
Cryptanalysis of LILI-128

Steve Babbage
Vodafone Ltd, Newbury, UK

22nd January 2001

Abstract: LILI-128 is a stream cipher that was submitted to NESSIE. Strangely, the designers do not really
seem to have tried to ensure that cryptanalysis is no easier than by exhaustive key search. We show that there
are indeed attacks faster than exhaustive key search. We also demonstrate a related key attack which has very
low complexity, and which could be of practical significance if the cipher were used in a certain rather natural
way.

1. Introduction
LILI-128 is a synchronous stream cipher designed by Dawson, Clark, Golić, Millan, Penna
and Simpson [5], and submitted to NESSIE. It uses a 128-bit key.

No very serious effort seems to have been made by the designers to ensure that cryptanalysis
of this cipher is as hard as exhaustive search on a 128-bit key. For instance they write that:

… we conjecture that the complexity of divide and conquer attacks on LILI-128 is at
least 2112 operations…. This is a conservative estimate, and the true level of security
may be much higher.

But it seems reasonable to insist that any cipher recommended by NESSIE should not be
subject to any attack faster than exhaustive key search. In this note we show that there are
indeed attacks faster than exhaustive key search. We also demonstrate a related key attack
which has very low complexity, and which could be of practical significance if the cipher
were used in a certain rather natural way.

2. Overview of LILI-128
There are two LFSRs: LFSRc, which is 39 bits long, and LFSRd, which is 89 bits long (so a
total of 128 bits of internal state). Both have primitive feedback polynomials. For each
keystream bit:

• The keystream bit is produced by applying a nonlinear function fd to 10 of the bits in
LFSRd. fd is balanced, of course; it has nonlinear order 6 and correlation immunity of
degree 3. The stages from which the inputs are taken form a full positive difference set.

• LFSRc is clocked once. Two bits from LFSRc determine an integer c in the range
{1,2,3,4}.

• LFSRd is clocked c times.
The keystream generator is initialised simply by loading the 128 bits of key into the registers.
Keys that cause either register to be initialised with all zeroes are considered invalid.

Cryptanalysis of LILI-128 2

3. Time-Memory Tradeoff Attack
The simplest observation to be made is that the size of the internal state is only 128 bits, and
so there are clearly time-memory tradeoff attacks faster than exhaustive search if any
significant quantity of observed keystream is available (see [1, 2]).

The usual time-memory tradeoff involves:

• a preprocessing stage in which a large dictionary is built containing many (state, 128-bit
keystream sequence) pairs, sorted by keystream sequence;

• an actual attack stage, in which observed (overlapping) 128-bit keystream sequences are
looked up in the dictionary; if a match is found, then with high probability the associated
state was the internal state of the generator when that observed keystream sequence was
produced.

The basic attack introduced by Babbage [1] has complexity1 T = D = N/M and P = M = N/D,
where T is the time for the actual attack stage, D is the quantity of observed keystream, N is
the size of the internal state space (so 2128 in this case), M is the amount of memory required,
and P is the time for the preprocessing stage. Even if a generous 240 observed keystream bits
were available, the dictionary would require memory for 288 records, which is clearly
impractical.

Biryukov, Shamir and Wagner [2,3] introduced techniques for saving memory, allowing a
more flexible tradeoff TM2D2 = N2 (and still P = N/D) for any D2 ≤ T ≤ N. In this case, with
240 observed keystream bits and memory for 236 records, the time for an actual attack is 2104.
The memory and observed keystream requirements are just about feasible, and the time for
both stages is faster than exhaustive search (although logarithmic terms have been omitted,
which in practice would push the time closer to 2128). With only 228 observed keystream bits
and memory for 236 records, T becomes 2128, so there is no improvement over exhaustive
search.

But it must be remembered that this tradeoff is just about finding a common item in two lists:
list A of keystream sequences generated from known states, and list B of observed keystream
sequences. One list is sorted into a dictionary, and then items on the other list are looked up
in the dictionary. As observed in [1], it can be either of the lists that is sorted into a
dictionary. So even with only 228 observed keystream bits, an attack is possible with time
complexity 2100 and memory 228: sort the observed overlapping 128-bit keystream sequences
into a dictionary, then repeatedly (around 2100 times) try a random state, generate 128 bits of
keystream from it, and look for the result in the dictionary.

It is clear that any significant quantity of consecutive keystream bits (or, more generally,
regularly spaced linear combinations of keystream bits) can be used in this way for an attack
that is faster than exhaustive key search. The more observed bits, the faster the attack.

4. Solving Simultaneous Linear Equations
Guess the 39 key bits used to initialise the clock control register LFSRc. For the correct guess,
you then know exactly how many times LFSRd has been clocked when each keystream bit is
generated. Each keystream bit is thus a 6th order function of ten bits, each of which is a
known linear combination of the remaining 89 key bits. So each keystream bit is a known
linear combination of all the possible products of up to 6 of those 89 bits.

1 We ignore logarithmic terms.

Cryptanalysis of LILI-128 3

There are ()� =

6

1
89

i i
= 625173825 ≈ 1⋅16 × 229 products of up to 6 from 89 bits. So with roughly

that many observed keystream bits, the problem reduces to solving simultaneous linear
equations in that many variables. (We also have to reject incorrect guesses for LFSRc, but that
is simple � either the linear equations will be inconsistent, or else their solutions will be
inconsistent when interpreted as products of secret key bits.)

Without trying to implement it, it is difficult to know exactly how long solving that many
simultaneous equations would take in practice. Coppersmith and Winograd [4] have an
asymptotic time complexity for matrix inversion of O(n2.376), but with a large constant factor.
Strassen�s algorithm [6] has complexity 7n2.807 � 6n2, so 284.8 in this case; the overall attack
would therefore have time complexity 239+84.8 = 2123.8, which is marginally less than
exhaustive key search. However, just storing the coefficients of the equations would require
258 bits, which is impractical. So, with today�s computers and algorithms, this seems to be an
academic rather than a practical attack.

A rather similar attack is considered by the designers in [5], but they suggest that roughly
()

6
89392 keystream bits would be required. As we see above, by guessing the contents of

LFSRc and then performing a linearity attack just on LFSRd, we eliminate the factor 239.

5. Rekeying / Related Key Attacks
It is very common for stream ciphers to be used repeatedly with the same secret key, loaded in
combination with some varying non-secret initialisation vector. There is therefore good
reason to consider the effect of this rekeying � which in effect amounts to a related key
attack, but with rather more justification than related key attacks tend to have against block
ciphers.

The simplest way to combine a secret key and an IV is to XOR them together. If LILI-128 is
rekeyed in this way, then the system can become extremely weak, as we now explain.

Suppose that:

• the 128-bit secret key is k;

• a number of successive 128-bit IVs are v1�vr;

• LILI-128 is loaded (i.e. the registers initialised) with k ⊕ vi;

• the corresponding keystream sequences are available to the cryptanalyst.
The attack proceeds in two phases, which we will first outline and then describe in slightly
more detail:

Phase 1: Guess the 39 secret key bits used to initialise the clock control register LFSRc, and
quickly reject incorrect guesses, so that the correct value is known. For each IV vi, we now
know exactly how many times LFSRd has been clocked when each keystream bit is
generated.

Phase 2: Compare several keystream bits produced using different IVs but when LFSRd has
been clocked exactly the same number of times. Deduce the secret key components of the
10 input bits to the nonlinear function fd at that point. Repeat several times, to obtain
plenty of linear equations in the 89 secret key bits used to initialise LFSRd. Solve those
linear equations to obtain the secret key bits.

For the detail, we will introduce some notation. When LFSRd is initialised with just the secret
key k (i.e. with IV all 0s), and then clocked t times, let the 10-bit vector representing the

Cryptanalysis of LILI-128 4

inputs to the nonlinear output function fd be kt. When LFSRd is initialised with just vi and then
clocked t times, let the 10-bit vector representing the inputs to fd be vit.

Clearly, when LFSRd is initialised with k ⊕ vi and then clocked t times, the 10-bit vector
representing the inputs to fd is kt ⊕ vit.

Detail of phase 1
We can reject incorrect guesses for LFSRc as follows. Find a value t, and different IVs vi and
vj, such that vit and vjt are equal, and for which keystream bits are in fact generated in each
case when, according to our guess, LFSRd has been clocked exactly t times. (For any fixed t,
the probability that a keystream bit will be generated when LFSRd has been clocked exactly t
times is approximately 0.4.) If our guess is correct, the two keystream bits must be equal. If
it is incorrect then they will be equal with probability roughly ½.

Roughly 39 comparisons will suffice to reject all incorrect guesses, and identify the correct
one.

For this method to work, there are tradeoffs between the number r of different IVs available
and the length l of each keystream sequence; the nature of the tradeoffs depends to some
extent on the nature of the IVs. If different IVs are independently random, then there are
roughly ()lr

2
10)2)(4.0(− pairs of keystream bits with the same values of vit and vjt; this formula

reaches the required value of ≈39 for instance when r=32 and l=202, or when r=16 and l=832,
or when r=64 and l=50. We need l ≥ 20 to ensure that the whole of LFSRc is covered. The
analysis is slightly more complex if successive IVs are related, e.g. if they are successive
values of some counter.

If we guess all 39 bits of LFSRc together, and then look to reject incorrect guesses, then the
complexity is slightly greater than 239. But in fact we can break the work down and guess just
a couple of bits at a time. (Guess the two secret key bits contributing to the first integer
c ∈ {1,2,3,4}; confirm or reject this guess as described above; go on to the two secret key bits
contributing to the second integer c; etc etc.) So the complexity of Phase 1 is very low
indeed.

Detail of phase 2
We now know exactly how many times LFSRd has been clocked when each keystream bit is
generated. We proceed to determine the contents of LFSRd.

For some value t, find several different IVs vi such that in each case keystream bits are
generated when LFSRd has been clocked exactly t times. Then consider all possible values for
kt. For the correct value of kt, the observed keystream bit for IV vi will always equal
fd(kt ⊕ vit); for incorrect values of kt, equality will hold with probability roughly ½. Roughly
ten different IVs will suffice to reject all incorrect guesses, and determine the correct one.

Determining kt gives us ten linear equations in the secret key bits used to initialise LFSRd.
Repeating 10 or 11 times will give us 100�110 equations, which should be enough to
determine those 89 secret key bits (there will be some overlap between the equations since the
same register bit will appear repeatedly in different positions).

The complexity of Phase 2 is again extremely low. If even very short (not much more than
10-bit) keystream sequences are available for 25 different IVs, then for enough values of t the
expected number of times a keystream bit is generated when LFSRd has been clocked exactly t
times is approximately 10, which is sufficient. Slightly fewer keystream sequences will
suffice if they are longer (the values of t with ten or more �hits� will be more scattered).

Cryptanalysis of LILI-128 5

Other comments and summary
There are variations on the above process. k0 can be determined without knowing anything at
all about LFSRc. Phases 1 and 2 could be combined: guess the first few bits used from LFSRc,
and one of k1, k2, k3 and k4, rejecting inconsistent guesses for both together; determine the rest
of k1, k2, k3 and k4; go on to the next few bits used from LFSRc, and so on. And we don�t
necessarily have to reject all but one possibility at every stage � we can keep a few
possibilities �live� at once, as long as the number doesn�t keep growing. With this combined
approach it suffices to have roughly 30 sequences of a little over 20 bits each. Anyway, it is
clear that an attack of this kind can be performed if a rather small number of rather short
keystream sequences are available. And the complexity of the attack is very low (real-time,
even, as far as that makes sense for an attack on multiple uses of the same cipher).

We have restricted ourselves to keys related by XORing different known IVs. If the IVs are
chosen by the cryptanalyst � which is an optimistic but not completely fanciful
assumption � then variations become possible with even smaller data requirements. Keys
with more general chosen relationships would open up a host of other possibilities, but of less
practical significance.

6. Design Criteria for the Nonlinear Function
The keystream bit is computed using a non-linear function on 10 of the bits in LFSRd.
Amongst other criteria, the function was chosen to have fairly high order correlation
immunity (order 3). This choice was made to give resistance against correlation attacks.

This seems to be a misguided application of correlation immunity. Having no correlation to
subsets of up to three of the input bits is rather pointless, because there is correlation to sums
of four or more bits � and any sum of the bits from four or more stages of an LFSR is itself a
linear sequence from the same LFSR. When all input bits come from one LFSR, sums of
small numbers of input bits are no more in need of protection from correlation attacks than
sums of large numbers of input bits.

As noted in section 4.3 of [5], there is merit in having at least first order correlation immunity,
to prevent attacks that track a bit from one position in LFSRd to another. But correlation
immunity of order greater than one seems an inappropriate criterion (the input stages to fd
form a full positive difference set, so no two bits appear together twice as inputs). A more
appropriate criterion might have been to choose a balanced, first order correlation immune
function with minimum correlation to any linear function of more than one bit. (The present
author does not know whether any such function does actually achieve better nonlinearity
than the LILI-128 function � this observation is about the criteria for selecting the function
rather than the function itself.)

7. Conclusions
General: If a general-purpose cipher has a 128-bit key, it is expected that there should be no
attack faster than 128-bit exhaustive search. But it does not appear that the designers of
LILI-128 have really tried to ensure that there are no attacks faster than exhaustive key
search; there are various faster attacks, including at least one very straightforward one.

Related key attacks: for better or for worse, related key attacks against block ciphers are
taken seriously. A related key attack faster than exhaustive key search against one of the AES
candidates would have been enough to remove it from contention. We have demonstrated a
related key attack against LILI-128 which requires only a few tens of related keys, and has
very low complexity; we have also shown how those conditions could be available in

Cryptanalysis of LILI-128 6

practical use if the system is rekeyed in a certain very natural way. Even if it is specified that
LILI-128 should be rekeyed in a different way, the general concept of the related key attack
remains; we leave it to others to decide whether that matters.

8. References
[1] S.H.Babbage, Improved “Exhaustive Search” Attacks on Stream Ciphers, ECOS 95

(European Convention on Security and Detection), IEE Conference Publication No.
408, May 1995.

[2] A.Biryukov, A.Shamir, Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers, ASIACRYPT 2000, published as LNCS 1976, Springer Verlag, 2000.

[3] A.Biryukov, A.Shamir, D.Wagner, Real Time Cryptanalysis of A5/1 on a PC, FSE
2000, to be published in LNCS series by Springer Verlag.

[4] D.Coppersmith, S.Winograd, Matrix multiplication via arithmetic progressions, in
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
New York City, 25-27 May 1987.

[5] E.Dawson, A.Clark, J.Golić, W.Millan, L.Penna, L.Simpson, The LILI-128 Keystream
Generator, NESSIE submission, in the proceedings of the First Open NESSIE
Workshop (Leuven, November 2000), and available at http://www.cryptonessie.org

[6] V.Strassen, Gaussian Elimination is Not Optimal, Numerische Mathematik, vol 13,
pp 354-356, 1969.

	Introduction
	Overview of LILI-128
	Time-Memory Tradeoff Attack
	Solving Simultaneous Linear Equations
	Rekeying / Related Key Attacks
	Detail of phase 2
	Other comments and summary
	Design Criteria for the Nonlinear Function
	Conclusions
	References

