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Abstract. In this paper we present several analyses on ChaCha, a software stream
cipher. First, we consider a divide-and-conquer approach on the secret key bits by
partitioning them. The partitions are based on multiple input-output differentials
to obtain a significantly improved attack on 6-round ChaCha256 with a complexity
of 299.48. It is 240 times faster than the currently best known attack. This is the
first time an attack on a round reduced ChaCha with a complexity smaller than 2k/2,
where the secret key is of k bits, has been successful.
Further, all the attack complexities related to ChaCha are theoretically estimated in
general and there are several questions in this regard as pointed out by Dey, Garai,
Sarkar and Sharma in Eurocrypt 2022. In this regard, we propose a toy version of
ChaCha, with a 32-bit secret key, on which the attacks can be implemented completely
to verify whether the theoretical estimates are justified. This idea is implemented for
our proposed attack on 6 rounds. Finally, we show that it is possible to estimate the
success probabilities of these kinds of PNB-based differential attacks more accurately.
Our methodology explains how different cryptanalytic results can be evaluated with
better accuracy rather than claiming that the success probability is significantly
better than 50%.
Keywords: Stream cipher · ARX · ChaCha · Probabilistic Neutral Bits (PNBs) ·
Differential attack

1 Introduction
ChaCha was designed in 2008 by Bernstein [Ber08a] as a variant of Salsa, which was one of
the finalists of eSTREAM project (see [Ber08b] for details). ChaCha is an ARX cipher, i.e.,
the operations in the cipher involve Addition, Rotation and XOR, which are executed very
fast in a Central Processing Unit (CPU). ChaCha is presently being used in many of the
standards and quite safe with the number of rounds proposed. However, it is important
to study the cipher with reduced rounds for cryptanalytic purposes. There are several
important results in this direction for around a decade.

1.1 Summary of the existing attacks
Most of the attacks on the reduced round versions of this cipher are based on differential
cryptanalysis.

• The fundamental attack was proposed in 2008 in [AFK+08]. The authors identified
weaknesses of 6 and 7-round versions of ChaCha256. Moreover, they also provided
cryptanalytic results on ciphers with similar structure such as ChaCha128, Salsa256,
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Salsa128 and Rumba. In this work, the idea of Probabilistic Neutral Bits (PNB)
was introduced for the first time. For ChaCha256, the attack complexities in this
technique are 2139 for 6 rounds and 2248 for 7 rounds.

• Later in 2012, an idea called Column Chaining Distinguisher (CCD) based on the
PNB idea was introduced in [SZFW12].

• In 2015, Maitra [Mai16] proposed an idea where the attacker would choose the IV’s
based on key guessing. This idea improved the attack complexity for 7-round ChaCha
to 2238.9. Although this work did not present an attack on the 6-round version of
the cipher.

• In a similar line, in 2016, the authors of [CM16] used the idea of linear extension of
the differential attack. This approach led to the discovery of the distinguishers up to
the 5-th round of ChaCha.

• Further results were identified in [DS17] in 2017, where they obtained a better set of
probabilistic neutral bits. As a result the attack complexity for 6-round ChaCha was
reduced to 2235.2.

• In Crypto 2020, the authors of [BLT20] discovered a single bit distinguisher in
the 3.5 round of ChaCha. This helped to provide a significant improvement in
cryptanalysis, and the attack complexity reduced to 2230.86. Further, with the help
of this distinguisher the authors produced a partial key recovery attack on 6-round
ChaCha, which recovered 36 bits with complexity 277.

• The same distinguisher was also observed in [CN20] independently in the same year.
They presented an attack on the 7-round ChaCha with complexity 2231.9. Moreover,
a distinguishing attack could be identified on six rounds with complexity 275 and a
key recovery attack with complexity 2102. It should be noted that the key recovery
attack with complexity 2102 mentioned in [CN20] is incorrect. The correct figure
should be 2210 that we mention in Table 2 and the discussion in Section 3.1.

• In Eurocrypt 2021, the authors of [CN21] presented several new single bit distin-
guishers for 3.5 rounds. With this, they claimed to produce further improvement in
the key recovery attack and a distinguisher for 7-round ChaCha256.

• However, in the next year, the authors of [DDSM22] showed that several of the
claimed distinguishers of [CN21] are incorrect, which invalidates the improvement in
their key recovery.

• Very recently, in 2022, the authors of [DGSS22] provided further improvements in the
key recovery attacks of 7-round ChaCha256 by partitioning the key bits into memory
key bits and non-memory key bits. This work produced an attack with complexity
2221. For 6-round ChaCha128 they could produce an attack with complexity 281 and
also on 6.5 round with complexity 2123.

1.2 Organisation & contribution
The outline of this paper is as follows. We present an improved attack which is better in
terms of complexity, acquire the experimental findings using a toy version of ChaCha, and
examine the success probabilities of our attack as well as the other existing attacks with
further depth and accuracy.

• In section 2, we provide the background and related materials to the work, that include
the structure of the cipher and the existing cryptanalytic ideas using probabilistic
neutral bits (PNB).
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Table 1: Notations
Symbol Description

X The state matrix of the cipher consisting of 16 words

Xr State matrix after application of r ChaCha Round functions

Xi i-th word of the state matrix X

Xi[j] j-th bit of i-th word in matrix X

x ⊞ y Addition of x and y modulo 232

x ⊟ y Subtraction of x and y modulo 232

x ⊕ y Bitwise XOR of x and y

x ≪ n Rotation of x by n bits to the left

x ≫ n Rotation of x by n bits to the right

∆r
i [j]

XOR difference after r-th round of the j-th bit of the

i-th word of X and X′

(ID, OD) Input Difference-Output Difference

k Key length in bits

• In section 3, we begin with the analysis of the previous attacks on 6-round ChaCha256.
In subsection 3.2 we present a novel cryptanalytic idea using multiple (ID, OD) pairs,
and apply this technique on 6-round ChaCha256 to obtain a significantly improved
attack complexity over the previously existing ones. This is the first time an attack
complexity significantly less than 2k/2 is reported, where the secret key is of k bits.
Note that the previous attacks, where the complexities were claimed to be less than
2k/2, were incorrect and we will explain that as and when required.

While such an approach was not exploited against ChaCha so far, accumulating
several biases to mount improved attacks is quite well known in literature. For
example, the work of [ABP+13] exploited the idea of accumulating several biases
(see [GMPS14] and the references therein) to mount an attack on RC4. In fact, the
cryptanalysis of [ABP+13] is one of the prime reasons RC4 is being replaced by
ChaCha in various standardized encryption systems. Also, similar ideas have been
used in [SG18], [SGSL18].

• To concretely understand the complexity of the complete attack, in section 4, we
present a toy version of ChaCha with 32-bit secret key. We implement the usual
cryptanalytic attack approaches to achieve a better estimation of the complexities,
false alarm error probabilities and the success probabilities. We also implement
our new cryptanalytic technique and compare the complexity with the usual attack
approaches.

• Lastly in section 5, we present a theoretical approach to identify more accurate
ranges for the success probabilities for the PNB-based techniques. We use this theory
to compare the practical results obtained from the toy cipher, and that matches
convincingly. We exploit this calculation to refine the success probabilities of the
attacks presented in [AFK+08] and its modified version with chosen IV approach by
Maitra [Mai16].

2 Structure of ChaCha256 and Differential Attack Idea
Let us first explain the design of the cipher. The key stream generation machinery of
ChaCha considers an input (the secret key) of size 256-bit (k), a constant of size 128-bit
(c) along with the initialization vector (IV) v of size 128-bit (3 nonces and one counter)
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which are divided in 16 blocks of size 32-bit each. They are organised in a 4 × 4 matrix
form (X). Each 32-bit block is conventionally called a word. The first row is filled by
the constants c = (c0, c1, c2, c3), second and third row contains the key k = (k0, k1, . . . , k7)
and the last row has the initial vectors (IVs) v = (t0, v0, v1, v2). The four constants are
fixed as c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574. That is,
the initial state matrix format is as following:

X =

 X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

 =

 c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 v0 v1 v2

 .

This is denoted by X0 (or sometimes by X) which goes through R many ChaCha Round
functions [Ber08a]. The updated version of X0 after r rounds is denoted by Xr. After
the full R rounds of execution, the final state XR is added word-wise (modulo 232) to the
initial state X0 forming the key stream Z, i.e., Z = X0 ⊞ XR.

Each of the ChaCha Round is formulated with the help of quarterround function which
itself consists of four ARX functions. The four ARX operations of each quarterround
function, which transforms a vector (a, b, c, d) to (a′′, b′′, c′′, d′′) via (a′, b′, c′, d′) is given
by the following equations:

a′ = a ⊞ b; d′ = ((d ⊕ a′) ≪ 16);
c′ = c ⊞ d′; b′ = ((b ⊕ c′) ≪ 12);

a′′ = a′ ⊞ b′; d′′ = ((d′ ⊕ a′′) ≪ 8);
c′′ = c′ ⊞ d′′; b′′ = ((b′ ⊕ c′′) ≪ 7);

(1)

The odd numbered ChaCha Round is called the column round due to the fact that it updates
the four column vectors (X0, X4, X8, X12), (X1, X5, X9, X13), (X2, X6, X10, X14), and
(X3, X7, X11, X15) of the state matrix X. On the other hand the even numbered ChaCha
Round is known as diagonal round, as the the diagonal vectors (X0, X5, X10, X15),
(X1, X6, X11, X12), (X2, X7, X8, X13), and (X3, X4, X9, X14) of the matrix X are updated.

Generally one can reverse back to r-round state Xr from the r + 1-round state Xr+1 with
the help of the reverse quarterround function, which transforms the vector (a′′, b′′, c′′, d′′)
to (a, b, c, d) via (a′, b′, c′, d′) as follows:

b′ = (b′′ ≫ 7) ⊕ c′′; c′ = c′′ ⊟ d′′;
d′ = (d′ ≫ 8) ⊕ a′′; a′ = a′′ ⊟ b′;
b = (b′ ≫ 12) ⊕ c′; c = c′ ⊟ d′;
d = (d ≫ 16) ⊕ a′; a = a′ ⊟ b;

(2)

Further details regarding these operations are available in [Ber08a].

Existing idea of Differential Attack. We denote the j-th bit of the i-th word of the state
matrix X after r rounds by Xr

i [j]. In the differential attack against ChaCha, we apply an
input difference ∆0

i [j] to the j-th bit of the i-th word of initial state matrix X (which is by
notation actually X0) producing X ′. To be precise, injecting the input difference is basically
complementing that bit of the respective state matrix. That is, ∆0

i [j] = Xi[j] ⊕ X ′
i[j].

Now, the round function is applied on both X and X ′ for r rounds. In Xr and X ′r, the
difference is observed at the q-th bit of p-th word, i.e, ∆r

p[q] = Xr
p [q] ⊕ X ′r

p[q]. We compute
the probability Pr(∆r

p[q] = 0|∆0
i [j] = 1), which we write in the form 1

2 (1 + ϵd), where ϵd is
called the forward bias. We aim to find an (ID, OD) pair (∆0

i [j], ∆r
p[q]) for which we have

a higher value of ϵd and consequently use it as a distinguisher.
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In this approach of differential attack, the idea of probabilistic neutral bits (PNBs) [AFK+08]
plays a vital role in the backward direction. From the output key streams Z = X ⊞ XR

and Z ′ = X ′ ⊞ X ′R, to find a PNB, we proceed as follows. A key bit from X, X ′ is
complemented and X, X ′ are produced respectively. Then we compute Z − X, Z ′ − X ′

and execute the reverse round function by R − r many rounds on both of them and
consequently achieve the matrices Y and Y ′ respectively. Let Γp[q] = Yp[q] ⊕ Y ′

p [q]. Now
if the probability of the event Γp[q] = ∆r

p[q] demonstrates a bias which is higher than
a predetermined threshold γ, we call the complemented key bit a probabilistic neutral
bit (PNB). Otherwise we call it a significant key bit or non-PNB. In the pre-processing
stage of the attack, the probabilistic neutral bits are identified by estimating the above
mentioned probability through experiments.

Next in the actual attack, the attacker collects N samples of output key streams Z, Z ′,
assigns random values to the PNBs of X, X ′, and first aims to guess the significant
key bits correctly. Now let us compare the scenarios when the significant key bits are
correctly guessed and when they are not. We denote by X̂, X̂ ′ the states where the
significant key bits have correct values and the PNBs are random. We run the reverse
round operations by R − r rounds on Z − X̂, Z ′ − X̂ ′, and achieve Ŷ , Ŷ ′. We observe the
difference Γ̂p[q] = Ŷp[q] ⊕ Ŷ ′

p[q]. Let Pr(Γ̂p[q] = 0) = 1
2 (1 + ϵ̂). On the other hand, X̃, X̃ ′

are two states where both significant bits as well as the PNBs are random. We compute
Z − X̃, Z ′ − X̃ ′ and run the reverse round operation by R − r rounds to achieve Ỹ , Ỹ ′,
check Γ̃p[q] = Ỹp[q] ⊕ Ỹ ′

p[q] and compute Pr(Γ̃p[q] = 0) = 1
2 (1 + ϵ̃). Between ϵ̂ and ϵ̃, ϵ̂

would have a noticeable value, since the significant key bits are correct, but ϵ̃ would be
approximately 0. After successfully identifying the significant bits, we may recover the
PNBs by exhaustive search. The bias of the event (Γ̂p[q] = ∆p[q]) is usually called the
backward bias and denoted by ϵa.

Now under some assumptions of independence (which are approximately valid and logical),

Pr(Γ̂p[q] = 0) = Pr(Γ̂p[q] = ∆p[q]) · Pr(∆p[q] = 0) + Pr(Γ̂p[q] ̸= ∆p[q]) · Pr(∆p[q] ̸= 0)

= (1 + ϵa)
2 · (1 + ϵd)

2 + (1 − ϵa)
2 · (1 − ϵd)

2 ≈ (1 + ϵa · ϵd)
2

Therefore the bias ϵ̂ can be approximated by ϵaϵd.

Complexity of the attack. We use hypothesis testing to distinguish the correct guess of
significant keys from a wrong guess and find the complexity. Consider the following two
hypotheses

• H0: The guessed significant key bits are incorrect, i.e., the bias related to the key
bits is 0.

• H1: The guessed significant key bits are correct, i.e., their combined bias is ϵ̂.

From our N samples, we keep track of how many times the observed difference Γ̂p[q] = 0.
Suppose the count is x. Hence, for a threshold T , a reasonable decision rule will be of the
form:

Reject H0 if x > T

Retain H0 if x ⩽ T

In this regard we have the following two types of errors.

1. Type I error: Where the null hypothesis (H0) is rejected in spite being true, i.e., for
an incorrect guess of significant key bits, we achieve x > T (False Alarm).
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2. Type II error: Where the null hypothesis is retained in spite of being false (Non
detection). Here, for the correct guess of the significant key bits, we achieve x ⩽ T .

The authors of [AFK+08] restricted the probability of non-detection error to be less than
or equal to 1.3 × 10−3. Based on this, using Neyman-Pearson lemma, the value of N is
derived as:

N ≈

(√
α log 4 + 3

√
1 − ϵ2

aϵd
2

ϵaϵd

)2

.

Here α is such that the probability of false alarm is 2−α. Let us denote the total key size
of the cipher by k bits and the number of significant key bits in the key be m, then the
complexity formula given by [AFK+08] was 2m ·N +2k−α. However, in the work [DGSS22]
it has been shown that the accurate complexity formula should be 2m · N + 2k−α + 2k−m.

3 Critical analysis of the previous works and a novel attack
on 6-round ChaCha256

Based on the correction provided by [DGSS22] in the complexity formula, we identify
that there is a limitation in the fundamental cryptanalytic approach in [AFK+08]. In this
approach, the overall complexity of the attack can never go below 2k/2. Let k − m be
the number of PNBs in the key. As mentioned above, the complexity is then given by
2m · N + 2k−α + 2k−m. If m < k/2 then, k − m > k/2. Thus, 2m · N + 2k−m + 2k−α > 2k/2.
On the other hand, m ⩾ k/2 implies, 2m · N ⩾ 2k/2. So, 2m · N + 2k−m + 2k−α ⩾ 2k/2.
Therefore, for both the cases m < k/2 and m ⩾ k/2, the complexity is greater than or
equal to 2k/2.

This is where we come up with a novel cryptanalytic idea of exploiting multiple (ID, OD)
pairs to bring down the complexity below 2k/2, for k-bit key that we present in this section,
particularly in subsection 3.2.

3.1 Correcting the complexity calculations of some previous works
In the literature there are several works in which the achieved complexity seems to be
less than 2k/2. The reason for this is that the authors have used the complexity formula
given in [AFK+08]. In fact, there are several previous works on the differential attacks on
ChaCha whose complexities should be significantly different from their claim, if we use the
complexity formula given in [DGSS22].

Explanations for the miscalculation in the complexity calculation. The key recovery
is done in two stages. In the first stage, we recover the significant key bits, for which
the required complexity is 2m · N + 2k−α. In the second stage we recover the PNBs by
exhaustive search, for which the complexity is 2k−m. In the formula given by [AFK+08],
this 2k−m term was missing, i.e., the complexity for recovering the PNBs was not included
in the formula, which has later been incorporated in [DGSS22]. In the complexity analysis
of the following works, 2k−m is significantly higher than 2m · N + 2k−α. So the actual
complexity is significantly higher than their claims. This we explain with little more details
before proceeding further.

• [AFK+08]: In the work of [AFK+08] itself, the authors have attacked the 7-round
and 6-round version of ChaCha256. For the 6-round version attack, the authors used
147 PNBs in their attack, i.e., the complexity for the second stage is 2k−m = 2147.
Unfortunately, because of considering the formula of [AFK+08], the authors claimed
that the attack complexity as 2m · N + 2k−α = 2139, which is actually higher.
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• [SZFW12]: In the last step of their attack on 6-round ChaCha256, they have to
recover 139 PNBs, which requires a complexity of 2139. However, the complexity
claimed was 2136.

• [CM16]: In FSE 2016, Rai Choudhuri and Maitra attacked 6-round ChaCha256
using multiple bit distinguishers and provided three different attack complexities,
which are 2131.40, 2129.53 and 2127.5. In these attacks, the number of PNBs are 159, 161
and 166 respectively. Therefore, the actual complexities should be 2159, 2161 and 2166

respectively.

• [CN20]: Next in 2020, the authors of [CN20] claimed to further improve the attacks
on 6-round ChaCha256 by using a better distinguisher, and proposed a cryptanalytic
idea achieving complexities like 2102 and 2104. Again, they have used 210 and 212
PNBs respectively in these attacks, because of which the actual complexities should
be 2210 and 2212.

We mention the claimed complexities and the actual complexities of all these attacks
in Table 2, along with the complexity of our newly proposed technique in the next
subsection.

3.2 Our cryptanalytic technique involving multiple (ID, OD) pairs
Now we propose a novel cryptanalytic technique using multiple (ID, OD) pairs with the
help of which one can achieve a complexity less than 2k/2. Assume that we have q different
(ID, OD) pairs each of which give a high bias (How the (ID, OD) pairs are obtained and
how the number q is selected is explained in subsection 3.4). Here we exploit all these
pairs in the attack. Let us denote these pairs as (IDi, ODi), where i ∈ {1, 2, . . . , q}.

Pre-processing Stage: Partitioning the key bits into q + 1 subsets

In this approach, we partition the set of all key bits into (q + 1) subsets S1, S2, . . . , Sq+1,
such that for i = 1, 2, . . . , q, Si is the set of significant key bits corresponding to (IDi, ODi).
Further, Sq+1 is the set of all remaining key bits.

Stage 1: We put the input difference at ID1, run r ChaCha Round functions and observe
the difference at OD1. Let us call it ∆OD1 . Then, we run the algorithm on both the
matrices R − r more rounds (i.e., R rounds in total), and generate Z, Z ′. Now by changing
a single key bit in X and X ′, we generate X and X ′. We compute Z − X and Z ′ − X ′, run
the reverse round by R − r rounds and check the differences at OD1. Let us call it TOD1 .
We repeat this process for each key bit. If the bias in the event (∆OD1 = TOD1) is less
than a predetermined threshold γ1, we consider the key bit to be in S1, i.e., significant bits
corresponding to (ID1, OD1). We repeat this process for each key bit and thus construct
S1.

For i = 2 to q, we do the following:

Stage i: Similarly as above, by putting the input difference at IDi, we run both X and
X ′ by r rounds and observe the difference at ODi, and call it ∆ODi

. Then we generate
Z, Z ′. Consequently, for each of the key bits which are not in any of S1, S2, . . . , Si−1, we
proceed as follows. Changing the key bit of the initial matrices, we achieve X and X ′,
then compute Z − X and Z ′ − X ′ and run the reverse algorithm by R − r rounds to check
the difference TODi . The bits for which the bias of the event (∆ODi = TODi) is less than
a predetermined threshold γi, are included in Si.
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Stage q + 1: After the construction of S1, S2, . . . , Sq, the remaining key bits which are
not in any of the sets S1, S2, . . . , Sq, are assembled in the set Sq+1.

By the construction process it is clear that since during any stage Si, key bits are chosen
from those which are not in S1, S2, . . . , Si−1, so its intersection with S1 ∪ S2, . . . ∪ Si−1 is
empty. Since this is true for any i ∈ {1, 2, . . . , (q + 1)}, S1, S2, . . . , Sq+1 are all disjoint.

Online Phase

In the differential attack model we assume that the attacker has access over the IVs. The
first stage of the cryptanalytic method consists of collection of the data.

Data Collection: For all i = 1, 2, . . . , q, the following steps are executed. By assigning
Ni different pairs of IVs (v, v′) such that the difference is at the position IDi, the attacker
runs the algorithm through R rounds and collects the outputs Z, Z ′. Thus, the data
complexity is

q∑
i=1

Ni.

Recovering the key bits: The key bits are recovered in (q + 1) stages. For each of i = 1
to q, in the i-th stage, we recover the key bits of Si.

Stage 1: For each of the collected N1 pairs of Z, Z ′ which are generated from X, X ′ with
the input difference at (ID1, OD1), the steps are as follows. The attacker guesses the key
bits of S1 and assigns random values in the remaining k − |S1| key bits. Thus, two states
X̃ and X̃ ′ are produced. Now the attacker runs Z − X̃ and Z − X̃ ′ for R − r rounds and
checks the difference at OD1 position. Let us denote it by T̃ID1 . Out of N1 pairs, if the
number of times when T̃ID1 = 0 occurs is more than a predetermined threshold T1, the
guess is considered to be correct for the S1 key bits, and the attack proceeds to stage 2.
If it does not cross the threshold, the attacker takes a new guess of the S1 key bits and
repeats the procedure.

For i = 2 to q, the following procedure is performed:

Stage i: Till the beginning of the i-th stage, the attacker has already recovered the key
bits of S1, S2, . . . , Si−1. Now for each of the Ni pairs of Z, Z ′, corresponding to (IDi, ODi),
the attacker puts the already recovered values for the key bits of S1 ∪ S2 ∪ · · · ∪ Si−1, and
guesses Si, puts random values in the remaining (k − |S1| − |S2| − · · · − |Si|) key bits.
Then, Z − X̃ and Z − X̃ ′ are run backwards by R − r rounds and their difference at ODi

position is observed, which we denote by T̃IDi
.

If out of these Ni pairs, the count that T̃IDi = 0 occurs crosses a predetermined threshold
Ti, the guess for Si key bits is considered to be correct, and the algorithm proceeds to
stage i + 1. Otherwise, we proceed with a new guess and then the process is repeated.

Stage q + 1: In this stage the remaining key bits Sq+1 are obtained by the exhaustive
search.

3.3 Complexity and error probability in our new approach
Here we present the complexity analysis in line of [AFK+08], with certain modifications.
We aim to choose the data complexity in such a way that the probabilities of the two types
of errors are within our desired limit.
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Non-detection error in each stage: In each of the first q stages, the non-detection error
can occur, i.e., the threshold may not cross even if the guess is correct. For simplicity, we
aim to keep the non-detection error probability same in each stage. Let us denote this
by Pr∗

nd and the overall non-detection probability by Prnd. First, we find the relation
between Pr∗

nd and Prnd. In each individual stage, the probability that the correct key bits
are detected is (1 − Pr∗

nd). Therefore, the probability that correct key bits are detected in
all the q stages is (1 − Pr∗

nd)q. Thus,

Prnd = 1 − (1 − Pr∗
nd)q ≈ qPr∗

nd. (3)

False alarm error in each stage: Similarly, a false alarm can occur in each of the q stages.
Let us denote the error probability of the i-th stage as Prfai

. If there is a false alarm in
the i-th stage, we proceed to the (i + 1)-th stage. However, in our attack approach, we
will consider the probability of false alarm error so small that it would have negligible
contribution to the overall complexity.

Complexity in the i-th stage: In the i-th stage, the complexity to find the correct
significant key bits corresponding to the i-th (ID, OD) pair, can be expressed as 2mi · Ni.
Particularly, in our attack we assign such values of α that the false alarm error does not
have significant influence on the complexity. Therefore the total complexity can be written
as

q∑
i=1

2mi · Ni + 2mq+1 . (4)

Derivation of Ni: Here we derive the data complexity of each stage with the aim that
the overall error probability of non-detection has the same upper bound as the previous
works (1.3 × 10−3). Let a random variable X follow a binomial distribution with Ni trials.
If the null hypothesis is true, i.e., the guessed significant key bits are incorrect, then p = 1

2 .
If the alternative hypothesis is true, we have p = 1

2 (1 + ϵ). Now, we have to distinguish
between these two distributions. We approximate both of these by normal distributions.
Then we have to decide a threshold Ti for which the two errors mentioned above are upper
bounded by certain desired values, i.e., Pr∗

nd and Prfai
= 2−αi . Let us denote the two

random variables corresponding to H0 and H1 as X0 and X1.

When H0 is true, we have p = 1
2 and when the alternative H1 is true we have p = 1

2 (1 + ϵ).
Here the test statistic used is Zj = (Xj − mean)/standard deviation (j = 1, 2), which
follows a standard normal distribution. We consider the probability of false alarm error to
be upper bounded by 2−αi , i.e.,

Pr
[

Z0 >
Ti − Ni/2√

Ni/4

]
⩽ 2−αi . (5)

On the other hand, the probability of non-detection is Pr∗
nd. Hence

Pr∗
nd = Pr

[
Z1 ⩽

Ti − Ni(1 + ϵ)/2√
Ni(1 − ϵ2)/2

]
= Φ

[
Ti − Ni(1 + ϵ)/2√

Ni(1 − ϵ2)/2

]
.

Therefore, Ti − Ni(1 + ϵ)/2√
Ni(1 − ϵ2)/2

= Φ−1[Pr∗
nd]. Thus, Ti can be expressed as follows.

Ti = Ni(1 + ϵ)
2 +

Φ−1[Pr∗
nd](

√
Ni(1 − ϵ2))

2 (6)
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Using this value of the expression from Equation 6 into Equation 5 we get,

Pr
[
Z0 > Φ−1[Pr∗

nd](
√

1 − ϵ2) +
√

Niϵ
]
⩽ 2−αi

Since
∫∞

y
e− x2

2 dy ⩽ e− y2
2 , we have,

Pr
[
Z0 > Φ−1[Pr∗

nd](
√

1 − ϵ2) +
√

Nϵ
]
⩽ e−

(
Φ−1[Pr∗

nd
](

√
1−ϵ2)+

√
Nϵ

)2

2

or, e−

(
Φ−1[Pr∗

nd
](

√
1−ϵ2)+

√
Nϵ

)2

2 = 1
2αi

Taking natural logarithm on both sides and using the equality 1
q Prnd = Pr∗

nd we have,

Ni ≈

(√
(αi) ln 4 − Φ−1[ 1

q Prnd]
√

1 − ϵ2

ϵ

)2

(7)

3.4 Key recovery of 6-round ChaCha256
We use this divide-and-conquer kind of approach to produce an attack against the 6-round
version of ChaCha256. In this process we use three (ID, OD) pairs.

Choosing the (ID, OD) pairs

In section 6.1 of [BLT20], the authors reported four distinguishers for the 3.5-th round
which they found experimentally. Among these four, we use three pairs (q = 3) in our
attack, which are as follows: (ID1, OD1): (∆0

12[6], ∆3.5
1 [0]), (ID2, OD2): (∆0

13[6], ∆3.5
2 [0]),

(ID3, OD3): (∆(0
14[6], ∆3.5

3 [0]). However the authors have used suitable IVs such that the
number of differences after the first round is minimum and thus obtained a bias of 0.00317
after 3.5 round. To achieve one suitable IV we need 25 random trials on average. To avoid
these 25 extra trials we loose the minimum difference criterion after one round. As a result
we achieve a bias (ϵd) of 0.0005 by experimenting over 240 random key-IV pairs. Note
that we want to keep the non-detection error probability same as in the previous works,
i.e., Prnd = 1.3 × 10−3. Thus, Φ−1[(1 × Prnd)/q] = Φ−1[(1 × (1.3 × 10−3))/3]) ≈ −3.4.
Now we discuss how many (ID, OD) pairs do we need to consider and in which order so
that we can produce the best attack. To explain this, we study the complexity calculation
given in formula Equation 4.

Explanation for using three (ID, OD) pairs: We consider a q to be suitable, if the
complexity of the last stage (to recover the remaining key bits of Sq+1 via exhaustive
search) is almost negligible compared to the complexity of the first q stages (to recover
S1, S2, . . . , Sq). For example, in our case if we had taken q = 2, then the complexity to
recover S1 and S2 would have been approximately 299, whereas the complexity of the last
stage might be as high as 2142, since we had to recover 142 remaining bits in the last stage.
So, q = 2 is not a suitable choice. Thus we go for q = 3, where we see that the complexity
at the last stage is 292, which is much less than 299. Further, we can proceed for q = 4,
but that does not improve the overall complexity further, since the complexity of the first
stage still remains 299.

Choosing the order of the (ID, OD) pairs: In this expression, among all the terms
of the form 2mi · Ni the first term 2m1 · N1 plays the vital part and the other terms are
significantly smaller than this, i.e., the contribution of those terms in the overall complexity
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is much less. The reason is, in the later stages the number of key bits we recover is less,
and also, since the already recovered bits are correctly guessed, the bias increases and
therefore Ni decreases. So we aim to make the term 2m1 · N1 as small as possible.

Thus, we have to focus on which (ID, OD) pair should be considered as the first pair
(ID1, OD1), since it has the primary role in deciding the complexity. Among all the pairs,
we choose the (ID, OD) pair for which we can achieve the minimum value for 2m1 · N1.
Particularly in our case, since each of the three pairs produces same backward and forward
biases if considered as the first pair, so the order does not really matter much.

Particulars of the cryptanalysis

First Stage: Corresponding to (ID1, OD1), we set the threshold 0.565 and obtain 58
significant bits with 220 samples. The set S1 of significant bits are:

{18, 17, 16, 13, 12, 11, 10, 9, 6, 5, 57, 56, 55, 46, 45, 44, 43, 38, 37, 36, 82, 81, 80, 76,
75, 70, 69, 102, 101, 100, 171, 170, 169, 166, 165, 164, 163, 162, 222, 221, 220, 210,
209, 208, 207, 199, 198, 197, 196, 195, 249, 248, 247, 235, 234, 233, 229, 228}

Second Stage: For (ID2, OD2), setting a threshold of 0.756, we obtain 77 significant bits
with same number of samples as in the first stage. We realize that there are 21 common
elements in the significant bits from S1. After removing those key bits we have the set S2
to be made up of 56 significant bits which are as follows:

{3, 4, 39, 40, 41, 42, 47, 48, 49, 50, 67, 68, 74, 77, 78, 86, 87, 88, 89, 106, 107, 108,
111, 112, 113, 114, 131, 132, 133, 136, 137, 138, 139, 150, 151, 152, 153, 192, 193, 194,
200, 201, 202, 203, 226, 227, 230, 231, 238, 239, 240, 241, 242, 252, 253, 254}

Now, S1 ∪ S2 has 114 elements, hence the number of remaining key bits is 142.

Third Stage: Using (ID3, OD3), a threshold of 0.92 is set to obtain 101 significant bits.
We filtered 51 common elements among them and the rest 50 elements constructing S3 are:

{2, 8, 14, 15, 34, 35, 66, 71, 72, 73, 79, 98, 99, 104, 105, 109, 110, 117, 118, 119, 120,
121, 128, 129, 130, 134, 135, 140, 141, 142, 143, 144, 145, 146, 154, 155, 156, 157, 158,
161, 167, 168, 181, 182, 183, 184, 185, 224, 225, 232,}

Therefore the total number of elements in S1
⋃

S2
⋃

S3 is 164, leaving the number of PNBs
to be 92. This reduction of PNBs over the existing techniques and dividing the significant
bits in three separate sets help us to achieve the complexity less than 2k/2, when the key
size is k-bits.

Attack Complexity: For the PNBs of (ID1, OD1), we observe the backward bias ϵa1

= 0.015. Taking Prfa1 = 2−68, we achieve N1 = 241.47. For the PNBs corresponding to
(ID2, OD2), we have ϵa2 = 0.183, choosing Prfa2 = 2−68 we have the required samples
N2 = 234.26. Further, for the PNBs corresponding to (ID3, OD3), we have ϵa3 = 0.715,
and choosing Prfa3 = 2−68 we estimate the required samples as N3 = 230.32.

Using Equation 4 the total complexity becomes

258 · 241.47 + 256 · 234.26 + 250 · 230.32 + 292 = 299.47 + 290.26 + 280.32 + 292 ≈ 299.48
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Table 2: Corrected complexities of certain previous key-recovery attacks on 6-round
ChaCha256 and our improved result.

Attack # PNB
Complexity

Claimed Actual

[AFK+08] 147 2139 2147

[SZFW12] 136 2136 2139

[CM16] 159 2131.40 2159

[CM16] 161 2129.53 2161

[CM16] 166 2127.5 2166

[CN20] 210 2102.2 2210

[CN20] 212 2104.68 2212

[Our Work] 92 299.48 299.48

4 Implementing the attacks on a toy version of ChaCha
It is evident that the complexities we discussed so far are at a level that cannot immediately
be implemented to demonstrate the complete attack. On the other hand, as in many
other cryptanalytic efforts, there are several statistical assumptions while we estimate
the complexity and success probability of the attack. In this direction let us explain the
importance of developing ToyChaCha, a toy version of ChaCha. The following points discuss
several aspects of proposing ToyChaCha and implementing the attacks.

• The differential attacks that has been proposed so far are based on the probabilistic
neutral bits, and generally we follow the complexity formula proposed in [AFK+08].
Unfortunately, this formula has been used almost as a black box in several works
afterwards, and substantial verification has not been studied on the accuracy of
this complexity estimation. This formula is based on several assumptions and
approximations. So far we do not have any scientific validation of this entire
approach. Implementation of these cryptanalytic approaches would be convincing
towards the validity of the entire attack procedure and the complexity calculation.

• The complexity formula is based on an approximation of binomial distribution to
normal distribution. Thus how closely the approximation helps us to get the actual
complexity can be experimentally validated by an application on a toy cipher.

• Note that, the authors of [AFK+08] claimed that the attack has success probability
for at least half of the all possible keys. However, there has not been detailed
investigation on the exact proportion of keys for which the attack is applicable.
Implementing the attack on the toy version helps us to get a more accurate measure
of the success probability, at least for the toy version.

• In the formula, the probability of false alarm plays a vital role. In the work
of [AFK+08], the authors did not accurately estimate this probability of false alarm,
rather considered an upper bound for this. This influences the derived complexity to
deviate from the actual value. In the ToyChaCha we can experimentally measure
the actual probability of false alarm error and investigate quantitatively how it may
revise the complexity estimation.
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4.1 Structure of ToyChaCha
The design of the ToyChaCha has similar structure with respect to the original cipher
except for the constant vectors and the quarterround function. Here each entry (word)
of the matrix is of 8 bits. We consider 32-bit key and replicate it on the next row. The
four constants chosen are c0 = 0x65, c1 = 0x6e, c2 = 0x32, c3 = 0x74. The equation
of the quarterround function which transforms a vector (a, b, c, d) to (a′′, b′′, c′′, d′′) via
(a′, b′, c′, d′) follows as below:

a′ = a ⊞ b; d′ = ((d ⊕ a′) ≪ 4);
c′ = c ⊞ d′; b′ = ((b ⊕ c′) ≪ 3);

a′′ = a′ ⊞ b′; d′′ = ((d′ ⊕ a′′) ≪ 2);
c′′ = c′ ⊞ d′′; b′′ = ((b′ ⊕ c′′) ≪ 1);

(8)

4.2 Implementation of key recovery attack on 3.5 round using ideas
from [AFK+08] and [Mai16]

On this ToyChaCha, we implement the fundamental key recovery attack given in [AFK+08]
and the further improvement given by Maitra [Mai16] using chosen IV approach. After
that, we implement our cryptanalytic technique using multiple (ID, OD) as well. The
details of the machine where we experimented these are as follows: Intel(R) Xeon(R)
W-2265 CPU @ 3.50GHz with Ubuntu 20.04.4 LTS operating system.

Approach of [AFK+08]

Using a single bit distinguisher on 2 rounds, we produce an attack in 3.5 round ToyChaCha.
In this process, we use the (ID, OD) as (∆(0)

13 [0], ∆(2)
1 [6]). From 3.5-th round we come

back to 2nd round. To achieve the PNBs, we use the threshold 0.42 and achieve 16 PNBs
which are listed below:

{7, 6, 5, 4, 3, 2, 1, 0, 14, 19, 18, 31, 30, 26, 25, 24}

The forward bias observed here is ϵd = 0.9167 while the backward bias is ϵa = 0.377.
Therefore, for approximate calculations, ϵ̂ = ϵd · ϵa = 0.343, number of significant key bits
m = 16. We achieve the best complexity for α = 11. For this, N = 378, T = 227 and the
complexity is 224.67.

Implementation: In the implementation experiment, we execute the code with 215

different keys. The average time required to recover the key is 0.9658 seconds, and the
complexity is 223.60, which is close to (slightly less than) the theoretically achieved value
224.67. Out of these keys, 32705 keys were successfully recovered. Thus, the success
probability of the attack is 99.81%. To estimate the false alarm probability, for each of
the 215 keys, we count the number of times the false alarm occurred and divided it by the
number of guesses, and then took the average. We calculated the false alarm probability
as low as 0.000341, which is less than the theoretical claimed upper bound 2−11. The
source code of the attack program is available in GitHub [Gar22] and the summary of the
experimental evidences are provided in Table 3.

Approach of Maitra [Mai16]

In the chosen IV approach of Maitra [Mai16], during the pre-processing stage, for all
possible keys in the input difference column, the attacker lists the IVs that produce
minimum number of difference between X and X ′ after the first round. We call them
“suitable IV” according to [Mai16]. This choice of IV improves the forward bias ϵd. In this
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Table 3: Comparison of theoretical claim and experimental results of the implemented
attack on 3.5 round ToyChaCha

Parameter
Attack of [AFK+08] Attack of [Mai16]

Theory Experiment Theory Experiment

Data 378 378 185 185

Complexity for significant bits 224.56 223.56 224.53 223.47

False alarm Complexity 221 218.18 221 217.59

Complexity for PNBs 216 215.01 215 213.99

Total Complexity 224.67 223.60 224.65 223.50

Success probability ⩾ 0.50 0.9981 ⩾ 0.50 0.9971

Prfa ⩽ 0.00049 0.00034 ⩽ 0.00049 0.00015

approach the author did not include any key bit from the input difference column into the
PNB set. In the actual attack, while guessing the key, the attacker uses the corresponding
IVs from the prepared list. We implement this chosen IV approach in the ToyChaCha. We
choose the input difference position ∆(0)

13 [0] and observe the output difference at ∆(2)
1 [6]

after 2 rounds. The minimum number of differences between X and X ′ after the first
round is 10. By assigning threshold 0.45, we achieve the following PNB set :

{ 7, 6, 5, 4, 3, 2, 1, 0, 19, 18, 31, 30, 26, 25, 24 }

Here, in the pre-processing stage, we prepare the list of key-IV pairs. In the input difference
column, since 8 key bits are involved, there are 256 possible values. Out of them we
observe that for 8 keys we do not get any IV which gives 10 differences after the first round.
We call them strong keys according to the terminology used in [BLT20]. For each of the
remaining 248 weak key values of k1, we find out one IV value v1 and prepare a list. So the
list IV contains 248 key-IV pairs. In the program, after guessing a value of the significant
key bits, we find the corresponding IV from the prepared list IV , and then implement the
attack. In this approach, we observe ϵd = 0.98 and ϵa = 0.49. The PNB size is 15. So,
based on the complexity formula, we get N = 185, T = 119 and the complexity is 224.65

for α = 11.

Implementation: In the implementation program, we run it over 215 different keys. The
average time required to recover the key is 0.866 seconds, and the complexity is 223.50,
which is slightly less than the theoretically achieved value of 224.65. Out of 215 keys, 32673
could be successfully recovered. So the success probability of the attack is 99.71%. To
estimate the false alarm probability, for each of the 215 keys, we count the number of
times the false alarm occurred, divide it by the number of guesses, and then calculate the
average. We estimate a false alarm probability of 0.00015, which is less than the theoretical
claimed upper bound 2−11 = 0.000488. The source code of the attack program is given in
the GitHub link [Gar22] and the summary in Table 3.

Implementing Multiple (ID, OD) attack: Comparison with single (ID, OD)

Finally, we present application of our technique on the 3-round ToyChaCha and confirm
that our approach produces a more efficient cryptanalysis. Here, the distinguishers in



Sabyasachi Dey, Hirendra Kumar Garai and Subhamoy Maitra 103

the second round are considered. We use the input difference at ∆(0)
13 [0] and the output

difference in ∆(2)
1 [6], which produces a bias 0.91. In the backward part, we have to come

back by one round only. There are 24 PNBs, each of which provides a backward bias
ϵa = 1.

As we discussed that a high number of PNBs can actually increase the complexity, in this
approach one has to exploit 8 significant bits and 24 PNBs. According to the complexity
formula given in [AFK+08], the complexity is 214.56 (which is actually not correct) for
α = 40 and the data required is 94.7 ≈ 95. However, according to the modified and
corrected complexity calculation formula in [DGSS22], the complexity is of the order of
224, as the 24 PNBs need to be exhaustively searched at the end. We implement this
attack and achieved the complexity 223.01. The details can be found in Table 4.

Thus, now we explain the attack using three (ID, OD) pairs (ID1, OD1): (∆(0)
13 [0], ∆(2)

1 [6]),
(ID2, OD2): (∆(0)

14 [0], ∆(2)
2 [6]), (ID3, OD3): (∆(0)

15 [0], ∆(2)
3 [6]). For each pair, the forward

bias ϵd = 0.91. Also, for each of the above, the significant key bits are basically all the
key bits which lies in the same column as the output difference bit, and the remaining
are PNBs. In each stage, the observed backward bias is ϵa = 1. Since we use 3 pairs,
Pr∗

nd = (1.3 × 10−3)/3 ≈ 0.43 × 10−3. Thus, the formula for Ni for each of i = 1, 2, 3 is:

N ≈

(√
α log 4 + 3.4

√
1 − ϵ2

aϵd
2

ϵaϵd

)2

.

For (ID1, OD1), we get 8 significant key bits {15, 14, 13, 12, 11, 10, 9, 8}. For (ID2, OD2),
we obtain another set of 8 significant key bits viz., {23, 22, 21, 20, 19, 18, 17, 16}, and
since there is no common element among themselves, hence total number of signif-
icant bits become 16. With (ID3, OD3) we get 8 more distinct significant key bits
{31, 30, 29, 28, 27, 26, 25, 24}. Keeping the false alarm error αi = 40 for each i, we obtain
Ni = 26.56. Therefore the overall attack complexity is 28 · 26.56 + 28 · 26.56 + 28 · 26.56 + 28 =
216.15.

Implementation: We execute the program for 215 different keys. The average time
required to recover the key is 10.066 ms and the complexity is 213.67. The details of the
complexity for each stage is given in Table 4. We also compare this attack with the single
(ID, OD) based effort in the same table.

Discussion: As we can see in Table 4, it is validated that for single (ID, OD), the complex-
ity formula proposed in [AFK+08] does not provide correct complexity when the number
of PNBs is large. On the other hand, the correctness of the modified complexity formula
by [DGSS22] is validated too. Secondly, the multiple (ID, OD) attack approach proposed
in our work and its complexity formula are properly verified through the experimental
result. It is clear that our method reduces the attack complexity significantly than that of
the existing single (ID, OD) strategy.

5 Success probability estimation for the attacks
Here we propose a theoretical approach to achieve a better estimation of success probability
corresponding to the PNB-based differential cryptanalysis than what has been claimed
in [AFK+08]. It was claimed in [AFK+08] that the success probability is at least 50%.
So far, there has not been any disciplined investigation in this regard to estimate the
success probability in a more accurate manner. Later, in Maitra’s [Mai16] approach using
the chosen IVs, it was claimed that the right IVs are available for 70% of the keys only.
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Table 4: Comparison of theory and experiments for 3-round attack using multiple (ID, OD)
and single (ID, OD)

Complexity
Single (ID, OD) Multiple (ID, OD)

Theory [AFK+08] Theory [DGSS22] Experiment Theory Experiment

Data 95 95 95 94 94

Recover S1 214.56 214.56 213.51 214.56 213.51

Recover S2 - - - 214.56 213.51

Recover S3 - - - 214.56 213.5

False alarm 2−8 2−8 0 0 0

Recover PNB 0 224 223.01 28 26.95

Total 214.56 224 223.01 216.15 215.1

So, he computed the median bias over those 70% keys only and then used the same
approach as in [AFK+08] to compute the complexity. Thus, the success probability of the
chosen IV approach can be claimed to be at least 35%. There has been no analysis how
effective the attack is for the rest 65% keys. Therefore, this is an important area of further
investigation to obtain a more accurate range for the success probability. Interestingly,
our implementation on the toy cipher shows that both Aumasson’s attack and Maitra’s
attack have success probability more than 99% on the toy version. This identifies that the
attacks are far more effective than what was initially assumed. Thus, we aim to obtain a
better measure of success probability.

Theorem 1. For each i ∈ {0, 1, . . . , n}, let Xi denote the normal random variable with
mean N

2 (1 + ϵi) and standard deviation
√

N
4 (1 − ϵ2

i ) (0 ≤ ϵi ≤ ϵmax). Let Y be a random
variable such that Y = Xi for each i with probability 1

n . Let ρ0, ρ1, . . . , ρk be such that
0 = ρ0 < ρ1 < · · · < ρk−1 < ρk = ϵmax and, for each of j = 0 to k − 1, X′

j be the set of all
Xi such that ρj < ϵi < ρj+1 for 1 ≤ j ≤ k − 1. Consider Ej be the event that Y chooses a
Xi from Xj. Then,

k−1∑
j=0

Φ

T − N
2 (1 + ρj+1)√

N
4 (1 − ρ2

j+1)

 · Pr(Ej) < Pr(Y < T ) <

k−1∑
j=0

Φ

T − N
2 (1 + ρj)√

N
4 (1 − ρ2

j )

 · Pr(Ej).

(9)

Proof. Pr(Y < T ) =
k−1∑
j=0

Pr((Y < T ) ∩ Ej) =
k−1∑
j=0

Pr((Y < T )|Ej) · Pr(Ej).

First we will find a lower and an upper bound for each Pr((Y < T )|Ej). Let Φ be the
Cumulative Distribution Function of standard normal distribution. Then we know that,

Pr (Xi ≤ T ) = Pr

Xi − N
2 (1 + ϵi)√

N
4 (1 − ϵ2

i )
≤

T − N
2 (1 + ϵi)√

N
4 (1 − ϵ2

i )

 = Φ

T − N
2 (1 + ϵi)√

N
4 (1 − ϵ2

i )

 .
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For any Xi ∈ Xj ,

1√
1 − ρ2

j

<
1√

1 − ϵ2
i

<
1√

1 − ρ2
j+1

, (since ρj < ϵi < ρj+1). (10)

Now, if T − N
2 (1 + ϵi) < 0, then

T − N
2 (1 + ϵi)√

N
4 (1 − ϵ2

i )
>

T − N
2 (1 + ϵi)√

N
4
(
1 − ρ2

j+1
) >

T − N
2 (1 + ρj+1)√

N
4
(
1 − ρ2

j+1
)

On the other hand, if T − N
2 (1 + ϵi) ≥ 0,

T − N
2 (1 + ϵi)√

N
4 (1 − ϵ2

i )
≥ 0 >

T − N
2 (1 + ρj+1)√

N
4
(
1 − ρ2

j+1
)

Therefore for any ϵi such that ϵi < ρj+1, T − N
2 (1+ϵi)√

N
4 (1−ϵ2

i )
>

T − N
2 (1+ρj+1)√

N
4 (1−ρ2

j+1)
. Since Φ is an

increasing function, for any Xi ∈ Xj such that j ∈ {0, 1, . . . , k − 2},

Pr (Xi ≤ T ) = Φ

T − N
2 (1 + ϵi)√

N
4 (1 − ϵ2

i )

 > Φ

T − N
2 (1 + ρj+1)√

N
4
(
1 − ρ2

j+1
)


=⇒ Pr(Y < T |Ej) > Φ

T − N
2 (1 + ρj+1)√

N
4
(
1 − ρ2

j+1
)
 .

Therefore, Pr (Y < T ) =
k−1∑
j=0

Pr (Y < T |Ej) · Pr(Ej) >
k−1∑
j=0

Φ
(

T − N
2 (1+ρj+1)√

N
4 (1−ρ2

j+1)

)
· Pr(Ej).

In a similar manner for any ϵi such that ϵi > ρj ,

T − N
2 (1 + ϵi)√

N
4 (1 − ϵ2

i ))
<

T − N
2 (1 + ρj)√

N
4 (1 − ρ2

j )

Therefore Pr(Y < T ) =
k−1∑
j=0

Pr(Y < T |Ej) · Pr(Ej) <
k−1∑
j=0

Φ
(

T − N
2 (1+ρj)√

N
4 (1−ρ2

j)

)
· Pr(Ej).

Exploiting Theorem 1 to obtain the range for success probability: We use the above
theorem to measure the success probability corresponding to the attacks. For any key, the
observed bias at the OD bit ∆(r)

p [q], Γp[q] = 0 is ϵ. We collect the output key stream for N
different IVs. So in this theorem, each Xi can be considered to be the count of Γp[q] = 0 out
of the N samples corresponding to a key, say ki. Therefore the distribution is approximated
by normal with mean N

2 (1 + ϵi) and standard deviation
√

N
4 (1 − ϵ2

i ). Now, Pr(Xi < T ) is
the probability that even for the correct guess of significant key bits of ki, it is not detected.
Further, Pr(Y < T ) represents that for a randomly chosen key, the key is not detected in
the attack even after the guess for significant bits are correct. Therefore, 1 − Pr(Y < T )

represents the success probability of the attack. So, 1 −
k−1∑
j=0

Φ
(

T − N
2 (1+ρj)√

N
4 (1−ρ2

j)

)
· Pr(Ej) is

a lower bound and 1 −
k−1∑
j=0

Φ
(

T − N
2 (1+ρj+1)√

N
4 (1−ρ2

j+1)

)
· Pr(Ej) is an upper bound for the success
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probability. In the attack, the bias ϵ is approximated by ϵd · ϵa. Since ϵd ≤ 1, the maximum
value of ϵ, i.e., ϵmax is ϵa. Instead of dealing with ϵ, we deal with ϵd, since its value is
high. We choose 0 = ρ′

0 < ρ′
1 · · · < ρ′

k = 1 and define ρi = ρ′
i · ϵa. Then, ρi’s will follow

the property mentioned in the theorem. Moreover, for some ϵi = ϵdi .ϵa, ρj < ϵi < ρj+1
implies ρ′

j < ϵdi < ρ′
j+1. Therefore, the lower and upper bounds are respectively

1 −
k−1∑
j=0

Φ(
T − N

2 (1 + ρ′
j · ϵa)√

N
4 (1 − (ρ′

j · ϵa)2)
) · Pr(Ej), 1 −

k−1∑
j=0

Φ(
T − N

2 (1 + ρ′
j+1 · ϵa)√

N
4 (1 − (ρ′

j+1 · ϵa)2)
) · Pr(Ej).

5.1 Calculation on ToyChaCha and experimental verification

Figure 1: Bias distribution in ToyChaCha for (ID, OD) pair (∆(0)
13 [0] − ∆(2)

1 [6]) after 2
rounds in [AFK+08].

We apply Theorem 1 to estimate a range for the success probability of the attack based on
the approach of [AFK+08] as given in subsection 4.2. Further, we verify this comparing
with the experimental result. For convenience, let us call each ρj a marker.

Result 1. Success probability of the attack proposed using Aumasson’s approach [AFK+08]
on ToyChaCha is in the range [0.996246, 0.998663].

Proof. We consider k + 1 = 7 markers. We choose ρ′
0 = 0.0, ρ′

1 = 0.79, ρ′
2 = 0.83, ρ′

3 =
0.87, ρ′

4 = 0.91, ρ′
5 = 0.95, ρ′

6 = 1.0. We find the probabilities of Ei’s experimentally, which
is as follows: Pr(E0) = 0.0, Pr(E1) = 0.00157, Pr(E2) = 0.174, Pr(E3) = 0.292, Pr(E4) =
0.281, Pr(E5) = 0.252. Thus, we obtain the following.

Lower bound: 1 −
5∑

j=0
Φ(

T − N
2 (1 + ρ′

j .ϵa)√
N
4 (1 − (ρ′

j .ϵa)2)
) · Pr(Ej) = 1 − 0.003753660 ≈ 0.996246.

Upper bound: 1 −
5∑

j=0
Φ(

T − N
2 (1 + ρ′

j+1.ϵa)√
N
4 (1 − (ρ′

j+1.ϵa)2)
) · Pr(Ej). = 1 − 0.00133734 ≈ 0.998663.

Referring to Table 3, one can verify that the success probability is 0.9983, which validates
our theory.

5.2 Success probability of attack [AFK+08] against ChaCha256
In the attack produced by [AFK+08] against ChaCha256 for 7 rounds, the input difference
was given at the position ∆(0)

13 [13] and the output difference was observed at ∆(3)
11 [0] after

3 rounds. The median forward bias is 0.026 and the backward one is 0.00059.
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Figure 2: Bias Distribution for approach from [AFK+08] for ID ∆(0)
13 [13], OD ∆(3)

11 [0].

Table 5: ρ′
j values and corresponding Pr(Ej) for the bias distribution using Aumasson’s

approach for ID ∆(0)
13 [13] and OD ∆(3)

11 [0] after 3 rounds

j 0 1 2 3 4 5 6 7 8 9 10 11

ρ′
j 0.0 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024 0.026 0.028

Pr(Ej) 0.056 0.030 0.034 0.037 0.040 0.045 0.054 0.063 0.068 0.066 0.063 0.442

Now, we find the forward bias ϵd for 215 randomly chosen key, and observe that the bias
values are distributed in a wide range. For some keys, the bias is sometimes even as low
as 0.001. Refer to Figure 2, that provides a spectral representation of the forward bias
observed in ChaCha256, for different keys whose values are in the range [0, 0.026]. We
divided the entire range into 46 parts, each of length 0.005. For each sub-range, the bar
represents the percentage of keys which produces a forward bias in that range.

We apply Theorem 1 to find a lower and upper bound of the success probability of the
differential attack proposed in [AFK+08] against ChaCha256. Here, the 7-round ChaCha
was cryptanalysed using a distinguisher in the third round. The input difference was given
in the position ∆(0)

13 [13] and the output difference was observed at ∆(3)
11 [0]. The median

of the forward bias ϵd was 0.026 and the backward bias was 0.023. The data complexity
was N = 227. For accuracy, we use N = 133330148 ≈ 226.99. Using the formula for the
threshold T , we obtain T ≈ 66687619.

Result 2. In the differential attack using random IVs with ID position ∆(0)
13 [13] and

OD position ∆(3)
11 [0] after 3 rounds, with data complexity N = 133330148 and threshold

T = 66687619, the success probability is in the range [0.799311, 0.842324].

Proof. We use total 12 markers ρ′
0, ρ′

1, . . . , ρ′
11. The values and the corresponding proba-

bilities of Ej are given in Table 5.

Lower Bound: 1 −
11∑

j=0
Φ(

T − N
2 (1 + ρ′

j .ϵa)√
N
4 (1 − (ρ′

j .ϵa)2)
) · Pr(Ej) = 1 − 0.200689 = 0.799311

Upper Bound: 1 −
11∑

j=0
Φ(

T − N
2 (1 + ρ′

j+1.ϵa)√
N
4 (1 − (ρ′

j+1.ϵa)2)
) · Pr(Ej) = 1 − 0.157676 = 0.842324

5.3 Chosen IV
In the chosen IV approach, Maitra [Mai16] used the same (ID, OD) pair. Because of
the chosen IVs, the median of forward biases increased to 0.14 and the backward bias is
0.015862. The data complexity is N = 15430828 and threshold T = 7726261.
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Figure 3: Bias Distribution for Chosen IV approach for ID ∆(0)
13 [13] and OD ∆(3)

11 [0]

We obtain the forward bias ϵd for 215 randomly chosen key. In Figure 3, a spectral
representation of the forward bias is observed for ChaCha256, for different keys. The bias
values are primarily distributed in the range [0.125 − 0.150]. We divided the entire range
into sub-ranges of length 0.005 each.

Table 6: ρ′
j values and corresponding Pr(Ej) for the bias distribution using Chosen IV

approach for ID ∆(0)
13 [13] and OD ∆(3)

11 [0] after 3 rounds
j 0 1 2 3 4 5
ρ′

j 0 0.125 0.130 0.135 0.140 0.145
Pr(Ej) 0.000008 0.03115 0.308 0.505 0.16 0.015

Result 3. In the differential attack using chosen IV approach with ID position ∆(0)
13 [13]

and OD position ∆(3)
11 [0] after 3 rounds, for N = 15430828 and threshold T = 7726261,

the success probability is in the range [0.997243, 0.998972].

Proof. To obtain the success probability, we use k+1 = 7 markers, 0, 0.125, 0.13, 0.135, 0.14,
0.145, 1. The probabilities Pr(Ej) for each range is given in Table 6.

Lower Bound: 1 −
5∑

j=0
Φ(

T − N
2 (1 + ρ′

j .ϵa)√
N
4 (1 − (ρ′

j .ϵa)2)
) · Pr(Ej) = 1 − 0.002757 = 0.997243

Upper Bound: 1 −
5∑

j=0
Φ(

T − N
2 (1 + ρ′

j+1.ϵa)√
N
4 (1 − (ρ′

j+1.ϵa)2)
) · Pr(Ej) = 1 − 0.001028 = 0.998972

Table 7: More accurate success probabilities of the attacks on 7-round ChaCha256.
IV type ID OD N T Success prob.

Random IV [AFK+08] ∆(0)
13 [13] ∆(3)

11 [0] 133330148 66687619 [0.799311, 0.842324]
Chosen IV [Mai16] ∆(0)

13 [13] ∆(3)
11 [0] 15430828 7726261 [0.997243, 0.998972]

6 Conclusion
This work first shows the limitation of the existing attack approaches using a single ID, OD
pair against ChaCha, when the number of PNBs is high. Apart from improving the attack
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with multiple pairs significantly, our idea opens a new direction of further work exploiting
a divide-and-conquer approach with several sets. If distinguishers in higher rounds can be
discovered in future, this strategy can significantly reduce the attack complexity for 7 or
higher rounds. A toy model of ChaCha is proposed as well for more detailed investigations
to compare the efficacy of the existing and the new attacks. This helps to build a clearer
understanding of the cryptanalytic techniques as the complete attack can be implemented
with a reasonable complexity. Finally, we exploit statistical techniques to estimate the
success probabilities of different cryptanalytic approaches against ChaCha and validate our
idea on the toy version.
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