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Abstract:  RIPEMD-128 is a cryptographic hash function proposed in 1996 by Hans Dobbertin, Antoon Bosselaers 
and Bart Preneel. It consists of two different and independent parallel parts, with which the results in each 
application of the compression function. This paper presents a practical attack for finding collisions for the first 
32-step reduced RIPEMD-128 with complexity of 228 32-step reduced RIPEMD-128 operations. This is the first 
published analysis for the first 32-step reduced RIPEMD-128. 
Key words:  hash function; collision; RIPEMD-128; differential path; message modification 

摘  要: Hans Dobbertin, Antoon Bosselaers 和 Bart Preneel 在 1996 年提出 hash 函数 RIPEMD-128,它包含两个独

立并行的部分,每一部分的输出组合成 RIPEMD-128 的输出结果.给出前 32 步 RIPEMD-128 的碰撞实例,其计算复

杂度是 228次 32-步 RIPEMD-128 运算.本文是对前 32 步 RIPEMD-128 分析的第一次公开. 
关键词: 杂凑函数;碰撞;RIPEMD-128;差分路经;明文修改 
中图法分类号: TP309   文献标识码: A 

1   Introduction 

MD4[1] is an early-appeared hash function designed by using basic arithmetic and Boolean operations. After the 
publication of MD4, several hash functions have been proposed, including MD5[2], HAVAL[3], RIPEMD[4], 
RIPEMD-128[5], RIPEMD-160[5], SHA-0[6] and SHA-1[7], etc., most of which are based on the design principles of 
MD4. RIPEMD was devised in the framework of the EU project RIPE. RIPEMD-128 was proposed in 1996 by 
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Hans Dobbertin, Antoon Bosselaers and Bart Preneel as a substitute for RIPEMD with a 128-bit result[5]. H. 
Dobbertin[8] gave a collision attack on MD4 which found a collision with probability 2−22  in 1996. Dobbertin[8] 
found a collision of RIPEMD reduced to two rounds with 231 RIPEMD operations. Wang, et al.[9] found collisions 
on MD4 and RIPEMD with complexity less than 28 MD4 operations and 218 RIPEMD operations respectively. 

In this paper, we use the method of modular differential to analyze the hash function RIPEMD-128. This 
method was presented early in 1997 by Wang, and formalized in Eurocrypt’05[9,10]. The modular differential method 
is very efficient, by which the most prevailing hash functions such as MD4[9], MD5[10], HAVAL[11,12], SHA-0[6], 
SHA-1[7] etc. have been broken. Furthermore, we use the message modification proposed by X.Y. Wang to improve 
our collision probability. We show a cryptanalysis on reduced RIPEMD-128 which can find a collision of 32-step 
RIPEMD-128. 

The rest of the paper is organized as follows: In Section 2, we describe the RIPEMD-128 algorithm. In Section 
3, we recall some properties of the nonlinear functions in RIPEMD-128 and some notations. Section 4 presents the 
detailed descriptions of the attacks on reduced RIPEMD-128. Finally, we summarize the paper in Section 5. 

2   Description of RIPEMD-128 

The hash function RIPEMD-128 compresses any arbitrary length message into a message with a length of 128 
bit. Firstly the algorithm will pad any given message into a message with a length of 512 bit multiple. We don't 
describe the padding process because it has little relation with our attack. For each 512-bit message block, 
RIPEMD-128 compresses it into a 128-bit hash value by a compression function, which has two parallel operations: 
Line1 and Line2. Each Line has four rounds. The nonlinear functions in each round are as follows: 

( , , ) ,
( , , ) ( ) ,

F X Y Z X Y Z
H X Y Z X Y Z

= ⊕ ⊕
= ∨ ¬ ⊕

   
( , , ) ( ) ( )

( , , ) ( ) ( )
G X Y Z X Y X Z
I X Y Z X Z Y Z

= ∧ ∨ ¬ ∧
= ∧ ∨ ∧ ¬

 

Here X, Y, Z are 32-bit words. The operations of four functions are all bitwise. ¬ represents the bitwise 
complement of X, ∧, ⊕ and ∨ are bitwise AND, XOR and OR respectively. Each round of the compression function 
is composed of 16 step operations. 
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The initial value of RIPEMD-128 is: (a,b,c,d) = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476). 
The compression function of RIPEMD-128 consists of Line1 operation and Line2 operation. 
Line1 operation process  For a 512-bit block M=(m0,m1,…,m15), Line 1 operation process is as follows:  
(1) Let (aa,bb,cc,dd) be the input of Line1 process for M. If M is the first block to be hashed, (aa,bb,cc,dd) is 

the initial value. Otherwise it is the output of the previous block compressing. (2) Perform the following 64 steps: 
For j=0,1,2,3, for i=0,1,2,3, a=FF(a,b,c,d,wj,4i,sj,4i), d=GG(a,b,c,d,wj,4i+1,sj,4i+1), c=HH(a,b,c,d,wj,4i+2,sj,4i+2), 
b=II(a,b,c,d,wj,4i+3,sj,4i+3). Sj,4i+k (k=0,1,2,3) are step-dependent constants. <<<s represents the circular shift s bit to 
the left. + denotes addition modulo 232.  

Line2 operation process  For a 512-bit block M=(m0,m1,…,m15), Line2 operation process is as follows: 
(1) Let (aaa,bbb,ccc,ddd) be the input of Line2 for M. If M is the first block to be hashed, (aaa,bbb,ccc,ddd) is 
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the initial value. Otherwise it is the output of the previous block compressing. (2) Perform the following 64 steps: 
For j=0,1,2,3, for i=0,1,2,3, a=III(a,b,c,d,wj,4i,sj,4i), d=HHH(a,b,c,d,wj,4i+1,sj,4i+1), c=GGG(a,b,c,d,wj,4i+2,sj,4i+2), 
b=FFF(a,b,c,d,wj,4i+3,sj,4i+3). Add the output of Line1 to the output of Line2. a=b+cc+ddd, b=c+dd+aaa, 
c=d+aa+bbb, d=a+bb+ccc. If M is the last message block, H(MM)=a*b*c*d is the hash value for the message 
MM. Otherwise repeat the compression process for the next 512-bit message block and (a,b,c,d) as inputs. 

3   Some Basic Conclusions and Notations 

In this section we will recall some useful properties of the four nonlinear functions in our attack. 
Proposition 1. For the nonlinear function F(X,Y,Z)=X⊕Y⊕Z, there are the following properties: 

( , , ) ( , , ) ( , , ) ( , , )
( , , ) ( , , ) ( , , ) ( , , )
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Proposition 2. For the nonlinear function G(X,Y,Z)=(X∧Y)∨ (¬X∧Z), there are the following properties: 
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Proposition 3.  For the nonlinear function H(X,Y,Z)=(X∨¬Y)⊕Z, there are the following properties: 
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Proposition 4. For the nonlinear function I(X,Y,Z)=(X∧Z) ∨ (Y∧¬Z), there are the following properties: 
( , , ) ( , , ) 0, ( , , ) ( , , ) 1, ( , , ) ( , , )
( , , ) , ( , , ) 1, ( , , ) , ( , , ) 0
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Notations. In order to describe our attack conveniently, we use the following notations. Some of them are 
defined in Refs.[6,7,10,11,12].  

M=(m0,m1,…,m15) represents 512-bit messages. ai, di, ci, bi denote the outputs of the (4i−3)-th, (4i−2)-th, 
(4i−1)-th, 4i-th steps for compressing M, where 1≤i≤16. i i im m m′∆ = −  denotes the modular difference of mi 

and .im′  ai,j represents the j-th bit of ai where the least significant bit is the 1-st bit, and the most significant bit is  

32-th bit. xi[j],xi[−j] are the resulting values by only changing the j-th bit of the word xi. xi[j] is obtained by 
changing the j-th bit of xi from 0 to 1. xi[−j] is obtained by changing the j-th bit of xi from 1 to 0.  

4   The Practical Attack Against Reduced RIPEMD-128 

The collision pair of the first 32-step reduced RIPEMD-128 consist of two 512-bit messages 0 0|| , ||M M M M ′ .  

We search them in the following 4 parts: (1) Denote the first 32-step reduced RIPEMD-128 by H32 and the output of 
H32(M0) by a×b×c×d. Find a message M0 such that the outputs of H32(M0) (i.e. the inputs of H32(M) and  

32 ( )H M ′ ) satisfy b2=1, b3=0, b4=0. (2) Find two near-collision differentials respectively for Line1 and Line2  

operations in which M and M′produce a collision. (3) Derive two sets of sufficient conditions which ensure that the 
collision differentials hold. (4) Modify the message to fulfill most of the variable conditions. 

Obviously the first part is easy to be accomplished. We will describe the last three parts in details. 

4.1   Collision differential path for the first 32-step reduced RIPEMD-128 

We use Wang’s method to deduce the differential paths. After deriving the sufficient conditions for the 
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differential paths according to the properties of the nonlinear functions, we must make sure that the sufficient 
conditions are not contradict each other. All the conditions in the first round and some conditions in the second 
round can be modified to hold by message modification technique, the other conditions in the last rounds are 
difficult to be modified to hold. Therefore, we will ensure the sufficient conditions in the last rounds to be as few as  

possible. We select M M M′∆ = −  as follows: 24
0 1 15( , ,..., ), (0,...,0,2 ,0).M m m m M= ∆ = The near-collision  

differential paths for Line1 and Line2 are showed in Tables 1 and 2 respectively. The output differences are: 

0,a cc ddd∆ = ∆ + ∆ = 0,d bb ccc∆ = ∆ + ∆ = 0,c aa bbb∆ = ∆ + ∆ = 31 31 322 2 (mod 2 ) 0b dd aaa∆ = ∆ + ∆ = + = . 

4.2   Deriving conditions on chaining variables of Line1 and Line2 

This section derives all the variable conditions that ensure the differentials in Tables 1 and 2 to hold. For 
example, we describe how to derive sufficient conditions that guarantee the difference in step 4 of Table 2. The 
input difference (ccc1[11,12,−13],ddd1[−2, −3,4],aaa1,bbb0) yields the output difference bbb1[15,22,24,…,30,−31]. 

By Proposition 4, the condition aaa1,i=1 (i=2,3) ensures that the change of ddd1,i=1 (i=2,3) results in no change 
in bbb1 ;  aaa1 , 4=0 ensures that the change of ddd1 , 4  results in ∆bbb1=21 4.  bbb1 , 1 5=0 results in  

1bbb ′ =bbb1[15]. aaa1,12=0 ensures that the change of ccc1,12 results in no change in bbb1. aaa1,11=1 ensures that the 

change of ccc1,11 results in 21
1 2bbb∆ = and 1,22 0bbb = results in 1 1[22].bbb bbb′ =  aaa1,13=1ensures that the change of 

ccc1,13 results in 23
1 2bbb∆ = −  and 1, 1,310( 24,...,30), 1ibbb i bbb= = =  results in 1 1[24,...,30, 31]bbb bbb′ = − . 

Table 1  Differential Characteristic for Line1 of 32-step reduced RIPEMD-128 

Step Chaining value wj,i Shift im∆ The step difference The output for M′  
15 cc4 m14 9 224 2 cc4[2] 
16 bb4 m15 8  −29 

4[ 10]bb −  

17 aa5 m7 7  0 5aa  

18 dd5 m4 6  0 5dd  

19 cc5 m13 8  29 
5[10]cc  

20 bb5 m1 13  0 bb5 
21 aa6 m10 11  0 aa6 
22 dd6 m6 9  0 dd6 
23 cc6 m15 7  216 cc6 [17] 
24 bb6 m3 15  0 bb6 
25 aa7 m12 7  0 aa7 
26 dd7 m0 12  0 dd7 
27 cc7 m9 15  231 cc7 [32] 
28 bb7 m5 9  0 bb7 
29 aa8 m2 11  0 aa8 
30 dd8 m14 7 224 231 dd8 [32] 
31 cc8 m11 13  0 cc8 
32 bb8 m8 12  0 bb8 

 

4.3   Message modification 

We modify M so that most of the conditions of Line2 in Table 3 hold. The modified algorithm is divided into 
basic modification and advanced message modification techniques. 

Basic Modification  All the conditions in the first round (step 1−32) of Line2 can be modified to hold by the 
basic modification which is a simple message modification. For example, if the condition aaa1,4=0 does not hold, we 
set aaa1=aaa1⊕0x8, then update m5 as: m5=(aaa1>>>8)-aaa0-I(bbb0,ccc0,ddd0)-0x50a28be6.  
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Table 2  Differential characteristic for Line2 of 32-step reduced RIPEMD-128 

Step Chaining value wj,i Shift im∆ The step difference The output for M′ 
1 aaa1 m5 8   aaa1 
2 ddd1 m14 9 224 2 1[ 2, 3,4]ddd − −  

3 ccc1 m7 9  −210 
1[11,12, 13]ccc −   

4 bbb1 m0 11  
14 21 232 2 2+ −  

1[15,22,24,...,30, 31]bbb −   

5 aaa2 m9 13  8 102 2+  
2[9, 11, 12,13]aaa − −   

6 ddd2 m2 15  9 162 2− +  
2[ 10,17]ddd −  

7 ccc2 m11 15  10 12 232 2 2− − +  
2[11, 12,13, 14,24]ccc − −   

8 bbb2 m4 5  16 19 21 262 2 2 2− + + +  
2[ 17,20,22,27]bbb −   

9 aaa3 m13 7  215 
3[16]aaa  

10 ddd3 m6 7  −216 
3[17, 18]ddd −  

11 ccc3 m15 8  2 18 20 312 2 2 2− − +  
3[3, 19, 21,32]ccc − −   

12 ddd3 m8 11  5 301 2 2+ +  
3[1,6,31]bbb  

13 aaa4 m1 14  2 292 2− +  
4[ 3,30]aaa −  

14 ddd4 m10 14  2 301 2 2− − −  
4[ 1, 3, 31]ddd − − −  

15 ccc4 m3 12  11 301 2 2− + −  
4[ 1,12, 31]ccc − −  

16 bbb4 m12 6  211 
4[12]bbb  

17 aaa5 m6 9  26 
5[7]aaa  

18 ddd5 m11 13  −215 
5[ 16]ddd −  

19 ccc5 m3 15  
13 152 2− −  

5[ 14, 16]ccc − −  

20 bbb5 m7 7  
13 182 2− +  

5[ 14, 19]bbb − −  

21 aaa6 m0 12  218 
6[19]aaa  

22 ddd6 m13 8  0 6ddd  

23 ccc6 m5 9  −224 
6[25, 26]ccc −  

24 bbb6 m10 11  −224 
6[ 25]bbb −  

25 aaa7 m14 7 224 225 
7[26]aaa  

26 ddd7 m15 7  0 7ddd  

27 ccc7 m8 12  0 7ccc  

28 bbb7 m12 7  231 
7[32]bbb  

29 aaa8 m4 6  231 
8[32]aaa  

30 ddd8 m9 15  0 8ddd  

31 ccc8 m1 13  0 8ccc  

32 bbb8 m2 11  0 8bbb  

It is easy to rectify all the conditions from step 1 to step 32 of the Line2 differential path in Table 3.  
Advanced Message Modification  Some more conditions in round 2 of Line2 can be rectified by the 

advanced message modification. If the condition on aaai,j does not hold, we change the j-th bit of the corresponding 
message m to rectify it, and change some other message words to produce a partial collision in the first round of 
Line2. A sample for correcting aaa5,7 is given in Table 4. 

In Line2, the rectifiable conditions are as follows: aaa5,i (i=7,12,16), ddd5,i (i=7,14,16), ccc5,i (i=7,14,16,19), 
bbb5,i (i=14,16,19), aaa6,14, aaa6,19, ddd6,25, ddd6,26, ccc6,26, bbb6,25, bbb6,26, aaa7,25, aaa7,26, ccc7,26, aaa8,32, ddd8,32. 
There are 21 conditions of Line1 in Table 3. For a 512-bit messages M, after the two types of modifications, there 
are 6 remaining conditions of Line2 in Table 3 that need to be satisfied. Therefore M, ( )M M M M′ ′ = + ∆ consist of a 
collision with probability 2−27. It is easy to see that the complexity of finding ( , )M M ′  does not exceed 228 32-step 
reduced RIPEMD-128 computations. We give a 1024-bit collision 0 0( || , || )M M M M ′  for the first 32-step reduced 
RIPEMD-128 in Table 5. 0 , ,M M M ′  are all hashed by the first 32-step reduced RIPEMD-128. 
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Table 3  A set of sufficient conditions for collision of 32-step reduced RIPEMD-128 
Step  Line 1 Line 2 

   0,2 1b = , 0, 0ib =  (i=3,4) 

1 a1  1, 1iaaa = (i=2,3,11,13), 1, 0iaaa = (I=4,12) 

2 d1  1, 1iddd = (i=2,3,11,12,13,28,30), 1, 0iddd = (I=4,5,12,24,…,27,29,31) 

3 c1  1, 1iccc = (I=13,15,22,24,25,26), 1, 0iccc = (i=9,11,12,27,…,31) 

4 b1  1, 0ibbb = (i=9,…,13,15,17,22,24,…,30), 1,31 1bbb = , 1, 1,i ibbb ccc= (I=2,3,4) 

5 a2  2, 1iaaa = (I=10,11,12,24,28,30), 2, 0iaaa = (i=9,13,14,17) 

6 d2  
2, 1iddd = (i=10,13,14,24), 2, 0iddd = (i=11,12,17,20,22,27,28,30), 

2, 2,i iddd aaa= (I=15,22,24,…,27,29,31) 

7 c2  2, 1iccc = (i=12,14,20,22,27), 2, 0iccc = (i=11,13,16,17,24), 2,9 2,9ccc ddd=  

8 b2  2, 1ibbb = (I=16,17), 2,10 2,10bbb ccc= , 2, 0ibbb = (i=18,20,22,27) 

9 a3  3,18 1aaa = , 3, 2,i iaaa bbb= (i=11,…,14,24) 3, 0iaaa =  (I=3,16,17,19,21,27,32) 

10 d3  3, 1iddd = (I=3,18,19,27,32), 3, 3,i iddd aaa= (i=20,22) 3, 0iddd = (i=1,6,17,21,31) 

11 c3  3, 1iccc = (i=1,6,19,21,31), 3, 0iccc = (i=3,30,32) 3,16 3,16ccc ddd=  

12 b3  3,30 1bbb = , 3, 3,i iccc bbb= (I=17,18), 3, 0ibbb = (i=1,3,6,19,21,31) 

13 a4  4, 1iaaa = (i=3,19,21), 4, 0iaaa = (i=1,12,30,31) 4,32 3,32aaa bbb=  

14 d4 4,2 4,2 1dd aa= +  4,6 4,6ddd aaa= , 4, 1iddd = (I=1,3,31) 

15 c4 4,2 0,cc =  4,10 4,10cc dd=  4, 1iccc = (i=1,31), 4, 0iccc = (I=3,12), 4,30 4,30ccc ddd=  

16 b4 4,10 1,bb = 4,2 0bb =  4, 0ibbb = (I=1,7,12,31) 

17 a5 5,10 0aa = , 5,2 1aa =  5,7 0aaa = , 5,12 0aaa = , 5,16 0aaa =  

18 d5 5,10 1dd =  5,7 1ddd = , 5,16 1ddd = , 5,14 0ddd =  

19 c5 5,10 0cc =  5, 1iccc = (I=7,14,16), 5,19 0ccc =  

20 b5 5,10 0bb =  5,16 0bbb = , 5,19 0bbb = , 5,14 1bbb =  

21 a6 6,10 1aa =  6,14 0aaa = , 6,19 0aaa =  

22 d6 6,17 6,17aa dd=  6, 0iddd = (I=19,25,26) 

23 c6 6,17 0cc =  6,25 0ccc = , 6,26 1ccc =  

24 b6 6,17 0bb =  6,25 1bbb = , 6,26 1bbb =  

25 a7 7,17 1aa =  7,25 0aaa = , 7,26 0aaa =  

26 d7 7,32 7,32dd aa=  7,25 1ddd = , 7,26 1ddd =  

27 c7 7,32 0cc =  7,26 0ccc = , 7,32 0ccc =  

28 b7 7,32 0bb =  7,32 0bbb =  

29 a8 8,32 1aa =  8,32 0aaa =  

30 d8 8,32 0dd =  8,32 0ddd =  

31 c8 8,32 0cc =   

 

Table 4  Message modification for correcting aaa5,7 

Step mi Shift Modify mi 
Chaining values after 
message modification 

17 m6 7 6 3 2 3 2 2( [5] 7) ( , , ) 0 50 28 6m ddd ddd I aaa bbb ccc x a be← >>> − − −  3 3 2 2[5], , ,ddd aaa bbb ccc  

18 m15 8 15 3 2 3 3 2( 8) ( [5], , ) 0 50 28 6m ccc ccc I ddd aaa bbb x a be← >>> − − −  
3 3 3 2, [5], ,ccc ddd aaa bbb  

19 m8 11 ( ) ( )8 3 2 3 3 311 , [5], 0 50 28 6m bbb bbb I ccc ddd aaa x a be← >>> − − −  3 3 3 3, , [5],bbb ccc ddd aaa  

20 m1 14 ( ) ( )1 4 3 3 3 314 , , [5] 0 50 28 6m aaa aaa I bbb ccc ddd x a be← >>> − − −  4 3 3 3, , , [5]aaa bbb ccc ddd  

21 m10 14 10 4 3 4 3 3( 14) ( , , ) 0 50 28 6m ddd ddd I aaa bbb ccc x a be← >>> − − −  4 4 3 3, , ,ddd aaa bbb ccc  
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Table 5  A collision of the first 32-step reduced RIPEMD-128. H is the hash value without message padding 

M0 
0x0587ab92,0x2cd3a579,0x7989ca1a,0x1b8148c3,0xdc532138,0xd7c68b2b,0x9569259a,0xb7015533, 
0x462354d1,0x59f2c00f,0x5810a92e,0xa4abc9e9,0xb61c35be,0x5eb8bb5b,0xacf5181f,0xc7769005 

M 0x848cab86,0x16327e14,0x2d7d37d2,0x74f42427,0xdc33493e,0xd3c48f2b,0x9c7d395e,0xb7fddd32, 
0x029e4313,0x90eee605,0x4cb78228,0xd4abd22b,0x75a373e5,0x785710d8,0x10130778,0x67da1c0c 

M0 
0x0587ab92,0x2cd3a579,0x7989ca1a,0x1b8148c3,0xdc532138,0xd7c68b2b,0x9569259a,0xb7015533, 
0x462354d1,0x59f2c00f,0x5810a92e,0xa4abc9e9,0xb61c35be,0x5eb8bb5b,0xacf5181f,0xc7769005 

M′ 0x848cab86,0x16327e14,0x2d7d37d2,0x74f42427,0xdc33493e,0xd3c48f2b,0x9c7d395e,0xb7fddd32, 
0x029e4313,0x90eee605,0x4cb78228,0xd4abd22b,0x75a373e5,0x785710d8,0x11130778,0x67da1c0c 

H 0xe7fe9b03,0x59ceb5a7,0x542a0994,0xc7ca0ca9 

5   Conclusions 

In this paper, we find a pair of collisions on the first 32-step reduced RIPEMD-128 by using Wang’s modular 
differential method. To break the total RIPEMD-128 (64 steps), it is necessary to look for better differential 
characteristics and to modify most of the sufficient conditions of the differential characteristics. 
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