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Abstract. NORX is an authenticated encryption scheme with associated data that was
selected, along with 14 other primitives, for the third phase of the ongoing CAESAR
competition. It is based on the sponge construction and relies on a simple permutation
that allows efficient and versatile implementations. Thanks to research on the security
of the sponge construction, the design of NORX, whose permutation is inspired from the
permutations used in BLAKE and ChaCha, has evolved throughout three main versions
(v1.0, v2.0 andv3.0). Themain result of this paper is a cryptanalysis of the fullNORXv2.0
that successfully passed, in 2016, the second round of the CAESAR competition. We
exhibit a strong symmetry preservation property of the underlying sponge permutation
and show that this property can be turned into an attack on the full primitive. This attack
yields a ciphertext-only forgery with time and data complexity 266 (resp. 2130) for
the variant of NORX v2.0 using 128-bit (resp. 256-bit) keys and breaks the designers’
claim of a 128-bit (resp. 256-bit) security. We further show that this forgery attack can
be extended to a key-recovery attack on the full NORX v2.0 with the same time and
data complexities. We have implemented and experimentally verified the correctness
of the attacks on a toy version of NORX v2.0. We also investigate the security of the
NORX v3.0, a tweaked version of NORX v2.0 introduced at the beginning of the third

∗This article is the full version of the paper [15] published at ToSC/FSE 2017.
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round of the CAESAR competition. The introduction in NORX v3.0 of an extra initial
and final key addition thwarts the former forgery and key-recovery attacks. We exhibit,
however, a long-message forgery attack on both NORX v2.0 and NORX v3.0 that, given
the ciphertext of a 2m -block message, allows to forge another 2m -block ciphertext with
a success probability of about 2m−128 (resp. 2m−256) instead of 2−128 (resp. 2−256) as
one would ideally expect. We further show that since the symmetry preservation of the
NORX v2.0 permutation persists in NORX v3.0, the former long-message forgery attack
can be extended in both versions to a state-recovery attack. This high-complexity attack
does not threaten the practical security of NORX v3.0, but show that the security loss
once a successful forgery has been issued is larger than one would expect.

Keywords. CAESAR competition, NORX, Cryptanalysis, Forgery attack, Symmetry.

1. Introduction

The purpose of authenticated encryption (AE) is to encrypt and authenticate a plaintext
message in a combined way. A slight extension of this functionality named authenticated
encryption with associated data (AEAD) allows to authenticate at the same time some
extra unencrypted data named associated data. An example of a broadly deployedAEAD
algorithm is theGCMmode of operation ofAES [23]. The aimof the ongoing international
competition CAESAR that has been launched in 2014 is to select a portfolio of AE(AD)
algorithms that offer stronger security guarantees or whose performance profiles are
better suited to some execution environments than AES-GCM.
NORX is a family of AEAD algorithms designed by Aumasson, Jovanovic and Neves,

and is one of the 15 CAESAR candidates that were selected in August 2016 for the
third round of the competition. The overall structure of the NORX algorithm adopts the
so-called monkeyDuplex construction, which is derived from the sponge construction
and iterates a keyless permutation P of a large state [8]. The design of the permutation
P used by NORX is partly inspired from those of the stream cipher ChaCha [12], the
SHA-3 finalist BLAKE [2] and its more efficient variant BLAKE2 [6]. This permutation
operates over states that can be represented as 4 × 4 matrix of words whose size w is
either 32 or 64 bits. It follows a design close to so-called ARX primitives, as it uses
only “R” operations (circular rotations and shifts), “X” (exclusive-OR) operations and
modified “A” operations (modular additions, modified in that carries only propagate to
one position to the left). The key length k, the default tag length t and the claimed security
level of NORX are all equal to 4w, in other words either all equal to 128 bits or to 256
bits depending on the value of w.
Threemain versions ofNORXhavebeenpublished so far:NORXv1.0 (March2014), the

initial submission to the CAESAR competition; NORX v2.0 (August 2015), the version
that was evaluated and selected for the third round; NORX v3.0 (September 2016), a
version published shortly after the beginning of the third round that will serve as a basis
for the third-round evaluation. In all versions, the NORX family consists of two main
sub-families of algorithms associated with the word sizes w = 32 and w = 64.
Lightweight variants of NORX, called NORX-8 and NORX-16, have also been pro-

posed by the same designers [5]. They follow the same generic strategy as NORX v2.0,
with word sizes w = 8 and w = 16.
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Related Work There exists a handful of papers that study the security of NORX, which
we briefly recall here. First, the designers of NORX provided their own analysis of the
permutation P in the specifications and [3]. They conclude that no high-probability dif-
ferential exists in the primitive, that word-level rotational cryptanalysis does not threaten
the scheme, and that no structural distinguisher of the permutation can be used in an
attack on the mode. Later in [18], Das et al. describe statistical variants of zero-sum dis-
tinguishers that allow to distinguish 3.5 rounds of the permutation of NORX-32 and the
full-round permutation of NORX-64 from random permutations. At FSE 2016, Bagheri
et al. show in [13] that the slow diffusion ofG−1 can be leveraged into a state/key recov-
ery for a reduced versions of NORX v2.0 where the underlying permutation applies half
the rounds (two out of four).More recently, Dwivedi et al. [17] analyze the state-recovery
resistance of several CAESAR candidates, including NORX, with respect to SAT solvers.
About NORX, they conclude that state recovery is only possible on NORX-32 when the
underlying permutation does not apply more than 1.5 round. The main property of the
NORX permutation that we describe in Sect. 3, on which our attack on NORX v2.0 mainly
relies, has been independently discovered by Biryukov et al. in [14]. Finally, throughout
this paper, we also refer to [20] where Jovanovic et al. give a security proof of the NORX
mode.

Our Contributions Our main result is an attack on NORX v2.0 that shows that the
security level of the NORX v2.0 algorithms is at most 2w + 2 bits, i.e., about 66 or
130 bits depending whether w = 32 or w = 64, instead of the 4w bits claimed by the
designers. The attack can be viewed in two ways:

1. as an existential forgery attack with success probability 2−2w−2, for instance 2−66

if w = 32 bits, that requires to get the authenticated encryption of one single short
chosen plaintext or,

2. as an existential forgery attack with success probability greater than 50% that
requires the knowledge of 22w+2 ciphertexts with their associated tags and the
same number of forgery attempts.1

Both variants of the attack break the claim of the designers stating that NORX v2.0
offers a 4w-bit level of security. We additionally observe that once a forgery attempt
succeeds, a key-recovery attack can be easily mounted as the secret key is only injected
during the initialization phase. Namely, a successful forgery can reveal the full internal
state at the expense of an extra offline computation of about 22w operations. Then the full
sponge can be inverted, which reveals the initial state that contains the secret key. This
can be achieved if we assume either chosen-plaintext attacks, or that a ciphertext-only
adversary interacts with a decryption oracle and gets the plaintext corresponding to any
successful forgery. We have implemented and experimentally verified the correctness of
the attacks on a toy version of NORX v2.0, where the word size w is reduced to 8 bits.
The attack leverages an interaction between the two following non-conservative prop-

erties of NORX v2.0.

1Enforcing a limitation of the amount of data handled with a single key does not thwart our attack as
changing the key does not drop the marginal success probability of a single forgery attempt.
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• The capacity of the NORX sponge is low: only 4w bits, one fourth of the state size,
i.e., 128 bits if w = 32 bits and 256 bits if w = 64 bits. This more aggressive
choice than the 6w-bit capacity that was selected for NORX v1.0 was presumably
motivated by performance considerations, as it allowed to increase the rate of the
sponge construction by a factor 1.25. It was also supported by the security bounds
derived from the security proofs of [20] (substantiated in the security goals section
of the algorithm specification [4]), up to the fact that the underlying permutation P
does not behave like an ideal permutation.

• The permutation P used in the NORX sponge has strong structural properties that
substantially deviate from the expected behavior of an ideal permutation. Our attack
leverages the structural property that P commutes with a circular rotation of the
columns of the internal state 4× 4 matrix. This property has some connection with
the weaker structural property of P already observed by the designers in [3] that
the set of states whose four columns are equal is invariant under P.

The former attack can be viewed as a kind of rotational cryptanalysis at the state level
rather than at the word level as considered in [3] on NORX or more generally in [21]. It
also has some connection with the invariant permutation attacks sub-class of invariant
subspace attacks introduced in [22], since in both cases a permutation of the state words
that commutes with a cryptographic state permutation is leveraged, one difference being
that an invariant permutation property is used here in a keyless and constant-less context.
While the two non-conservative properties leveraged by the attack (the low capacity

and the existence of a commuting rotation) still hold for NORX v3.0, one of the “tweaks”
introduced in NORX v3.0 appears to thwart the former attack, namely the involvement of
the key in the finalization of the tag computation, using an Even–Mansour-like construc-
tion. This finalizationwas also selected during the conception of anothermonkeyDuplex-
based CAESAR candidate, namely ASCON [16].
Finally, we also investigate the security claims ofNORX v2.0 andNORX v3.0.We show

that the generic success probability of a forgery attack has to be related to the cumulative
length of forgery attempts (instead of the total number of forgery attempts), as it is also
the case for other AEAD schemes such as GCM. We also demonstrate that, because of the
symmetry propagation property ofNORX v3.0, generic long-message forgery attacks can
be extended to state-recovery attacks of similar complexity, and that once such a state-
recovery attack has succeeded, the adversary can easily compute forgeries for messages
in which he can choose everything but the last three blocks. Moreover, we show that
even if the total length of decryption queries is strongly limited, the authenticity bound
of the proof does not guarantee the security level of 24w claimed for NORX.

Organization The rest of this paper is organized as follows. Section 2 gives detailed
descriptions of NORX variants discussed in the paper. In Sect. 3, we describe our attack
on NORX v2.0. In Sect. 4, we study the applicability of this attack to other variants of
NORX and to other symmetric cryptographic functions that use similar internal primitives.
In Sect. 5, we discuss the security ofNORX v3.0 against generic long-message attacks and
how the symmetries of the NORX v3.0 permutation affect such attacks. Finally, in Sect. 6,
we discuss the results of the attack of Sect. 3 and compare them to the security claims
made by the designers of NORX and to the bounds derived from the security proofs.
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2. Specifications of NORX

We provide in this section a description of the NORX family of Authenticated Encryption
with Associated Data (AEAD) algorithms, through the description of NORX v2.0. We
start by detailing in Sect. 2.1 the keyed-sponge mode and its core permutation. Then,
in Sect. 2.2, we describe the security goals claimed by the designers. Finally, we outline
in Sect. 2.3 the main differences between NORX v2.0 and the other members of the NORX
family.

Notations In the sequel, we use x ||y to denote the concatenation of two bit strings x
and y, and |x | to represent the bit length of the bit string x .

2.1. Description of NORX v2.0

We now describe NORX v2.0, which is the version our attack targets. It relies on w-bit
words operations, with w ∈ {32, 64}. We note NORX-w when we consider NORX with
a given w value.

Mode of Operation NORX is based on the monkeyDuplex mode of operation [9] built
upon the sponge construction and relies on a 16w-bit permutation P that we describe
later.
The monkeyDuplex construction operates on an internal state S, which in the case of

NORX v2.0 is divided into two distinct parts of respective bit sizes r = 12w and c = 4w
for a total size of 16w bits. We represent the 16w-bit internal state S of the construction
as a 4 × 4 matrix of w-bit words as follows

S =

⎡
⎢⎢⎣
s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

⎤
⎥⎥⎦ .

The value r is called the rate of the sponge and denotes the amount of data that can
be processed by each call to permutation P. The rate part Sr of the state consists of its
first 12 words. The value c is called the capacity and informally represents the security
level expected from the construction. The capacity part Sc of the state consists of its last
four words. The internal state S can then be written as S = Sr ||Sc.
The encryption algorithm Enc takes as inputs a k-bit key K , an n-bit nonce N , a

plaintext M and associated data in the form of a header A and a trailer Z . The header,
plaintext and trailer are three optional strings. The encryption algorithm computes a t-bit
authentication tag T , and a ciphertext C of same bit length as the plaintext. Similarly,
the decryption algorithm Dec takes as inputs (K , N , A,C, Z , T ) and returns either ⊥
or M depending on the validity of the authentication tag T .
Encryption and decryption algorithms begin by an initialization phase that sets the

internal state to Sinit : it consists in storing the 4w-bit key K
def= k0||k1||k2||k3, the 2w-bit

nonce N
def= n0||n1 and some initialization constants (ui ) in the internal state, as follows:
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Fig. 1. NORX v2.0mode: the padded bit strings of 12w-bit blocks A = A0|| · · · ||Aa−1,M = M0|| · · · ||Mm−1
and Z = Z0|| · · · ||Zz−1 are processed by the monkeyDuplex construction.

Sinit =

⎡
⎢⎢⎣
n0 n1 u2 u3
k0 k1 k2 k3
u8 u9 u10 u11
u12 u13 u14 u15

⎤
⎥⎥⎦ .

After this step, some parameters of the cipher are XORed to s12, s13, s14 and s15.
Finally, P is applied to the full state.
The processing of the header, plaintext and trailer are similar. We assume that header,

plaintext and trailer are split in blocks of bit length 12w. To achieve this, any non-empty
field A, M or Z is padded using the so-called multi-rate padding function pad, which
works as follows:

pad(X) = 10 f (X,w)1,

where f (X, w) is the smallest nonnegative integer such that 12w divides the total bit
length of X ||pad(X). Header, plaintext and trailer blocks are then processed iteratively.
The whole mode of operation is depicted in Fig. 1. Each block B is handled as follows.

1. A domain separation constant is first XORed to the last word of the internal state,
namely s15. Its value depends on the type of data being processed: 0x01 for the
header, 0x02 for the plaintext and 0x04 for the trailer.

2. The permutation P updates the internal state S; that is: S ← P(S).
3. The header, plaintext or trailer block B is XORed in the rate part of the state; that

is: Sr ← Sr ⊕ B.
4. If B is a plaintext block Mi , the rate part (after XOR with B) is used as ciphertext

block Ci . Note that if Mi is the last plaintext block, the part of Ci obtained from
the padding is not returned as part of the ciphertext.

The last step is the tag generation. To compute the tag, first domain separation constant
0x08 is XORed to s15. Then, P is applied twice to S. The t-bit tag T (where t = 4w)
is extracted as the 4-tuple of state words (s0, s1, s2, s3).

The permutation P The permutation P consists of l consecutive applications of a round
function F, i.e., P = Fl . The function F in turns consists of two layers of a smaller
permutation denoted G, which acts on 4w bits. The permutation G is first computed in
parallel on the four columns of S, then on its four diagonals, as depicted in Figs. 2 and 3.
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Fig. 3. Function G applies on state diagonals.

The pseudo-codes for both functions F andG are given in Algorithm 1 and Algorithm 2,
respectively.

Algorithm 1 – Compute F(S)

Input: Internal state (s0, . . . , s15)
Output: Updated (s0, . . . , s15)

1: (s0, s4, s8, s12) ← G(s0, s4, s8, s12)
2: (s1, s5, s9, s13) ← G(s1, s5, s9, s13)
3: (s2, s6, s10, s14) ← G(s2, s6, s10, s14)
4: (s3, s7, s11, s15) ← G(s3, s7, s11, s15)

5: (s0, s5, s10, s15) ← G(s0, s5, s10, s15)
6: (s1, s6, s11, s12) ← G(s1, s6, s11, s12)
7: (s2, s7, s8, s13) ← G(s2, s7, s8, s13)
8: (s3, s4, s9, s14) ← G(s3, s4, s9, s14)

9: return S

Algorithm 2 – Compute G(a, b, c, d)

Input: 4w-bit tuple (a, b, c, d)

Output: Updated (a, b, c, d)

1: a ← H(a, b)
2: d ← (a ⊕ d) ≫ r0
3: c ← H(c, d)

4: b ← (c ⊕ b) ≫ r1

5: a ← H(a, b)
6: d ← (a ⊕ d) ≫ r2
7: c ← H(c, d)

8: b ← (c ⊕ b) ≫ r3

9: return (a, b, c, d)

Internally, theG function uses exclusive-OR operations, linear rotations of words and
a nonlinear operation, denoted by H, that mimics the modular addition modulo 2w of bit
strings x and y:

H(x, y) = (x ⊕ y) ⊕ ((x ∧ y) � 1).
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Table 1. Rotation constants in the permutation G.

Instance r0 r1 r2 r3

NORX-32 8 11 16 31
NORX-64 8 19 40 63

The rotation constants r0, r1, r2 and r3 used in G depend on the word size (see Table 1).

2.2. Security Claims

First of all, the designers of NORX claim no security in the event where nonces are
reused: a key/nonce pair should be used only once for encryption. Similarly, there is no
guarantee of security under the release of unverified plaintext [1]. Namely, if during the
decryption of a ciphertext, any information on the plaintext leaks before the tag has been
successfully verified, the security can no longer be ensured.
In other cases, the designers of NORX claim security levels for both confidentiality and

authenticity that are equivalent to an exhaustive search of the key, which corresponds to
a level of security of 128 bits for NORX-32 and 256 bits for NORX-64.
Additionally, any forgery attack in which the adversary has x forgery attempts should

succeed with probability close to x · 2−t .
The designers also impose limitations on the amount of data that can be processed

with one key. In particular, the security claims are valid as long as the usage of a key K
induces fewer than 22w calls to the underlying permutation2 P.

2.3. NORX Variants

We outline here the differences between NORX v2.0 and the other members of the NORX
family, either the successive entries to the CAESAR competition or the lightweight
variants. We also mention a parallel alternative to the serial mode of operation presented
in Sect. 2.1.

NORX v1.0 NORX v1.0 (also named NORX v1 in some submission documents) is the
initial version of NORX submitted to the CAESAR competition in March 2014. The
main difference between NORX v1.0 and NORX v2.0 relates to the capacity size, which
has been reduced from 6w bits to 4w bits. This change yields an increased rate with a
direct impact on the efficiency of the cipher, and has been justified by security proofs,
e.g., [20]. The security claims are left unchanged between the two versions.

NORX v3.0 NORX v3.0 is the latest version of NORX submitted to the CAESAR compe-
tition in September 2016. Several changes have been brought to NORX between versions
2.0 and 3.0. In previous versions, a potential state-recovery attack would enable the
adversary to forge valid tags by computing the encryption forwards or even to recover

2Note that the NORX specifications (v2.0 and v3.0) are unclear whether the data limitation refers either to
a number of initializations or to a number of calls to the core permutation. We chose the latter as it captures
both cases.
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the key by deducing the internal state after initialization by computing backwards. In
v3.0, this is no longer possible as the key K is XORed to the capacity part of the state
after the initialization step, and after each of both applications ofP during the generation
of the authentication tag. Consequently, the tag is extracted as the capacity part Sr of
the state after the last key addition.
Another modification is that NORX v3.0 uses 4w-bit nonces instead of 2w-bit nonces

for previous versions. Again, the security claims are the same as in NORX v2.0.
NORX-8 and NORX-16 These two primitives target lightweight applications and are
variants of the NORX v2.0 design, with smaller word sizes, namely w = 8 and w = 16,
respectively. To achieve decent security levels, their capacities cannot be limited to 4w
words (which would be 32 and 64 bits, respectively). Instead, their respective capacities
are increased to 88 bits and 128 bits, respectively, and their capacity parts are defined as
(s5, . . . , s15) and (s8, . . . , s15), respectively.

The respective key lengths for NORX-8 and NORX-16 are 80 and 96 bits, and the tag
length is again the same as the key length, which define the security levels claimed for
these two primitives.
In the case of NORX-8, the tag length exceeds the rate of the sponge construction.

Consequently, the tag cannot be extracted at once. Instead, the 40 bits of the rate part
are extracted as the first half of the tag, then an extra constant 0x08 is XORed to s15, P
updates the internal state, and the second half of the tag is extracted as the rate part of
the state.
The amount of data processed with a given key is limited to, respectively, 224 and 232

messages.

ParallelMode ofOperation TheNORX variants submitted to theCAESARcompetition
offer a parallel mode of operation, which enables to process in parallel p > 1 blocks
of plaintext simultaneously. Basically, the state of the mode of operation is diversified
into p branches, the plaintext blocks are dispatched over the branches for processing,
the branches are combined, and the trailer and tag are handled as in the serial mode.

3. Cryptanalysis of NORX v2.0

We give in this section the details of a ciphertext-only forgery attack on NORX v2.0 that
exists due to a combination of aggressive choices made by the designers. The attack
indeed relies on strong non-random properties of the underlying permutation P = Fl

used in a keyed-spongemode, as well as a relatively small sponge capacity. Additionally,
we show that the forgery attack yields a plaintext-recovery attack and a key-recovery
attackwith the same complexities.Webegin in Sect. 3.1 by giving non-randomproperties
of F that extend to P, describe a simplified version of the forgery attack in Sect. 3.2
and then the full attack in Sect. 3.3. We discuss requirements for the adversarial model
in Sect. 3.4 and give extensions of the attack in Sect. 3.5.

3.1. Non-random Properties of F

In the specification document ofNORX [4] and in another analysis paper [3], the designers
acknowledge the use of a permutation that presents non-random properties. They argue
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that distinguishers on the permutation do not affect the overall monkeyDuplex construc-
tion since domain separation constants are used at the mode level. Security proofs have
been written for the NORX mode, e.g., [20], which assumes an ideal permutation and
sets aside its structural weaknesses.
In the sequel, we recall a strong distinguisher on F and later show how to leverage

it to attack the full primitive. We note that our attack does not invalidate the security
proofs of the mode, which rely on the assumption that the permutation is ideal and does
not present any distinguisher like the one we describe.

Previous Work First, in [4], the designers use the constraint solver STP to confidently
assume that the permutations used in all NORX variants present only a single fixed-point,
namely the all-zero state: {x,F(x) = x} = {0}. Later in [3], the same authors introduce
a class of 24w weak states of the form

⎡
⎢⎢⎣
a a a a
b b b b
c c c c
d d d d

⎤
⎥⎥⎦ , (a, b, c, d) ∈ GF(2w),

where all the four columns of the state are equal. Due to the column/diagonal applications
of G in the permutation F (see Sect. 2), it is easy to see that the set of these weak states
is stable by F: starting from a weak state, applying F any number of times leads to a
weak state. In particular, the set of weak states is stable by P = Fl .

A Stronger Distinguisher We note here that there exists a larger class of 28w states
behaving in a similar way, where the two left columns equal the two right ones; namely,
states of the form:

⎡
⎢⎢⎣
a e a e
b f b f
c g c g
d h d h

⎤
⎥⎥⎦ , (a, b, c, d, e, f, g, h) ∈ GF(2w).

Again, this larger class is stable by F and P.
Additionally, we note that one can slightly generalize the notion by considering

“rotated” variants of one state. More formally, we denote by S≪i the state S where
the columns are left-rotated by i positions. Given xi ∈ GF(2w), 0 ≤ i < 16, consider
the state

S =

⎡
⎢⎢⎣
x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

⎤
⎥⎥⎦ ,

and the three states obtained by rotating the columns of S by one, two and three positions:
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S≪1 =

⎡
⎢⎢⎣
x1 x2 x3 x0
x5 x6 x7 x4
x9 x10 x11 x8
x13 x14 x15 x12

⎤
⎥⎥⎦ , S≪2 =

⎡
⎢⎢⎣
x2 x3 x0 x1
x6 x7 x4 x5
x10 x11 x8 x9
x14 x15 x12 x13

⎤
⎥⎥⎦ ,

S≪3 =

⎡
⎢⎢⎣
x3 x0 x1 x2
x7 x4 x5 x6
x11 x8 x9 x10
x15 x12 x13 x14

⎤
⎥⎥⎦ .

Our main observation is that F and the column rotations commute, that is:

∀i ∈ {1, 2, 3}, F(S≪i ) = F(S)≪i .

Wedefine by symmetric a state S that is invariant by rotation by two positions: S = S≪2.
Similarly, we say that the capacity part of an internal state is symmetric if this internal
state restricted to that part is invariant by rotation by two positions.
In the following section, we show how the small proportion of the internal state

allocated to the capacity in both NORX-32 v2.0 and NORX-64 v2.0 allows to use this
structural distinguisher tomount a ciphertext-only forgery attack on these two primitives.

3.2. Ciphertext-Only Forgery of NORX v2.0 Without Padding

Recall that the security of NORX-w relies on a capacity of 4w bits, and its key and tag
sizes are of the same size 4w bits.
We now consider a modified version of NORX, in which the plaintext (and therefore

ciphertext) lengths are always a multiple of the block size 12w. Therefore, no padding
needs to be added to the plaintext before encryption. This modification enables us to
describe a simplified version of our attack, which can be adapted to the full NORX v2.0
as shown in Sect. 3.3.

The following describes a ciphertext-only forgery attack against NORX v2.0 without
padding that requires q valid ciphertext/tag pairs (C, T ), performs q forgery attempts
and has success probability

1 −
(
1 − 1

22w

)q

.

In particular, the forgery attacks succeed with probability 1− 1/e ≈ 63% for q = 22w,
and with probability about q · 2−2w for smaller values of q. We require that there is no
trailer, that the plaintexts and ciphertexts lengths are multiples of the block size, and that
the cipher does not apply any padding. Without loss of generality, we assume there is no
header and that the plaintext and ciphertext length is exactly one block. If it is not the
case, the attack can be transposed directly by applying ciphertext modifications only on
the last block.
Assume that an attacker has q known tuples (Ni ,Ci , T i ) in its possession, resulting

from the NORX-w encryption of unknown messages Mi , under known pairwise distinct
nonces Ni and unknown key K :
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(Ni ,Ci , T i ) = Enc(K , Ni , Mi ).

Given such a tuple, (N ,C, T ), the attacker attempts to produce a forgery by consid-
ering the message (N ,C≪2, T≪2). The ciphertext and tag parts of the message are
rotated variants of the initial ciphertext and tag. In the event that the capacity part of the
state is symmetric before the last two calls to P for the generation of the tag (see Fig. 4),
the states S∗ and S′∗ at the same point of the computation are rotated versions of each
other, and due to the fact that P and the rotation commute, this is also satisfied by the
tags. More formally, we have the internal state S′∗ as

S′∗ = C≪2
0 || Sc∗,

= C≪2
0 || (

Sc∗
)≪2

,

= (
C0 || Sc∗

)≪2
.

and evaluate the two last applications of P, which gives

P2(S′∗) = P2
((
C0 || Sc∗

)≪2
)

,

=
(
P2 (

C0 || Sc∗
))≪2

,

and then yield the equality on the authentication tags

T ′∗ = T≪2∗ .

The probability for a tuple to yield an internal state such that its capacity is symmetric
before the last two calls to P for the generation of the tag (see Fig. 4) is 2−2w.

All in all, as an attacker has a probability of 2−2w to forge a valid message due to
the symmetries in P, he only needs about 22w known ciphertext/tag pairs to launch the
attack and break the authenticity of NORX-w.
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3.3. Forgery Attack Against NORX v2.0

We now adapt the attack to take into account the padding systematically applied by
NORX to any non-empty plaintext (Fig. 5).

The difficulty introduced by the padding is that the attacker has no longer access to the
whole rate part of the state S∗: the part corresponding to the padding is not included in the
ciphertext. In order to minimize this unknown component, we consider only messages
of size 12w − 2 bits, which lead to the minimal padding length of two bits.

In order to forge a message using the commuting rotation property of P, the attacker
has to produce a ciphertext C ′ such that the state S′∗ is the rotated version of state S∗.
In addition to the constraint that the capacity part of the state remains unchanged, new
constraints are introduced by the padding, stemming from the matching between

(
S′∗

)r =
⎡
⎣
c′
0 c′

1 c′
2 c′

3
c′
4 c′

5 c′
6 c′

7
c′
8 c′

9 c′
10 c′

11 || v

⎤
⎦ and

(
Sr∗

)≪2 =
⎡
⎣
c2 c3 c0 c1
c6 c7 c4 c5
c10 c11 || v c8 c9

⎤
⎦ ,

with v the unknown part of Sr∗. Note that the 2-bit padding v only depends on C and C ′
through their length, and is thus repeated in both S∗ and S′∗. Denoting by x the last two
bits of x , the padding constraints are satisfied if we set the bits ofC ′ to the corresponding
known bits of C , and additionally

c′
9 = v and c9 = v.

Setting c9 = c′
9, the constraints boil down to c9 = v which holds with probability 2−2.

Overall, taking the padding into account results in a decrease of the advantage of the
attacker that can be limited to a factor 2−2 for the most favorable message length. This
attack can trivially be extended to any padding length p ≤ 2w with complexity 22w+p

instead of 22w+2.

3.4. Adversarial Model Discussion

Our attack is efficient on the padded version of NORX only if the length of the padding
appended to the plaintext leading to the ciphertext the adversary tries to modify is
minimal. Formally, if we keep the minimal padding length of two bits, this can lead to
the following two scenarios:
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• In a chosen-plaintext setting, the adversary can select plaintexts of length equal
to 12w − 2 (mod 12w). The success probability of each forgery attempt is then
2−2w−2.

• In a ciphertext-only setting, the attack still works as the adversary does not need to
know the value of the corresponding plaintext. However, it requires that ciphertexts
whose last block has a specific length are available. Under the hypothesis that the
length of the message follows a uniform distribution modulo 12w, the adversary
can try to modify only those ciphertexts, which introduces a factor 12w in the data
complexity.

We note that this constraint relies on the general description of NORX at the bit level,
whereas the functional requirements of the CAESAR competition act on byte strings.
Consequently, to launch the attack in that case, ciphertexts of L bytes are required, with
L = −1 (mod 12w/8) and the advantage of the attacker becomes q · 2−2w−8. If this
requirement on L does not hold, the data complexity would increase by a factor 12w/8,
assuming again that the ciphertext byte-length modulo 12w/8 are uniformly distributed.

3.5. Key-Recovery Attack Against NORX v2.0

Recovering the Key We now discuss whether it is possible to recover the encryption
key from a successful forgery attempt. Once the adversary achieves such a forgery, he
knows that with overwhelming probability, the capacity part of the state at the end of the
encryption step is symmetric. Therefore, only 22w values are possible for the capacity
part of the state at that point. As the adversary knows the value of the rate part, he
can recover the full state by an exhaustive search over these 22w values. Trying all 22w

possible symmetric values at the input of F8 allows to filter (on average) one internal
state.
Let us suppose that the adversary additionally knows at that point the value of the

plaintext returned by the decryption algorithm on his successful forgery. He can then
compute backwards up to the initialization of the state and filter the correct guess on the
4w-bit constants, which subsequently reveals the 4w-bit secret key.

We have successfully verified the forgery and key-recovery attacks on a toy version
of NORX v2.0, by taking the word size w = 8 and adopting the rotation constants of
NORX-8.
The pseudo-code for the forgery and key-recovery attacks is given in Algorithm 3.We

have implemented the attack on a toy example of NORX v2.0 derived from the source
code provided by the designers as part of the CAESAR competition. We in particular
emphasize that due to the CAESAR requirements, all the inputs are byte strings, hence
the padding cannot be restricted to less than one byte.

Adversarial Models In a ciphertext-only setting, the adversary does not get the value
of the plaintext after the decryption and cannot perform the last step of the key-recovery
attack. It is, however, possible in chosen-plaintext or chosen-ciphertext settings.
In the chosen-ciphertext setting, for each decryption query, the adversary gets either⊥

if the tag is not valid or the corresponding plaintext if it is valid. If the adversary issues a
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Algorithm 3 – Forgery and Key-Recovery Attack on NORX v2.0

Input: 22w ciphertext/tag pairs (Ci , Ti ), 2w-bit nonce N = n0||n1
Output: Secret key K

1: for each ciphertext Ci = (c0, . . . , c10) and tag Ti = (t0, . . . , t3) do

2: C
′
i ← (c2, c3, c0, c1, c6, c7, c4, c5, c10, c9, c8)

3: T
′
i ← (t2, t3, t0, t1)

4: M ′ ← Dec(N ,C
′
, T ′)

5: if M ′ 
= ⊥ then

6: for all words a, b do

7: S ← (c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c9, a, b, a, b)
8: S ← S ⊕ M ′||0c
9: s15 ← s15 ⊕ 08
10: S ← P−1(S)

11: s15 ← s15 ⊕ 02
12: S ← P−1(S)

13: if (s0, s1, s2, s3) = (n0, n1, u2, u3) then

14: return K = (s4, s5, s6, s7)

15: end if

16: end for

17: end if

18: end for

forgery, then he can query the decryption oracle with a valid (ciphertext, tag) pair. Then,
he gets the value of the plaintext he needs to compute backwards and recovers the key.

If the adversary can query an encryption oracle, he can encrypt arbitrary one-block
plaintexts and try to forge valid ciphertexts by modifying the answers of the oracle. He
can then perform the key-recovery attack on the initial plaintext-ciphertext pair.

4. Application to Other Variants of NORX and to Similar Cryptographic
Functions

In this section, we study the application of our attack to other versions or variants of
NORX. We also give informal arguments that show that the specific properties of the
NORX permutation do not threaten the security of other constructions based on similar
primitives, namely stream ciphers Salsa20 [10] and ChaCha20 [12], hash functions
BLAKE [2] and BLAKE2 [6] and compression function Rumba [11]. More precisely,
we show the following properties that we explain below.

1. NORX-8 is not harmed at all by our attack.
2. The parameters chosen in NORX v1.0 and NORX-16 make our attack just as effi-

cient as generic attacks. A consequence is that increasing the key and tag sizes for
these versions would not increase their security. In particular, a surprising behavior
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Fig. 6. NORX v3.0 serial mode.

is that if one increases the key and tag lengths of NORX-16 to 128 bits, then the
security drops to 266.

3. NORX v3.0 has a small class of keys on which our attack is as efficient as a generic
key-recovery attack.

NORX v1.0 We recall that the main difference between NORX v1.0 and NORX v2.0 is
that inNORX v1.0, the rate part of the state consists of words (s0, . . . , s9) and the capacity
part of the state consists of words (s10, . . . , s15).

Let us consider an adversary who tries to launch our attack against NORX v1.0. Let us
suppose that the bit length of the last block is exactly 8w. He can only apply the rotation
on the first two rows of the state after the output of the last ciphertext block, which are
filled with the last eight ciphertext words. On the last row, the same symmetry condition
as in NORX v2.0 has to hold, which occurs with probability 2−2w.

The adversary then has to ensure that the third row of the state during its forgery
attempts can be derived by a columnwise rotation of the third row of the state during
the generation of the ciphertext he tries to modify. The third row of the state during the
encryption equals (s8, s9, s10, s11), where s8 and s9 have just been updated by XORing
the padding.
Then, during the verification of the forgery attempt, the third row contains the same

value (s8, s9, s10, s11). The symmetry relations he tries to obtain are as follows:

s8 = s10, s9 = s11,

which hold with probability 2−2w.
The overall success probability of the adversary is thus 2−4w, which is exactly the

success probability of a generic forgery attempt as the tag length is t = 4w.
NORX v3.0 During the tag generation phase, the only difference between NORX v2.0
and NORX v3.0 consists in XORing the key K after each application of P, as depicted
in Fig. 6.

As a consequence, the rotation property between the states during the real encryption
and the forgery attempt can only be preserved before the last application of P if the key
K = k0||k1||k2||k3 is itself symmetric; that is, if k0 = k2 and k1 = k3. In that case, our
attack still works.
These relations can be seen as defining a class of 22w weak keys on NORX v3.0.

However, the resulting attack enables an adversary to generate forgeries with data com-
plexity 22w, which is equivalent to the size of the weak key set. Furthermore, the forgery
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attack cannot be trivially turned into a key-recovery attack againstNORX v3.0. Our attack
therefore has a very limited impact on the security of NORX v3.0.

NORX-8 Recall that NORX-8 is very similar to NORX v2.0, but that the authentication
tag cannot be fully extracted at once from the rate part of the state. Instead, after the
extraction of the first 40 tag bits, a diversification constant is injected in the state, P is
computed and the last 40 tag bits are extracted from the rate part of the state.
Even if the adversary achieves the rotation property after the last ciphertext block, this

property is broken after the addition of the diversification constant, and no predictable
property holds for the second half of the tag. In that case, only the first 32 bits of the
tag (which are extracted from the first row of the state) can be predicted, leading to a
forgery with probability 232−80 = 2−48.
Furthermore, the rotation property itself only holds with probability 2−48, due to

symmetry conditions on the last three rows of the state, which contain the capacity part.
The overall success probability of our attack is therefore 2−96, making it less efficient
than a generic attack.

NORX-16 In NORX-16, the capacity part of the state covers the last two rows, i.e.,
(s8, . . . s15). Therefore, the rotation property holds with probability 2−4w = 2−64.
NORX-16 uses 96-bit keys and produces 96-bit tags, which are extracted as (s0, . . . , s6)
after the last application of P. If the rotation property holds, the adversary knows the
target values of (s0, . . . , s3) (by rotation of the valid tag), but he still needs to guess s4
and s5. Taking account of the 2-bit loss due to the padding, the overall success probability
of each forgery attempt is 2−64−2×16−2 = 2−98, which is just below the generic bound
for a forgery attempt.
This shows that increasing the key and tag sizes of NORX-16 would not increase its

security, as our attack would still be valid. More surprisingly, using 128-bit tags would
enable the adversary to always forge successfully once the rotation property is verified,
leading to an attack with success probability 2−66 for each forgery attempt.

Salsa20 Salsa20 is a family of stream ciphers designed by Bernstein [10], which was
a candidate in the eSTREAM competition. Its twelve round variant was selected in the
final portfolio. Its internal primitive is a permutation, with a structure similar to theNORX
permutation. The 512- bit internal state is an 4 × 4 array of 32-bit words, represented
as

⎡
⎢⎢⎣

y0 y1 y2 y3
y4 y5 y6 y7
y8 y9 y10 y11
y12 y13 y14 y15

⎤
⎥⎥⎦ .

As for NORX, each round of the permutation consists of the parallel application of
a Feistel function F , alternatively on the columns and on the rows (instead of the
diagonals) of the state. By looking carefully at how G is used, we can notice that it
is applied to (y0, y4, y8, y12), (y5, y9, y13, y1), (y10, y14, y2, y6), and (y15, y3, y7, y11)
during columnwise rounds, and (y0, y1, y2, y3), (y5, y6, y7, y4), (y10, y11, y8, y9), and
(y15, y12, y13, y14) during rowwise rounds. The first input of each instance of G is
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always on the diagonal (y0, . . . , y15). Therefore, one can easily see that by reordering
the variables as

⎡
⎢⎢⎣

y0 y1 y2 y3
y4 y5 y6 y7
y8 y9 y10 y11
y12 y13 y14 y15

⎤
⎥⎥⎦ −→

⎡
⎢⎢⎣

x0 x13 x10 x7
x4 x1 x14 x11
x8 x5 x2 x15
x12 x9 x6 x3

⎤
⎥⎥⎦ ,

weget the same sequence of applications ofG as inNORX. Therefore, the same properties
using symmetries and rotations apply to the permutation of Salsa20.
Nevertheless, Salsa20 uses this permutation in a well-defined mode. In particular,

words (y0, y5, y10, y15) on the first diagonal are initialised with 4 different constant
values. This alone thwarts any attempt to exploit symmetries.

Rumba Rumba is a compression function that relies on the Salsa20 primitive [11]. How-
ever, as in the case of Salsa20, the diagonal (y0, y5, y10, y15) is always initialised with
one out of 4 different 128-bit constant values. Therefore, as in the case of Salsa20, the
symmetries cannot be exploited to mount an attack on Rumba.

ChaCha20 ChaCha20 [12] is a stream cipher similar to Salsa20. It makes use of a
permutation with the same structure as the NORX permutation. As for Salsa20, the first
row (which needs to follow some symmetry for our property to apply) is always initialised
with 4 different 32-bit constants. Therefore, our findings are no threat to the security of
ChaCha20.

BLAKE and BLAKE2 BLAKE is a hash function that had been selected for the final
round of the SHA-3 competition [2]. It uses the same permutation as ChaCha. As for the
previous functions, the properties that enable to attack NORX do not harm the security
of BLAKE, mainly for two reasons.

• The internal state is initialised with the chaining variable hi , constants ci , a counter
ti and an optional salt si . The last row cannot follow the symmetric property, as the
initialisation is done as follows:

⎡
⎢⎢⎣

h0 h1 h2 h3
h4 h5 h6 h7

c0 ⊕ s0 c1 ⊕ s1 c2 ⊕ s2 vc3 ⊕ s3
c4 ⊕ t0 c5 ⊕ t1 c6 ⊕ t0 c7 ⊕ t1

⎤
⎥⎥⎦ .

• TheFeistel functionG uses round constants (combinedwithmessagewords), which
makes it impossible to propagate a symmetry along the full permutation.

BLAKE2 is a hash function built upon BLAKE. It was presented at ACNS 2013
[6]. As for BLAKE, its initialisation is partly done with constants that do not allow for
symmetries. Namely, the third row is always initialised with 4 different 32-bit values.
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5. Long-Message Forgery and State-Recovery Attacks on NORX v3.0

In this section, we discuss the impact of the symmetry property of the NORX permutation
on the security of other variants of NORX, in particular NORX v3.0.

5.1. Forgery Attack Against NORX v3.0 for Long Messages

For both NORX v2.0 and NORX v3.0, the security claim saying that any forgery attack
with q attempts should have a success probability of about q ·2−4w does not totally hold.

For any long ciphertext C that contains, say, 2m + 1 blocks of 12w bits, one can
modify only the first block of the ciphertext, keep the same tag value and obtain a
forgery with probability about 2m−4w. Indeed, before each application of P during the
decryption phase, the internal state during the forgery attempt collides with the internal
state during the decryption of the initial message with probability 2−c = 2−4w. Once
a collision occurs, it holds for all the subsequent steps of the decryption process, as
the two decrypted ciphertexts have common suffixes. The overall collision probability
is therefore approximately 2m × 2−4w, and such a collision leads to equal tag values,
making the forgery attempt successful. We note that this technique shares some ideas
with the long-message internal collision attack on iterated MACs discussed in [25,
Section 3].
For NORX v2.0 and NORX v3.0, this property still holds when the nonce is modified in

the forgery attempt. For NORX v2.0, as no key is involved after the initialization phase,
one consequence of this property is that a given ciphertext of 2m blocks has the same
tag value under two different keys and nonces with probability 2m−4w.
The impact (at least on NORX v3.0) of this remark has to be mitigated by the fact

that similar properties can apply to other AEAD schemes such as AES-GCM [23].
It is also covered by the security proof, which leads to bounds involving the total
length of encryption and decryption queries, and not only the number of forgery
attempts.

5.2. Extension to a State-Recovery Attack

The long-message attack described above is a generic forgery attack on the NORXmode
of operation, as it does not involve any specific property of the permutation P such as
the one that is used in Sect. 3. However, we show that the specific symmetry property
of P allows an adversary to mount a more powerful attack once a successful forgery
has been computed. Let us consider the encryption of a very long message that can be
divided into q blocks. We denote by (C1, . . . ,Cq) its corresponding ciphertext and by
T the authentication tag.
Then, the adversary queries the decryption oracle with a modified ciphertext with

r + q blocks (B1, . . . , Br ,C1, . . . ,Cq) and the same tag T . As this forgery attempts
shares a q-block suffix (C1, . . . ,Cq) with the initial valid ciphertext, T is a valid tag
with probability about q · 2−4w, as shown above.

Furthermore, the adversary chooses (B1, . . . , Br ) such that every block Bi is symmet-
ric (i.e., Bi = B≪2

i for all i ≥ r ). Then, as shown in Fig. 7, if the last row of the state is
also symmetric when a block Bi is included in the state, the same holds with the output
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Fig. 7. State-recovery attack: observing the specific property of the permutation P.

of P , which contains the keystream. Consequently, assuming the forgery is successful,
the adversary gets the corresponding plaintext and can therefore verify whether one of
the keystream blocks (computed as Pi+1 ⊕ Bi+1) has the same symmetric property. If
this happens, then with an overwhelming probability the inner part of the state is also
symmetric and can be guessed with complexity 22w.
For each ciphertext block, such an event occurs with probability 2−2w. Thus, if r ≥

22w, it occurs on at least one blockwith a high probability. Note that if the initial message
contains more than r blocks, the complexity of this attack is not very different from the
complexity of the forgery-only attack described above.

5.3. Impact on the Variants of NORX

For NORX v2.0, the attack of Sect. 5.2 can easily be turned into a key-recovery attack,
since it is easy to recover the key from one value of the state. However, its complexity
is far higher than the one of our main attack of Sect. 3 and therefore its interest is rather
limited.
The case of NORX v3.0 is more interesting. The symmetry property enables an adver-

sary to turn a generic forgery attack into a state-recovery attackwith a similar complexity.
While this attack remains of no practical impact, it shows that the security loss once a
successful forgery is issued is greater than what one could expect. Once the state is
successfully recovered, the adversary can (for example) use this knowledge to achieve
new forgeries under the same nonce value by generating collisions on the inner part
of the state using a meet-in-the-middle strategy, with 22w offline computations (see
Fig. 8).

We illustrate this property by the following example, in which the adversary manages
to generate a valid tag corresponding to a message composed of any prefix of his choice
and a 3-block suffix derived from a meet-in-the-middle attack (see Fig. 8). For any
chosen plaintext M = (M0, . . . , Ms−1) an adversary can find three additional blocks
P = (˜P−1, P0, P̃1) such that the tag of M ||P is the same tag T as the one from the
state-recovery attack. First, from the knowledge of the state value, the adversary has to
compute the value of S−1, the state before the processing of˜P−1, and S1 the target state
after the processing of P̃1. Then, he computes the values of SA

0 = P(S−1 ⊕ (˜P−1|| . . . ))
and SB

0 = P−1(S1 ⊕ (P̃1|| . . . )) corresponding to 22w values of˜P−1 and 22w values of
P̃1. By the birthday paradox, he can expect to find a collision on the last row of the states
SA
0 and SB

0 with high probability and then, compute P0 = A ⊕ B from the rate parts A
and B of SA

0 and SB
0 . The pseudo-code of this attack is shown in Algorithm 4.
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Algorithm 4 – Meet-in-the-middle strategy

Input: Internal states S−1 and S1 from a successful state-recovery

Output: (˜P−1, P0, P̃1)

1: for 22w different values of V−1 do

2: for 22w different values of V1 do

3: Compute SA0 = P(S−1 ⊕ (V−1|| . . . ))
4: Compute SB0 = P−1(S1 ⊕ (V1|| . . . ))
5: if last row of SA0 = last row of SB0 then

6: A ← rate part of SA0
7: B ← rate part of SB0
8: P−1 ← V−1
9: P0 ← A ⊕ B
10: P1 ← V1

11: end if

12: end for

13: end for

14: return (˜P−1, P0, P̃1)

6. Discussion About NORX Security Claims

NORX v2.0 Security Claims In [4, Section 3], the NORX designers claim that no forgery
attackwith q attempts should succeedwith probability significantly greater than q ·2−4w .
Our attack succeeds with probability about q · 2−2w−2, which violates this claim.
The designers also claim that no key-recovery attack should cost fewer than 24w

operations. Our attack costs 22w+2 operations on average. One could argue that the
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limitation of the amount of data treated with a given key limits the success probability of
our attack. Nevertheless, contrary to attacks based on the birthday paradox, the marginal
success probability of a single forgery attempt using our attack does not drop once the
key is changed. Consequently, our attack enables the adversary to find the value of one
of the keys used with time and data complexity of about 266 operations (for w = 32),
regardless of the change frequency.

NORX Security Proof In [4], the designers partly derive their security analysis from
security proofs of the keyed-sponge mode of operation which can be found in [20].
Namely, the distinguishing advantage of any chosen-plaintext adversary against NORX
is upper-bounded by:

Pr[Privacy] ≤ 3(qp + σE )2

2b+1 +
(
8eqpσE

2b

)1/2

+ rqp
2c

+ qp + σE
2k

.

Similarly, the upper bound for the success probability of any forgery attempt is given
by:

Pr[Forgery] ≤ (qp + σE + σD)2

2b
+

(
8eqpσE

2b

)1/2

+ rqp
2c

+ qp + σE + σD
2k

+ (qp + σE + σD)σD
2c

+ qD
2t

.

In these formulae, b is the state size, c is the capacity, r is the rate, qp is the number
of calls to the internal permutation, qD is the number of forgery attempts, and σE and
σD are the number of total computations of the internal permutations during encryption
and decryption queries, respectively.
Our attack succeeds with probability qD/22w+2, which is significantly larger than this

bound for a small number of queries (as we would have σE = σD = 4qD as we only
need to make one-block encryption and decryption queries).
We emphasize that our attack does not contradict the proof of the NORX mode of

operation, as it relies on the use of an ideal internal permutation instead of P. However,
it reveals that the proof does not apply to the instantiation of the mode chosen by the
designers, as the selected NORX permutation presents (at least) one strong structural
distinguisher.

Security Level of NORX-8 In [5], the authors do not provide an explicit link between
the above security bounds and the claimed security level of NORX-8 and NORX-16. In
particular, they only state that nomore than 224 (resp. 232) initialization phases should be
performedwith the same key, but they do not give any limit to the total length ofmessages
encrypted with a key. We can notice that if one encrypts constant 0 blocks, NORX can be
viewed as a stream cipher, and therefore the Babbage-Golić [7,19] time–data trade-off
applies. In particular, NORX-8 has an internal state of only 128 bits. Therefore, if one
can encrypt 2m � 248 message blocks under the same key with NORX-8, the security
level drops below 80 bits since a state-recovery attack of time and memory complexity
at most 2128−m can be mounted that can in turn easily be converted into a key-recovery
attack using backward computations.
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Interpretation of the NORXProof Finally, we would like to raise the following problem.
In the bound derived from the proof of the NORX mode of operation, the term qpσD/2c

appears. In the case of NORX-32 for both v2.0 and v3.0, the capacity equals c = 128.
Note that σD can roughly be considered as the total length of decryption queries, and
is only limited to 264 in the specifications. In real-life applications, σD could possibly
reach between 240 and 248.
In that case, qp has to be smaller than 280 to 288 if one wants to conclude any mean-

ingful information from the bound. Note, however, that qp represents the number of
calls to the internal permutation made by the adversary. In our view, as P is an unkeyed
permutation, these calls do not involve any secret and can therefore be interpreted as
offline computations. The security ofNORX as derived from the security proof then drops
between 80 and 88 bits.
However, this remark is very unlikely to lead to an attack on NORX v3.0 that would

match this bound, for two reasons. First, when looking at the details of the proof, this
term captures the event that a direct call to P by the adversary collides with an appli-
cation of P during the verification of a decryption query. As the adversary does not
get much information from decryption queries, it is unlikely that he can detect such an
event. Second, the mode of operation of NORX v3.0 (with key additions after initializa-
tion and during the tag computation) is close to the sandwich sponge construction by
Naito [24]. In the same paper, this construction is proved to be indistinguishable from
a PRF up to a bound without such a term proportional to online-times-offline complex-
ity, whereas a similar term still appears in the best known bounds for the usual sponge
construction.

7. Conclusion

In this paper,wedemonstrated a ciphertext-only forgery attack against theAEADscheme
NORX v2.0 that was selected for the third round of the CAESAR competition. It requires
266 (resp. 2130) known plaintexts and 266 (resp. 2130) forgery attempts for the 128-bit
(resp. 256-bit) key, 128-bit (resp. 256-bit) tag variant of NORX. This attack can be turned
into a key recovery if the adversary also has access to unencrypted data, i.e., in the
chosen-plaintext or chosen-ciphertext settings.
We also studied its applicability to other versions and variants of NORX and found

that it competes with generic attacks against NORX v1 and NORX-16. Unlike a similar
scheme with an ideal permutation, these algorithms cannot be securely used with an
increased key and tag length.
Our results emphasize that security proofs of modes of operations need to be handled

carefully. First, strong structural distinguishers on an internal primitive that is modeled
as ideal should not be allowed. Second, one has to be very careful when deriving the level
of security offered by an algorithm from the bound given by a security proof. Finally,
the impact on the exact security of the cipher when an unwanted event occurs needs to
be minimized, as it is the case in NORX v3.0.
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analysis of authenticated ciphers from the CAESAR competition. Cryptology ePrint Archive, Report
2016/1053 (2016)

[18] S. Das, S. Maitra, W. Meier, Higher order differential analysis of NORX. Cryptology ePrint Archive,
Report 2015/186 (2015)
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