedt and Odlyzko's attack and requires a few hundreds of signatures. The second attack is more powerful and requires only three signatures.


Key words. Cryptanalysis, ISO/IEC 9796-1 signature standard, RSA signatures, Rabin signatures, Encoding scheme

## 1. Introduction

A digital signature of a message is a bit string obtained from a secret known only to the signer, and the message being signed. Additionally, a digital signature must be verifiable
by a third party without knowing the signer's secret. To accomplish this, a signature scheme is generally based on a public-key cryptosystem. A private and public key pair is generated by the user, who publishes the public-key while the private-key remains secret. The private key is used to generate a signature of a given message, and the public key is used to verify the signature of a message.

The first realization of digital signatures was based on the RSA cryptosystem, invented in 1977 by Rivest, Shamir and Adleman [13], which is by now the most widely used public-key cryptosystem. In this scheme, the public key is a composite integer $N$ and a public exponent $e$, and the secret key is a private exponent $d$ such that $e d=1 \bmod \phi(N)$. To sign a message $m$, the signer first applies some encoding function $\mu$ that maps $m$ into a number smaller than $N$, and then raises $\mu(m)$ to the private exponent $d$ modulo $N$. The signature is then $s=\mu(m)^{d} \bmod N$. The signature can be verified by checking that $s^{e}=\mu(m) \bmod N$, where $e$ is the public exponent.

A signature scheme is said to be secure if it is infeasible to produce a valid signature of a message without knowing the private key. This task should remain infeasible even if the attacker can obtain the signature of any message of his choice. This security notion was formalized by Goldwasser, Micali and Rivest in [5] and is called existential unforgeability under an adaptive chosen message attack. It is the strongest security notion for a signature scheme and it is now considered as the standard security notion for signature schemes.

The ISO/IEC 9796-1 standard [8] was published in 1991 by ISO as the first international standard for digital signatures. It specifies some encoding function $\mu$ (among other things). For many years, the standard was believed to be secure, as no attack better than factoring the modulus $N$ was known; see [7] for the rationale behind the design of ISO/IEC 9796-1, and [12] for a survey on RSA-based digital signatures.

In this paper, we describe two different attacks against the ISO/IEC 9796-1 signature standard. Each of the two attacks constitutes existential forgery under a chosen-message attack: the attacker asks for the signature of some messages of his choice, and is then able to produce the signature of a message that was never signed by the owner of the private key. The first attack [1], designed by Coppersmith, Halevi and Jutla, appeared as a research contribution to P1363. It is a variant of an attack, published at Crypto '99 by Coron, Naccache and Stern [2], against a slightly modified variant of the ISO/IEC 9796-1 standard. These attacks are a variant of Desmedt and Odlyzko's attack against RSA and require a few hundred signatures. The second attack was published by Grieu at Eurocrypt 2000 [6] and uses a different technique; it is more powerful as it requires only three signatures. We describe both attacks in this paper because the first attack, albeit less powerful, is more algebraic and easier to understand. Note that after the publication of these attacks, the ISO/IEC 9796-1 standard was withdrawn.

## 2. RSA and Rabin Signature Schemes

### 2.1. The RSA Signature Scheme

In this section, we briefly recall the RSA signature scheme, based on the RSA cryptosystem. The user generates two random primes $p$ and $q$ of approximately the same size, and computes the modulus $N=p \cdot q$. He randomly picks an encryption exponent $e \in \mathbb{Z}_{\phi(N)}^{*}$
and computes the corresponding decryption exponent $d$ such that $e \cdot d=1 \bmod \phi(N)$. Alternatively, the user can select a small exponent $e$ such as $e=3$ or $e=2^{16}+1$. The public-key is then $(N, e)$ and the private key is $(N, d)$. The RSA signature scheme is specified by an encoding function $\mu$, which takes as input a message $m$ and returns an integer modulo $N$, denoted $\mu(m)$. Below we sometime call $\mu(m)$ "the redundant message" (since $\mu$ would typically add some redundancy). The signature of a message $m$ is then

$$
s=\mu(m)^{d} \bmod N
$$

The signature is verified by checking that

$$
\mu(m) \stackrel{?}{=} s^{e} \bmod N
$$

### 2.2. The Rabin Signature Scheme

The Rabin-Williams signature scheme (see [11]) is similar to RSA, but it uses a public exponent $e=2$; it is a variant of the Rabin signature scheme that enables deterministic signing. As for RSA, it uses an encoding function $\mu(m)$, but with the additional property that $\mu(m)=6 \bmod 16$ for all $m$.

Key generation: on input $1^{k}$, generate two $k / 2$-bit primes $p$ and $q$ such that $p=$ $3 \bmod 8$ and $q=7 \bmod 8$. The public key is $N=p \cdot q$ and the private key is $d=(N-p-q+5) / 8$.
Signature generation: compute the Jacobi symbol $J=\left(\frac{\mu(m)}{N}\right)$. The signature of $m$ is then $s=\min (\sigma, N-\sigma)$, where

$$
\sigma= \begin{cases}\mu(m)^{d} \bmod N & \text { if } J=1 \\ (\mu(m) / 2)^{d} \bmod N & \text { otherwise } .\end{cases}
$$

Signature verification: compute $\omega=s^{2} \bmod N$ and check that

$$
\mu(m) \stackrel{?}{\xlongequal{2}} \begin{cases}\omega & \text { if } \omega=6 \bmod 8 \\ 2 \cdot \omega & \text { if } \omega=3 \bmod 8 \\ N-\omega & \text { if } \omega=7 \bmod 8 \\ 2 \cdot(N-\omega) & \text { if } \omega=2 \bmod 8\end{cases}
$$

To prove the signature scheme's soundness, we first recall some known facts about Legendre and Jacobi symbols. The Legendre symbol relative to an odd prime $p$ is defined by

$$
\left(\frac{x}{p}\right)= \begin{cases}1 & \text { if } x \neq 0 \bmod p \text { and } x \text { is a square modulo } p \\ 0 & \text { if } x=0 \bmod p \\ -1 & \text { otherwise }\end{cases}
$$

Lemma 1. Let $p \neq 2$ be a prime. For any integer $x$,

$$
\left(\frac{x}{p}\right)=x^{\frac{p-1}{2}} \bmod p
$$

The Jacobi symbol relative to an odd integer $n=\prod p_{i}^{e_{i}}$ is defined from Legendre symbols as follows:

$$
\left(\frac{x}{n}\right)=\prod\left(\frac{x}{p_{i}}\right)^{e_{i}} .
$$

The Jacobi symbol can be computed without knowing the factorization of $n$; we refer to [15] for a detailed study. The following lemma enables to show that signature verification of Rabin-Williams signature scheme works. In particular, the fact that $\left(\frac{2}{N}\right)=-1$ ensures that either $\mu(m)$ or $\mu(m) / 2$ has Jacobi symbol equal to 1 .

Lemma 2. Let $N$ be an RSA-modulus with $p=3 \bmod 8$ and $q=7 \bmod 8$. Then $\left(\frac{2}{N}\right)=-1$ and $\left(\frac{-1}{N}\right)=1$. Let $d=(N-p-q+5) / 8$. Then for any integer $x$ such that $\left(\frac{x}{N}\right)=1$, we have that $x^{2 d}=x \bmod N$ if $x$ is a square modulo $N$, and $x^{2 d}=-x \bmod N$ otherwise.

## 3. Desmedt and Odlyzko's Attack

This attack [3] applies to the RSA and Rabin signature schemes and provides an existential forgery against a chosen-message attack.

1. Select a bound $y$ and let $L=\left(p_{1}, \ldots, p_{\ell}\right)$ be the list of primes smaller than $y$.
2. Find at least $\ell+1$ messages $m_{i}$ such that each $\mu\left(m_{i}\right)$ is the product of primes in $L$.
3. Express one $\mu\left(m_{j}\right)$ as a multiplicative combination of the other $\mu\left(m_{i}\right)$, by solving a linear system given by the exponent vectors of the $\mu\left(m_{i}\right)$ with respect to the primes in $L$.
4. Ask for the signature of the $m_{i}$ for $i \neq j$ and forge the signature of $m_{j}$.

The attack complexity depends on the length of $L$ and on the difficulty of finding at step 2 enough $\mu\left(m_{i}\right)$ which are the product of primes in $L$. Generally, the attack applies only if $\mu(m)$ is small; otherwise, the probability that $\mu(m)$ is the product of small primes only is too small.

### 3.1. The Desmedt and Odlyzko Attack for RSA with Prime e

In the following, we describe the attack in more detail. First, we focus on RSA, that is we have $\operatorname{gcd}(e, \phi(N))=1$, and assume that $e$ is a prime integer. We let $\tau$ be the number of messages $m_{i}$ obtained at step 2 . We say that an integer is $B$-smooth if all its prime factors are smaller than $B$. The integers $\mu\left(m_{i}\right)$ obtained at step 2 are therefore $y$-smooth and we can write for all messages $m_{i}, 1 \leq i \leq \tau$ :

$$
\begin{equation*}
\mu\left(m_{i}\right)=\prod_{j=1}^{\ell} p_{j}^{v_{i, j}} \tag{1}
\end{equation*}
$$

Step 3 works as follows. To each $\mu\left(m_{i}\right)$ we associate the $\ell$-dimensional vector of the exponents modulo $e$ :

$$
\boldsymbol{V}_{i}=\left(v_{i, 1} \bmod e, \ldots, v_{i, \ell} \bmod e\right)
$$

Since $e$ is assumed to be prime, the set of all $\ell$-dimensional vectors modulo $e$ form a linear space of dimension $\ell$. Therefore, if $\tau \geq \ell+1$, one can express one vector, say $\boldsymbol{V}_{\tau}$, as a linear combination of the others modulo $e$, using Gaussian elimination, which gives for all $1 \leq j \leq \ell$ :

$$
v_{\tau, j}=\gamma_{j} \cdot e+\sum_{i=1}^{\tau-1} \beta_{i} \cdot v_{i, j}
$$

for some $\gamma_{1}, \ldots, \gamma_{\ell} \in \mathbb{Z}$. Then using (1), one obtains

$$
\begin{align*}
& \mu\left(m_{\tau}\right)=\prod_{j=1}^{\ell} p_{j}^{v_{\tau, j}}=\prod_{j=1}^{\ell} p_{j}^{\gamma_{j} \cdot e+\sum_{i=1}^{\tau-1} \beta_{i} \cdot v_{i, j}=\left(\prod_{j=1}^{\ell} p_{j}^{\gamma_{j}}\right)^{e} \cdot \prod_{j=1}^{\ell} \prod_{i=1}^{\tau-1} p_{j}^{v_{i, j} \cdot \beta_{i}},}  \tag{2}\\
& \mu\left(m_{\tau}\right)=\left(\prod_{j=1}^{\ell} p_{j}^{\gamma_{j}}\right)^{e} \cdot \prod_{i=1}^{\tau-1}\left(\prod_{j=1}^{\ell} p_{j}^{v_{i, j}}\right)^{\beta_{i}}=\delta^{e} \cdot \prod_{i=1}^{\tau-1} \mu\left(m_{i}\right)^{\beta_{i}} \tag{3}
\end{align*}
$$

where we denote

$$
\begin{equation*}
\delta=\prod_{j=1}^{\ell} p_{j}^{\gamma_{j}} . \tag{4}
\end{equation*}
$$

Therefore, we obtain that $\mu\left(m_{\tau}\right)$ can be written as a multiplicative combination of the other $\mu\left(m_{i}\right)$. Then, at step 4 , the attacker will ask for the signature of the $\tau-1$ first messages $m_{i}$ and forge the signature of $m_{\tau}$ using

$$
\begin{equation*}
\mu\left(m_{\tau}\right)^{d}=\delta \cdot \prod_{i=1}^{\tau-1}\left(\mu\left(m_{i}\right)^{d}\right)^{\beta_{i}} \bmod N \tag{5}
\end{equation*}
$$

The attack's complexity depends on $\ell$ and on the probability that the integers $\mu\left(m_{i}\right)$ are $y$-smooth. We define $\psi(x, y)=\#\{v \leq x$, such that $v$ is $y$-smooth $\}$. It is known [4] that, for large $x$, the ratio $\psi(x, \sqrt[t]{x}) / x$ is equivalent to Dickman's function defined by

$$
\rho(t)= \begin{cases}1 & \text { if } 0 \leq t \leq 1 \\ \rho(n)-\int_{n}^{t} \frac{\rho(v-1)}{v} d v & \text { if } n \leq t \leq n+1\end{cases}
$$

$\rho(t)$ is thus an approximation of the probability that a $u$-bit number is $2^{u / t}$-smooth. Table 1 gives the numerical value of $\rho(t)$ (on a logarithmic scale) for $1 \leq t \leq 10$.

In the following, we provide an asymptotic analysis of the algorithm's complexity, based on the assumption that the integers $\mu(m)$ are uniformly distributed between zero

Table 1. The value of Dickman's function.

| $t$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\log _{2} \rho(t)$ | 0 | -1.7 | -4.4 | -7.7 | -11.5 | -15.6 | -20.1 | -24.9 | -29.9 | -35.1 |

and some given bound $x$. Letting $\beta$ be a constant and letting

$$
y=L_{x}[\beta]=\exp (\beta \cdot \sqrt{\log x \log \log x})
$$

one obtains [4] that, for large $x$, the probability that an integer uniformly distributed between one and $x$ is $L_{x}[\beta]$-smooth is

$$
\frac{\psi(x, y)}{x}=L_{x}\left[-\frac{1}{2 \beta}+o(1)\right] .
$$

Therefore, we have to generate on average $L_{x}[1 /(2 \beta)+o(1)]$ integers $\mu(m)$ before we can find one which is $y$-smooth.

Using the ECM factorization algorithm [10], a prime factor $p$ of an integer $n$ can be found in time $L_{p}[\sqrt{2}+o(1)]$. A $y$-smooth integer can thus be factored in time $L_{y}[\sqrt{2}+o(1)]=L_{x}[o(1)]$. The complexity of finding a random integer in $[0, x]$ which is $y$-smooth using the ECM is thus $L_{x}[1 /(2 \beta)+o(1)]$. Moreover, the number $\tau$ of integers which are necessary to find a vector which is a linear combination of the others is $\ell+1 \leq y$. Therefore, one must solve a system with $r=L_{x}[\beta+o(1)]$ equations in $r=L_{x}[\beta+o(1)]$ unknowns. Using Lanzos’ iterative algorithm [9], the time required to solve such system is $\mathcal{O}\left(r^{2}\right)$ and the space required is roughly $\mathcal{O}(r)$.

To summarize, the time required to obtain the $L_{x}[\beta+o(1)]$ equations is asymptotically $L_{x}[\beta+1 /(2 \beta)+o(1)]$ and the system is solved in time $L_{x}[2 \beta+o(1)]$. The total complexity is minimal by taking $\beta=1 / \sqrt{2}$. We obtain time complexity

$$
L_{x}[\sqrt{2}+o(1)]
$$

and space complexity

$$
L_{x}\left[\frac{\sqrt{2}}{2}+o(1)\right]
$$

This complexity is sub-exponential in the size of the integers $\mu(m)$. Therefore, without any modification, the attack will be practical only if $\mu(m)$ is small. In particular, when $\mu(m)$ is about the same size as the modulus $N$, the complexity of the attack is no better than factoring $N$.

### 3.2. Extension to any Exponent $\geq 3$

When $e$ is prime, the set of $\ell$-dimensional vectors modulo $e$ is a $\ell$-dimensional linear space; $\tau=\ell+1$ vectors are consequently sufficient to guarantee that (at least) one of the vectors can be expressed as a linear combination of the others.

If we assume that $e$ is the $r$-th power of a prime $p$, then $\tau=\ell+1$ are again sufficient to ensure that (at least) one vector can be expressed as a linear combination of the others. Using the $p$-adic expansion of the vector coefficients and Gaussian elimination on $\ell+1$ vectors, one can write one of the vectors as a linear combination of the others.

Finally, in the general case, writing $e=\prod_{i=1}^{\omega} p_{i}^{r_{i}}$, then $\tau=1+\omega \cdot \ell$ vectors are sufficient to guarantee that (at least) one vector is a linear combination of the others. Namely, for each of the $p_{i}^{r_{i}}$, using the previous argument one can find a set $T_{i}$ of
( $\omega-1$ ) $\ell+1$ vectors, each of which can be expressed by Gaussian elimination as a linear combination of $\ell$ other vectors. Intersecting the $T_{i}$ and using Chinese remaindering, one gets that (at least) one vector must be a linear combination of the others modulo $e$. We obtain the same asymptotic complexity as previously.

### 3.3. Extension to Rabin-Williams Signatures

Previously, we assumed that $e$ is invertible modulo $\phi(n)$. This is no longer the case for Rabin-Williams signatures, where $e=2$. We modify the attack as follows:

For each message $m_{i}$ at step 2 , we replace $\mu\left(m_{i}\right)$ by $\mu\left(m_{i}\right) / 2$ if $\left(\frac{\mu\left(m_{i}\right)}{N}\right)=-1$. The attack continues without modification until (3), which gives

$$
\begin{equation*}
\mu\left(m_{\tau}\right)^{d}=\delta^{2 d} \cdot \prod_{i=1}^{\tau-1}\left(\mu\left(m_{i}\right)^{d}\right)^{\beta_{i}} \bmod N \tag{6}
\end{equation*}
$$

We distinguish two cases: if the integer $\delta$ given by (4) is such that $\left(\frac{\delta}{N}\right)=1$, then using Lemma 2 we obtain that $\delta^{2 d}= \pm \delta \bmod N$, which gives

$$
\mu\left(m_{\tau}\right)^{d}= \pm \delta \cdot \prod_{i=1}^{\tau-1}\left(\mu\left(m_{i}\right)^{d}\right)^{\beta_{i}} \bmod N
$$

instead of (5). This shows that, as previously, one can forge the signature of $m_{\tau}$ using the signatures of $m_{1}, \ldots, m_{\tau-1}$.

Otherwise, if $\left(\frac{\delta}{N}\right)=-1$, then we see from (6) that we can compute from the signatures of the $\tau$ messages $m_{1}, \ldots, m_{\tau}$ the integer

$$
u=\delta^{2 d} \bmod N
$$

From Lemma 2 we have that $u^{2}=\delta^{2} \bmod N$, which gives $(u-\delta)(u+\delta)=0 \bmod N$. Since $u$ is a square, we have that $\left(\frac{u}{N}\right)=1$; then since $\left(\frac{-1}{N}\right)=1$, we cannot have $\delta=$ $\pm u \bmod N$. Therefore, $\operatorname{gcd}(u \pm \delta, N)$ must disclose the factorization of $N$.

### 3.4. Practical Experiments

We have implemented the previous attack, using Shoup's NTL library [14]. Instead of computing $\mu\left(m_{i}\right)$ for some particular function $\mu$, we have generated a sequence of random integers $x_{i}$ uniformly distributed between zero and $x=2^{a}$, for various integers $a$. Our goal was to express one $x_{i}$ as a multiplicative combination of the others modulo some given RSA-modulus $N$, using the previous attack.

Let $\ell$ be, as before, the number of primes in the list $L$, and let $p_{\ell}$ be the $\ell$-th prime. We have that $p_{\ell} \simeq \ell \log \ell$. Then, the probability that a random $x_{i}$ is $p_{\ell}$-smooth can be approximated by

$$
\begin{equation*}
\alpha=\rho\left(\frac{a \log 2}{\log (\ell \log \ell)}\right) . \tag{7}
\end{equation*}
$$

We have to generate on the average $1 / \alpha$ integers $x_{i}$ in order to find one that is $p_{\ell^{-}}$ smooth, and we need $\ell+1$ such $p_{\ell}$-smooth integers. Therefore, we need to generate on the average $\ell / \alpha$ integers $x_{i}$.

Table 2. Running time, observed (on a 733 MHz PC ) and estimated, for various sizes of $x_{i}$, with the $\log _{2}$ total number of $x_{i}$ to generate in order to find one that is a multiplicative combination of the others.

| Size | \# primes $\ell$ | Running time | $\log _{2}$ number of $x_{i}$ | Estimated time | Estimated $\log _{2}$ number of $x_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 48 bits | 250 | 8 s | 17 | 14 s | 18 |
| 64 bits | 700 | 9 min | 21 | 15 min | 22 |
| 80 bits | 2000 | 5 hours | 25 | 11 hours | 25 |
| 96 bits | 5000 | - | - | 14 days | 29 |
| 128 bits | 20000 | - | - | 22 years | 35 |

Using the NTL library, we observed that the time required to perform brute-force division by the first $\ell$ primes on a given integer $x_{i}$ is linear in $\ell \cdot a$; we obtained the following running time $t_{u}$ per integer $x_{i}$, on a 733 MHz PC , in seconds units:

$$
t_{u}(a, \ell)=5 \cdot 10^{-9} \cdot \ell \cdot a
$$

so that we can estimate the total running time as a function of $a$ and $\ell$, in seconds units:

$$
\begin{equation*}
t(a, \ell)=5 \cdot 10^{-9} \cdot \frac{a \cdot \ell^{2}}{\rho\left(\frac{a \log 2}{\log (\ell \log \ell)}\right)} \tag{8}
\end{equation*}
$$

We chose the number of primes $\ell$ so as to minimize the total running time. We found that the matrix solving step took a negligible amount of time. The result of practical experiments, and theoretical estimates based on (8) are summarized in Table 2. They show that when the size of the $x_{i}$ is less than approximately 80 bits, the attack is feasible, but for larger sizes (more than 128 bits) it quickly becomes impractical. Note however that the attack's first step (finding smooth integers) is fully parallelizable.

### 3.5. An Improved Attack

Let $\mathcal{M}$ be a message subset and let $X$ be the set of corresponding encodings, that is $X=\{\mu(m) \mid m \in \mathcal{M}\}$. Assume now that $X$ can be written as

$$
X=\{u+v \mid u \in U, v \in V\}
$$

for two sets $U$ and $V$; this is trivially done for ISO/IEC 9796-1. Then one can derive a much faster attack, as follows:

Improved attack for $X=U+V$
Input: sets $U, V$ and $X$; the set $L$ of the $\ell$ first primes.
Output: a subset $X^{\prime}$ of $X$ such that all elements of $X^{\prime}$ are $p_{\ell}$-smooth.

1. Generate a table $T[x] \leftarrow \log x$ for all $x \in X$.
2. For each $p \in L$ do
(a) Generate the following partition of $V$, with $0 \leq i<p$ :

$$
V_{i}=\{v \in V \mid v \bmod p=i\}
$$

(b) For each $u \in U$ do
(i) Let $i=-u \bmod p$
(ii) For each $v \in V_{i}$ do
(A) Let $x=u+v($ at this point, $x=0 \bmod p)$
(B) Let $T[x] \leftarrow T[x]-\log p$.
3. Let $\theta$ be some constant threshold (for example, $\theta=2$ ). Then for each $x \in X$ do:
(a) If $T[x] \leq \theta$, check that $x$ is $p_{\ell}$-smooth; in this case, let $X^{\prime} \leftarrow X^{\prime} \cup\{x\}$.
4. Output $X^{\prime}$.

We provide a heuristic analysis of the algorithm's complexity. Our analysis is heuristic because we assume that for each prime $p \in L$, the partition of $V$ is balanced, that is

$$
\left|V_{i}\right| \leq \eta \cdot \frac{|V|}{p}
$$

for all $0 \leq i<p$, for some constant $\eta>0$.
As previously, let denote by $a$ the maximum bit-size of the integers in $X$. When generating the partition of $V$, each computation of $v \bmod p$ takes $\mathcal{O}(a \cdot \log \ell)$ time, so the complexity of step 2(a) for a given $p$ is $\mathcal{O}(|V| \cdot a \cdot \log \ell)$. For all $p$, the total complexity is therefore $\mathcal{O}(\ell \cdot|V| \cdot a \cdot \log \ell)$.

The complexity of step 2(b)(ii) is $\mathcal{O}(a)$. Thanks to our balanced partition assumption, the complexity of step 2(b)(ii) for a given $p$ is therefore $\mathcal{O}(a \cdot|V| / p)$. Using

$$
\sum_{i=1}^{\ell} \frac{1}{p_{\ell}} \leq \sum_{i=1}^{\ell} \frac{1}{\ell}=\mathcal{O}(\log \ell)
$$

we obtain that for all $p \in L$ and all $u \in U$, the total complexity of step 2(b)(ii) is $\mathcal{O}(|U|$. $a \cdot|V| \cdot \log \ell)$. Similarly, the total complexity of step 2(b)(i) for all $u \in V$ and $p \in L$ is $\mathcal{O}(|U| \cdot \ell \cdot a \cdot \log \ell)$. Therefore, the algorithm's total complexity is

$$
\mathcal{O}(a \cdot \log \ell \cdot(|X|+\ell \cdot(|U|+|V|)))
$$

Taking $|U|=|V|=\sqrt{|X|}$ and assuming that $\ell=\mathcal{O}(\sqrt{|X|})$, we obtain a complexity of

$$
\mathcal{O}(a \cdot|X| \cdot \log \ell)
$$

As in the first attack, we need to generate on average $\ell / \alpha$ integers $x_{i}$, so we must take $|X|=\ell / \alpha$, where $\alpha$ is given by (7). The attack's complexity is therefore

$$
t^{\prime}(a, \ell)=\frac{a \cdot \ell \cdot \log \ell}{\rho\left(\frac{a \log 2}{\log (\ell \log \ell)}\right)} \cdot \mathcal{O}(1)
$$

Note that compared to the previous attack, the $\ell^{2}$ factor has been replaced by $\ell \cdot \log \ell$; however the attack is memory bound as it requires $\mathcal{O}(|X|)$ memory (whereas the previous attack required only negligible memory).

As in the previous attack, we choose the number of primes $\ell$ so as to minimize the running time. In Table 3, we summarize the result of practical experiments; we find that the new attack provides a significant improvement: for 96 bits, it takes 8 minutes instead

Table 3. Running time observed (on a 2 GHz PC ) for various sizes of $x_{i}$, with the $\log _{2}$ total number of $x_{i}$ necessary; $|X|$ is the size of the sieving set.

| Size | \# primes $\ell$ | Running time | $\log _{2}\|X\|$ | $\log _{2}$ number of $x_{i}$ |
| :--- | :---: | :---: | :---: | :---: |
| 48 bits | 400 | 0.3 s | 17 | 17 |
| 64 bits | 1500 | 4 s | 21 | 21 |
| 80 bits | 5000 | 45 s | 25 | 25 |
| 96 bits | 15000 | 8 min | 28 | 28 |
| 128 bits | 120000 | 81 hours | 28 | 34 |

of an estimated 14 days; for 128 bits, it takes 81 hours instead of an estimated 22 years; note that for 128 bits the number of required $x_{i}$ is $2^{34}$; since we could not store an array of $2^{34}$ elements in memory, we performed repeated sieving with $|X|=2^{28}$ only.

## 4. The ISO/IEC 9796-1 Signature Standard

The ISO/IEC 9796-1 standard [8] was published in 1991 by ISO as the first international standard for digital signatures. It specifies (among other things) an encoding function $\mu_{\text {ISO }}$ for messages that are shorter than half the modulus size. The encoding function $\mu_{\text {ISO }}$ embeds the message $m$ itself in the integer $\mu(m)$ (with some additional redundancy). Thus it enjoys "message recovery", which means that the message is recovered when verifying the signature.

In the following, we restrict ourselves to moduli of size $k=16 \cdot z+1$ bits and to messages of size $8 z$ bits, for some integer $z$. This allows for a simpler description of the ISO/IEC 9796-1 standard. We denote by $m_{i}$ the $i$-th 4-bit nibble of $m$, for $0 \leq i \leq 2 z-1$. In this case, the encoding function-denoted $\mu_{\text {ISO }}$-is defined as follows:

$$
\begin{array}{rl}
\mu_{\mathrm{ISO}}(m)= & \bar{s}\left(m_{2 z-1}\right) \\
& s\left(m_{2 z-2}\right) \\
& m_{2 z-1} \\
\left.m_{2 z-3}\right) & s\left(m_{2 z-4}\right) \\
m_{2 z-3} & m_{2 z-4} \\
\vdots & \\
& s\left(m_{3}\right) \\
& s\left(m_{2}\right) \\
& m_{3} \\
& \left.m_{1}\right) \\
& s\left(m_{0}\right) \\
m_{2} & 6
\end{array}
$$

The permutation $s(x)$ in defined as

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $s(x)$ | E | 3 | 5 | 8 | 9 | 4 | 2 | F | 0 | D | B | 6 | 7 | A | C | 1 | 1 |

$\tilde{s}(x)$ denotes the nibble $s(x)$ with the least significant bit flipped (i.e., $\tilde{s}(x)=s(x) \oplus 1)$, and $\bar{s}(x)$ is the result of setting the most significant bit of $s(x)$ to ' 1 ', that is, $\bar{s}(x)=$ 1000 OR $s(x)$.

## 5. Attack against Modified ISO/IEC 9796-1

First, we describe an attack against a slight variant of ISO/IEC 9796-1, in which the encoding function is modified by one single bit. This attack was published at Crypto ' 99 by Coron, Naccache and Stern [2].

We consider a modified ISO/IEC 9796-1, in which the function $\tilde{s}(x)$ which appears in the definition of $\mu(m)$ is replaced by $s(x)$. We obtain the following modified encoding:

$$
\begin{array}{cccc}
\mu^{\prime}(m)=\bar{s}\left(m_{2 z-1}\right) & s\left(m_{2 z-2}\right) & m_{2 z-1} & m_{2 z-2} \\
s\left(m_{2 z-3}\right) & s\left(m_{2 z-4}\right) & m_{2 z-3} & m_{2 z-4} \\
\vdots & & & \\
s\left(m_{3}\right) & s\left(m_{2}\right) & m_{3} & m_{2} \\
s\left(m_{1}\right) & s\left(m_{0}\right) & m_{0} & 6
\end{array}
$$

We assume that the modulus size $k$ is such that $k=1 \bmod 64$ and let $k=64 \cdot u+1$. We consider a message $m$ of size $32 \cdot u=8 \cdot z$ bits, consisting in $u$ times the same 32 -bit pattern:

$$
\begin{aligned}
m= & a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} 66_{16} \\
& a_{6} a_{5} a_{4} a_{3}
\end{aligned} a_{2} a_{1} 66_{16}
$$

where $a_{1}, \ldots, a_{6}$ are 4-bit nibbles. Its modified padding is given by

$$
\left.\begin{array}{rl}
\mu^{\prime}(m)= & \bar{s}\left(a_{6}\right) s\left(a_{5}\right) a_{6} a_{5} \\
s\left(a_{4}\right) s\left(a_{3}\right) a_{4} & a_{3} \\
& s\left(a_{2}\right) s\left(a_{1}\right) a_{2} a_{1} \\
2 & 2_{16}
\end{array} 2_{16} \sigma_{16} 6_{16}\right)
$$

We restrict the choice of $a_{6}$ to the eight nibbles for which $s=\bar{s}$, so that the structure of $\mu^{\prime}\left(m_{i}\right)$ is fully periodic. This enables us to write $\mu^{\prime}(m)$ as

$$
\begin{equation*}
\mu^{\prime}(m)=\Gamma \cdot x \tag{9}
\end{equation*}
$$

where $x$ is a 64-bit integer, a concatenation of the following nibbles:

$$
x=s\left(a_{6}\right) s\left(a_{5}\right) a_{6} a_{5} s\left(a_{4}\right) s\left(a_{3}\right) a_{4} a_{3} s\left(a_{2}\right) s\left(a_{1}\right) a_{2} a_{1} 2266_{16}
$$

and the constant $\Gamma$ is given by

$$
\Gamma=\sum_{i=0}^{u-1} 2^{64 \cdot i}
$$

The factorization given by (9) writes $\mu^{\prime}(m)$ as the product of a constant $\Gamma$ by some small integer $x$. This enables us to apply Desmedt and Odlyzko's attack described in Sect. 3. The only modification consists in including the constant $\Gamma$ in the list $L$ of small primes, so as to write

$$
\mu\left(m_{i}\right)=\Gamma \cdot \prod_{j=1}^{\ell} p_{j}^{v_{i, j}} \bmod N \quad \text { for } 1 \leq i \leq \tau
$$

Then, to each $\mu\left(m_{i}\right)$ we associate a $\ell+1$-dimensional vector $\boldsymbol{V}_{i}=\left(1, v_{i, 1}, \ldots, v_{i, \ell}\right)$, instead of $\left(v_{i, 1}, \ldots, v_{i, \ell}\right)$, and the attack carries out as described in Sect. 3.

We see in Table 2 that for 64-bit integers, the attack demands the generation of approximately $2^{22}$ integers, and takes only a few minutes on a single PC (running at 733 MHz ). There are $2^{23}$ possible values for $x$, so the attack against modified ISO/IEC $9796-1$ is likely to work in practice. This is confirmed by experiments performed in [2], in which an example of forgery is given using only 181 messages.

## 6. Attack against the Full ISO/IEC 9796-1

The actual encoding function that is used in the ISO/IEC 9796-1 standard is slightly different than the function $\mu^{\prime}$ above. Namely, for these parameters, the difference between $\mu^{\prime}(m)$ and $\mu_{\text {ISO }}(m)$ is that the lowest bit in the second-most-significant nibble of $\mu_{\mathrm{ISO}}(m)$ is flipped.

One can see that we cannot simply represent the encoding $\mu_{\mathrm{ISO}}(m)$ as a product $\Gamma \cdot x$ with $\Gamma, x$ as above. Hence the attack must be modified to apply to this encoding function. The extension of the previous attack to the full ISO/IEC 9796-1 was done by Coppersmith, Halevi and Jutla [1].

### 6.1. Modifying the Attack

The modified attack is similar to the attack described in the previous section, except that it uses a slightly different structure for $\Gamma$ and $x$. In the previous attack, the constant $\Gamma$ consisted of several ones that were separated by as many zeroes as there are bits in $x$. In the modified attack, we again have a constant $\Gamma$ which consists of a few ones separated by many zeroes, but this time there are fewer separating zeroes.

We start with an example. Consider a 64-bit integer $x$, which is represented as four 16-bit words $x=a b c d$ (so $a$ is the most-significant word of $x, b$ is the second-mostsignificant, etc.). Also, consider the 112 -bit constant $\Gamma=1001001$, where again each digit represents a 16-bit word. Now consider what happens when we multiply $\Gamma \cdot x$. We have

$$
\begin{aligned}
& \Gamma \cdot x=\quad a b c d \\
& \begin{array}{r}
a 001001 \\
a b c d
\end{array} \\
& a b c d \\
& \frac{a b c d}{a b c e b c e b c d}
\end{aligned}
$$

where $e=a+d$ (assuming that no carry is generated in the addition $a+d$ ). Notice that the 16-bit $d$ appears only as the least-significant word of the result, and the 16-bit $a$ appears only as the most-significant word of the result. It is therefore possible to arrange things so that the form of the words $a, d$ be different than the form of the words $b, c$ and $e$, and this could match the different forms of the least- and most-significant words in the encoded message $\mu_{\text {ISO }}(m)$.

More precisely, we consider three types of 16 -bit words. For a 16-bit word $x$, we say that:
$-x$ is a valid low word if it has the form $x=s(u) s(v) v$, for some two nibbles $u, v$.
$-x$ is a valid middle word if it has the form $x=s(u) s(v) u v$, for some two nibbles $u, v$.
$-x$ is a valid high word if it has the form $x=\bar{s}(u) \tilde{s}(v) u v$, for some two nibbles $u, v$.

We note that there are exactly 256 valid low words, 256 valid middle words, and 256 valid high words (since in each case we can arbitrarily choose the nibbles $u, v$ ).

In the example above, we needed $a$ to be a valid high word, $d$ to be a valid low word, $b$ and $c$ to be valid middle words, and we also needed $e=a+d$ to be a valid middle word. We note the following:

- There are 64 pairs $x, y$ such that $x$ is a valid high word, $y$ is a valid low word, and $z=x+y$ is a valid middle word (this is what we needed for the example above). We call such a pair $(x, y)$ a high-low pair. The 64 high-low pairs are listed in Appendix A.
- There are 84 pairs $x, y$ such that $x$ is a valid high word, $y$ is a valid middle word, and $z=x+y$ is a valid middle word. We call such a pair $(x, y)$ a high-mid pair.
- There are 150 pairs $x, y$ such that $x$ is a valid middle word, $y$ is a valid low word, and $z=x+y$ is a valid middle word. We call such a pair $(x, y)$ a mid-low pair.
- There are 468 pairs $x, y$ such that $x$ is a valid middle word, $y$ is a valid middle word, and $z=x+y$ is also a valid middle word. We call such a pair $(x, y)$ a mid-mid pair.

We are now ready to present the attack. For clarity of presentation we start by presenting the attack for the special cases where the modulus size is $1024+1$ bits and $2048+1$ bits. We later describe the general case.

### 6.2. Moduli of Size $1024+1$ Bits

When the modulus size is $k=1025$ bits, we need to encode the messages as 1024-bit integers with the high bit set to one. The attack proceeds similarly to the above example: we consider 64-bit integers $x=a b c d$, where $a$ is a valid high-word, $d$ is a valid lowword, and $b, c$ and $e=a+d$ are valid middle words. There are 64 choices for the high-low pair $(a, d)$ and 256 choices for each of $b, c$, so there are total of $2^{22}$ integers $x$ of the right form. We then set

$$
\Gamma_{1024}=\sum_{i=0}^{20} 2^{48 i}=\underbrace{1001001 \ldots 002_{2^{16}}}_{1 \text { followed by } 20 \text { repetitions of } 001\left(\text { base } 2^{16}\right)}
$$

This gives us

$$
M=\Gamma_{1024} \cdot x=a \underbrace{b c e b c e \ldots b c e}_{20 \text { repetitions }} b c d
$$

which is a valid encoding of some message $M=\mu_{\mathrm{ISO}}(m)$, because of the way in which $x$ was chosen. We can see that the attack applies more generally to moduli of size $48 \cdot t+65$, for any integer $t$.

With a 64-bit integer $x$, the attack's complexity is the same as before. The only difference is that there are now $2^{22}$ possible values for $x$ instead of $2^{23}$. In Appendix B, we provide an example of a forgery using 273 messages.

### 6.3. Moduli of Size $2048+1$ Bits

When the modulus size is $k=2049$ bits, we need to encode messages as 2048-bit integers with the high bit set to one. Here we need to modify the attack a little bit, by changing the length of $x$ and the amount of "overlap" that is used in the product $\Gamma \cdot x$. Specifically, we can work with 128-bit integers $x$, with $x=a b c d e f g h$, where $a$ is a valid high-word, $h$ is a valid low-word, and $b, c, d, e, f, g$ and also $i=a+g$ and $j=b+h$ are valid middle-words, as exemplified:

$$
\begin{aligned}
\Gamma \cdot x= & \begin{array}{r}
a b c d e f g h \\
\\
\\
\frac{a b c d e f g h}{a b c d e f i j c d e f i j c d e f g h}
\end{array} \frac{a b c d e f g h}{a b c d e f g h}
\end{aligned}
$$

This gives us 84 choices for the high-mid pair $(a, g), 150$ choices for the mid-low pair $(b, h)$ and 256 choices for each of $c, d, e, f$, so we have total of more than $2^{45}$ choices for $x$. We set

$$
\Gamma_{2048}=\sum_{i=0}^{20} 2^{96 i}=1 \underbrace{000001 \ldots 000001}_{20 \text { repetitions }} 2^{16}
$$

and so we get

$$
M=\Gamma_{2048} \cdot x=a b \underbrace{c d e f i j \ldots \text { cdefij }}_{20 \text { repetitions }} c d e f g h
$$

which is again a valid encoding.
We see in Table 2 that for a 128-bit integer $x$, we have to generate $2^{35}$ integers $x$ (therefore the $2^{45}$ possible choices for $x$ are more than enough) and the attack's estimated running time is 22 years. Using the improved attack in Table 3, the running time is only 81 hours.

### 6.4. The General Case

For a modulus whose size is $16 z+1$ bits (for an even $z$ ), we need to encode messages as $16 z$-bit integers, which means that the encodings should have $z 16$-bit words. We write the integer $z$ as $z=\alpha \cdot m+\beta$, where $\alpha, \beta, m$ are all integers with $\alpha, \beta \geq 1$ and $m \geq 2$. For reasons that will soon become clear, we try to get $\alpha+\beta$ as small as possible, while making sure that $\alpha-\beta$ is at least 2 or 3 .

The attack then works with integers $x$ of $\alpha+\beta 16$-bit words (which is why we want to minimize $\alpha+\beta$ ), and use the "overlap" of $\beta$ words in the product $\Gamma \cdot x$. If we denote
$\gamma=\alpha+\beta$, then we have $x=a_{\gamma} \ldots a_{1}$, where $a_{\gamma}$ is a valid high-word, $a_{1}$ is a valid lowword, and the other $a_{i}$ 's are valid middle words (and we also need some of the sums to be valid middle words). We then set

$$
\Gamma_{16 z}=\sum_{i=0}^{m-1} 2^{16 \alpha i}=1 \underbrace{0 . .01 \quad 0 . .01 \quad \ldots 0 . .01}_{m-1} \underbrace{0}_{\text {repetitions of } 0 . .01(\alpha-10 \text { 's followed by } 1)} .
$$

When we multiply $\Gamma_{16 z} \cdot x$ we get

hence we also need the sums $\left(a_{\gamma}+a_{\beta}\right), \ldots,\left(a_{\alpha+2}+a_{2}\right),\left(a_{\alpha+1}+a_{1}\right)$ to be valid middle words.

If $\beta=1$ (as in the case of 1025-bit moduli above), we have 64 choices for the highlow pair $\left(a_{\gamma}, a_{1}\right)$ and 256 choices for each of the other $a_{i}$ 's, so we get total of $64 \cdot 256^{\alpha-1}$ choices for $x$.

If $\beta \geq 2$ (as in the case of 2049-bit moduli above), we have 84 choices for the highmid pair ( $a_{\gamma}, a_{\beta}$ ), 150 choices for the mid-low pair $\left(a_{\alpha+1}, a_{1}\right), 468$ choices for each of the mid-mid pairs $\left(a_{\gamma-1}, a_{\beta-1}\right) \ldots\left(a_{\alpha+2}, a_{2}\right)$. Thus the total number of choices for $x$ is $84 \cdot 150 \cdot 468^{\beta-2} \cdot 256^{\alpha-\beta}$. (This is the reason for which we want $\alpha-\beta$ to be at least 2 or 3.) For the attack to be successful, we should set the parameters $\alpha, \beta$ so that there are enough smooth $x$ 's to guarantee the "homomorphic dependencies" that we need.

As another example for the general case, consider $768+1$-bit moduli. We need to encode the messages as 768 -bit integers, or $768 / 16=48$ words. We can write $48=$ $5 \cdot 9+3$, so we have $\alpha=5, \beta=3$. Hence we work with $x$ 's of $5+3=8$ words ( 128 bits) and use an overlap of 3 words. For this case we have $84 \cdot 150 \cdot 468 \cdot 256^{2}>2^{38}$ choices for $x$. Using Table 2, we see that the attack has the same complexity as for the $(2048+1)$-bit moduli.

### 6.5. Possible Extensions

The attack that we described above was intended to work against moduli of size $16 z+1$ bits for an even integer $z$, but there are a few straightforward ways to extend the attack to handle other moduli sizes. For example, for a modulus of size $16 z$-bits (with $z$ even), we should encode messages as integers with $16 z-1$ bits, which we can view as $z$-word integers with the highest bit set to zero and the second-highest bit set to one. To handle these integers, we re-define a valid high-word as a 16 -bit word of the form $x=\hat{s}(u) \tilde{s}(v) u v$, for some two nibbles $u, v$, where $\hat{s}(u)$ is the nibble $s(u)$ with the highest bit set to zero and the second-highest bit set to one. Although we did not check this, we suspect that the modified definition of a valid high-word will not significantly change the number of high-low and high-mid pairs, so the complexity of an attack against $16 z$-bit moduli should be roughly the same as that of an attack against moduli of $16 z+1$ bits.

Another extension of the attack is to consider also the cases where there are some carry bits between the nibbles in the computation of $\Gamma \cdot x$. For example, for the case of $\beta \geq 2$ (see Sect. 6.4) we can have carry bits between the "overlap" words in the multiplication without affecting the attack. We estimate that considering these carry bits can increase the number of possible $x$ 's by about a factor of $2^{\beta-1}$ (since we can have $x$ 's that cause any pattern of carry bits inside a string of length $\beta$ nibbles).

Yet another plausible extension is to handle the case where not only the first and last words of the encoding have different formats, but also one other word in the middle. This is the case, for example, when we encode a message $m$ of length less than half the size of the modulus. In that case, the form of the highest word would be $x=\bar{s}(u) s(v) u v$, the form of the lowest word would be $x=\bar{s}(u) s(v) v 6$, and there would be one other word somewhere in the middle of the form $x=s(u) \tilde{s}(v) u v$. In this case we may be able to modify $\Gamma$ a little, so that the spacing of the ones is not equal throughout the number. For example, if we have $x=a b c d$ and $\Gamma=10010001$, we get

$$
\Gamma \cdot x=\begin{array}{r}
a b c d \\
\frac{10010001}{a b c d} \\
\frac{a b c d}{a b c e b c d a b c d}
\end{array}
$$

Now notice that the word $e$ only appears once in the middle, and so we can arrange it so that it would have a different form than the other words. This technique can potentially be used to find more forgeries, or to reduce the complexity of the attack against certain moduli-lengths.

## 7. Second Attack against ISO/IEC 9796-1

### 7.1. Introduction

At Eurocrypt 2000, Grieu [6] presented a more efficient attack against ISO/IEC 9796-1. The attack comprises of finding pairs of message $\left(m, m^{\prime}\right)$ such that

$$
\frac{\mu(m)}{\mu\left(m^{\prime}\right)}=\frac{a}{b}
$$

for some given small integers $a, b$. One obtains two such pairs of messages, $\left(m_{1}, m_{1}^{\prime}\right)$ and ( $m_{2}, m_{2}^{\prime}$ ), and then using

$$
\mu\left(m_{1}\right) \cdot \mu\left(m_{2}^{\prime}\right)=\mu\left(m_{1}^{\prime}\right) \cdot \mu\left(m_{2}\right)
$$

it is possible to express the signature of $m_{1}$ as a function of the signatures of the three other messages.

We restrict the attack and the description of ISO/IEC 9796-1 to moduli of size $k$ where $k \bmod 16 \in\{0, \pm 1, \pm 2\}$, and to messages of size $z=\lfloor(k+2) / 16\rfloor$ bytes, the
maximum allowed message size. (Note that the attacks described in Sects. 5 and 6 were restricted to the case $k \equiv 1 \bmod 16$.)

With these restrictions, the construction of the redundant message $\mu(m)$ amounts to the local transformation of each byte $m_{i}$ of the message $m$ by an injection $F_{i}$, yielding the redundant message

$$
\mu(m)=F_{z}\left(m_{z}\right)\left\|F_{z-1}\left(m_{z-1}\right)\right\| . .\left\|F_{2}\left(m_{2}\right)\right\| F_{1}\left(m_{1}\right)
$$

with the injections $F_{i}$ transforming an individual byte $m_{i}$ of two 4 bit digits $x \| y$ as defined by

$$
\begin{align*}
& F_{1}(x \| y)=s(x)\|s(y)\| y \|[6]_{4}, \\
& F_{i}(x \| y)=s(x)\|s(y)\| x \| y \quad \text { for } 1<i<z,  \tag{10}\\
& F_{z}(x \| y)=[1]_{1}\left\|[s(x)]_{k+2} \bmod 16\right\| s(y) \oplus 1\|x\| y
\end{align*}
$$

where $[w]_{i}$ denotes the least significant $i$ bits of $w\left(\operatorname{so}[w]_{i} \equiv w \bmod 2^{i}\right)$, and $s(x)$ is the permutation defined in Sect. 4. As we said above, the attack consists of selecting two small positive integers $a, b$ and search for message pairs $A, B$ that yield redundant messages satisfying

$$
\begin{equation*}
\frac{\mu(A)}{\mu(B)}=\frac{a}{b} . \tag{11}
\end{equation*}
$$

### 7.2. Choosing the Ratio $a / b$

The encoding function $\mu$ imposes some restrictions on the ratio $a / b$ that can be used for this attack. First, we can restrict our choice of $a, b$ to $a<b$, since the ratios $a / b$ and $b / a$ correspond to the same message pairs (in reverse order). Similarly, we can restrict ourselves to relatively prime $a, b$. Also, since $\mu(A)$ and $\mu(B)$ are strings of equal length with the most significant bit set to one, we must have $b<2 a$. Next, we observe that (11) can be written as

$$
\mu(B) \cdot a=\mu(A) \cdot b
$$

and since the encoding $\mu$ dictates that $\mu(B) \bmod 16=\mu(A) \bmod 16=6$, it follows that we must have $6 a \equiv 6 b \bmod 16$, or in other words $a \equiv b \bmod 8$. Finally, in the attack below it will be convenient to assume that $a \geq 9$. Thus, in the following we restrict our choice of the ratio $a / b$ to co-prime integers $a, b$ with $9 \leq a<b<2 a$ and $a \equiv b \bmod 8$. Some examples of ratios $a / b$ satisfying these requirements are $9 / 17,11 / 19$, and 13/21.

### 7.3. Making the Search Manageable

Consider a hypothetical message pair $A, B$ satisfying (11). Since the fraction $a / b$ is chosen to be irreducible, then denoting $W=\operatorname{gcd}(\mu(A), \mu(B))$ we have

$$
\begin{equation*}
\mu(A)=a \cdot W \quad \text { and } \quad \mu(B)=b \cdot W . \tag{12}
\end{equation*}
$$

We break up $A, B$ into $z$ bytes. We notice that our choice $9 \leq a<b$, in conjunction with the restriction we put on $k \bmod 16$, implies $W<2^{16 z}$. Thus, we can similarly break
up $W$ into $z$ 16-bit strings

$$
\begin{array}{rll}
A & =a_{z}\left\|a_{z-1}\right\| . .\left\|a_{2}\right\| a_{1} & \left(a_{i}<2^{8}\right) \\
B & =b_{z}\left\|b_{z-1}\right\| . .\left\|b_{2}\right\| b_{1} & \left(b_{i}<2^{8}\right) \\
W=w_{z}\left\|w_{z-1}\right\| . .\left\|w_{2}\right\| w_{1} & \left(w_{i}<2^{16}\right)
\end{array}
$$

We break up each of the two multiplications appearing in (12) into $z$ multiply and add steps operating on each of the $w_{i}$, performed from right to left, with $z-1$ steps generating an overflow to the next step, and a last step producing the remaining left $(k+2 \bmod 16)+13$ bits. We define the overflows

$$
\begin{array}{ll}
\bar{a}_{0}=\bar{a}_{z}=0, & \bar{b}_{0}=\bar{b}_{z}=0, \\
\bar{a}_{i}=\left\lfloor\left(a w_{i}+\bar{a}_{i-1}\right) / 2^{16}\right\rfloor, & \bar{b}_{i}=\left\lfloor\left(b w_{i}+\bar{b}_{i-1}\right) / 2^{16}\right\rfloor \quad \text { for } 1 \leq i<z \tag{13}
\end{array}
$$

The notations above can be pictorially described as follows:

| overflows: $\bar{a}_{z-1}$ | $\bar{a}_{z-2}$ | .. | $\bar{a}_{1}$ | 0 |  | $\bar{b}_{z-1}$ | $\bar{b}_{z-2}$ | .. | $\bar{b}_{1}$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $w_{z}$ | $w_{z-1}$ | .. | $w_{2}$ | $w_{1}$ |  | $w_{z}$ | $w_{z-1}$ | .. | $w_{2}$ | $w_{1}$ |
| $\times$ |  |  |  | $a$ | $\times$ |  |  |  |  | $b$ |
| $=F_{z}\left(a_{z}\right) F_{z-1}\left(a_{z-1}\right) . . F_{2}\left(a_{2}\right) F_{1}\left(a_{1}\right) \\|=F_{z}\left(b_{z}\right) F_{z-1}\left(b_{z-1}\right) . . . F_{2}\left(b_{2}\right) F_{1}\left(b_{1}\right)$ |  |  |  |  |  |  |  |  |  |  |

Using these notations, we can transform (12) into the equivalent

$$
\begin{array}{ll}
F_{i}\left(a_{i}\right)=a w_{i}+\bar{a}_{i-1} \bmod 2^{16}, & F_{i}\left(b_{i}\right) b w_{i}+\bar{b}_{i-1} \bmod 2^{16} \quad \text { for } 1 \leq i<z \\
F_{i}\left(a_{z}\right)=a w_{z}+\bar{a}_{z-1}, & F_{z}\left(b_{z}\right) b w_{z}+\bar{b}_{z-1} \tag{14}
\end{array}
$$

The search for message pairs $A, B$ satisfying (11) is equivalent to the search of $w_{i}$, $a_{i}, b_{i}, \bar{a}_{i}, \bar{b}_{i}$ satisfying (13) and (14). This is $z$ smaller problems, linked together by the overflows $\bar{a}_{i}, \bar{b}_{i}$.

### 7.4. Reducing Overflows $\bar{a}_{i}, \bar{b}_{i}$ to One Link $l_{i}$

Definition (13) of the overflows $\bar{a}_{i}, \bar{b}_{i}$ implies, by induction

$$
\begin{equation*}
\bar{a}_{i}=\left\lfloor\frac{a[W]_{16 i}}{2^{16 i}}\right\rfloor \quad \text { and } \quad \bar{b}_{i}=\left\lfloor\frac{b[W]_{16 i}}{2^{16 i}}\right\rfloor \quad \text { for } 1 \leq i<z . \tag{15}
\end{equation*}
$$

Since $0 \leq[W]_{16 i}<2^{16 i}$ we have

$$
\begin{equation*}
0 \leq \bar{a}_{i}<a \quad \text { and } \quad 0 \leq \bar{b}_{i}<b \tag{16}
\end{equation*}
$$

We also observe that $\bar{a}_{i} / \bar{b}_{i}$ is roughly equal to the ratio $a / b$, more precisely (15) implies successively

$$
a \frac{[W]_{16 i}}{2^{16 i}}-1<\bar{a}_{i} \leq a \frac{[W]_{16 i}}{2^{16 i}} \quad \text { and } \quad b \frac{[W]_{16 i}}{2^{16 i}}-1<\bar{b}_{i} \leq b \frac{[W]_{16 i}}{2^{16 i}}
$$

$$
\begin{aligned}
& \frac{\bar{a}_{i}}{a} \leq \frac{[W]_{16 i}}{2^{16 i}}<\frac{\bar{a}_{i}+1}{a} \quad \text { and } \quad \frac{\bar{b}_{i}}{b} \leq \frac{[W]_{16 i}}{2^{16 i}}<\frac{\bar{b}_{i}+1}{b}, \\
& a \frac{\bar{b}_{i}}{b}-1<\bar{a}_{i}<a \frac{\bar{b}_{i}+1}{b} \quad \text { and } \quad b \frac{\bar{a}_{i}}{a}-1<\bar{b}_{i}<b \frac{\bar{a}_{i}+1}{a},
\end{aligned}
$$

so, as consequence of their definition, the $\bar{a}_{i}, \bar{b}_{i}$ must satisfy

$$
\begin{equation*}
-a<a \bar{b}_{i}-b \bar{a}_{i}<b \tag{17}
\end{equation*}
$$

For a given $\bar{b}_{i}$ with $0 \leq \bar{b}_{i}<b$, one or two $\bar{a}_{i}$ are solutions of (17): $\left\lfloor a \bar{b}_{i} / b\right\rfloor$, and $\left\lfloor a \bar{b}_{i} / b\right\rfloor+1$ if and only if $a \bar{b}_{i} \bmod b>b-a$.

It is handy to group $\bar{a}_{i}, \bar{b}_{i}$ into a single link defined as

$$
\begin{equation*}
l_{i}=\bar{a}_{i}+\bar{b}_{i}+1 \quad \text { with } 1 \leq l_{i}<a+b \tag{18}
\end{equation*}
$$

so we can rearrange (17) into

$$
\begin{equation*}
\bar{a}_{i}=\left\lfloor\frac{a l_{i}}{a+b}\right\rfloor \quad \text { and } \quad \bar{b}_{i}=\left\lfloor\frac{b l_{i}}{a+b}\right\rfloor . \tag{19}
\end{equation*}
$$

### 7.5. Turning the Problem into a Graph Traversal

For $1 \leq i \leq z$, we define a set of triples $T_{i}$ as

$$
T_{i}=\left\{\left(l_{i}, w_{i}, l_{i-1}\right) \mid \exists\left(a_{i}, b_{i}, \bar{a}_{i}, \bar{b}_{i}, \bar{a}_{i-1}, \bar{b}_{i-1}\right) \text { satisfying (13), (14), (16), (18), (19) }\right\}
$$

We consider a layered graph, where the vertices in the $i$-th layer are all the elements of $T_{i}$, and there is an edge between the two vertices $\left(l_{i}, w, l_{i-1}\right) \in T_{i}$ and $\left(l_{i-1}^{\prime}, w^{\prime}, l_{i-2}^{\prime}\right) \in$ $T_{i-1}$ if and only if $l_{i-1}=l_{i-1}^{\prime}$. Solving (11) is equivalent to finding a connected path from an element of $T_{1}$ to an element of $T_{z}$. If this can be achieved, a suitable $W$ is obtained by concatenating the $w_{i}$ in the path, and $\mu(A), \mu(B)$ follow from (12).

### 7.6. Building and Traversing the Graph

The graph can be explored in either direction with about equal ease, we describe the right to left procedure. Initially we start with the only link $l_{0}=1$. At step $i=1$ and growing, for each of the link at the previous step, we vary $b_{i}$ in range $\left[0, \ldots, 2^{8}-1\right]$ and directly compute

$$
\begin{equation*}
w_{i}=\left(F_{i}\left(b_{i}\right)-\left\lfloor\frac{b l_{i-1}}{a+b}\right\rfloor\right) b^{-1} \bmod 2^{16} . \tag{20}
\end{equation*}
$$

Using an inverted table of $F_{i}$ we can determine in one lookup if there exist an $a_{i}$ such that

$$
\begin{equation*}
F_{i}\left(a_{i}\right)=a w_{i}+\left\lfloor\frac{a l_{i-1}}{a+b}\right\rfloor \bmod 2^{16} \tag{21}
\end{equation*}
$$



Fig. 1. Graph of solutions of (11) for $k=256$ and $a / b=11 / 19$.
and in that case we record the new triple $\left(l_{i}, w_{i}, l_{i-1}\right)$ with the new link

$$
\begin{equation*}
l_{i}=\left\lfloor\frac{a w_{i}+\left\lfloor\frac{a l_{i-1}}{a+b}\right\rfloor}{2^{16}}\right\rfloor+\left\lfloor\frac{b w_{i}+\left\lfloor\frac{b l_{i-1}}{a+b}\right\rfloor}{2^{16}}\right\rfloor+1 \tag{22}
\end{equation*}
$$

We repeat this process until a step has failed to produce any link, or we reach $i=z$ where we need to modify (20)-(22) by replacing the term $2^{16}$ by $2^{(k+2 \bmod 16)+13}$, and reject nodes where $l_{z} \neq 1$.

If we produce a link in the last step $i=z$, we can obtain a solution to (11) by backtracking any path followed, and the resulting graph covers all the solutions.

Exploration for the simplest ratio $9 / 17$ stops on the first step, but $11 / 19$ is more fruitful. For example, for modulus size $k=256$, and restricting to nodes belonging to a solution, we can draw the graph in Fig. 1.

Using this graph to produce solutions to (11) is simple: message pairs are obtained by choosing a path between terminal nodes, and collecting the message bytes $a_{i}$ (resp. $b_{i}$ ) shown above (resp. below) the nodes ${ }^{1}$. For example, if we follow the bottom link, the graph gives the messages:

$$
\begin{aligned}
& A=85 f 27 \mathrm{~d} 64 \mathrm{ef} 64 \mathrm{ef} 64 \mathrm{ef} 64 \mathrm{ef} 64 \mathrm{ef} 152 \mathrm{c} 07, \\
& B=14 \mathrm{ba} 7 \mathrm{bf} 39 \mathrm{df} 39 \mathrm{df} 39 \mathrm{df} 39 \mathrm{df} 39 \mathrm{~d} 6 \mathrm{ad} 958
\end{aligned}
$$

and the redundant messages:

$$
\begin{aligned}
& \mu(A)=458515 f 2 f a 7 d 2964 c 1 e f 2964 c 1 \\
& \text { ef3415572cef76, } \\
& \mu(B)=78146 b b a f 67 b 18 £ 3 d a 9 d 18 f 3 d a 9 d 18 f 3 \text { da9d18f3da9d18f3da9 } \\
& \text { d2b6aadd94086 }
\end{aligned}
$$

[^0]with indeed $\mu(A) / \mu(B)=11 / 19$.
By following the upper link, we can compute another message pair $C, D$ with the same ratio $\mu(C) / \mu(D)$, as:
\[

$$
\begin{aligned}
& C=85 f 27 \mathrm{~d} 64 \mathrm{acf} 27 \mathrm{~d} 64 \mathrm{acf} 27 \mathrm{~d} 64 \mathrm{acf} 23 \mathrm{c} 6 \mathrm{~d} \\
& D=14 \mathrm{ba} 7 \mathrm{~b} f 3 \mathrm{e} 3 \mathrm{ba} 7 \mathrm{~b} f 3 \mathrm{e} 3 \mathrm{ba} 7 \mathrm{~b} \mathrm{~b} 3 \mathrm{e} 3 \mathrm{ba} 670 \mathrm{e}
\end{aligned}
$$
\]

which gives:

$$
\begin{aligned}
& \mu(C)=458515 f 2 \text { fA } 7 \text { d2964b7ac15f2fA7d2964b7ac15f2fA7d2964b7ac } \\
& \text { 15f2873c2ad6, } \\
& \mu(D)=78146 b b a f 67 b 18 f 3 c 8 e 36 b b a f 67 b 18 f 3 c 8 e 36 b b a f 67 b 18 f 3 c 8 e \\
& 36 b b a 2 f 67 e c e 6 .
\end{aligned}
$$

### 7.7. Existential Forgery from the Signature of Three Chosen Messages

By selecting a ratio $a / b$ and finding two messages pairs $A, B$ and $C, D$ solutions of (11), we can now construct four messages $A, B, C, D$ as exemplified in the previous section such that

$$
\begin{equation*}
\mu(A) \cdot \mu(D)=\mu(B) \cdot \mu(C) \tag{23}
\end{equation*}
$$

In the RSA case, this enables us to express the signature of $A$ as a function of the other signatures:

$$
\mu(A)^{d}=\frac{\mu(B)^{d} \cdot \mu(C)^{d}}{\mu(D)^{d}} \bmod N
$$

In Rabin's case, we must distinguish two cases. The first case is when we have:

$$
\left(\frac{\mu(A)}{N}\right)=\left(\frac{\mu(D)}{N}\right)=-\left(\frac{\mu(B)}{N}\right)=-\left(\frac{\mu(C)}{N}\right)
$$

We can assume without loss of generality that

$$
\left(\frac{\mu(A)}{N}\right)=\left(\frac{\mu(D)}{N}\right)=1 .
$$

Then we can write

$$
\mu(A) \cdot \mu(D)=2^{2} \cdot \frac{\mu(B)}{2} \cdot \frac{\mu(C)}{2} \bmod N
$$

and denoting by $\sigma_{A}, \sigma_{B}, \sigma_{C}, \sigma_{D}$ the signatures of messages $A, B, C, D$, we obtain

$$
\sigma_{A} \cdot \sigma_{D}=2^{2 d} \cdot \sigma_{B} \cdot \sigma_{C} \bmod N
$$

Therefore, from the four signatures we obtain the value of $2^{2 d} \bmod N$. As explained in Sect. 3.3, since $\left(\frac{2}{N}\right)=-1$, this allows to recover the factorization of $N$. Note that this can only happen if the ratio $a / b$ is such that $\left(\frac{a}{N}\right)=-\left(\frac{b}{N}\right)$.

Otherwise, one obtains the following relation between the four signatures:

$$
\sigma_{A} \cdot \sigma_{D}=\sigma_{B} \cdot \sigma_{C} \bmod N
$$

which enables to forge one signature knowing the three others.

### 7.8. Reducing the Number of Required Signatures for Small e

Assume that we can find two messages $A, B$, solution of

$$
\begin{equation*}
\frac{\mu(A)}{\mu(B)}=\frac{a^{e}}{b^{e}} \quad \text { with } a \neq b \tag{24}
\end{equation*}
$$

for some known integers $a, b$. For the RSA case, we can then forge the signature of $A$ given the signature of $B$ :

$$
\mu(A)^{d}=\frac{a}{b} \cdot \mu(B)^{d} \bmod N .
$$

For the Rabin case, we can either forge the signature of $A$ given the signature of $B$ if $\left(\frac{a}{N}\right)=\left(\frac{b}{N}\right)$, or factor $N$ given the two signatures if $\left(\frac{a}{N}\right)=-\left(\frac{b}{N}\right)$.

An example with $e=2$ and $k=512$ with the ratio $19^{2} / 25^{2}$ is the following message pair:

```
A= ECE8F706C09CA276A3FC8F00803C821D90A3C03222C37DE26F5C3
    FD37A886FE4,
B=CA969C94FA0B801DDEEA0C22932D80570F95A9C767D27FA8F06A56
    E7371B16DF.
```

An example for $e=3$ with $k=510$ and ratio $49^{3} / 57^{3}$ is:

$$
\begin{aligned}
A= & C 6 C 058 A 3239 E E 6 D 5 E D 2 C 4 D 17588 B 02 B 884 A 30 D 92 B 5 D 414 D D B 4 B 5 A 6 \\
& \text { DA58B6901B, }
\end{aligned}
$$

$$
B=20768 \mathrm{~B} 854644 \mathrm{~F} 693 \mathrm{DB} 1508 \mathrm{DE} 0124 \mathrm{~B} 4457 \mathrm{CD} 7261 \mathrm{DF} 699 \mathrm{~F} 422 \mathrm{D} 9634
$$

D5E4D5781A4.

## 8. Conclusion

We have shown two different attacks against the ISO/IEC 9796-1 signature standard. The first attack is based on Desmedt and Odlyzko's attack and produces a forgery with a few hundred messages. The second attack is based on a graph traversal and constructs two messages pairs whose expansion are in a common ratio; this allows to produce a forgery from only three messages. After the publication of those attacks, the ISO/IEC 9796-1 standard has been withdrawn.

| $x=8 \mathrm{f} 30$ af60 8 f 80 bfa0 afd0 b211 d221 9241 c251 d291 92f1 a462 $y=031643164316226613160 \mathrm{~d} 96$ 1ce6 1 d 96 0d96 2ce6 1ce6 3ba6 $z=9246 \mathrm{f} 276 \mathrm{~d} 296$ e206 c2e6 bfa7 ef07 afd7 cfe7 ff77 afd7 e008 |
| :---: |
| $\begin{aligned} & x=\mathrm{a} 4 \mathrm{~d} 2 \text { 94f2 d923 } 9943898399 \mathrm{f} 38834 \text { a864 } 8884 \text { b8a4 a8d4 } 8585 \\ & y=4 \mathrm{ba6} 3 \mathrm{ba6} 2456445624565316131653165316326623166086 \\ & z=\mathrm{f} 078 \text { d098 } \mathrm{fd} 79 \text { dd99 add9 ed09 9b4a fb7a db9a eb0a cbea e60b } \end{aligned}$ |
| $x=95 f 5 \mathrm{~d} 3269346838693 \mathrm{f} 6$ ae67 aed7 9ef7 813881389148 b1a8 $y=60862456445624565316$ 3ba6 4ba6 3ba6 2ba6 6ad6 3ba6 4ad6 $z=\mathrm{f} 67 \mathrm{~b}$ f77c d79c a7dc e70c ea0d fa7d da9d acde ec0e ccee fc7e |
| $x=$ a1d8 cc59 8c89 ba1a 8a3a 9a4a 8a8a caea c75b c7eb 97fb b61c $y=1 \mathrm{ad6} 2526252644565456245644562316$ 1ba6 0ba6 1ba6 1f76 $z=$ bcae f17f b1af fe70 de90 bea0 cee0 ee00 e301 d391 b3a1 d592 |
| $x=\mathrm{a} 66 \mathrm{c} 96 \mathrm{fc}$ bb1d 8b3d 9b4d 8b8d bbad 9bfd cd5e cdee 9dfe b01f $y=1 \mathrm{f} 764 \mathrm{e} 06$ 2ce6 1d96 2d96 6ce6 1ce6 2ce6 1ba6 0ba6 1ba6 4456 $z=\mathrm{c5e2}$ e502 e803 a8d3 c8e3 f873 d893 c8e3 e904 d994 b9a4 f475 |
| $\begin{aligned} & x=803 \mathrm{f} 904 \mathrm{f} 808 \mathrm{f} \text { c0ef } \\ & y=5456245644562316 \\ & z=\mathrm{d} 495 \mathrm{~b} 4 \mathrm{a} 5 \mathrm{c} 4 \mathrm{e} 5 \mathrm{e} 405 \end{aligned}$ |

Fig. A.1. High-low pairs $(x, y)$ and their sum $z=x+y$.

| $\mathrm{v}[1 . .273]=$ | 113C2789 | 2103E5FE | 213488FE | 215041FE | 21A1F6FE | 23979965 | 23A9DF65 | 26013565 | 26182D65 | 261B3865 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 26235B65 | 26729D65 | 26EB1465 | 30157C81 | 3038C281 | 304D5B81 | 30CF6581 | 34045BF1 | 340AC4F1 | 34596BF1 |
|  | 34B660F1 | 34E1B0F1 | 34FF49F1 | 3814BA6A | 38585D6A | 3873976A | 38A9396A | 38E2F86A | 38EEE56A | 385192BD |
|  | 3854A9BD | 3882F7BD | 389E88BD | 38BB52BD | 3A16E425 | 3A3C6125 | 3A797525 | 3A9B4E25 | 3AB30125 | 3ABFBC25 |
|  | 3AD30A25 | 3D12D3F9 | 3D6C4AF9 | 3D8AF3F9 | 3D91E4F9 | 3D9E3BF9 | 3DD521F9 | 3DE363F9 | 3DEDAFF9 | 3F09D025 |
|  | 3F198D25 | 3F3DFC25 | 3FCE9B25 | 410AB2F9 | 4122BDF9 | 412F08F9 | 413EDBF9 | 41C584F9 | 41EE50F9 | 41F296F9 |
|  | 4345DC55 | 43486155 | 4372C655 | 43793F55 | 4385E655 | 43EE7B55 | 4617F255 | 4627D755 | 463CF255 | 4665D455 |
|  | 468AA555 | 46DB9055 | 484B4E1A | 488ED71A | 48E4B91A | 48EE6D1A | 4A55A165 | 4A6F6565 | 4A77DA65 | 4A905D65 |
|  | 4AC74265 | 4AEE8465 | 4D069469 | 4D147369 | 4D31AB69 | 4D420C69 | 4D499369 | 4D532169 | 4D56A869 | 4D758769 |
|  | 4D84EE69 | 4DD22969 | 4F2BF565 | 4F2C2665 | 4F758F65 | 4FA5A565 | 4FD7BD65 | 51C43089 | 51DA7A89 | 51E7E789 |
|  | 590CC262 | 59733762 | 59F54062 | 5B07E9FA | 5B9EFDFA | 5BBC4BFA | 5BDC93FA | 5BFCCEFA | 5E062FFA | 5E157DFA |
|  | 5E4550FA | 5E7CB6FA | 5E963AFA | 5ED3F8FA | 6015AF51 | 60326151 | 60372751 | 604F6B51 | 60708951 | 607F0B51 |
|  | 60931F51 | 60D7FF51 | 6297391A | 6486D321 | 6496 D 721 | 64F0D121 | 6758901A | 675ED11A | 67F7F31A | 6C3FB8F7 |
|  | 6C9916F7 | 6CAA47F7 | 6CD886F7 | 806BD551 | 806F2D51 | 80A83051 | 831D3465 | 833A6E65 | 837B2565 | 837F0865 |
|  | 83B16265 | 83DA9C65 | 840FAF21 | 84149621 | 84704721 | 84802A21 | 84A25A21 | 84F1E221 | 84FDA321 | 858D66B8 |
|  | 85EB0BB8 | 861A4765 | 8634B865 | 866AB865 | 868D6165 | 86AC2F65 | 891EF962 | 89220762 | 892C2662 | 893ABD62 |
|  | 8950EA62 | 89CFD062 | 89DA4562 | 8A049B55 | 8A27EF55 | 8A32DF55 | 8A489755 | 8A523055 | 8A7F9955 | 8AB3CA55 |
|  | 8AD3AD55 | 8AF88555 | 8DA35BBE | 8DC6B0BE | 8DDAC3BE | 8F1F7855 | 8F5F5F55 | 8FC42755 | 8FEC2655 | 913BD36E |
|  | 9158BF6E | 9199DF6E | 91B4856E | 91D1546E | 91E5696E | A0B92266 | A0BA2B66 | A4401E16 | A4DFFF16 | A4ED5A16 |
|  | A4F64416 | A8668A5D | ADOC6EFE | AD8124FE | ADB3D7FE | ADC5A6FE | ADDAF5FE | D00806F1 | D07D68F1 | DOD26DF1 |
|  | DODDC2F1 | D20C395A | D25CE85A | D278785A | D2B6C25A | D2BF0D5A | D2E44D5A | D400B761 | D41E1961 | D4732D61 |
|  | D494FC61 | D4A85061 | D79B1B5A | D79FAA5A | D801D7FD | D815D2FD | D868D1FD | D8F292FD | EA43E961 | EA485761 |
|  | EA4E1261 | EB355C8A | EB37F78A | EB73DA8A | EED7308A | EEDBF58A | EEE9118A | EF784561 | EF7CB861 | EF8FDE61 |
|  | F10F04FE | F146DAFE | F18C0CFE | F196ACFE | F1B831FE | F1CFA5FE | F1D371FE | F269861A | F26A251A | F28A8D1A |
|  | F32E2E21 | F3369421 | F3EB6821 | F52952B8 | F55C47B8 | F5CC08B8 | F6202521 | F64ABA21 | F6683921 | F684CE21 |
|  | F6DE0521 | F6F67621 | F7BDBD1A | F7D0F01A | F7D2411A | F7F60F1A | FB6E9AFA | FBA2B8FA | FBF809FA | FC8BA450 |
|  | FCBC2050 | FCD65150 | FCEFE550 | FD705E6E | FDBACE6E | FDE3756E | FE0395FA | FE0F38FA | FEOFABFA | FE2ECFFA |
|  | FE56C3FA | FE9C2EFA | FEEFA7FA |  |  |  |  |  |  |  |

Fig. B.1. A table of $v[i]=u_{i, 1} u_{i, 2} u_{i, 3} u_{i, 4} u_{i, 5} u_{i, 6} u_{i, 7} u_{i, 8}$.

## Acknowledgements

The improved attack of Sect. 3.5 was suggested by one of the referees.

Fig. B.2. The exponents $b[i]$ and $g[i]$ from (B.1).

## Appendix A. Useful Pairs for the Attack from Sect. 6

We provide in Fig. A. 1 the list of high-low pairs $(x, y)$ of 16-bit words, together with their sum $z=x+y$. Recall that a high-low pair $(x, y)$ is such that $x$ is a valid high word, $y$ is a valid low word, and $z=x+y$ is a valid middle word. All the constants in the table are given in hexadecimal (base-16) representation.

## Appendix B. A Concrete ISO/IEC 9796-1 Forgery Using the Attack from Sect. 6

The forgery is given for a 1025 -bit modulus with $e=3$. Let us denote the 112 -bit constant $\Gamma=1001001$, where each digit represents a 16 -bit word.

Step 1: For $1 \leq i \leq 273$, we let $x_{i}=\left(a_{i} b_{i} c_{i} d_{i}\right)$ be an integer such that

$$
\begin{aligned}
a_{i} & =\bar{s}\left(u_{i, 1}\right) \tilde{s}\left(u_{i, 2}\right) u_{i, 1} u_{i, 2}, \\
b_{i} & =s\left(u_{i, 3}\right) s\left(u_{i, 4}\right) u_{i, 3} u_{i, 4},
\end{aligned}
$$

$$
\begin{aligned}
c_{i} & =s\left(u_{i, 5}\right) s\left(u_{i, 6}\right) u_{i, 5} u_{i, 6} \\
d_{i} & =s\left(u_{i, 7}\right) s\left(u_{i, 8}\right) u_{i, 8} 6
\end{aligned}
$$

where $v[i]=u_{i, 1} u_{i, 2} u_{i, 3} u_{i, 4} u_{i, 5} u_{i, 6} u_{i, 7} u_{i, 8}$ is given in Fig. B.1. We obtain $M_{i}=$ $\Gamma \cdot x_{i}$, which is a valid encoding for a message $m_{i}$, such that $M_{i}=\mu\left(m_{i}\right)$.
Step 2: Obtain the 272 signatures $s_{i}=\mu_{\mathrm{ISO}}\left(m_{i}\right)^{d} \bmod N$ for $1 \leq i \leq 272$.
Step 3: The signature of $m_{273}$ is given by

$$
\begin{equation*}
\mu\left(m_{273}\right)^{d}=\Gamma^{-139} \prod_{i=1}^{587} p_{i}^{-\mathrm{g}[i]} \prod_{i=1}^{272} s_{i}^{\mathrm{b}[i]} \bmod N, \tag{B.1}
\end{equation*}
$$

where $p_{i}$ is the $i$-th prime, and the b [i]'s and $\mathrm{g}[\mathrm{i}]$ 's are given in Fig. B.2.

## References

[1] D. Coppersmith, S. Halevi, C. Jutla, ISO 9796-1 and the new forgery strategy, Research contribution to P1363, 1999. Available at http://grouper.ieee.org/groups/1363/contrib.html.
[2] J.S. Coron, D. Naccache, J.P. Stern, On the security of RSA padding, in Proceedings of Crypto '99. Lecture Notes in Computer Science, vol. 1666 (Springer, Berlin, 1999), pp. 1-18.
[3] Y. Desmedt, A. Odlyzko, A chosen text attack on the RSA cryptosystem and some discrete logarithm schemes, in Proceedings of Crypto '85. Lecture Notes in Computer Science, vol. 218 (Springer, Berlin, 1985), pp. 516-522.
[4] K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude. Ark. Mat. Astron. Fys. 22A(10), 1-14 (1930).
[5] S. Goldwasser, S. Micali, R. Rivest, A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281-308 (1988).
[6] F. Grieu, A chosen message attack on the ISO/IEC 9796-1 signature scheme, in Advances in Cryptology-Eurocrypt 2000. Lecture Notes in Computer Science, vol. 1807 (Springer, Berlin, 2000), pp. 70-80.
[7] L. Guillou, J.-J. Quisquater, M. Walker, P. Landrock, C. Shaer, Precautions taken against various attacks in ISO/IEC DIS 9796, in Proceedings of Eurocrypt' 90 . Lecture Notes in Computer Science, vol. 473 (Springer, Berlin, 1990), pp. 465-473.
[8] ISO/IEC 9796, Information Technology—Security Techniques—Digital Signature Scheme Giving Message Recovery, Part 1: Mechanisms Using Redundancy, 1991.
[9] C. Lanczos, An iterative method for the solution of the eigenvalue problem of linear differential and integral operator. J. Res. Nat. Bur. Standards 45, 255-282 (1950).
[10] H.W. Lenstra Jr., Factoring integers with elliptic curves. Ann. Math. 126(2), 649-673 (1987).
[11] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography (CRC Press, Boca Raton, 1996).
[12] J.-F. Misarsky, How (not) to design RSA signature schemes, in Public-Key Cryptography. Lecture Notes in Computer Science, vol. 1431 (Springer, Berlin, 1998), pp. 14-28.
[13] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public key cryptosystems. Commun. ACM 21, 120-126 (1978).
[14] V. Shoup, Number Theory C++ Library (NTL) version 5.3.1. Available at www.shoup.net.
[15] D. Stinson, Cryptography: Theory and Practice (CRC Press, Boca Raton, 1995).


[^0]:    ${ }^{1}$ For the sake of convenience we have shown the bytes $a_{i}, b_{i}$ of messages $A, B$ instead of the triples $\left(l_{i}, w_{i}, l_{i-1}\right)$.

